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On a universality property of some abelian Polish groups

by

Su Gao (Denton, TX) and
Vladimir Pestov (Wellington and Ottawa)

Abstract. We show that every abelian Polish group is the topological factor group
of a closed subgroup of the full unitary group of a separable Hilbert space with the strong
operator topology. It follows that all orbit equivalence relations induced by abelian Polish
group actions are Borel reducible to some orbit equivalence relations induced by actions
of the unitary group.

1. Introduction. For a class C of topological groups, there are usually
two competing notions of universality. In some context, a universal object is
a topological group into which every group in the class C can be isomorphi-
cally embedded as a topological subgroup. In a different sense, a universal
object means a topological group of which every group in C is a topological
factor group, i.e., there is a continuous and open homomorphism from the
universal group onto each group in C. The notions are sometimes distin-
guished from each other by being respectively called injective universality
and projective universality , but the terminology has not been standardized.
In either of the two senses, it is of definite interest whether a universal object
belongs to the class C, although the mere existence of universal objects, no
matter in C or not, can be more important.

Here we consider a universality property that combines the above two
senses. A topological group G is universal for C in our sense if every group
in C is a topological factor group of a topological subgroup of G. This is a
weaker notion than either one mentioned above. It is also easy to see that
the relation “H is a topological factor group of a topological subgroup of
G” is transitive.

The class C we deal with in this paper is that of all abelian Polish groups.
The existence of both injectively and projectively universal Polish groups
is already known. However, those universal groups are of a special kind,
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not at all well understood, while the groups universal in our weaker sense
count among them such familiar objects as the additive group of the Banach
space `1. Since the latter topological group embeds into the full unitary
group U∞ of the separable complex Hilbert space `2, equipped with the
strong operator topology, it follows that U∞ is universal in our sense for the
class of all abelian Polish groups.

Our investigation is motivated by questions in descriptive set theory of
equivalence relations. Let us briefly review the main concepts of this theory.
If a Polish group G acts in a Borel manner on a standard Borel space X
(in which case X is called a Borel G-space), we denote the induced orbit
equivalence relation by EX

G . If E and F are equivalence relations on standard
Borel spaces X and Y respectively, then we say that E is Borel reducible
to F , denoted E ≤B F , if there is a Borel function f : X → Y such that,
for all x, y ∈ X,

xEy ⇔ f(x)Ff(y).

An important open problem in the theory of equivalence relations is: Is there
an orbit equivalence relation induced by a Polish group action which is not
Borel reducible to any orbit equivalence relation of an action of the unitary
group? We provide a partial answer as follows.

Theorem 4.4. Let G be an abelian Polish group and X be a Borel
G-space. Then there is a Borel U∞-space Y such that EXG ≤B EYU∞ .

The following interesting question seems to be open: Is every separable
metrizable topological group a topological factor group of a suitable topo-
logical subgroup of U∞? If the answer to this question is in the affirmative,
then the above-mentioned open problem about orbit equivalence relations
would be completely settled.

A by-product of our investigation is a new (and more elegant) proof of the
known result from [16]: every separable metrizable abelian topological group
embeds as a topological subgroup into a monothetic metrizable topological
group.

The two main tools used in our paper are transportation distances and
positive definite functions. Transportation distances have been indepen-
dently discovered in different areas of mathematics and are thus known
under numerous names. We give a survey of the theory in Section 2. Sec-
tion 3 outlines the use of positive definite functions to construct strongly
continuous unitary representations of some topological groups. In Section 4
the main Borel reducibility results are deduced. We have attempted to make
the article relatively self-contained, collecting in it definitions and hints of
proofs of known results for the reader’s convenience.
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2. Transportation distances. Transportation distances were initially
introduced by Kantorovich in his 1942 paper [9] in order to study the clas-
sical mass transportation problem, and have since then found numerous
applications in different areas of mathematics, in some of which they have
been rediscovered independently and explored to varying degrees of depth
and from various angles.

2.1. Free normed spaces. Let X = (X, d, ∗) be a pointed metric space,
that is, a triple where d is a metric on a set X and ∗ ∈ X is a distinguished
point. Denote by L(X, ∗), or simply by L(X), the real vector space having
X \ {∗} as its Hamel basis and ∗ as zero.

There obviously exists a largest prenorm, p, on L(X) with the property
that the distance induced on X does not exceed d: for all x, y ∈ X, p(x−y) ≤
d(x, y).

Such a p is in fact a norm, and the restriction of the associated distance
to X coincides with d. Indeed, these are equivalent to saying that every met-
ric space isometrically embeds into a normed space as a linearly independent
set. Here is such an embedding (described in [10] and, independently, [1];
cf. also [14]). Denote by Lip(X, ∗) the Banach space of all Lipschitz functions
f : X → R with the property f(∗) = 0, and with the norm ‖f‖ being the
smallest Lipschitz constant for f . For an x ∈ X, denote by x̂ the evaluation
functional:

Lip(X, ∗) 3 f 7→ f(x) ∈ R.
The mapping

X 3 x 7→ x̂ ∈ Lip(X, ∗)′

is an isometric embedding of X into the dual Banach space of Lip(X, ∗) as
a linearly independent subset (an easy check).

In fact, more is true: every element of L(X, ∗), if considered as a finitely
supported measure on X \ {∗}, determines a bounded linear functional on
Lip(X, ∗), and thus L(X, ∗) embeds into the dual Banach space Lip(X, ∗)′
as a normed subspace. The dual norm on L(X) induced from Lip(X, ∗)′ is
exactly the maximal prenorm that we are after. Notice also that X is closed
in L(X).

The normed space L(X) has the following universal property, which pro-
vided the main motivation for the investigations of [1, 20, 4, 5].

Theorem 2.1. Let E be a normed space, and let f : X → E be a
1-Lipschitz map with f(∗) = 0. Then there is a unique linear operator f :
L(X)→ E of norm 1 extending f .

Proof. The existence of a unique linear operator f as above is clear. It
remains to notice that the prenorm on L(X) denoted by q(x) = ‖f(x)‖E
has the property q(x− y) ≤ d(x, y) for all x, y ∈ X, and thus q(z) ≤ ‖z‖ for
all z ∈ L(X) and the statement follows.
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The formula (2.1) that follows can be seen both as the definition of the
transportation distance [9], and as an alternative description of the norm of
the free normed space [1, 20, 4, 5] going back to Graev [8], where it appeared
in the context of free (abelian) groups.

Theorem 2.2. Let x ∈ L(X, ∗, d). Then

(2.1) ‖x‖ = inf
{ n∑

i=1

|λi|d(xi, yi) : n ∈ N, λi ∈ R, xi, yi ∈ X,

x =
n∑

i=1

λixi, 0 =
n∑

i=1

λiyi

}
.

Proof. Denote by ‖ ·‖′ the prenorm determined by the expression on the
right hand side of (2.1), and let ‖ · ‖ stand for the norm of the free normed
space L(X). If x ∈ L(X), then for any two decompositions of x and 0 as in
(2.1) one has

‖x‖ ≤
n∑

i=1

‖λi(xi − yi)‖ =
n∑

i=1

|λi|d(xi, yi),

and consequently ‖x‖ ≤ ‖x‖′. Now let x, y ∈ X. Writing x−y = 1·x+(−1)y
and 0 = 1 · x+ (−1)x, one concludes that

‖x− y‖′ ≤ 1 · d(x, x) + 1 · d(x, y) = d(x, y),

and consequently ‖x‖′ ≤ ‖x‖ for every x ∈ L(X).

The Banach space completion of L(X) is denoted by B(X) and called the
free Banach space on the pointed metric space (X, d, ∗). It has a universal
property similar to that in Theorem 2.1 with respect to all Banach spaces E.

Example 2.3. If X = Γ ∪ {∗} is a set equipped with a discrete ({0, 1}-
valued) metric, then the free Banach space B(Γ ∪ {∗}) (where ∗ is the
distinguished point) is isometrically isomorphic to `1(Γ ).

It is easy to see that the following three conditions are equivalent: (i) a
metric space X is separable; (ii) the free normed space L(X) is separable;
(iii) the free Banach space B(X) is separable.

On this occasion let us recall a well known and simple fact from classical
Banach space theory (cf. e.g. p. 108 in [12]).

Theorem 2.4. Every separable Banach space E is a factor space of `1.

Proof. Let f be an arbitrary map from N+ onto an everywhere dense
subset of the sphere of radius 1/2 around zero in E. The map f is 1-Lipschitz
with respect to the {0, 1}-valued metric on N, and thus extends to a linear
operator f of norm ≤ 1 (in fact, exactly 1) from B(N) ∼= `1 to E. (Here 0 ∈ N
serves as the distinguished point.) Let x ∈ E be arbitrary with ‖x‖ = 1/2.
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It is possible to choose recursively a sequence of elements xn ∈ N and non-
negative scalars λn ≤ 2−n in such a way that each element

∑n
i=1 λif(xi) is

at a distance < 2−(n+1) from x. Consequently, z =
∑∞

i=1 λixi is in `1 and
f(z) = x. Thus, the operator f is onto, and the Open Mapping Theorem
finishes the proof.

Let a, b ∈ X. The following fact, standard in the theory of free objects,
is established by applying the universal property from Theorem 2.1 to the
1-Lipschitz mapping X 3 x 7→ x− a+ b ∈ B(X, b).

Proposition 2.5. Let X = (X, d) be a metric space. For all choices of
the distinguished point ∗ ∈ X the resulting free Banach spaces B(X, d, ∗)
are isometrically isomorphic.

Let us assume temporarily that (X, d) has diameter ≤ 1. Denote by
X† the metric space obtained from X by adding an extra point {†} at a
distance 1 from every x ∈ X. Denote by φ the linear functional of norm 1
on B(X†, †) which takes X to {1} and which exists by Theorem 2.1. Let
B(X)0 stand for the kernel of φ, and let L(X)0 = B(X)0 ∩ L(X).

Proposition 2.6. Assume that diamX ≤ 1. For every ∗ ∈ X, the free
Banach space B(X, d, ∗) (respectively the free normed space L(X, d, ∗)) is
isometrically isomorphic to B(X)0 (respectively , L(X)0).

Here, similarly to the proof of Proposition 2.5, the isomorphic embedding
B(X, d, ∗) ↪→ B(X†, †), when restricted to X, is of the form x 7→ x− ∗.

Recall that if µ is a measure on the product of two standard Borel spaces
X and Y , then the marginals of µ are the push-forward measures πi,∗µ,
i = 1, 2, along the coordinate projections. The (finitely supported) signed
measures µ on X × X whose marginals are, respectively, x and 0, can be
identified with a pair of representations of x and 0 as in (2.1).

Denote by d̃ the distance determined by the free norm, d̃(x, y) = ‖x−y‖.
Theorem 2.2 and Proposition 2.6 lead to the following result.

Theorem 2.7. Let µ1, µ2 be finitely supported probability measures
on X. Then

d̃(µ1, µ2) = inf
{ �

X×X
d(x, y) dν : πi,∗(ν) = µi, i = 1, 2

}
.(2.2)

The formula (2.2) makes sense for arbitrary Borel probability measures
on a metric space, and the distance d̃ is known in this and similar contexts
as the transportation distance, Monge–Kantorovich distance, Prokhorov dis-
tance (in probability), Wasserstein distance (in ergodic theory), or else
Earth Mover’s distance (in computer science). See the two-volume mono-
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graph [19], largely devoted to the study of the transportation distance and
containing a very large—though still not exhaustive—bibliography.

Here is the master result (cf. e.g. [19, Section 4.1]).

Theorem 2.8 (Kantorovich optimality criterion). Let X = (X, d) be a
metric space. A probability measure ν on X×X whose marginals are, respec-
tively , µ1 and µ2, achieves the infimum in (2.2) if and only if there exists
a 1-Lipschitz function f : X → R such that for all pairs (x, y) ∈ supp ν one
has

f(x)− f(y) = d(x, y).

The following is an immediate consequence (cf. [20, 4, 5] for direct
proofs).

Corollary 2.9. The infimum in (2.1) is achieved at some representa-
tions of x and 0 with xi, yi ∈ suppx ∪ {0}.

Corollary 2.10 (Integer Value Property). If x is a linear combination
with integer coefficients, then the infimum in (2.1) is achieved at some rep-
resentations of x and 0 as linear combinations with integer coefficients.

Proof. The Kantorovich criterion reduces the result to the following fact,
established by an easy combinatorial argument. Suppose a matrix A with
real entries is such that the entries in each column and in each row add up
to an integer. Then all non-zero entries of A can be replaced with integers
without altering the column sums and row sums of A.

In the language of optimization theory, Corollary 2.10 says that a trans-
portation problem with integer supply and demand has an integer optimal
solution. This is a classical result, to be found in textbooks such as [21]
(Remark 10 on page 179).

For complex free normed spaces the above results starting with 2.2 are
no longer true [4, 5].

2.2. Graev metrics on free abelian groups. The group envelope of X
in L(X, ∗) is just the free abelian group having X \ {∗} as the set of free
generators. We will denote it by A(X, ∗) or simply by A(X). The restriction
of the distance d̃, generated by the free norm, to A(X, ∗), which we denote
by d, is a bi-invariant metric, and d|X = d. An analogue of Theorem 2.2 can
be stated for d, and together with Corollary 2.10 it implies the following.

Corollary 2.11. The metric d is the maximal among all bi-invariant
metrics on A(X) whose restriction to X is majorized by d.

In the theory of topological groups, the metric d is known as the Graev
metric [8].
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Corollary 2.12. The metric group A(X, d, ∗) is a (closed) metric sub-
group of the normed space L(X, d, ∗).

The above two corollaries are just equivalent forms of the same result,
first stated by Tkachenko [25], who offered a direct, albeit incomplete, proof.
Uspenskĭı [27] later noted that the result in question follows from the Integer
Value Property.

The metric space completion of the group A(X) equipped with the metric
d is an abelian topological group, which we will denote by Â(X, d, ∗).

Corollary 2.13. The complete metric group Â(X, d, ∗) is a (closed)
metric subgroup of the Banach space B(X, d, ∗).

The following universal property of the metric group A(X, d, ∗) is a stan-
dard result in the theory.

Proposition 2.14 (Graev). Let X = (X, d) be a metric space, let G be
an abelian group equipped with a bi-invariant metric ς, and let f : G be a
1-Lipschitz map (with regard to the distances d on X and ς on G), taking ∗
to 0G. Then there exists a unique 1-Lipschitz homomorphism f : A(X, d, ∗)
→ (G, ς) extending f from X.

Proof. For purely algebraic reasons, there is only one group homomor-
phism f : A(X, d, ∗) → (G, ς) extending f . Let us show that f is in fact
1-Lipschitz as well. Define a pseudometric % on A(X) as follows: for
x, y ∈ A(X),

%(x, y) := ς(f(x), f(y)).

This % is a bi-invariant pseudometric, and the restriction of % to X is ma-
jorized by d. We conclude by Corollary 2.11 that % ≤ d. But this is another
way of saying that f : (A(X), d)→ (G, ς) is 1-Lipschitz.

Corollary 2.15. Let (G, ς) be an abelian group equipped with a com-
plete bi-invariant metric. Let f : (X, d) → (G, ς) be a 1-Lipschitz map
taking ∗ to 0G. Then f extends to a unique continuous homomorphism
f : A(X)→ G which is moreover 1-Lipschitz.

Here is another elementary and well known observation, again going back
to [8].

Proposition 2.16. Every metrizable abelian topological group G is a
topological factor group of a metrizable group of the form A(X, d, ∗). If
G is completely metrizable, it is a quotient group of a group of the form
Â(X, d, ∗). If G is Polish, then the latter group can be assumed Polish as
well.

Proof. Let d be any bi-invariant metric on G generating the topology.
Set X = G, ∗ = eG, and consider the group A(G, eG, d). The identity map
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from G to itself extends to a unique 1-Lipschitz epimorphism i : A(X)→ G.
Every ε-neighborhood of identity, Vε, in A(X) contains the ε-neighborhood
formed within X, and therefore the image f(Ve) has a non-empty interior
in G (as it contains f(Vε∩X)). It follows that f is an open homomorphism.
The remaining statements are obvious.

Proposition 2.16 and Corollary 2.12 together imply:

Corollary 2.17. Every abelian metrizable group G is isomorphic to
a topological factor group of a closed subgroup of the additive group of a
normed space E. If G is complete metrizable, then E is a Banach space. If
G is Polish, then E is separable Banach.

The authors of the paper [15], where the above result appeared in print
for the first time, ought to have mentioned that the corollary had in fact
entered topological folklore shortly after the publication of Tkachenko’s in-
fluential work [25].

Invoking Theorem 2.4, one obtains:

Corollary 2.18. Every abelian Polish group G is isomorphic to a topo-
logical factor group of a closed topological subgroup of the additive group
of `1.

Proof. Let π : A(X) → G be a factor homomorphism, and let T :
`1 → B(X) be an open linear epimorphism. Then the complete preimage, E,
of π−1(G) under T is a closed topological subgroup of `1. The restriction of
T to the complete preimage of a closed set is a quotient map. Consequently,
the composition π ◦ (T |E) is an open homomorphism of topological groups
(as a composition of two open homomorphisms).

3. Positive definite functions and topological subgroups of U∞.
Recall that a complex-valued function f on a group G is positive definite if
for every finite collection gi, i = 1, . . . , n, of elements of G and any complex
scalars λi, i = 1, . . . , n, n ∈ N,

n∑

i,j=1

f(gig−1
j )λiλj ≥ 0.

It is a standard fact in representation theory that continuous positive defi-
nite functions on a topological group G are in one-one correspondence with
strongly continuous cyclic representations of G having a (distinguished)
cyclic vector (cf. e.g. [17, §30]). For a separable metrizable group G, its
embeddability into U∞ is thus closely related to the existence of topology-
generating positive definite functions on G. The standard argument in fact
gives the following finer result.
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Theorem 3.1. Let G be a separable metrizable group and 1G be its iden-
tity element. Then G is isomorphic to a topological subgroup of U∞ iff there
is a continuous positive definite function on G separating 1G and closed
subsets of G not containing 1G.

Proof. Let f : G → C be a continuous positive definite function on
G which separates 1G and closed subsets not containing 1G. Form the lin-
ear space X of all complex-valued functions on G with finite support. For
x, y ∈ X, let

〈x, y〉 =
∑

g,h∈G
f(h−1g)x(g)y(h).

Let N = {x ∈ X : 〈x, x〉 = 0}. Then N is a linear subspace of X and the
sesquilinear form induces an inner product on X/N , making X/N a pre-
Hilbert space. Let H be the completion of X/N under the induced norm
metric. Then H is a separable complex Hilbert space. The standard repre-
sentation of G in U(H) defined by

Tgx(h) = x(g−1h)

is easily checked to be a topological embedding of G into U(H) with the
strong operator topology.

Conversely, assume that G is a topological subgroup of U(H) with the
strong operator topology, where H is some separable complex Hilbert space.
Note that for any v ∈ H, the function

fv(g) = 〈g(v), v〉
is continuous and positive definite on G. Moreover the collection {fv : v ∈H}
generates the topology onG. By separability ofG there is a countable subcol-
lection which already generates the topology of G. Denote this subcollection
by F0. Then the set F1 of all finite products of elements of F0 is again a
collection of positive definite functions on G, and this new set separates 1G
and closed subsets of G not containing 1G. Let F1 = {fn : n ∈ N}. Without
loss of generality we can assume that fn(1G) ≤ 1/2n for each n ∈ N. Finally,
define

f(x) =
∑

n∈N
fn(x).

Then f is a continuous positive definite function on G separating 1G and
closed subsets of G not containing 1G.

In [24] Shoenberg proved that, for 1 ≤ p ≤ 2, the function e−‖x‖
p

is
positive definite on `p. Since this function obviously separates the iden-
tity from closed subsets not containing the identity, one obtains the follow-
ing.
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Proposition 3.2. The additive group of each `p, 1 ≤ p ≤ 2, is isomor-
phic to a closed subgroup of U∞. In particular , `1 is (isomorphic to) a closed
subgroup of U∞.

These facts were noted by Megrelishvili in [13].
Thus we have the following in view of Corollary 2.18.

Corollary 3.3. Every abelian Polish group is isomorphic to a factor
group of a closed abelian subgroup of U∞.

In the remaining part of this section we consider the topological group
L0(X,U(1)). Here X is an arbitrary uncountable standard Borel space with
a non-atomic Borel measure. The group L0(X,U(1)) consists of all (equiva-
lence classes of) measurable functions from X into the circle rotation group
U(1), and the topology of L0(X,U(1)) is that of convergence in measure.
The topological group L0(X,U(1)) is the unitary group of the abelian von
Neumann algebra L∞(X), equipped with the ultraweak topology. This can
also be considered as the strong operator topology with regard to the stan-
dard representation of L∞(X) by multiplication operators in L2(X).

The following is another well known theorem for which it is hard to find
a standard reference. However, arguments that are sufficient to establish
the theorem can be found in many sources, e.g., [3] and [26]. (The result
as stated appears, for instance, in the paper [7], but it had certainly been
known to experts for a long time before that.)

Theorem 3.4. Let G be a separable metrizable abelian group. Then G
is isomorphic to a topological subgroup of U∞ iff G is isomorphic to a
topological subgroup of L0(X,U(1)).

Proof. The remarks above give an embedding of L0(X,U(1)) into U∞.
Now suppose G is an abelian topological subgroup of U∞. We can extend G
to a maximal abelian von Neumann algebra W . Then W is isomorphic to
L∞(X), and the ultraweak topology on the unitary group of the latter (the
topology generated by the von Neumann algebra predual) coincides with
the strong operator topology induced from U∞. The result follows.

Thus we have the following immediate corollary.

Corollary 3.5. Every abelian Polish group G is isomorphic to a topo-
logical factor group of a closed subgroup of L0(X,U(1)).

Proof. Since `1 is a closed subgroup of U∞ by Proposition 3.2, `1 is a
closed subgroup of L0(X,U(1)) by Theorem 3.4. The statement now follows
from Corollary 2.18.

In fact, because we are dealing with abelian groups here, a stronger
statement ensues.
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Corollary 3.6. Every abelian Polish group G is isomorphic to a closed
subgroup of a topological factor group of L0(X,U(1)).

Proof. Let F be a closed subgroup of `1, given by Corollary 2.18, with
the property that G embeds into `1/F as a closed subgroup. Embed `1 into
L0(X,U(1)) as a closed subgroup using Theorem 3.4. Then G is isomorphic
to a closed subgroup of L0(X,U(1))/F .

The topological group L0(X,U(1)) seems to play an important role in
the theory of “large” topological groups. Among other known properties of
L0(X,U(1)) are the following two.

Theorem 3.7. L0(X,U(1)) is a monothetic topological group.

(See e.g. [6], or a simple proof from [16].)

Theorem 3.8 ([6]; also Furstenberg and Weiss, unpublished). The to-
pological group L0(X,U(1)) is extremely amenable, that is, every contin-
uous action of L0(X,U(1)) on a compact space has a fixed point.

Embeddability into monothetic groups is closed under taking factor
groups [16]. It is also evident that a topological factor group of an extremely
amenable group is extremely amenable. Thus combining the previous three
results, we not only obtain a different proof of the main result of [16], but
also strengthen it as follows.

Theorem 3.9. Every separable metrizable abelian topological group em-
beds as a topological subgroup into a monothetic extremely amenable me-
trizable topological group. This group is a topological factor group of
L0(X,U(1)).

It was previously known that every topological group embeds into an
extremely amenable group [18], but an abelian version of the result appears
here for the first time.

4. Borel actions. If a Polish group G is a topological factor group of
a Polish group H, then any Borel G-space X is trivially a Borel H-space.
Moreover, the orbit equivalence relations EX

G and EXH are the same.
The following can be found e.g. in [2, Theorem 2.3.5].

Theorem 4.1 (Mackey). If G is a closed subgroup of a Polish group H,
then any Borel G-space X can be extended to a Borel H-space Y such that
every G-orbit in X is contained in exactly one H-orbit in Y . Moreover , it
follows that EXG ≤B EYH .

Combining these results, we obtain:
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Corollary 4.2. If G is a topological factor group of a closed subgroup
of H, then for any Borel G-space X there is a Borel H-space Y such that
EXG ≤B EYH .

The same conclusion holds if G is a closed subgroup of a topological
factor group of H. But for an abelian Polish group H these two conditions
are in fact equivalent.

Our results from previous sections thus imply Borel reducibility re-
sults for orbit equivalence relations induced by actions of the groups men-
tioned. Let us first summarize the universality results we have essentially
proved.

Theorem 4.3. Every abelian Polish group is the topological factor group
of a closed subgroup of any of the following groups:

(i) the additive group of the Banach space `1;
(ii) the additive group of the Banach space C([0, 1]);

(iii) L0(X,U(1)), where X is any uncountable standard Borel space with
a non-atomic Borel measure;

(iv) the full unitary group U∞.

Clause (ii) follows from the well known fact that the Banach space
C([0, 1]) is a universal separable Banach space.

One could also add two other groups to the list. One is the projectively
universal abelian Polish group Â(N ), where N is the Baire space of infinite
sequences of natural numbers. The proof of its universality follows from
Proposition 2.16 modulo known properties of the Baire space (equipped
with the standard ultrametric). See [11, 22].

The other group is the injectively universal abelian Polish group recently
constructed by Shkarin [23]. Both these groups are not quite as familiar as
the universal groups we consider here.

Our main Borel reducibility result is now immediate.

Theorem 4.4. Let G be an abelian Polish group and let X be a Borel
G-space. Then there is a Borel U∞-space Y such that EXG ≤B EYU∞ .

Orbit equivalence relations induced by abelian Polish group actions are a
rich source of examples in the descriptive set theory of equivalence relations.
To name a few important equivalence relations that have been studied in-
tensively: the shift equivalence relations on RN by classical Banach spaces `p
(p ≥ 1) or c0, the equivalence relations on P(N) (the power set of N) by the
natural actions of Polishable Borel ideals. There has been some hope that
an example of an equivalence relation not Borel reducible to any U∞-orbit
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equivalence relation would be among these examples; now we know there
can be none.

Of course Theorem 4.3 also implies that any orbit equivalence relation
induced by an abelian Polish group action must be Borel reducible to one
induced by an action of either `1, C([0, 1]) or L0(X,U(1)). Furthermore we
can identify some universal equivalence relations among those induced by
abelian Polish group actions. These are summarized in the following theo-
rem.

Theorem 4.5. Let G be either `1, C([0, 1]) or L0(X,U(1)). Let F(G)
be the space of all closed subsets of G with the Effros Borel structure. Let
G act on F(G) by multiplication and denote the orbit equivalence relation
by EG. Then EG is universal among all orbit equivalence relations induced
by abelian Polish group actions, i.e., for any abelian Polish group H and
Borel H-space X, EXH ≤B EG.

Proof. By Theorem 3.5.3 of [2], it suffices to note thatG×Z is isomorphic
to a closed subgroup of G.

The following problems seem to be open: Is Theorem 4.5 true for `p
(p > 1), especially `2, and c0?
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