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Sharkovskĭı’s theorem holds for some
discontinuous functions

by

Piotr Szuca (Gdańsk)

Abstract. We show that the Sharkovskĭı ordering of periods of a continuous real
function is also valid for every function with connected Gδ graph. In particular, it is valid
for every DB1 function and therefore for every derivative. As a tool we apply an Itinerary
Lemma for functions with connected Gδ graph.

1. Introduction. Consider the following ordering of the natural num-
bers:

3 B 5 B 7 B . . . B 2 · 3 B 2 · 5 B 2 · 7 B . . . B 22 · 3 B 22 · 5 B 22 · 7 B . . .
. . . B 24 B 23 B 22 B 2 B 1.

(First list all odd numbers except 1, followed by 2 times the odds, 4 times
the odds, etc. Next list all powers of two in decreasing order.) We reserve
the symbols “B” and “C” for that order and call it Sharkovskĭı’s ordering.

Sharkovskĭı’s theorem says that for every continuous map f : R → R, if
f has a point of prime period P then it also has a point of prime period Q
for each Q C P . The remarkable thing about it is a weak assumption (the
function is only assumed to be continuous) and strong conclusion. In this
paper we will show that the assumption can even be weakened—it is enough
to assume the function to be a connected Gδ subset of R2 (see definitions
below). This is surprising, since there are examples of functions in this class
with some pathological properties. In particular, such a function can be
discontinuous on a set of positive Lebesgue measure.

One of the reasons for studying fixed point properties of such functions
is the lack of a nice characterization of derivatives. The latter are DB1
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(a subset of connected Gδ real functions), but not every DB1 function is
a derivative. It is easy to see that the composition of derivatives has the
Darboux property, but it does not need to be a derivative. Since functions
with connected graph have the Darboux property, it seems interesting to
find out if the composition of derivatives is connected. The question if the
composition of two derivatives has a fixed point is an easier version of this
problem. (Every bounded connected function defined on R has a fixed point,
but there are examples of bounded Darboux functions without any.) An
affirmative answer to this question was recently given by Csörnyei, O’Neil,
and Preiss [2], and independently by Elekes, Keleti, and Prokaj [4] (results
from [2] and [4] can be generalized to connected Gδ functions).

Another problem regarding fixed point properties of DB1 functions was
posed by Kellum in [7]. He constructed an example of a connectivity function
f : R→ R which has a point of prime period 3 but for each x, either f 3(x) =
x, or x is not equal to fN (x) for any N > 0. This shows that Sharkovskĭı’s
theorem cannot be extended to all connectivity functions. Kellum asked
whether it can be generalized to the class of Darboux Baire 1 real functions.
Our result gives an affirmative answer to this question.

We prove that if f : R→ R is function with connected Gδ graph, N ∈ N,
and fN has a point of prime period P then it also has a point of prime
period Q for each Q C P (Theorem 3.4). As a tool we apply a fact known
in one dimensional combinatorial dynamics of continuous functions as the
“Itinerary Lemma” (Corollary 1).

It is not hard to modify some existing examples (e.g. Example 2.3 of [1])
to produce a Darboux Gδ function g: [0, 1] → [0, 1] without fixed points,
such that g2 has one. Thus, since 2 B 1, the main result of this paper
(Theorem 3.4) cannot be extended to the class of all Darboux Gδ functions
(but see also the “Problems” section).

We would like to thank Kenneth Kellum for drawing our attention to
this problem. In particular, Kellum noticed that the existence of a point of
period 3 implies the existence of points of period 2 and 1 for every DB1
function.

2. Preliminaries. When considering real intervals, [a, b] or (a, b), we
do not assume that a < b. For every A ⊂ R2 we denote by A−1 the set
{〈y, x〉 | 〈x, y〉 ∈ A}. By rectangle we understand a rectangle with sides par-
allel to the coordinate axes.

We identify every function with its graph. We consider the following
classes of functions from R into R:

D: f is Darboux (f ∈ D) if f(I) is an interval for every interval I ⊂ R;
equivalently, f has the intermediate value property;
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Conn: f is connected (f ∈ Conn) if f is a connected subset of R2; we will
also call such a function a connectivity function;

B1: f is Baire class 1 if f is the pointwise limit of a sequence of continuous
functions; this is equivalent to f−1(G) being an Fσ subset of R for every
open set G ⊂ R;

DB1: f is Darboux Baire 1 (f ∈ DB1) if f is Darboux and Baire 1;

Gδ: f ∈ Gδ if f is a Gδ subset of R2, i.e. f =
⋂
n∈NGn, where all Gn ⊂ R2

are open.

For properties of these and other Darboux-like classes of functions see e.g.
the survey [5]. In particular, it is known that Conn ⊂ D and DB1 ⊂ Conn
∩Gδ (both inclusions are proper). It follows that Conn = D within the class
of Baire 1 functions. Moreover, it is easy to show that if f ∈ Conn then f�I
is connected for every interval I ⊂ R. In what follows we will also use the
fact that every Darboux function is bilaterally dense in itself.

We will apply the following property of connectivity functions.

Remark 2.1. Suppose that f : R → R is a connectivity function, A ∪ B
⊂ f , A∩B = ∅, and A∪B is dense in f . If 〈a, f(a)〉 ∈ A and 〈b, f(b)〉 ∈ B
for some a, b ∈ R, then there exists c ∈ [a, b] such that for every open
neighbourhood U of 〈c, f(c)〉, U ∩A 6= ∅ and U ∩B 6= ∅.

Proof. Let clf (X) denote the closure of the set X in the space f . Define

A0 = A ∩ ([a, b]× R), B0 = B ∩ ([a, b]× R).

Clearly f�[a, b] = clf (A0∪B0) = clf (A0)∪ clf (B0). Since 〈a, f(a)〉 ∈ A0 and
〈b, f(b)〉 ∈ B0, we have A0 6= ∅ 6= B0. Since f�[a, b] is connected, it follows
that clf (A0)∩clf (B0) 6= ∅. Therefore as 〈c, f(c)〉 we can take any point from
clf (A0) ∩ clf (B0).

Having a fixed number N we will count naturals modulo N , i.e. N+i = i
if 0 ≤ i < N .

Fix f : R → R and N ∈ N. We write fN for f ◦ . . . ◦ f (N times).
Additionally, f0 is the identity map of R. A point x ∈ R such that fN (x) = x
but f i(x) 6= x for i = 1, . . . , N − 1 is called a periodic point of f of prime
period N . The orbit of such an x is {fM(x)}0≤M≤N−1.

We will use the following observation due to Ciesielski.

Remark 2.2. The composition of functions f, g: R→ R has a fixed point
if and only if f ∩ g−1 6= ∅.

We say that a closed interval I1 f -covers a closed interval I2 if f(I1) ⊃ I2;
we then write I1 →f I2 (or I1 → I2 if f is clear from context). Note the
following property of this relation.
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Remark 2.3. Suppose that M ∈ N and f = gM for g: R → R being
a Darboux function. If I1, I2 ⊂ R are closed intervals such that I1 →f I2,
then there exist closed intervals J1, . . . , JM+1 such that I1 = J1 →g . . . →g

JM+1 = I2.

We say that f : R→ R belongs to the class I (or has the property I) if for
every family {Ik}1≤k≤N of closed intervals such that I1 →f . . .→f IN →f I1
there exists an x ∈ I1 such that fN (x) = x and f i(x) ∈ Ii+1 for every
i = 1, . . . , N − 1.

It is not hard to observe that every continuous function has the prop-
erty I—this fact is known in one-dimensional dynamics as the “Itinerary
Lemma”. One of our aims is to prove it for every function with connected
Gδ graph.

Remark 2.4. Suppose that g: R → R is a Darboux function with the
property I. Then gM ∈ I for every M ∈ N.

Proof. Let M,N ∈ N, f = gM and {Ik}1≤k≤N be a family of closed
intervals such that I1 →f . . .→f IN →f I1.

First, by Remark 2.3 for every i = 1, . . . , N we can find M + 1 closed
intervals I(i−1)·M+1, I(i−1)·M+2, . . . , I(i−1)·M+M+1 such that

Ii = I(i−1)·M+1 →g I
(i−1)·M+2 →g . . .→g I

(i−1)·M+M+1 = Ii+1.

Next, since g ∈ I, there exists an x ∈ I1 such that gN ·M(x) = x and
gn(x) ∈ In+1 for every n = 1, . . . , N ·M − 1. Clearly, x ∈ I1 and fN (x) = x
and f i(x) ∈ Ii+1 for every i = 1, . . . , N − 1. Thus, f ∈ I.

It was noticed in [8] that the property I of all connected Gδ functions
implies the property I of all their compositions. Since Theorem 3.4 is a
consequence of the Darboux property and the property I of the function
considered, it can be generalized to the class of all compositions of connected
Gδ functions.

In [8] it was also shown how to use the property I of the composition of
connected Gδ functions to find a fixed point of the composition of finitely
many derivatives—a generalization of results from [2] and [4].

3. The result. The proof of Sharkovskĭı’s theorem for continuous func-
tions, given by Block, Guckenheimer, Misiurewicz and Young and presented
in [3], falls into several parts:

(i) every continuous function has the property I;
(ii) the existence of a periodic point of an odd period P implies the

existence of a cycle I1 → . . . → IQ → I1 of closed intervals I1, . . . , IQ for
each Q C P ;

(iii) the existence of a periodic point of an even period implies the exis-
tence of cycles I1 → I2 → I1 and I1 → I1 of closed intervals I1, I2;
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(iv) the remaining cases reduce to the previous ones, because the class
of continuous functions is closed under iterations.

We will show the analogous theorem for the class of all finite iterations
of connected Gδ functions in the same way. First, we prove the analogue
of (i) (Lemmas 3.1, 3.2 and Corollaries 1, 2). Then we notice that parts (ii)
and (iii) of the proof in [3] work in our case (Lemma 3.3). Finally, we use
the fact that the class of functions considered is closed under iterations.

The following lemma is rather technical—see Figures 3.A and 3.B for an
illustration and note the symmetry between the assertion and assumption.

Lemma 3.1. Let f : R → R be a connectivity function, N ∈ N, n ∈
{1, . . . , N} and suppose f ⊂ G, where G is an open subset of R2. Suppose
that there exists a family {Ik}1≤k≤N of bounded closed intervals and y1 < y2

such that (counting naturals modulo N):

(1) there is no y ∈ In such that fN (y) = y and f i(y) ∈ In+i for every
i = 1, . . . , N − 1;

(2) y1, y2 ∈ In;
(3) f i(ya) ∈ In+i for every i = 1, . . . , N − 1 and a = 1, 2;
(4) [y1, y2] ⊂ [fN(y1), fN (y2)].

Then there exists a family {I ′k}1≤k≤N of closed intervals with I ′i ⊂ Ii for
each i, I ′n−1 × I ′n ⊂ G and x′1 < x′2 such that :

(1′) there is no x ∈ I ′n−1 such that fN (x) = x and f i(x) ∈ I ′n−1+i for
every i = 1, . . . , N − 1;

(2′) x′1, x
′
2 ∈ I ′n−1;

(3′) f i(x′a) ∈ I ′n−1+i for every i = 1, . . . , N − 1 and a = 1, 2;

(4′) [x′1, x
′
2] ⊂ [fN(x′1), fN (x′2)].

Proof. For every function h: R→ R define

A(h) = {〈x, f(x)〉 ∈ R2 | x < h(f(x))},
B(h) = {〈x, f(x)〉 ∈ R2 | x > h(f(x))}.

Clearly A(h) ∩B(h) = ∅. Moreover, if f ∩ h−1 = ∅, then f = A(h) ∪B(h).
For every i = 1, . . . , N define fi: [f i−1(y1), f i−1(y2)]→ [f i(y1), f i(y2)] by

fi(x) =





min{f i(y1), f i(y2)} if f(x) < min{f i(y1), f i(y2)},
max{f i(y1), f i(y2)} if f(x) > max{f i(y1), f i(y2)},
f(x) otherwise.

The functions fi are used to define g: R→ R below. If fN−1(y1) < fN−1(y2),



32 P. Szuca
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y1

y2
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Fig. 1. The set g−1. The points denoted by ◦ are from (fN−1)−1

we set (see Fig. 1.A)

g(x) =





x− y1 + fN−1(y1) if x < y1,

(fN−1 ◦ . . . ◦ f2 ◦ f1)(x) if x ∈ [y1, y2],

x− y2 + fN−1(y2) if x > y2,

while if fN−1(y1) > fN−1(y2), we define (see Fig. 1.B)

g(x) =





y1 − x+ fN−1(y1) if x < y1,

(fN−1 ◦ . . . ◦ f2 ◦ f1)(x) if x ∈ [y1, y2],

y2 − x+ fN−1(y2) if x > y2.

Note that g is a Darboux function such that

fN−1(y1) = g(y1), fN−1(y2) = g(y2).

Moreover, if g(y) ∈ (g(y1), g(y2)) for some y ∈ [y1, y2], then

g(y) = fN−1(y),

and by assumption (3),

f i(y) ∈ In+i for every i = 1, . . . , N − 1.

From Remark 2.2 and assumptions (1), (4) we have

(f�[g(y1), g(y2)]) ∩ g−1 = ∅.
Note also that by (4), either fN (y1) < y1 and fN (y2) > y2, or fN (y1) > y2
and fN (y2) < y1. So, depending on the construction of g, we have either
〈g(y1), f(g(y1))〉 ∈ A(g) and 〈g(y2), f(g(y2))〉 ∈ B(g), or 〈g(y1), f(g(y1))〉 ∈
B(g) and 〈g(y2), f(g(y2))〉 ∈ A(g). It follows that

(α)
{
f�[g(y1), g(y2)] ∩ (R× (−∞, y1]) ⊂ A(g),

f�[g(y1), g(y2)] ∩ (R× [y2,∞)) ⊂ B(g)
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if 〈g(y1), f(g(y1))〉 ∈ A(g) and 〈g(y2), f(g(y2))〉 ∈ B(g), while

(β)
{
f�[g(y1), g(y2)] ∩ (R× (−∞, y1]) ⊂ B(g),

f�[g(y1), g(y2)] ∩ (R× [y2,∞)) ⊂ A(g)

if 〈g(y1), f(g(y1))〉 ∈ B(g) and 〈g(y2), f(g(y2))〉 ∈ A(g).
By Remark 2.1 there exists an x′ ∈ [g(y1), g(y2)] such that for every open

neighbourhood U of 〈x′, f(x′)〉, both U ∩A(g) 6= ∅ and U ∩B(g) 6= ∅.
First, we show that f(x′) ∈ [y1, y2]. Indeed, because g is continuous

outside [y1, y2], for every x ∈ [g(y1), g(y2)] such that f(x) 6∈ [y1, y2] there
exists an open neighbourhood V of 〈x, f(x)〉 such that f ∩ V ⊂ A(g) if
〈x, f(x)〉 ∈ A(g), while f ∩ V ⊂ B(g) if 〈x, f(x)〉 ∈ B(g).

Next, observe that if we set

A0(g) = A(g) ∩ (R× [y1, y2]), B0(g) = B(g) ∩ (R× [y1, y2]),

and let U be an open neighbourhood of 〈x′, f(x′)〉, then U ∩A0(g) 6= ∅ and
U ∩B0(g) 6= ∅. This is a consequence of inclusions (α) and (β).

Take closed intervals I ′n−1 ⊂ In−1 and I ′n ⊂ In such that:

• 〈x′, f(x′)〉 ∈ I ′n−1 × I ′n,

• I ′n−1 × I ′n ⊂ G,

• 〈g(f(x′)), f(x′)〉 6∈ I ′n−1 × I ′n,

• if U is an open neighbourhood of 〈x′, f(x′)〉, then U∩A0(g)∩(I ′n−1×I ′n)
6= ∅ and U ∩B0(g) ∩ (I ′n−1 × I ′n) 6= ∅.

For every k = 1, . . . , n− 2, n+ 1, . . . , N take I ′k = Ik.
Without loss of generality we can assume that 〈x′, f(x′)〉 ∈ A0(g), i.e.

x′ < g(f(x′)) (the other case is symmetric). Fix 〈p, f(p)〉∈B0(g)∩(I ′n−1×I ′n).
Since x′ < g(f(x′)) 6∈ I ′n−1, it follows that

{x ∈ I ′n−1 | f(x) = f(x′)} ⊂ A(g).

Hence f(p) 6= f(x′). Two cases are possible:

1. p < x′;
2. p > x′.

Case 1 (see Fig. 2.A). By the Darboux property of g, there exist q1, q2 ∈
(f(p), f(x′)) such that

min{g(y1), g(y2)} < g(q1) < p, max{g(y1), g(y2)} > g(q2) > x′.

Since f is Darboux, there exist p′1, p
′
2 ∈ (p, x′) such that f(p′1) = q1 and

f(p′2) = q2. Let x′1 = min{p′1, p′2} and x′2 = max{p′1, p′2}.
Since g(f(x′1)), g(f(x′2)) ∈ (g(y1), g(y2)), it follows that f i(f(x′a)) ∈ In+i

for every i = 1, . . . , N − 1 and a = 1, 2. Therefore f i+1(x′a) ∈ I ′n+i for every
i = 0, . . . , N − 2 and a = 1, 2. So, x′1 and x′2 are as required.
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Fig. 2. Configurations from the proof of Lemma 3.1. The points denoted by ◦ are from
g−1, those denoted by • are from f

Case 2 (see Fig. 2.B). Since g is bilaterally dense in f(x′), there exists
y′ ∈ (f(x′), f(p)) such that g(y′) > p. By the Darboux property of f there
exists p′ ∈ (x′, p) such that f(p′) = y′. We can also find 〈p′′, f(p′′)〉 ∈
B0(g) ∩ (I ′n−1 × I ′n) with p′′ < p′.

As in the previous case, by the Darboux property of g there exist q1, q2 ∈
(f(p′), f(p′′)) such that

min{g(y1), g(y2)} < g(q1) < p′, max{g(y1), g(y2)} > g(q2) > p′′.

From the Darboux property of f there exist p′1, p
′
2 ∈ (p′′, p′) such that

f(p′1) = q1 and f(p′2) = q2. Let x′1 = min{p′1, p′2} and x′2 = max{p′1, p′2}.
Since g(f(x′1)), g(f(x′2)) ∈ (g(y1), g(y2)), it follows that f i(f(x′a)) ∈ In+i

for every i = 1, . . . , N − 1 and a = 1, 2. Therefore f i+1(x′a) ∈ I ′n+i for every
i = 0, . . . , N − 2, a = 1, 2. So, x′1 and x′2 are as desired.

Lemma 3.2. Suppose that f : R → R is a connectivity function, N ∈ N
and {Ik}1≤k≤N is a family of closed intervals such that I1 → . . .→ IN → I1.
If G is an open set such that f ⊂ G, then there exists a family {Jk}1≤k≤N
of closed intervals with Ji ⊂ Ii and Ji × Ji+1 ⊂ G for every i = 1, . . . , N
such that J1 → . . .→ JN → J1.

Proof. First note that if there exists an x ∈ I1 such that fN (x) = x and
f i(x) ∈ Ii+1 for i = 1, . . . , N − 1, then the family {Jk}1≤k≤N of degenerate
intervals Jk = {fk−1(x)} is as desired. So, we assume that there is no such x.
(This implies in particular that all intervals Ii are non-degenerate.)

Take p, q such that p < q and I1 = [p, q]. Since f is Darboux and f(IN ) ⊃
I1, there exist xNp , x

N
q ∈ IN such that f(xNp ) = p and f(xNq ) = q. Again, since

f(IN−1) ⊃ IN , there exist xN−1
p , xN−1

q ∈ IN−1 such that f(xN−1
p ) = xNp and
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f(xN−1
q ) = xNq . Inductively, we can find a sequence {xkp, xkq}1≤k≤N of pairs

such that f(xNp ) = p, f(xNq ) = q and for each i = 1, . . . , N − 1:

• xip, xiq ∈ Ii,
• f(xip) = xi+1

p and f(xiq) = xi+1
q .

Now, if we set

y1 = min{x1
p, x

1
q}, y2 = max{x1

p, x
1
q},

then f i(y1) ∈ Ii+1 and f i(y2) ∈ Ii+1 for every i = 1, . . . , N . Since y1, y2 ∈ I1

and either fN (y1) = p and fN (y2) = q, or fN (y1) = q and fN (y2) = p, it
follows that [y1, y2] ⊂ [p, q] = [fN(y1), fN(y2)].

Note that G,N, f, y1, y2 and {Ik}1≤k≤N satisfy all the assumptions of
Lemma 3.1 with n = 1 (see Fig. 3.A). So, there exists a family {I ′k}1≤k≤N
and x′1, x′2 with I ′N×I ′1 ⊂ G as in the assertion of that lemma (see Fig. 3.B).
Since fN−1(x′1) ∈ I ′N−1 and fN−1(x′2) ∈ I ′N−1 (see Fig. 3.C), G,N, f, x′1, x

′
2

and {I ′k}1≤k≤N again satisfy all the assumptions of Lemma 3.1 with n de-
creased by 1 (recall that we count naturals modulo N , so in this step n = N ;
see Fig. 3.D).

If we repeat this operation N times, we obtain z1, z2 ∈ R and a family
{I ′′k}1≤k≤N of intervals such that:

(1) I ′′i ⊂ Ii and I ′′i × I ′′i+1 ⊂ G for every i = 1, . . . , N ;
(2) z1, z2 ∈ I ′′1 ;
(3) f i(za) ∈ I ′′i+1 for every i = 1, . . . , N − 1 and a = 1, 2;
(4) [z1, z2] ⊂ [fN (z1), fN(z2)].

Now we can define the desired family {Jk}1≤k≤N as follows:

• J1 = [z1, z2];
• Ji = [f i−1(z1), f i−1(z2)] for i = 2, . . . , N .

By the Darboux property of f , Ji → Ji+1 for every i = 1, . . . , N − 1. More-
over, from (4) we have JN → J1. Items (2) and (3) give Ji ⊂ I ′′i for each i,
so by (1), Ji ⊂ Ii and Ji × Ji+1 ⊂ G.

The continuous version of the following corollary is known in one dimen-
sional dynamics as the “Itinerary Lemma”.

Corollary 1. Every connectivity Gδ function f : R → R has the prop-
erty I.

Proof. Let N ∈ N and {Ik}1≤k≤N be a family of closed intervals such
that I1 → . . .→ IN → I1.

Since f is a Gδ subset of R2, there exists a family G = {Gn}n∈N of open
sets such that f =

⋂G.
Using Lemma 3.2 we can find a family J1 = {J1

k}1≤k≤N of closed intervals
such that for every i = 1, . . . , N :
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y1

y2
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x′1 x′2

I ′n
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x′1 x′2
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I ′n−1

D

x′1

x′2

I ′n−1

I ′n−2

Fig. 3. Using Lemma 3.1 to build a sequence of decreasing rectangles. Configuration “A”
is as in the assumption of the lemma. The points denoted by ◦ are from (fN−1)−1,
those denoted by • are from f . Configuration “B” illustrates the assertion of lemma.
Configuration “C” is a redrawing of “B”, with the •’s from fN−1 and the ◦’s from f−1.
(Note that by (3′), fN−1(x′a) ∈ I ′n−2 for a = 1, 2.) Configuration “D” is “C” with axes
swapped. Again, the ◦’s are from (fN−1)−1, and the •’s are from f . Configurations “A”
and “D” are symmetric—with “n”, “y” and “I” translated to “n − 1”, “x′” and “I ′”,
respectively. So, “D” again satisfies all the assumptions of Lemma 3.1.

• J1
i ⊂ Ii;

• J1
i × J1

i+1 ⊂ G1;
• J1

1 → J1
2 → . . .→ J1

N → J1
1 .

Continuing inductively we can build a sequence {Js}s∈N of families of closed
intervals with Js = {Jsk}1≤k≤N such that for every s ∈ N and i = 1, . . . , N :
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• Js+1
i ⊂ Jsi ;

• Jsi × Jsi+1 ⊂ Gs;
• Js1 → Js2 → . . .→ JsN → Js1 .

It follows that for every i = 1, . . . , N there exists an xi ∈
⋂
s∈N J

s
i .

Obviously, xi ∈ Ii. Since Jsi ×Jsi+1 ⊂ Gs for every s ∈ N, we have 〈xi, xi+1〉 ∈⋂G = f . So, f(xi) = xi+1 and if we take x = x1, then fN (x) = x and
f i(x) ∈ Ii+1. Thus, f ∈ I.

From Remark 2.4 we get a stronger fact (see Example 4.1):

Corollary 2. Suppose that M ∈ N and f = gM , where g: R→ R is a
connected Gδ subset of R2. Then f has the property I.

The next lemma is extracted from the proof of Sharkovskĭı’s theorem
presented in [3]. The whole proof works only for the continuous case, but this
part does not need the full strength of this assumption. For completeness,
we repeat the argument (with slight modifications) in the Appendix.

Lemma 3.3. Suppose that f : R→ R is a Darboux function with the prop-
erty I. If P ∈ N and f has a periodic point of prime period P , then:

(1) if P > 1 and P is odd , then for every Q > P , and for every even Q,
and for Q = 1 there exist closed intervals I1, . . . , IQ such that I1 →f . . .→f

IQ →f I1, and moreover , for every x ∈ I1 such that fQ(x) = x and f i(x) ∈
Ii+1 for i = 1, . . . , Q− 1, x is of prime period Q for f ;

(2) if P > 2 and P is even, then there exist closed intervals I1 and I2

such that I1 →f I1 and I1 →f I2 →f I1, and moreover , for every x ∈ I1
such that f2(x) = x and f(x) ∈ I2, f(x) 6= x;

(3) if P = 2, then there exists a closed interval I1 such that I1 →f I1.

Theorem 3.4. Suppose that M ∈ N and f = gM , where g: R → R is a
connected Gδ subset of R2. If f has a point of prime period P and Q C P ,
then f also has a point of prime period Q.

Proof. First, suppose that P > 1 is odd and Q > P (or Q is even, or
Q = 1). By Lemma 3.3(1) there exist closed intervals I1, . . . , IQ such that
I1 →f . . . →f IQ →f I1. Now, by Corollary 2 there exists an x ∈ I1 such
that fQ(x) = x and f i(x) ∈ Ii for every i = 1, . . . , Q. By the “moreover”
part of Lemma 3.3(1), x is a point of prime period Q for f .

Next, suppose that P is even. If P > 2, then by Lemma 3.3(2) and
Corollary 2, f has a fixed point and a point of prime period 2. If P = 2,
then by Lemma 3.3(3) and Corollary 2, f has a fixed point.

Obviously, the class of finite iterations of connectivity Gδ functions is
closed under finite iterations. So, we can use standard arguments from the
proof of the continuous case.
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Suppose that P = 2a and Q = 2b, where b < a. Consider h = fQ/2. Since
h has a point of prime period 2a−b+1, by the observation above it also has
a point of prime period 2. This point has prime period 2b for f .

Finally, suppose that P = p·2a, where p is odd. By the method presented
above, this case can be reduced to the previous ones.

The following corollary answers the question from [7].

Corollary 3. The conclusion of Sharkovskĭı’s theorem holds for deriva-
tives and DB1 real functions.

4. Problems. A natural problem suggested by the formulation of The-
orem 3.4 is to get a nice characterization of the class of “finite iterations of
connected Gδ real functions” or “finite compositions of connected Gδ real
functions” (see also the problem from [6]: “characterize compositions of two
derivatives (DB1 functions)”). We will modify Example 2.2 from [1] to show
that an iteration of a connected Gδ function need not be Gδ.

Example 4.1. There exists a connectivity Gδ function f : R → R such
that the graph of f2 is not a Gδ subset of R2.

Proof. Let C ⊂ [0, 1] be the Cantor ternary set with {(an, bn)}n∈N being
all the components of its complement. Let C0 = C \⋃n∈N{an, bn}. Define f
as follows.

• For every n ∈ N takemn ∈ N such that (amn+bmn)/2 ∈ (1−2−(n+1), 1).
Put f(an) = 0 and f(bn) = (amn +bmn)/2 and f((an + bn)/2) = 1/2.
Extend it linearly onto [an, bn] to a strictly increasing continuous func-
tion.

• Put f(x) = 0 elsewhere.

By the same arguments as in [1, Example 2.2], f is a connectivity Gδ func-
tion. But since f2(an) = 0, f2(bn) = 1/2 and f2�C0 = 0 for every n ∈ N, it
follows that f2 ∩ (C ×{1/2}) is a countable dense subset of the Baire space
C×{1/2}, so it cannot be a Gδ subset of C×{1/2}. Thus f 2 cannot be Gδ.

Another related problem is whether the conclusion of Sharkovskĭı’s theo-
rem holds for all connected Baire class 2 real functions (the graph of a Baire
class 2 function need not be Gδ).

Appendix: Proof of Lemma 3.3. This proof, due to Block, Guck-
enheimer, Misiurewicz and Young and contained in [3], was given for f
continuous, but it works for every Darboux function with the property I.

Proof of Lemma 3.3. First assume that f has a periodic point x of prime
period P with P odd and P > 1. Suppose that P is minimal with such
properties. Let x1, . . . , xP be all points from the orbit of x, numbered from
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left to right. Note that f permutes the orbit. Clearly, f(xi) 6= xi for each i,
thus f(x1) > x1 and f(xP ) < xP . So, we can choose the largest i for which
f(xi) > xi. Let I1 be the interval [xi, xi+1]. Since f(xi+1) < xi+1, it follows
that f(xi+1) ≤ xi and so f(I1) ⊃ I1. Therefore, I1 → I1.

Let a basic interval be any interval of the form [xj, xj+1].
Since x does not have period 2, it cannot be that f(xi+1) = xi and

f(xi) = xi+1, so f(I1) contains at least one other basic interval (we will see
below that there is exactly one such interval). Let O2 denote the family of
all basic intervals which are f -covered by I1. Hence I1 ∈ O2 but O2 6= {I1}
and if I2 is any interval in O2, then I1 → I2. It can be observed that

⋃O2
is an interval itself.

Now let O3 denote the family of basic intervals which are f -covered by
some interval in O2. Again,

⋃O3 is an interval itself. Indeed, suppose
⋃O3

is not connected. Then there exist a, b ∈ N with 1 ≤ a < b ≤ P and
[xa, xb] ∩

⋃O3 = {xa, xb}. By the Darboux property of f , for every basic
interval [xj , xj+1] ∈ O2, f(xj) and f(xj+1) are on the same side of [xa, xb].
But

⋃O2 is connected and so all images of points xj from
⋃O2 are on the

same side of [xa, xb]. This is a contradiction, since there exist a′, b′ ∈ ⋃O2
such that f(a′) = xa and f(b′) = xb.

Continuing inductively, let Ol+1 be the family of basic intervals that are
f -covered by some interval in Ol. Note that for any interval Il+1 ∈ Ol+1
there is a chain of intervals I2, . . . , Il with Ij ∈ Oj for each j which satisfy
I1 → I2 → . . .→ Il → Il+1.

Now {Ol}l∈N is an increasing sequence with
⋃Ol being an interval for

every l ∈ N. Since there are only finitely many xj , there is an l for which
Ol+1 = Ol. For this l, Ol must contain all basic intervals, for otherwise x
would have period less than P .

We claim that there is at least one basic interval different from I1 in
some Ok which f -covers I1. This follows since there are more points xj on
one side of I1 than on the other (P is odd). Hence there is an xj changing
side under the action of f , and there is an xj which stays on the same side
of I1. Consequently, there is at least one interval which f -covers I1.

Now consider chains of basic intervals I1 → I2 → . . . → Ik → I1 where
I2 6= I1. By the above observations, there is at least one such chain. Choose
one with the smallest k, i.e. I1 → I2 → . . . → Ik → I1 is the shortest path
from I1 to I1 except, of course, I1 → I1. We therefore find a diagram as in
Figure 4.A.

Clearly, k ≤ P−1 (there are only P−1 basic intervals). Now, if k < P−1,
then by the I property of f , one of the loops I1 → . . . → Ik → I1 or
I1 → . . .→ Ik → I1 → I1 gives a fixed point of fm with m odd and m < P .
This point must have prime period odd and less than P (and not equal to 1,
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A

I1
I2

I3

I4

I5

Ik−2

Ik−1

Ik

B

I1
I2

I3

I4

I5

IP−3

IP−2

IP−1

Fig. 4. An example of the shortest non-trivial path I1 → . . .→ I1

since I1 ∩ I2 consists of at most one point, and that point has period P ).
This contradicts the minimality of P , so k = P − 1.

By the minimality of k, we cannot have Il → Ij for any j > l + 1. So,
the orbit of x must be ordered in R in one of two possible ways, as depicted
in Figure 5. It follows that we can extend the diagram from Figure 4.A to
that shown in Figure 4.B.

I1I2 I3 IP−2IP−1

Fig. 5. An ordering of the shortest path. The other is its mirror image

The assertion for the case of P odd is now immediate. Cycles of length
greater than P take the form

I1 → . . .→ IP−1 → I1 → . . .→ I1.

Cycles of smaller even length are given by paths of the form

IP−1 → IP−2 → IP−1, IP−1 → IP−4 → IP−3 → IP−2 → IP−1

and so forth. A cycle of length 1 is given by the trivial path I1 → I1.
Note that all such cycles satisfy the second part of the assertion. This is

a consequence of the fact that in every such path there is an interval with
interior disjoint from all the other intervals. It follows that the prime period
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of every periodic point y 6= x such that fn−1(y) lies in the nth interval of
the cycle must be a multiple of the length of the cycle.

The case of P even and greater than 2 follows from the above arguments
provided we can guarantee that some points xj change sides under f and
some do not (use the facts that IP−2 → IP−1 and IP−1 → IP−2). If this is
not the case, then every xj must change side and so

[x1, xi]→ [xi+1, xP ]→ [x1, xi].

The case of P = 2 is obvious, since

[x1, x2]→ [x1, x2].
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