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Minimal component numbers of fixed point sets

by

Xuezhi Zhao (Beijing)

Abstract. Let f : (X,A)→ (X,A) be a relative map of a pair of compact polyhedra.
We introduce a new relative homotopy invariant NC(f ;X,A), which is a lower bound for
the component numbers of fixed point sets of the self-maps in the relative homotopy class
of f . Some properties of NC(f ;X,A) are given, which are very similar to those of the
relative Nielsen number N(f ;X,A).

1. Introduction. Let f : X → X be a self-map of a connected compact
polyhedron X. The goal of Nielsen fixed point theory (see [1] or [3] for
an introduction) is to understand the fixed point set Fix(f) = {x ∈ X :
f(x) = x} of f . An important invariant is the Nielsen number N(f) of f ,
which is a lower bound for the number of fixed points of f and also a lower
bound for the component number of the fixed point set Fix(f).

Relative Nielsen fixed point theory began with H. Schirmer’s work ([5]),
which is concerned with the information on the fixed point sets of maps of the
form f : (X,A)→ (X,A), called relative maps. The relative Nielsen number
N(f ;X,A) is a lower bound for the number of fixed points of a relative map
f : (X,A)→ (X,A), but it is not a lower bound for the component number
of Fix(f). A simple example is the following:

Example 1.1. Let f : (X,A) → (X,A) be the identity map, where
X = I is the interval and A consists of the two end points.

Recall from [5, Definition 2.4] that the relative Nielsen numberN(f ;X,A)
is defined to be the sum of the Nielsen number N(f ) of the restriction
f : A → A of f to A and the number of essential fixed point classes of
f which do not contain any essential fixed point classes of f . We have
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N(f ;X,A) = N(f ) +N(f)−N(f, f ) = 2 + 1− 1 = 2. But the component
number of Fix(f) is 1.

So, in order to estimate the component numbers of the fixed point sets
of relative maps, one needs to seek new invariants other than the relative
Nielsen number.

It is the purpose of this paper to give a relative homotopy invariant
lower bound for the component numbers of the fixed point sets of relative
self-maps.

In Section 2, we define a new Nielsen type number NC(f ;X,A) and
show that it is a lower bound for the component number of Fix(f). Some
properties of NC(f ;X,A) are also given. Section 3 is devoted to the proof
of the minimum theorem for NC(f ;X,A). In Section 4, we show the rela-
tions among the Nielsen number, minimal fixed point number and minimal
component number of the fixed point set for maps f : X → X without an
invariant subspace A.

2. A lower bound. Let us consider relative maps of the form f : (X,A)
→ (X,A). The homotopies between such maps are also relative, i.e. of the
form H : (X × I,A× I)→ (X,A). Define

MCF[f ;X,A] := min{component number of Fix(g) :

g is relatively homotopic to f}.
In this section we shall give a lower bound for MCF[f ;X,A].

Definition 2.1. Let f : (X,A) → (X,A) be a relative map. We define
NC(f ;X,A) to be the sum of the number of essential fixed point classes of f
and the number of inessential fixed point classes of f which contain essential
fixed point classes of f , i.e.

NC(f ;X,A) := N(f) + |iFPC(FPCe(f )) ∩ FPCi(f)|,
where |·| denotes the cardinality of a set, FPCe(·) and FPCi(·) are the sets of
essential and inessential fixed point classes respectively, and iFPC : FPC(f )
→ FPC(f) is the natural inclusion (see [3, III, 1.8(ii)]) of the set of fixed
point classes of f in the set of fixed point classes of f .

Recall from [5, Definition 2.1] that a fixed point point class of f is said to
be common if it contains an essential fixed point class of f . So, NC(f ;X,A)
is the sum of N(f) and the number of inessential common fixed point classes.

Using the basic relative Nielsen numbers from [6], we have

Proposition 2.2.

NC(f ;X,A) = N(f) +N0101(f ;X,A) +N0110(f ;X,A)

+N0111(f ;X,A) +N0100(f ;X,A).
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From the homotopy invariance of the basic relative Nielsen numbers ([6,
Theorem 3.1]), we get immediately the homotopy invariance of NC(f ;X,A).
Similarly, we can show commutativity and homotopy type invariance of
NC(f ;X,A). We omit the details.

Theorem 2.3 (Lower bound theorem). Let f : (X,A) → (X,A) be a
relative map. Then the component number of the fixed point set of any map
relatively homotopic to f is at least NC(f ;X,A).

Proof. Each essential fixed point class of f is a non-empty set. An
inessential fixed point class of f is also non-empty if it contains an essen-
tial fixed point class of f . Note that fixed points in different fixed point
classes of f are in different components of Fix(f). Thus the component
number of Fix(f) is greater than or equal to the sum of the number of
essential fixed point classes of f and the number of inessential fixed point
classes of f containing essential fixed point classes of f , which is just N(f)+

|iFPC(FPCe(f )) ∩ FPCi(f)| = NC(f ;X,A).

Since NC(f ;X,A) is a relative homotopy invariant, the conclusion holds
for all maps relatively homotopic to f .

In the example of the first section, the unique non-empty fixed point

class of f is essential and contains all essential fixed point classes of f . So,
NC(f ;X,A) = 1, which is equal to MCF[f ;X,A].

A relation among NC(f ;X,A) and other Nielsen type numbers is:

Proposition 2.4. For any relative map f : (X,A)→ (X,A), we have

N(f) ≤ NC(f ;X,A) ≤ N(f ;X,A).

Proof. The first inequality is trivial. Since every fixed point class of f is
contained in a unique fixed point class of f , the number N(f, f ) of essential
fixed point classes of f containing essential fixed point classes of f is less
than or equal to the number of essential fixed point classes of f contained
in essential fixed point classes of f . Thus,

N(f ;X,A) = N(f) +N(f )−N(f, f )

≥ N(f) +N(f )− |{F ∈ FPCe(f ) : iFPC(F) ∈ FPCe(f)}|
= N(f) + |{F ∈ FPCe(f ) : iFPC(F) ∈ FPCi(f)}|
≥ N(f) + |iFPC(FPCe(f )) ∩ FPCi(f)| = NC(f ;X,A).

The next example shows that the inequalities above can be strict.

Example 2.5. Let (X,A) = (S1, S0) and f : (X,A) → (X,A) be the
identity map.

It is clear that N(f) = 0 and N(f ) = 2. Since the two essential fixed
point classes of f are contained in the inessential fixed point class of f
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which is just the total fixed point set, we have NC(f ;X,A) = 0 + 1 = 1.
But N(f ;X,A) = N(f) +N(f )−N(f, f ) = 0 + 2− 0 = 2.

On the other hand, we have

Proposition 2.6. For any relative map f : (X,A)→ (X,A),

(1) N(f) = NC(f ;X,A) if and only if each essential fixed point class of
f : A→ A is contained in an essential fixed point class of f , i.e. there is no
inessential common fixed point class.

(2) NC(f ;X,A) = N(f ;X,A) if and only if each fixed point class of f
contains at most one essential fixed point class of f : A→ A.

3. Minimum theorem. In this section, we show that under some as-
sumptions on (X,A), our new Nielsen type number NC(f ;X,A) can be
realized as the component number of the fixed point set of a map in the
relative homotopy class of the given map f : (X,A)→ (X,A).

Lemma 3.1. Let (X,A) be a pair of compact polyhedra such that X −A
has no local cut point and is not a 2-manifold. Let c : I → X be a path in
X with c((0, 1)) ⊂ X −A. Then c is homotopic, with end points fixed , to a
path c′ such that c′((0, 1)) ⊂ X − A and c′ has no self-intersection points.

Proof. Since X − A is not a 2-manifold, after a barycentric subdivision
there is a 1-simplex σ in X −A which is a face of at least three 2-simplices.
By a homotopy, we can make c intersect σ transversely.

Suppose that c(t) ∈ σ. Write S for the set of self-intersection points of c.
By general position, the pre-image of S is a finite set with S ∩ σ = ∅. Write
c−1(S) = {t1, . . . , tn}. Let ti be in c−1(S) so that |ti− t| = min1≤k≤n |tk− t|.

The figure below shows that we can remove the intersection point c(ti) by
a homotopy relative to [0, t′j]∪ [t′′j , 1], where (t′j, t

′′
j ) is a small neighborhood

of tj in the interval I with (t′j , t
′′
j ) ∩ c−1(S) = {tj}, c−1(c(ti)) = {ti, tj} and

tj 6= ti.

Repeating the above procedure, we get the desired path.

By using the same method, we get

Lemma 3.2. Let (X,A) and a path c satisfy the condition in Lemma 3.1.
Suppose that c has no self-intersection point , and that there is a 1-simplex
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σ in X−A which is a face of at least three 2-simplices such that c intersects
σ transversely. If d : I → X is a path with d((0, 1)) ⊂ X − A, then d is
homotopic, with end points fixed , to a path d′ such that

1) d′(I) ∩ c(I) = ∅,
2) d′((0, 1)) ⊂ X − A,
3) d′ has no self-intersection points.

The idea of the proof of the above lemma is similar to those in [2, Lem-
mas 3.1, 3.2, 3.3]. But the end points of the paths here may be local cut
points or lie in boundary simplices. So, the methods in [2] do not work di-
rectly in our case. Also, as in [2], the proof is concentrated on the case where
X − A is a 2-dimensional complex because the c′ and d′ will be obtained
easily by general position if X − A is high-dimensional.

Now we present the minimum theorem for the Nielsen type number
NC(f ;X,A). Similarly to the existing minimum theorems in relative Nielsen
fixed point theory, we need the so-called by-pass condition:

Definition 3.3 ([5, Definition 5.1]). A subspace A of a space X is said
to be by-passed if every path in X with end points in X − A is homotopic
relative end points to a path in X − A.

Theorem 3.4. Let (X,A) be a pair of compact polyhedra so that

(i) X is connected ,
(ii) X −A has no local cut point and is not a 2-manifold ,

(iii) every component of A is a Nielsen space (i.e. each self-map g : A→ A
is homotopic to a map with N(g) fixed points that can be located anywhere
in A (see [5, p. 466]),

(iv) A can be by-passed in X.

Then any map f : (X,A)→ (X,A) is relatively homotopic to a map g : (X,A)
→ (X,A) such that the component number of the fixed point set of g is
NC(f ;X,A).

Proof. Since A is a Nielsen space up to a relative homotopy, we can
assume that f has N(f ) fixed points in A, which are all on the boundary
Bd(A) of A in the total space X.

Let x and y be any two fixed points in A which are in the same fixed point
class of f . By definition, there is a path cxy : I → X from x to y such that
cxy ' f(cxy) rel {0, 1}. Such a path is said to be a Nielsen path connecting
x and y. As A can be by-passed in X, the Nielsen path cxy can be chosen
so that cxy((0, 1)) ⊂ X − A. Since X − A has no local cut point and is not
a 2-manifold, by Lemma 3.1 we can assume that cxy has no self-intersection
and intersects transversely a 1-simplex σ in X − A, which is a face of at
least three 2-simplices.
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Repeating the procedure for each pair of fixed points in A which are in
the same fixed point class of f , we get all possible Nielsen paths for the
fixed points in A. By Lemma 3.2, we can homotope these paths so that they
are pairwise disjoint except for end points and have no self-intersections,
and that each path has at least one transversal intersection point with the
simplex σ.

Write Y =
⋃
x,y cxy(I) for the union of all the Nielsen paths. Thus,

f |Y : Y → X is homotopic to the inclusion i : Y → X. By the homotopy
extension property, f is homotopic to a map f ′ : (X,A)→ (X,A) such that
f ′(a) = f(a) for all a ∈ A and f ′(y) = y for all y ∈ Y . Because each point on
a Nielsen path is changed into a fixed point, the fixed points in A lying in the
same fixed point classes of f ′ on X are in the same connected components
of the fixed point set of f ′.

Let e be a path in X with end points in X − (Y ∪ A). Since A can
be by-passed in X, there is a path e′ in X − A such that e ' e′ rel {0, 1}.
By Lemma 3.2, we can remove the intersection points e′(I) ∩ Y . So, e′ is
homotopic to a path in X − (Y ∪ A). It follows that Y ∪ A can be by-
passed in X. Applying the method of the proof of [5, Theorem 6.2] to the
relative map f ′ : (X,Y ∪ A)→ (X,Y ∪ A), we can unite the fixed points in
X − Y ∪ A which are in the same fixed point class, and combine the fixed
points to Bd(A) if they lie in common fixed point classes, i.e. they contain
fixed points on A. Finally, deleting the fixed points in X − Y ∪ A of index
zero, we get the desired map g : (X,A)→ (X,A).

The assumption in the theorem above is the same as in H. Schirmer’s
minimum theorem ([5, Theorem 6.2]). Under this assumption, local cut
points of X may be located on A, especially on Bd(A). But a local cut
point of X lying on Bd(A) is not an obstruction to combining the fixed
points in X − A to Bd(A), because we have

Proposition 3.5. Let (X,A) be a pair of compact polyhedra. If A can
be by-passed in X and there is a local cut point a of X lying on Bd(A), then
the component of A containing a is simply connected and its boundary is
just {a}.

4. Case of ordinary maps. In this final section, we make some com-
ments about estimating the component number of the fixed point sets of
ordinary self-maps, i.e. maps without an invariant subspace.

Let f : X → X be a self-map of a compact polyhedron X. As in the
relative case, one may wish to estimate the component number of Fix(f).
Set

MCF[f ] = min{component number of Fix(g) : g ' f}.
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It is well known that the Nielsen number N(f) of f is a lower bound for
the number of fixed points of f . Noticing that fixed points in the same
component of the fixed point set are in the same fixed point class, we have

Proposition 4.1. Let f : X → X. Then N(f) ≤ MCF[f ] ≤ MF[f ].

Corollary 4.2. For the identity map id: X → X, we have

MCF[id] =

{
1 if MF[id] > 0,

0 if MF[id] = 0.

The following example shows that the inequalities in the above proposi-
tion can be strict.

Example 4.3. Let K be the following graph:

a2

a3

a1

a0 a6

a7

a5

a4

If we attach 33 copies of S2 along the edge [a0, a4] and attach a disc with
three holes along each edge of K except [a0, a4], we get a 2-dimensional
complex L. Let f : L→ L be the identity.

Clearly, L is connected, hence dimH0(K) = 1. Since dimH1(K) = 4,
after attaching the 10 discs with three holes, we have dimH1(L) = 4+3·10 =
34. As dimH2(K) = 33, the Euler characteristic χ(L) is 1 − 34 + 33 = 0.
We have N(f) = 0.

Note that the connected complex L has eleven 2-dimensional branches
(see [4, p. 91] for definition). Since the Euler characteristic of each 2-dimen-
sional branch is either 34 or −2, L is therefore a special case of K4 in
[4, IV Example 3.3]. By [4, p. 95], we have MF[f ] = 5. By Corollary 4.2, we
have MCF[f ] = 1.

Thus, for this map f , we have N(f) < MCF[f ] < MF[f ].
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