The twisted products of spheres that have the fixed point property

by
Haibao Duan and Boju Jiang (Beijing)

Abstract

By a twisted product of S^{n} we mean a closed, 1 -connected $2 n$-manifold M whose integral cohomology ring is isomorphic to that of $S^{n} \times S^{n}, n \geq 3$. We list all such spaces that have the fixed point property.

1. Introduction. An almost smooth manifold is a pair $\left(M, D_{M}\right)$ in which
(1) M is a closed, 1-connected topological manifold;
(2) $D_{M} \subset M$ is an embedded disc, $\operatorname{dim} D_{M}=\operatorname{dim} M$; and
(3) $M \backslash \operatorname{int} D_{M}$ is furnished with a fixed smooth structure.

A homeomorphism between two almost smooth manifolds $\left(M, D_{M}\right)$ and $\left(N, D_{N}\right)$ is a homeomorphism $F: M \rightarrow N$ that restricts to a diffeomorphism

$$
M \backslash \operatorname{int} D_{M} \rightarrow N \backslash \operatorname{int} D_{N}
$$

It is clear that such homeomorphisms yield an equivalence relation among all almost smooth manifolds. Denote by W the set of equivalence classes of this relation.

The category W introduced above is of classical interest. C. T. C. Wall classified all $(n-1)$-connected $2 n$ - and $(2 n+1)$-manifolds, $n \geq 3$, exactly in this category $\left[W_{1}\right],\left[W_{2}\right]$. In general, it may be considered as a category between the smooth and PL categories.

It has been forty years since a complete classification for $(n-1)$-connected $2 n$-dimensional almost smooth manifolds was achieved by C. T. C. Wall [W_{1}]. It seems, however, that the corresponding investigation into the geometry of maps between such manifolds has not yet received as much attention

[^0]as it deserves. In this paper, without attempting a thorough study of this broad subject, we just present an evidence indicating an interesting aspect of this topic in the context of fixed point theory.

A topological space X is said to have the fixed point property if the equation

$$
f(x)=x, \quad x \in X
$$

has a solution for every self-map f of X. The classical Brouwer fixed point theorem asserts that the n-dimensional disc $D^{n}=\left\{x \in \mathbb{R}^{n}| | x \mid \leq 1\right\}$ has the fixed point property. During the past century it has served as one of the main technical tools in establishing existence results for highly nonlinear problems [Fo]. On the other hand, except for even dimensional projective spaces and certain complex Grassmannians, few examples of closed manifolds are known to have this striking but useful property $[\mathrm{F}],[\mathrm{H}]$.

By a twisted product of $S^{n}, n \geq 3$, we mean a closed, 1-connected, almost smooth $2 n$-manifold M whose integral cohomology ring is isomorphic to that of $S^{n} \times S^{n}$. The importance and generality of such spaces can be seen from the following facts due to Wall $\left[\mathrm{W}_{1}\right]$. Let $S(n)$ be the set of all homeomorphism types of twisted products of S^{n}. Then
(i) if n is odd, connected sums of elements in $S(n)$ yield all almost smooth $(n-1)$-connected $2 n$-manifolds;
(ii) if n is even and if $n \neq 4,8$, the Grothendieck group of n-spaces is generated by elements in $S(n)$ together with the single n-space whose intersection form is given by E_{8} (cf. Theorem 2 in $\left.\left[\mathrm{W}_{1}\right]\right)$.

The standard product $S^{n} \times S^{n}$ clearly fails the fixed point property. However, this is no longer so for twisted products of S^{n}.

In order to describe our results, we need some notation to describe the homotopy type of manifolds in $S(4 k)$. First recall that the Bernoulli numbers B_{k} are the rationals defined by

$$
\frac{x}{e^{x}-1}=1-\frac{x}{2}+\sum_{k \geq 1}(-1)^{k-1} B_{k} \frac{x^{2 k}}{(2 k)!}
$$

Let d_{k} be the denominator of $B_{k} / 4 k$ (expressed in lowest terms). Put $\sigma_{k}=$ $d_{k} / 2$ if $k=1,2$ and let $\sigma_{k}=d_{k}$ if $k \geq 3$. The first 10 values of σ_{k} are

σ_{1}	σ_{2}	σ_{3}	σ_{4}	σ_{5}	σ_{6}	σ_{7}	σ_{8}	σ_{9}	σ_{10}
12	120	504	480	264	65520	24	16320	28728	13200

It is shown in Section 4 that the set $S(4 k)$ is indexed by pairs of integers as

$$
S(4 k)=\{M(a, b) \mid a, b \in \mathbb{Z}\}
$$

where, with respect to a certain basis x, y for $H^{4 k}(M(a, b))=\mathbb{Z} \oplus \mathbb{Z}$, the parameter (a, b) is related to the Pontryagin class p_{k} for the stable tangent bundle of $M(a, b)$ by

$$
p_{k}=2^{\varepsilon(k)}(2 k-1)!(a x+b y), \quad \varepsilon(k)= \begin{cases}0 & \text { if } k \text { is even } \\ 1 & \text { if } k \text { is odd }\end{cases}
$$

A homotopy classification of elements of $S(4 k)$ is given in
Theorem 2. $M\left(a_{1}, a_{2}\right)$ is homotopy equivalent to $M\left(b_{1}, b_{2}\right)$ if and only if one of the following eight congruence systems is satisfied:

$$
\left\{\begin{array} { l }
{ a _ { 1 } \pm b _ { 1 } \equiv 0 (\operatorname { m o d } \sigma _ { k }) , } \\
{ a _ { 2 } \pm b _ { 2 } \equiv 0 (\operatorname { m o d } \sigma _ { k }) , }
\end{array} \quad \left\{\begin{array}{l}
a_{1} \pm b_{2} \equiv 0\left(\bmod \sigma_{k}\right) \\
a_{2} \pm b_{1} \equiv 0\left(\bmod \sigma_{k}\right)
\end{array}\right.\right.
$$

Consequently, the subset $T(k)=\left\{M\left(a_{1}, a_{2}\right) \mid 0 \leq a_{1} \leq a_{2} \leq \sigma_{k} / 2\right\}$ of $S(4 k)$ consists of all distinct homotopy types of twisted products of $S^{4 k}$.

Since the fixed point property is invariant with respect to homotopy equivalence of closed manifolds, a combination of Theorem 2 with the next result classifies, with respect to homeomorphism type, all twisted products of S^{n} that have the fixed point property.

For $a \in \mathbb{Z}$ let $o(a) \in \mathbb{Z}$ be the order of a in the cyclic group $\mathbb{Z}_{\sigma_{k}}$.
Theorem 3. If $n=4 k$, then $M=M\left(a_{1}, a_{2}\right) \in T(k)$ has the fixed point property if and only if $a_{1} a_{2} \neq 0$ and

$$
\begin{array}{r}
\operatorname{gcd}\left\{o\left(a_{1}\right), o\left(a_{2}\right)\right\} \neq 1 \\
\operatorname{gcd}\left\{2 o\left(a_{1}\right), o\left(a_{2}\right)\right\} \neq 2 \\
\operatorname{gcd}\left\{o\left(a_{1}\right), 2 o\left(a_{2}\right)\right\} \neq 2
\end{array}
$$

If $n \neq 4 k$, then every $M \in S(n)$ fails the fixed point property.
Let $J(k)$ be the subset of $T(k)$ consisting of all the homotopy types that have the fixed point property, and let c_{k} be the cardinality of $J(k)$. Computation based on Theorem 3 shows that most of the elements in $T(k)$ have the fixed point property.

Table 1. $J(1)$

$(1,1)$				
$(1,2)$	$(2,2)$			
$(1,3)$		$(3,3)$		
$(1,4)$	$(2,4)$		$(4,4)$	
$(1,5)$	$(2,5)$	$(3,5)$	$(4,5)$	$(5,5)$

Table 2. $J(7)$

$(1,1)$									
$(1,2)$	$(2,2)$								
$(1,3)$	$(2,3)$	$(3,3)$							
$(1,4)$	$(2,4)$		$(4,4)$						
$(1,5)$	$(2,5)$	$(3,5)$	$(4,5)$	$(5,5)$					
$(1,6)$	$(2,6)$	$(3,6)$		$(5,6)$	$(6,6)$				
$(1,7)$	$(2,7)$	$(3,7)$	$(4,7)$	$(5,7)$	$(6,7)$	$(7,7)$			
$(1,8)$	$(2,8)$		$(4,8)$	$(5,8)$		$(7,8)$	$(8,8)$		
$(1,9)$	$(2,9)$	$(3,9)$		$(5,9)$	$(6,9)$	$(7,9)$		$(9,9)$	
$(1,10)$	$(2,10)$	$(3,10)$	$(4,10)$	$(5,10)$	$(6,10)$	$(7,10)$	$(8,10)$	$(9,10)$	$(10,10)$
$(1,11)$	$(2,11)$	$(3,11)$	$(4,11)$	$(5,11)$	$(6,11)$	$(7,11)$	$(8,11)$	$(9,11)$	$(10,11)$
$(111,11)$									

Table 3. $c_{k}, k \leq 10$

k	1	2	3	4	5
c_{k}	13	1672	31104	28222	8410
k	6	7	8	9	10
c_{k}	469532700	60	33250102	103080204	21744712

For $M \in S(n)$ denote by H_{M} the cohomology $H^{n}(M ; \mathbb{Z})$ in the middle dimension.

The paper is organized as follows. Section 2 recalls from $\left[\mathrm{W}_{1}\right]$ the constructions of elements in $S(n)$ both in terms of handle decomposition and cell decomposition. In Theorem 1 (Section 3) we answer the question which homomorphism $H_{N} \rightarrow H_{M}$ can be induced by a continuous map $f: M \rightarrow N$ with $M, N \in S(n)$. Combining Theorem 1 with the results of Adams [A] and Quillen [Q] of late 60's, we obtain in Section 4 a homotopy type classification for elements in $S(n)$, for n even, which was incomplete in [W_{1}] due to lack of information on J-homomorphisms. The proof of Theorem 3 is given in Section 5; finally, Section 6 discusses some numerical phenomena arising from the previous computation.
2. Constructions. Let $J: \pi_{n-1}(S O(n)) \rightarrow \pi_{2 n-1}\left(S^{n}\right)$ be the J-homomorphism [Wh], and let $H: \pi_{2 n-1}\left(S^{n}\right) \rightarrow \mathbb{Z}$ be the Hopf invariant. We recall from [W_{1}] that elements in $S(n)$ are parameterized by pairs of elements in the group

$$
G_{n}=\operatorname{Ker}\left\{H \circ J: \pi_{n-1}(S O(n)) \rightarrow \mathbb{Z}\right\}
$$

Let $D^{2 n}$ be the standard $2 n$-disc. Fix two smooth embeddings

$$
h_{i}: S^{n-1} \times D^{n} \rightarrow S^{2 n-1}=\partial D^{2 n} \subset D^{2 n}, \quad i=1,2
$$

with disjoint images so that the linking number of the restrictions $h_{1} \mid S^{n-1} \times 0$ and $h_{2} \mid S^{n-1} \times 0$ in $S^{2 n-1}$ is 1 . For two $\alpha_{i} \in G_{n}, i=1,2$, let $N\left(\alpha_{1}, \alpha_{2}\right)$ be
the handle body

$$
D^{2 n} \bigcup_{\alpha_{1}^{\prime} \sqcup \alpha_{2}^{\prime}}\left(D^{n} \times D^{n} \sqcup D^{n} \times D^{n}\right)
$$

with the attaching maps

$$
D^{n} \times D^{n} \supset \partial\left(D^{n} \times D^{n}\right) \supset S^{n-1} \times D^{n} \xrightarrow{\alpha_{i}^{\prime}} S^{2 n-1}=\partial D^{2 n} \subset D^{2 n}
$$

defined by $\alpha_{i}^{\prime}(x, y)=h_{i}\left(x, \alpha_{i}(x) y\right), i=1,2$. Then $N\left(\alpha_{1}, \alpha_{2}\right)$ is a smooth manifold whose boundary is topologically a $(2 n-1)$-sphere (cf. Corollary to Lemma 3 in $\left[\mathrm{W}_{1}\right]$), so a $2 n$-dimensional disc $D^{2 n}$ can be added to yield a closed almost smooth $2 n$-manifold $M\left(\alpha_{1}, \alpha_{2}\right)=\left(N\left(\alpha_{1}, \alpha_{2}\right) \cup D^{2 n}, D^{2 n}\right)$. Since $M\left(\alpha_{1}, \alpha_{2}\right)$ is simply connected (because $\left.n \geq 3\right)$ and its intersection form is seen to be

$$
\left(\begin{array}{cc}
0 & (-1)^{n} \\
1 & 0
\end{array}\right)
$$

it follows that $M\left(\alpha_{1}, \alpha_{2}\right) \in S(n)$. Conversely, all elements in $S(n)$ are obtained in this way.

The space $M\left(\alpha_{1}, \alpha_{2}\right)$ admits a cell decomposition

$$
M\left(\alpha_{1}, \alpha_{2}\right)=\bigvee_{i=1,2} S_{i}^{n} \cup_{\alpha} D^{2 n}
$$

with the attaching map $\alpha \in \pi_{2 n-1}\left(\bigvee_{i=1,2} S_{i}^{n}\right)$ related to $\alpha_{1}, \alpha_{2} \in G_{n} \subseteq$ $\pi_{n-1}(S O(n))$ as follows. Let $\iota_{i}: S^{n} \rightarrow \bigvee_{i=1,2} S_{i}^{n} \subset M\left(\alpha_{1}, \alpha_{2}\right)$ be the inclusion onto the i th copy of the bouquet $\bigvee_{i=1,2} S_{i}^{n}, i=1,2$. By a result of Hilton, there is a canonical splitting

$$
\begin{equation*}
\pi_{2 n-1}\left(\bigvee_{i=1,2} S_{i}^{n}\right)=\bigoplus_{i=1,2} \pi_{2 n-1}\left(S_{i}^{n}\right) \oplus \pi_{2 n-1}\left(S^{2 n-1}\right) \tag{2.1}
\end{equation*}
$$

Lemma 1. With respect to the splitting (2.1), $\alpha=\iota_{1} \circ J\left(\alpha_{1}\right)+\iota_{2} \circ J\left(\alpha_{2}\right)+$ $\left[\iota_{1}, \iota_{2}\right]$, where [,] stands for the Whitehead product $\left[\mathrm{W}_{1}\right]$, [Wh].

REMARK 1. It follows from Lemma 1 that $\pi_{r}\left(M\left(\alpha_{1}, \alpha_{2}\right)\right) \cong \pi_{r}\left(S^{n} \times S^{n}\right)$, $r \geq 0$.
3. Realization of a cohomology homomorphism by a map. For two $M, N \in S(n)$, sending a continuous map $f: M \rightarrow N$ to the induced cohomology homomorphism yields a representation

$$
r:[M, N] \rightarrow \operatorname{Hom}\left(H_{N}, H_{M}\right)
$$

where $[M, N]$ is the set of all homotopy classes of maps $M \rightarrow N$. This section is devoted to a description of $\operatorname{Im}(r)$, the image of r in $\operatorname{Hom}\left(H_{N}, H_{M}\right)$.

Assume, by the discussion in the previous section, that

$$
M=M\left(\alpha_{1}, \alpha_{2}\right)=\bigvee_{i=1,2} S_{i}^{n} \cup_{\alpha} D^{2 n}, \quad N=M\left(\beta_{1}, \beta_{2}\right)=\bigvee_{i=1,2} S_{i}^{n} \cup_{\beta} D^{2 n}
$$

with $\iota_{i}: S^{n} \rightarrow \bigvee_{i=1,2} S_{i}^{n} \subset M$ (resp. $\iota_{i}^{\prime}: S^{n} \rightarrow \bigvee_{i=1,2} S_{i}^{n} \subset N$) being the inclusion onto the i th component of the bouquet $\bigvee_{i=1,2} S_{i}^{n}, i=1,2$. Let $e_{i} \in H_{M}\left(\right.$ resp. $\left.e_{i}^{\prime} \in H_{N}\right)$ be the image of $\iota_{i *}\left[S^{n}\right] \in H_{n}(M ; \mathbb{Z})$ (resp. $\iota_{i *}^{\prime}\left[S^{n}\right] \in H_{n}(N ; \mathbb{Z})$) under Poincaré duality. Then $H_{M}=\operatorname{span}\left\{e_{1}, e_{2}\right\}$ (resp. $\left.H_{N}=\operatorname{span}\left\{e_{1}^{\prime}, e_{2}^{\prime}\right\}\right)$. In view of this we may equally well regard r as a representation into the set $M(2)$ of all 2×2 integer matrices,

$$
r:[M, N] \rightarrow M(2)
$$

by $r(f)=\left(a_{i j}\right)_{2 \times 2}$, where $f^{*}\left(e_{i}^{\prime}\right)=a_{i 1} e_{1}+a_{i 2} e_{2}, i=1,2$.
Theorem 1. $A=\left(a_{i j}\right)_{2 \times 2} \in \operatorname{Im}(r)$ if and only if the following equations hold in $\pi_{2 n-1}\left(S^{n}\right)$:

$$
\begin{equation*}
k J\left(\beta_{i}\right)=a_{i 1} J\left(\alpha_{1}\right)+a_{i 2} J\left(\alpha_{2}\right)+a_{i 1} a_{i 2}\left[\kappa_{n}, \kappa_{n}\right], \quad i=1,2 \tag{3.1}
\end{equation*}
$$

where $k=a_{11} a_{22}+(-1)^{n} a_{12} a_{21}$, and where $\kappa_{n} \in \pi_{n}\left(S^{n}\right)$ is the class of the identity.

If n is even, applying the Hopf invariant H to (3.1) gives

$$
a_{11} a_{12}=a_{21} a_{22}=0
$$

(since $\alpha_{i}, \beta_{i} \in G_{n}$ and $\left.H\left(\left[\kappa_{n}, \kappa_{n}\right]\right)=2\right)$. Theorem 1 implies
Corollary 1. Let n be even. Then $A=\left(a_{i j}\right)_{2 \times 2} \in \operatorname{Im}(r)$ if and only if one of the following constraints is satisfied:

$$
\begin{aligned}
& \text { (i) } A=\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right) \text { with }\left\{\begin{array}{l}
a b J\left(\beta_{1}\right)=a J\left(\alpha_{1}\right) \\
a b J\left(\beta_{2}\right)=b J\left(\alpha_{2}\right)
\end{array} \text { in } \pi_{2 n-1}\left(S^{n}\right) ;\right. \\
& \text { (ii) } A=\left(\begin{array}{ll}
0 & b \\
a & 0
\end{array}\right) \text { with }\left\{\begin{array}{l}
a b J\left(\beta_{1}\right)=b J\left(\alpha_{2}\right) \\
a b J\left(\beta_{2}\right)=a J\left(\alpha_{1}\right)
\end{array} \text { in } \pi_{2 n-1}\left(S^{n}\right) ;\right. \\
& \text { (iii) } A=\left(\begin{array}{ll}
a & 0 \\
b & 0
\end{array}\right) \text { with }\left\{\begin{array}{l}
a J\left(\alpha_{1}\right)=0 \\
b J\left(\alpha_{1}\right)=0
\end{array} \text { in } \pi_{2 n-1}\left(S^{n}\right) ;\right. \\
& \text { (iv) } A=\left(\begin{array}{ll}
0 & a \\
0 & b
\end{array}\right) \text { with }\left\{\begin{array}{l}
a J\left(\alpha_{2}\right)=0 \\
b J\left(\alpha_{2}\right)=0
\end{array} \text { in } \pi_{2 n-1}\left(S^{n}\right) .\right.
\end{aligned}
$$

We complete this section by proving Theorem 1. For a homomorphism $h: H_{N} \rightarrow H_{M}$ one constructs a map $g: \bigvee_{i=1,2} S_{i}^{n} \rightarrow \bigvee_{i=1,2} S_{i}^{n}$ so that the induced g^{*} on cohomology fits in the commutative diagram

where the vertical isomorphisms are induced by the inclusions $\bigvee_{i=1,2} S_{i}^{n}$ $\subset N$ and $\bigvee_{i=1,2} S_{i}^{n} \subset M$. A standard discussion in homotopy theory yields

Lemma 2. g is extendible to a map $f: M \rightarrow N$ (of degree k) if and only if the induced homomorphism $g_{*}: \pi_{2 n-1}\left(\bigvee_{i=1,2} S_{i}^{n}\right) \rightarrow \pi_{2 n-1}\left(\bigvee_{i=1,2} S_{i}^{n}\right)$ satisfies

$$
\begin{equation*}
g_{*}(\alpha)=k \beta \tag{3.2}
\end{equation*}
$$

Assume that, with respect to the basis $\left\{e_{1}^{\prime}, e_{2}^{\prime}\right\}$ for H_{N} and $\left\{e_{1}, e_{2}\right\}$ for $H_{M}, h: H_{N} \rightarrow H_{M}$ has the representation

$$
\begin{equation*}
h\left(e_{i}^{\prime}\right)=\sum_{j=1,2} a_{i j} e_{j}, \quad a_{i j} \in \mathbb{Z} \tag{3.3}
\end{equation*}
$$

Equivalently $g_{*}: \pi_{n}\left(\bigvee_{i=1,2} S_{i}^{n}\right) \rightarrow \pi_{n}\left(\bigvee_{i=1,2} S_{i}^{n}\right)$ is given by $g_{*}\left(\iota_{i}\right)=$ $\sum_{j=1,2} a_{j i} \iota_{j}^{\prime}, i=1,2$. With these notations we compute

$$
\begin{aligned}
g_{*}(\alpha)= & \sum_{i=1,2} g_{*}\left(\iota_{i}\right) \circ J\left(\alpha_{i}\right)+\left[g_{*}\left(\iota_{1}\right), g_{*}\left(\iota_{2}\right)\right] \\
= & \sum_{j=1,2} \iota_{j}^{\prime} \circ\left(a_{j 1} J\left(\alpha_{1}\right)+a_{j 2} J\left(\alpha_{2}\right)+a_{j 1} a_{j 2}\left[\kappa_{n}, \kappa_{n}\right]\right) \\
& +\left(a_{11} a_{22}+(-1)^{n} a_{12} a_{21}\right)\left[\iota_{1}^{\prime}, \iota_{2}^{\prime}\right]
\end{aligned}
$$

where we have made use of the $(-1)^{n}$-symmetry and bilinearity of the Whitehead product [,], the bilinearity of the composition operator o (note that - is linear with respect the first factor since $\alpha_{i} \in G_{n}$, cf. formula (1.16) in [Wh, p. 494]), as well as the obvious relation

$$
\left[\iota_{i}^{\prime}, \iota_{i}^{\prime}\right]=\iota_{i}^{\prime} \circ\left[\kappa_{n}, \kappa_{n}\right]
$$

(in $\pi_{2 n-1}\left(\bigvee_{i=1,2} S_{i}^{n}\right)$). Now comparing the coefficients of ι_{i}^{\prime} and $\left[\iota_{1}^{\prime}, \iota_{2}^{\prime}\right]$ on both sides of (3.2) yields

Lemma 3. g is extendible to a map $f: M \rightarrow N$ (of degree k) if and only if the homomorphism h defined by (3.3) satisfies

$$
k J\left(\beta_{i}\right)=a_{i 1} J\left(\alpha_{1}\right)+a_{i 2} J\left(\alpha_{2}\right)+a_{i 1} a_{i 2}\left[\kappa_{n}, \kappa_{n}\right], \quad i=1,2
$$

in $\pi_{2 n-1}\left(S^{n}\right)$, where $k=a_{11} a_{22}+(-1)^{n} a_{12} a_{21}$.
This clearly finishes the proof of Theorem 1.
4. Homotopy type classification in $S(n)$ (for n even). Assume throughout this section that n is even. We need information on the groups G_{n}, as well as the restriction of the J-homomorphism to G_{n}. In the statement and proof of the next result we use a section of the homotopy sequence

$$
\pi_{n}\left(S^{n}\right) \xrightarrow{\partial} \pi_{n-1}(S O(n)) \xrightarrow{i_{*}} \pi_{n-1}(S O(n+1)) \rightarrow 0
$$

of the fibration $S O(n+1) \rightarrow S^{n}$. The number σ_{k} is as defined in Section 1.
Lemma 4. The groups G_{n} and the restriction of the J-homomorphism to G_{n} can be classified into the following four cases.

CASE 1. $n=4 k, k \leq 2$: Let $\delta \in \pi_{n-1}(S O(n-1))=\mathbb{Z}$ be a generator, and put $x=i_{*}(\delta)$. Then
(1-1) $G_{n}=\mathbb{Z}$ is generated by x;
(1-2) $J(x)$ generates a direct cyclic summand of $\pi_{2 n-1}\left(S^{n}\right)$ of order σ_{k}.
CASE 2. $n=4 k, k \geq 3$: Let $y \in \pi_{n-1}(S O(n))$ be a class such that $i_{*}(y)$ generates $\pi_{n-1}(S O(n+1))=\mathbb{Z}$, and put $x=y-\frac{1}{2} H J(y) \partial \kappa_{n}$. Then
(2-1) $G_{n}=\mathbb{Z}$ is generated by x;
(2-2) $J(x)$ generates a direct cyclic summand of $\pi_{2 n-1}\left(S^{n}\right)$ of order σ_{k}.
CASE 3. $n \equiv 2(\bmod 8), n>8$: Let $y \in \pi_{n-1}(S O(n))$ be a class so that $i_{*}(y)$ generates $\pi_{n-1}(S O(n+1))=\mathbb{Z}_{2}$, and put $x=y-\frac{1}{2} H J(y) \partial \kappa_{n}$. Then
(3-1) $G_{n}=\mathbb{Z}_{2}$ is generated by x;
(3-2) $J: G_{n} \rightarrow \pi_{2 n-1}\left(S^{n}\right)$ is monomorphic.
Case 4. $n=8 s+6: G_{n}=\{0\}$.
Remark 2. In Cases 2 and $3, H J(y) \in \mathbb{Z}$ must be even for dimensional reasons.

Proof. All the statements above can be found in [W_{1}] except for (1-2), (2-2) and (3-2), due essentially to Adams [A] and Quillen $[\mathrm{Q}]$.

The J-homomorphisms induce the commutative diagram

in which the bottom is a section of the EHP sequence [Wh, p. 548]. It is known that
(1) i_{*} maps $G_{4 k}=\mathbb{Z}$ isomorphically onto $\pi_{4 k-1}(S O(4 k+1))=\mathbb{Z}$ if $k \geq 3$, and monomorphically onto the subgroup of index 2 if $k \leq 2$.

By Adams $[\mathrm{A}]$ and Quillen $[\mathrm{Q}]$ we have
(2) $J\left(\pi_{4 k-1}(S O(4 k+1))\right) \subset \pi_{8 k}\left(S^{4 k+1}\right)$ is a cyclic subgroup of order d_{k} (cf. Section 1).

Combining these with the obvious fact that
(3) the composition $H \circ P: \pi_{8 k+1}\left(S^{8 k+1}\right) \rightarrow \mathbb{Z}$ is monomorphic proves (1-2) and (2-2).

Assume now that $n \equiv 2(\bmod 8)$ and $n>8$ (i.e. Case 3$)$. By Adams [A], $J\left(i_{*}(x)\right) \in \pi_{2 n}\left(S^{n+1}\right)$ is of order 2 . This clearly implies (3-2).

If n is even and $n \neq 4 k$, then J restricts to a monomorphism $G_{n} \rightarrow$ $\pi_{2 n-1}\left(S^{n}\right)$ by Lemma 4. The homotopy classification of elements in $S(n)$
now coincides with the homeomorphism classification, hence was done by Wall $\left[\mathrm{W}_{1}\right]$:

Corollary 2. If n is even and $n \neq 4 k$, we have
(1) for $n \equiv 2(\bmod 8)$ and $n>8: S(n)=\{M(0,0), M(x, 0)\}$;
(2) for $n=8 s+6: S(n)=\{M(0,0)\}$,
where $M(0,0)=S^{n} \times S^{n}$.
If $n=4 k$ (Cases 1 and 2), we write $M\left(a_{1}, a_{2}\right)$ instead of $M\left(a_{1} x, a_{2} x\right)$, $a_{i} \in \mathbb{Z}$. In view of the construction of $M\left(a_{1}, a_{2}\right)$ described in Section 2, the characteristic map for the normal bundle of the embedding $\iota_{i}: S^{n} \rightarrow$ $M\left(a_{1}, a_{2}\right)$ is seen to be $a_{i} x \in \pi_{4 k-1}(S O(4 k)), i=1,2$. Thus, by the divisibility result of R . Bott [B], the Pontryagin class p_{k} for the stable tangent bundle of $M\left(a_{1}, a_{2}\right)$ is related to $\left(a_{1}, a_{2}\right)$ by the formula of Section 1.

Proof of Theorem 2. Since $n=4 k$, the J-homomorphism restricts to the modulo- σ_{k} reduction $G_{n}=\mathbb{Z} \rightarrow \pi_{2 n-1}\left(S^{n}\right)$ by Lemma 4. Let f : $M\left(a_{1}, a_{2}\right) \rightarrow M\left(b_{1}, b_{2}\right)$ be a homotopy equivalence. Then $r(f) \in M(2)$ must be unimodular. The congruence relations follow from (i) and (ii) of Corollary 1.
5. Proof of Theorem 3. For a self-map f of a manifold M, let $L(f)$ be the Lefschetz number of $f[\mathrm{Br}]$. We put

$$
L(M)=\{L(f) \mid f: M \rightarrow M\}
$$

By the definition of Lefschetz number we deduce from Corollary 1 the following

Lemma 5. If $M=M\left(a_{1}, a_{2}\right) \in T(k)$, then $L(M)=L_{1} \cup L_{2} \cup L_{3} \cup L_{4}$ with

$$
\begin{aligned}
& L_{1}=\left\{(a+1)(b+1) \mid(a b-a) a_{1} \equiv(a b-b) a_{2} \equiv 0\left(\bmod \sigma_{k}\right), a, b \in \mathbb{Z}\right\} \\
& L_{2}=\left\{1+a b \mid a b a_{1}-b a_{2} \equiv a b a_{2}-a a_{1} \equiv 0\left(\bmod \sigma_{k}\right), a, b \in \mathbb{Z}\right\} \\
& L_{3}=\left\{1+a \mid a a_{1} \equiv 0\left(\bmod \sigma_{k}\right), a \in \mathbb{Z}\right\} \\
& L_{4}=\left\{1+b \mid b a_{2} \equiv 0\left(\bmod \sigma_{k}\right), b \in \mathbb{Z}\right\}
\end{aligned}
$$

It is well known that if M is a simply connected manifold, then M has the fixed point property if and only if $0 \notin L(M)$.

Proof of Theorem 3. Assume $n=4 k$, and $M\left(a_{1}, a_{2}\right) \in T(k)$ (i.e. $0 \leq$ $\left.a_{1} \leq a_{2} \leq \sigma_{k} / 2\right)$. It is easy to see from Lemma 5 that the condition $a_{1} a_{2} \neq 0$ is equivalent to $0 \notin L_{3} \cup L_{4}$, and that $0 \in L_{2}$ implies $0 \in L_{1}$. We may assume below that $a_{1} a_{2} \neq 0$. Consequently, $o\left(a_{1}\right) \neq 0$, $o\left(a_{2}\right) \neq 0$ (since $\left.a_{1}, a_{2} \leq \sigma_{k} / 2\right)$.

If $0 \in L_{1}$, then by Lemma 5 we have either
(i) $b=-1$ and $2 a a_{1} \equiv(a-1) a_{2} \equiv 0$, or
(ii) $a=-1$ and $(b-1) a_{1} \equiv 2 b a_{2} \equiv 0$.

However (i) implies $o\left(a_{1}\right) \mid 2 a$ and $o\left(a_{2}\right) \mid a-1$, and similarly (ii) implies $o\left(a_{1}\right) \mid b-1$ and $o\left(a_{2}\right) \mid 2 b$, both leading to either $\operatorname{gcd}\left\{o\left(a_{1}\right), o\left(a_{2}\right)\right\}=1, \operatorname{gcd}\left\{2 o\left(a_{1}\right), o\left(a_{2}\right)\right\}=2$, or $\operatorname{gcd}\left\{o\left(a_{1}\right), 2 o\left(a_{2}\right)\right\}=2$.

Conversely, if $\operatorname{gcd}\left\{o\left(a_{1}\right), o\left(a_{2}\right)\right\}=1$, so that there are $s, t \in \mathbb{Z}$ such that

$$
s o\left(a_{1}\right)+t o\left(a_{2}\right)=1
$$

then $(a, b)=\left(-1, o\left(a_{2}\right) t\right)$ satisfies (ii). Alternatively, if $\operatorname{gcd}\left\{2 o\left(a_{1}\right), o\left(a_{2}\right)\right\}=2$ (say), so that there are $s, t \in \mathbb{Z}$ such that

$$
2 o\left(a_{1}\right) s+o\left(a_{2}\right) t=2
$$

then $o\left(a_{2}\right) t$ is divisible by 2 , and $(a, b)=\left(-1, o\left(a_{2}\right) t / 2\right)$ satisfies (ii). Thus $0 \in L_{1}$. The first assertion of Theorem 3 is verified.

The second assertion of Theorem 3 comes directly from the following observations:
(i) If n is odd, then for $M \in S(n)$ one has

$$
L(\mathrm{Id})=\chi(M)=0 \in L(M)
$$

where Id : $M \rightarrow M$ is the identity and $\chi(M)$ is the Euler characteristic of M.
(ii) If $n=8 s+6$, then $S(n)$ consists of the single element $S^{n} \times S^{n}$ by Corollary $2(2)$.
(iii) If $n \equiv 2(\bmod 8)$ and $n>8$, then $S(n)=\left\{S^{n} \times S^{n}, M(x, 0)\right\}$ by Corollary 2(1). The matrix

$$
A=\left(\begin{array}{cc}
0 & 0 \\
0 & -1
\end{array}\right)
$$

is realizable by a self-map f of $M(x, 0)$ by Corollary 1 (ii); its Lefschetz number is seen to be zero.
6. Computational examples. We conclude this paper by describing some phenomena arising from the previous computation.

For every manifold M, the constant map and identity map of M contribute to the set $L(M)$ respectively 1 and $\chi(M)$ (the Euler characteristic). Therefore, the subset $L^{\prime}(M)=L(M) \backslash\{1, \chi(M)\}$ can be viewed as the set of non-obvious Lefschetz numbers for self-maps of M.

If $M \in S(4 k)$, the set $L(M)$ (hence $L^{\prime}(M)$) may be computed by using Lemma 5. For instance, if $M=M(1,2) \in S(4 k)$, one can show that

$$
|\lambda| \geq \sqrt{\sigma_{k}} / 2 \quad \text { for all } \lambda \in L^{\prime}(M)
$$

This estimate points out an interesting phenomenon: there exist twisted products of $S^{4 k}$ whose non-obvious Lefschetz numbers are arbitrarily large.

A fundamental invariant for a map $f: M \rightarrow N$ between two closed oriented manifolds of the same dimension is its Brouwer degree, denoted by $\operatorname{deg} f$. It may be evaluated in the following manner. Let $[M] \in H_{\operatorname{dim} M}(M)$ be the fundamental class specified by the orientation, and let $f_{*}: H_{*}(M) \rightarrow$ $H_{*}(N)$ be the induced homomorphism. In view of the fact that $H_{\operatorname{dim} M}(M)$ $=\mathbb{Z}$ is generated by $[M], \operatorname{deg} f$ is seen to be the unique integer satisfying $f_{*}[M]=\operatorname{deg} f \cdot[N]$ in $H_{\operatorname{dim} N}(N)=\mathbb{Z}$.

Given two closed oriented manifolds M, N of the same dimension we set

$$
D(M, N)=\{\operatorname{deg} f \mid f: M \rightarrow N\}
$$

The problem of determining the set $D(M, N)$ for given M and N can be viewed as one of the realization problems in topology, and has been studied by many authors for certain classes of 3 -manifolds (cf. [S] for the latest references).

Lemma 3 is sufficient to find the set $D(M, N)$ for $M, N \in S(n)$. For instance, from Corollary 1 (a special case of Lemma 3) one finds that if $M=M^{8 k}\left(a_{1}, a_{2}\right), N=M^{8 k}\left(b_{1}, b_{2}\right) \in S(4 k)$, then

$$
\begin{aligned}
D(M, N)= & \left\{x y \mid x y b_{1}-x a_{1} \equiv 0, x y b_{2}-y a_{2} \equiv 0\left(\bmod \sigma_{k}\right)\right\} \\
& \cup\left\{x y \mid x y b_{1}-x a_{2} \equiv 0, x y b_{2}-y a_{1} \equiv 0\left(\bmod \sigma_{k}\right)\right\}
\end{aligned}
$$

This indicates that the set $D(M, N)$ might possess interesting numerical features. Direct computations yield, as examples,

$$
\begin{aligned}
& D\left(M^{8 k}(1,1), M^{8 k}(0,0)\right)=\left\{\sigma_{k}^{2} t \mid t \in \mathbb{Z}\right\} \\
& D\left(M^{48}(1,1), M^{48}(0,0)\right)=\left\{65520^{2} t \mid t \in \mathbb{Z}\right\} \\
& D\left(M^{16}(1,2), M^{16}(0,0)\right)=\{7200 t \mid t \in \mathbb{Z}\} \\
& D\left(M^{16}(1,3), M^{16}(0,0)\right)=\{4800 t \mid t \in \mathbb{Z}\} \\
& D\left(M^{16}(1,4), M^{16}(0,0)\right)=\{3600 t \mid t \in \mathbb{Z}\}
\end{aligned}
$$

Acknowledgements. The authors feel grateful to Mr. Qi Xin, who implemented a program enumerating all elements in $J(k)$. The results in Tables 1, 2 and 3 have been provided by him.

Thanks are also due to the referee for pointing out misprints in the earlier version of the work.

References

[A] J. F. Adams, On the groups $J(X), I-I V$, Topology 2 (1963), 181-195; 3 (1965), 137-191, 193-222; 5 (1966), 21-71.
[B] R. Bott and J. W. Milnor, On the parallelizability of the spheres, Bull. Amer. Math. Soc. 64 (1958), 87-89.
[Br] R. F. Brown, The Lefschetz Fixed Point Theorem, Scott, Foresman, Glenview, IL, 1970.
[F] E. Fadell, Some examples in fixed point theory, Pacific J. Math. 33 (1970), 89-100.
[Fo] W. Forster, Preface, in: Numerical Solution of Highly Nonlinear Problems, W. Forster (ed.), North-Holland, 1980.
[H] M. Hoffman, Endomorphisms of the cohomology of complex Grassmannians, Trans. Amer. Math. Soc. 281 (1984), 745-740.
[Q] D. Quillen, The Adams conjecture, Topology 10 (1971), 67-80.
[S] T. Soma, Degree-one maps between hyperbolic 3-manifolds with the same volume limit, Trans. Amer. Math. Soc. 353 (2001), 2753-2772.
[W W_{1} C. T. C. Wall, Classification of $(n-1)$-connected $2 n$-manifolds, Ann. of Math. 75 (1962), 163-198.
$\left[\mathrm{W}_{2}\right]$-, Classification problems in differential topology. I, Topology 2 (1963), 253-261.
[Wh] G. W. Whitehead, Elements of Homotopy Theory, Springer, 1978.

Institute of Mathematics
Chinese Academy of Sciences
Beijing 100080, P.R. China
E-mail: dhb@math.ac.cn

Department of Mathematics
Peking University
Beijing 100871, P.R. China
E-mail: jiangbj@math.pku.edu.cn

Received 19 December 2001;
in revised form 20 October 2003

[^0]: 2000 Mathematics Subject Classification: Primary 55M20; Secondary 57N15.
 Key words and phrases: fixed point property, Lefschetz number, J-homomorphism.
 Research of B. J. Jiang supported by MoSTC and MoEC grants.

