On transcendental automorphisms of algebraic foliations

by

B. Scárdua (Rio de Janeiro)

Abstract. We study the group $\operatorname{Aut}(\mathcal{F})$ of (self) isomorphisms of a holomorphic foliation \mathcal{F} with singularities on a complex manifold. We prove, for instance, that for a polynomial foliation on \mathbb{C}^2 this group consists of algebraic elements provided that the line at infinity $\mathbb{C}P(2) \setminus \mathbb{C}^2$ is not invariant under the foliation. If in addition \mathcal{F} is of general type (cf. [20]) then $\operatorname{Aut}(\mathcal{F})$ is finite. For a foliation with hyperbolic singularities at infinity, if there is a transcendental automorphism then the foliation is either linear logarithmic, Riccati or chaotic (cf. Definition 1). We also give a description of foliations admitting an invariant algebraic curve $C \subset \mathbb{C}^2$ with a transcendental foliation automorphism.

1. Introduction and main results. In this paper we study the group of (self) isomorphisms of a foliation. Given a codimension one holomorphic foliation \mathcal{F} with singularities on a complex manifold M we denote by $\operatorname{Aut}(\mathcal{F})$ the maximal subgroup of $\operatorname{Aut}(M)$ whose elements preserve the foliation \mathcal{F} . This object has been studied in [20] where it is proven that $\operatorname{Aut}(\mathcal{F})$ is finite for \mathcal{F} of general type on a (compact) projective surface. We recall (cf. [20]) that a foliation \mathcal{F} on a projective surface M^2 is of general type if its Kodaira dimension (cf. [17]) is equal to 2. Our results extend in a way the result above to open algebraic surfaces. Indeed, we are concerned with the non-compact case and its applications to the classification of holomorphic flows on \mathbb{C}^2 , for instance. Our first result is the following:

PROPOSITION 1. Let \mathcal{F} be a foliation with hyperbolic singularities on $\mathbb{C}P(2)$. Suppose there exists some affine open subset $U \subset \mathbb{C}P(2)$ such that the restriction $\mathcal{F}|_U$ contains a holomorphic flow in its group of automorphisms. Then \mathcal{F} is, in suitable affine coordinates, a linear hyperbolic foliation.

By an affine set $U \subset \mathbb{C}P(2)$ we mean the complement of an algebraic curve $\Gamma \subset \mathbb{C}P(2)$. This preliminary result suggests that the complexity of the transverse structure and that of the tangent structure are, in a certain

²⁰⁰⁰ Mathematics Subject Classification: 37F75, 32S65.

sense, in inverse proportion. This idea is enforced by our next results. The first is the following extension lemma:

LEMMA 1 (Extension Lemma). An entire automorphism $\varphi \colon \mathbb{C}^2 \to \mathbb{C}^2$ of an algebraic foliation \mathcal{F} on $\mathbb{C}P(2)$ is algebraic provided that the infinity $\mathbb{P}^1_{\infty} = \mathbb{C}P(2) \setminus \mathbb{C}^2$ is not invariant under \mathcal{F} .

The above result actually holds for bimeromorphic maps $\varphi \colon \mathbb{C}^2 \setminus \Gamma \dashrightarrow \mathbb{C}^2 \setminus \Gamma$ if we replace \mathbb{P}^1_{∞} by an irreducible (non-invariant) algebraic curve $\Gamma \subset \mathbb{C}P(2)$, as will be clear from the proof we give. We point out that a foliation automorphism $\varphi \in \operatorname{Aut}(\mathbb{C}^2)$ may extend to a bimeromorphic non-linear map of $\mathbb{C}P(2)$ as is the case for $\mathcal{F} : dx = 0$ and $\varphi(x, y) = (x, y + x^n)$. Denote by $\operatorname{Bim}(\mathcal{F})$ the group of bimeromorphic maps $\Phi \colon M \dashrightarrow M$ which preserve \mathcal{F} in M (these maps take leaves of \mathcal{F} onto leaves of \mathcal{F} wherever defined). Combining the extended Lemma 1 with Theorem 1 of [20] we immediately obtain:

COROLLARY 1. Let \mathcal{F} be a codimension one singular holomorphic foliation on $\mathbb{C}P(2)$ and $\Gamma \subset \mathbb{C}P(2)$ a non-invariant algebraic curve. Then we have natural group immersions $\operatorname{Bim}(\mathcal{F}|_{\mathbb{C}P(2)\setminus\Gamma}) \subset \operatorname{Bim}(\mathcal{F}) \subset \operatorname{Bim}(\mathbb{C}P(2))$. In particular, $\operatorname{Bim}(\mathcal{F}|_{\mathbb{C}P(2)\setminus\Gamma})$ is finite if \mathcal{F} is generic.

For a foliation \mathcal{F} on a projective surface M admitting a minimal model \mathcal{G} on \widetilde{M} (cf. [6]), we have a natural group isomorphism $\operatorname{Bim}(\mathcal{F}) \simeq \operatorname{Aut}(\mathcal{G})$ [20]. Foliations without minimal model are listed as: rational fibrations, nontrivial Riccati foliations and the exceptional foliation \mathcal{H} in [6] (see also Example 1.3 in [10]). In particular, if \mathcal{F} is generic then it admits a minimal model ([20]). In [10] it is proved that for a foliation \mathcal{F} on a projective surface if $\operatorname{Aut}(\mathcal{G}) \subseteq \operatorname{Bim}(\mathcal{G})$ for every birational model \mathcal{G} of \mathcal{F} then we have the following possibilities: \mathcal{F} is a rational fibration or \mathcal{F} is the exceptional foliation \mathcal{H} of [6], i.e., the foliation in Example 1.3 of [10]. Combining these results with Corollary 1 above we obtain:

COROLLARY 2. Let \mathcal{F} be a codimension one singular holomorphic foliation on $\mathbb{C}P(2)$ and $\Gamma \subset \mathbb{C}P(2)$ a non-invariant algebraic curve. Suppose that $\operatorname{Bim}(\mathcal{F}|_{\mathbb{C}P(2)\setminus\Gamma})$ is not finite. Then \mathcal{F} is either a linear foliation, an elliptic fibration, a rational fibration, a Riccati foliation, or (birationally equivalent to) the exceptional foliation \mathcal{H} of [6].

Proof. If \mathcal{F} has a minimal model then we may assume that \mathcal{F} is minimal and therefore $\operatorname{Aut}(\mathcal{F}) = \operatorname{Bim}(\mathcal{F})$ is infinite. Theorem 1.1 of [10] then shows that \mathcal{F} is either an elliptic fibration, a Riccati foliation or given by a global holomorphic vector field on $\mathbb{C}P(2)$, in which case \mathcal{F} is necessarily linear. Now we may assume that \mathcal{F} has no minimal model. Therefore, according to the above discussion \mathcal{F} is either a non-trivial Riccati foliation, a rational fibration or the foliation \mathcal{H} of [6] which is the foliation in Example 1.3 of [10].

For the transcendental case we shall be more precise by introducing a dynamical concept:

DEFINITION 1 (chaotic foliation). We shall say that a foliation \mathcal{F} on $\mathbb{C}P(2)$ which leaves invariant the line at infinity is *chaotic* if:

- (ch-1) $\mathcal{F}|_{\mathbb{C}^2}$ has no parabolic leaf (in the sense of potential theory, cf. [4]);
- (ch-2) the foliation $\mathcal{F}|_{\mathbb{C}^2}$ admits no (non-trivial) holonomy invariant measure, indeed the leaves of $\mathcal{F}|_{\mathbb{C}^2}$ have exponential growth for the Fubini–Study metric ([9]);
- (ch-3) the holonomy group of the leaf $L_{\infty} = \mathbb{P}^{1}_{\infty} \setminus (\operatorname{sing}(\mathcal{F}) \cap \mathbb{P}^{1}_{\infty})$ is non-solvable (see [19]);
- (ch-4) all leaves of \mathcal{F} , except for L_{∞} , are dense in $\mathbb{C}P(2)$ ([15], [12]).
- (ch-5) $\mathcal{F}|_{\mathbb{C}^2}$ (and therefore \mathcal{F} on $\mathbb{C}P(2)$) is ergodic ([12]) and topologically rigid ([15], [23]).

Using this terminology we state our main results as follows:

THEOREM 1. Let \mathcal{F} be an algebraic foliation on $\mathbb{C}P(2)$ such that $\operatorname{sing}(\mathcal{F}) \cap \mathbb{P}^1_{\infty}$ is hyperbolic and $\operatorname{Aut}(\mathcal{F}|_{\mathbb{C}^2})$ contains a transcendental element $\varphi : \mathbb{C}^2 \to \mathbb{C}^2$. We have the following possibilities: (i) \mathcal{F} is chaotic; (ii) \mathcal{F} is a linear logarithmic foliation; (iii) \mathcal{F} is a Riccati foliation.

Examples of foliations of logarithmic and Riccati type with transcendental foliation automorphisms are given in §4. Also, consider the following construction: let

$$\varphi(x,y) = \left(x, \frac{y}{\alpha(x)y + \beta(x)}\right)$$

for entire functions $\alpha, \beta \in \mathcal{O}(\mathbb{C})$. We can obtain examples of φ -invariant Riccati equations of the form $\mathcal{F}: [(x-a_1)\dots(x-a_r)]dy-[y^2A(x)+yB(x)]dx$ = 0, where in the affine system $(x,y) \in \mathbb{C}^2 \subset \mathbb{C}P(2)$ we take the line at infinity to be $\mathbb{P}^1_{\infty} = \overline{(x=\infty)}$. It is then easy to obtain such examples with transcendental φ and $\operatorname{sing}(\mathcal{F}) \cap \mathbb{P}^1_{\infty}$ hyperbolic. A linear hyperbolic foliation $\mathcal{F}: xdy - \lambda ydx = 0, \lambda \in \mathbb{C} \setminus \mathbb{R}$, admits no transcendental foliation automorphisms (cf. Example 2).

As an immediate consequence of Theorem 1 we obtain:

COROLLARY 3. Let \mathcal{F} be a foliation on $\mathbb{C}P(2)$ with hyperbolic singularities in \mathbb{P}^1_{∞} and such that $\operatorname{Aut}(\mathcal{F}|_{\mathbb{C}^2})$ contains a transcendental element. Suppose \mathcal{F} has no algebraic invariant curve $C \subset \mathbb{C}^2$. Then \mathcal{F} is chaotic.

In general, for a foliation admitting an algebraic invariant curve and with a transcendental automorphism we have:

B. Scárdua

THEOREM 2. Let \mathcal{F} be an algebraic foliation on $\mathbb{C}P(2)$ such that Aut $(\mathcal{F}|_{\mathbb{C}^2})$ contains a transcendental element $\varphi \colon \mathbb{C}^2 \to \mathbb{C}^2$. Suppose that \mathcal{F} has an invariant algebraic curve $C \subset \mathbb{C}^2$. Then, up to replacing φ by some power φ^n , $n \in \mathbb{N}$, we have (only) the following possibilities:

- (tr.1) $\varphi(C)$ is not algebraic and $\mathcal{F}|_{\mathbb{C}^2}$ is holomorphically equivalent to dy = 0in \mathbb{C}^2 . Up to some entire automorphism taking $\mathcal{F}|_{\mathbb{C}^2}$ to dy = 0 we have $\varphi(x, y) = (a_0(y)x + a_1(y), b_0 + b_1y)$ with $a_0(y), a_1(y) \in \mathcal{O}(\mathbb{C}^2), b_0, b_1 \in \mathbb{C}$ and some natural restrictions on the coefficients. In particular C is isomorphic to the affine line, $C \simeq \mathbb{C}$.
- (tr.2) There is $n \in \mathbb{N}$ such that $\varphi^n(C) = C$ in \mathbb{C}^2 , and C is, up to a polynomial automorphism of \mathbb{C}^2 , in the following list:
 - (a) $\alpha(x) + y\beta(x) = 0, \ \alpha(x), \beta(x) \in \mathbb{C}[x];$
 - (b) a union of irreducible components of fibers of $x^n y^m$, $n, m \in \mathbb{N}$, $\langle n, m \rangle = 1$;
 - (c) a union of irreducible components of fibers of a polynomial R(x, y)= $x^n(x^ly + P(x))^m$ with $n, m, l \in \mathbb{N}, \langle n, m \rangle = 1, P(x) \in \mathbb{C}[x]$ of degree at most $l - 1, P(0) \neq 0$.

In particular, \overline{C} is rational and $\overline{C} \cap \mathbb{P}^1_{\infty} \leq 2$, so that each irreducible component $C_0 \subset C$ satisfies $C_0 \simeq \mathbb{C}$ or $\mathbb{C} \setminus \{0\}$.

(tr.3) $\varphi^n(C)$ is algebraic for some $n \in \mathbb{N}$ but $\varphi^m(C) \neq C$ for all $m \in \mathbb{N}$. In this case \mathcal{F} admits a rational first integral $R: \mathbb{C}P(2) \dashrightarrow \mathbb{P}^1$; in particular all the leaves of \mathcal{F} are algebraic.

Examples are given and we believe that one may go further in the discussion of Case (tr.2) above.

2. The case of flows—Proof of Proposition 1

2.1. Motivations and the compact case. Let \mathcal{F} be a codimension k foliation on a manifold M with singular set $\operatorname{sing}(\mathcal{F})$. The group of foliation automorphisms of \mathcal{F} is the subgroup $\operatorname{Aut}(\mathcal{F})$ of $\operatorname{Aut}(M)$ whose elements $\psi: M \to M$ satisfy $\psi(\operatorname{sing}(\mathcal{F})) = \operatorname{sing}(\mathcal{F})$ and $\psi^* \mathcal{F} = \mathcal{F}$, in other words, ψ fixes the singular set and takes (non-singular) leaves of \mathcal{F} onto (non-singular) leaves of \mathcal{F} . If M is (complex) compact then $\operatorname{Aut}(M)$ is a (complex) Lie group, and since $\operatorname{Aut}(\mathcal{F})$ is a closed subgroup of $\operatorname{Aut}(M)$, it is a (complex) Lie subgroup. Thus we may consider the following general situation: $\operatorname{Aut}(\mathcal{F})$ is a complex Lie group and therefore there exists a Lie group action $\varphi: G \times M \to M$ such that each automorphism $\varphi_g, g \in G$, belongs to $\operatorname{Aut}(\mathcal{F})$. We have two main (antipodal) cases: (i) φ is transverse to \mathcal{F} ; (ii) φ is tangent to \mathcal{F} . In the rest of this section we shall consider the two main cases above in the compact two-dimensional situation for singular foliations. 1. Let \mathcal{F} be a singular codimension one foliation on a complex surface M and assume there is a flow $\varphi \colon \mathbb{C} \times M \to M$ such that $\varphi_t \in \operatorname{Aut}(\mathcal{F})$ for all $t \in \mathbb{C}$. If φ is transverse to \mathcal{F} then we are in the situation considered in [22]; in particular there exists a closed holomorphic 1-form Ω , non-singular and defining \mathcal{F} on M, and we may describe the dynamics of \mathcal{F} according to the group $\operatorname{Per}(\Omega) \subset (\mathbb{C}, +)$ (cf. [22]). For instance, if M is compact Kaehler with rank $H_1(M; \mathbb{R}) \leq 2$ then \mathcal{F} is a Seifert fibration (i.e., a foliation by compact leaves having finite holonomy groups).

2. Assume now that there is a flow φ which is tangent to \mathcal{F} ; this implies that given any $p \in M$ the leaf L_p of \mathcal{F} containing p admits a holomorphic map $\varphi_p \colon \mathbb{C} \to L_p$ and L_p is holomorphically equivalent to one of the following Riemann surfaces: \mathbb{C} , \mathbb{C}^* or a torus $\mathbb{C}/\mathbb{Z} \oplus \mathbb{Z}$. Moreover, $X(p) = \frac{\partial \varphi_t}{\partial t}(p)|_{t=0}$ defines a global holomorphic vector field (possibly with singularities) on M, tangent to \mathcal{F} . If X is singular but $M = \mathbb{C}P(2)$ then X must be linear: $X = \lambda x \frac{\partial}{\partial x} + \mu y \frac{\partial}{\partial y}$ or $X = \lambda x \frac{\partial}{\partial x} + (x + \lambda y) \frac{\partial}{\partial y}$ in some affine chart $(x, y) \in \mathbb{C}^2$ and \mathcal{F} is linear as well.

3. Now we consider the non-singular case. If M is compact and X is nonsingular then the second Chern class of M is zero: $c_2(M) = 0$, and we may use the Enriques–Kodaira classification [1] in order to describe M. Actually, in [18] it is proved that such a surface must be one of the following: (1) a flat holomorphic fibre bundle over an elliptic curve with connected fibres; (2) a complex torus; (3) an elliptic surface without singular fibres or with singular fibres of type ${}_{m}I_0$ only; (4) a non-elliptic Hopf surface; (5) an Inoue surface of type $S_{N,p,q,r,t}^{(+)}$.

4. Finally, concerning the existence of compact leaves in the non-singular case we find that if L_0 is a toral leaf then we have two possibilities: (i) L_0 is an isolated toral leaf; (ii) L_0 is not an isolated toral leaf; in this case the holonomy group $\operatorname{Hol}(L_0) \hookrightarrow \operatorname{Diff}(\mathbb{C}, 0)$ is abelian with some finite pseudo-orbits so that it cannot contain non-trivial flat elements (cf. [7]) and therefore it is a finite group of rational rotations. Since $\operatorname{Hol}(L_0)$ is finite the global stability theorem in [2] implies that every leaf of \mathcal{F} is compact with finite holonomy, therefore \mathcal{F} is a Seifert fibration by complex tori.

2.2. Proof of Proposition 1. We shall keep the notation of the preceding subsection. The case where φ_t is completely transverse to \mathcal{F} in $\mathbb{C}P(2) \setminus \Gamma$ follows from [22]. Indeed, as we have seen above the foliation in $U = \mathbb{C}P(2) \setminus \Gamma$ is given by a closed holomorphic one-form Ω . Since the singularities of \mathcal{F} in Γ are hyperbolic, Ω extends meromorphically with simple poles along Γ to a neighborhood of each singular point $p \in \operatorname{sing}(\mathcal{F}) \in \Gamma$ [21]. Thus we conclude by the Hartogs Theorem that Ω extends to a meromorphic one-form $\widetilde{\Omega}$ in $\mathbb{C}P(2)$. This one-form has simple poles in $\mathbb{C}P(2)$ and by the

Integration Lemma is logarithmic; by [3] the foliation must be linear in some affine chart due to the fact that its singularities are hyperbolic.

Assume now that the flow is everywhere tangent to \mathcal{F} in U. This means that the leaves of $\mathcal{F}|_U$ are the nonsingular orbits of the vector field $X(p) = (\partial \varphi_t(p)/\partial t)|_{t=0}$. In particular $\mathcal{F}|_U$ and therefore \mathcal{F} is parabolic; since \mathcal{F} has only hyperbolic singularities in $\mathbb{C}P(2)$, it follows from [4] that it is linear in some affine chart in \mathbb{C}^2 .

Finally, assume that φ_t is not completely transverse to \mathcal{F} in $\mathbb{C}P(2) \setminus \Gamma$ but \mathcal{F} is not the foliation induced by the vector field X as above. If L is a leaf of \mathcal{F} in U which is also invariant under X then L is covered by \mathbb{C} . If L is non-algebraic then \mathcal{F} has a transcendental leaf covered by \mathbb{C} and according to [5] and [9] it follows that \mathcal{F} admits a non-trivial holonomy invariant measure; moreover, [9], \mathcal{F} is a linear hyperbolic foliation due to its hyperbolic singularities. If the closure $\overline{L} \subset \mathbb{C}P(2)$ is an algebraic curve, say Γ' , then $U' = \mathbb{C}P(2) \setminus (\Gamma \cup \Gamma')$ is also affine. Due to the hyperbolic singularities \mathcal{F} admits no rational first integral and therefore by a theorem of Darboux [13], \mathcal{F} has only finitely many algebraic invariant curves. This reduces the proof to the two cases above. In other words, we may assume that either \mathcal{F} is completely transverse to X or it coincides with the foliation of X in $\mathbb{C}P(2) \setminus \Gamma$. In either case the foliation is linear in some affine chart in \mathbb{C}^2 .

3. Entire automorphisms—Proof of Lemma 1 and Theorem 1. Let \mathcal{F} be an algebraic foliation on \mathbb{C}^2 . Then \mathcal{F} admits an extension of algebraic type to a foliation (also denoted by) \mathcal{F} on $\mathbb{C}P(2) = \mathbb{C}^2 \cup \mathbb{P}^1_{\infty}$. Let $\varphi \colon \mathbb{C}^2 \to \mathbb{C}^2$ be an entire (algebraic or transcendental) automorphism of \mathbb{C}^2 that preserves \mathcal{F} . Under which conditions on \mathcal{F} is φ algebraic?

3.1. Case of \mathbb{P}_{∞}^{1} is not \mathcal{F} -invariant—Proof of Extension Lemma 1. Assume that \mathbb{P}_{∞}^{1} is not \mathcal{F} -invariant; the set of points $p \in \mathbb{P}_{\infty}^{1}$ such that \mathcal{F} is not transverse to \mathbb{P}_{∞}^{1} in a neighborhood of p is a finite subset of \mathbb{P}_{∞}^{1} , say $T(\mathcal{F}, \mathbb{P}_{\infty}^{1}) = \{p_{1}, \ldots, p_{r}\}$. Let $p \in \mathbb{P}_{\infty}^{1} \setminus T(\mathcal{F}, \mathbb{P}_{\infty}^{1})$ be given and choose a flow-box neighborhood U of p in $\mathbb{C}P(2)$ such that in local coordinates (x, y) in U we have x(p) = y(p) = 0, $\mathbb{P}_{\infty}^{1} \cap U = \{x = 0\}$ and $\mathcal{F}|_{U} : dy = 0$. Also we may assume that $\{y = 0\} \subset L_{p}$. Denote by L_{p} the leaf of \mathcal{F} that contains p and by $L_{p}^{*} = L_{p} \setminus \mathbb{P}_{\infty}^{1}$ the corresponding leaf of $\mathcal{F}|_{\mathbb{C}^{2}}$. Since $\varphi \colon \mathbb{C}^{2} \to \mathbb{C}^{2}$ is an automorphism that preserves \mathcal{F} we have $L_{p}^{*} = \varphi(L^{*})$, where $L^{*} = L \setminus \mathbb{P}_{\infty}^{1} \subset \mathbb{C}^{2}$ for some leaf L of \mathcal{F} on $\mathbb{C}P(2)$. Now, using the flow-box in U we may choose a disk $\Sigma \subset U \cap \mathbb{C}^{2}$ transverse to \mathcal{F} with the properties that each plaque of $\mathcal{F}|_{U}$ cuts Σ at most once and the same holds for the disk $\mathbb{P}_{\infty}^{1} \cap U =: \Sigma_{\infty}$.

Let $p' \in \Sigma \cap L_p$, $p' \in \{y = 0\}$; choose a simple path $\alpha : [0, 1] \to L_p \cap U$ such that $\alpha(t) \in \{y = 0\}$ for all $t \in [0, 1]$, $\alpha(0) = p'$ and $\alpha(1) = p$, and denote by $h_\alpha : (\Sigma, p') \to (\Sigma_\infty, p)$ the holonomy map corresponding to α . Let Σ_1 be the inverse image $\Sigma_1 = \varphi^{-1}(\Sigma) \subset \mathbb{C}^2$. Then Σ_1 is also a transverse disk to \mathcal{F} in \mathbb{C}^2 and $\Sigma_1 \cap L \ni p'_1 = \varphi^{-1}(p')$. Now we choose any simple path $\beta : [0, 1] \to L$ with the following properties: $\beta(0) = p_1$ and $\beta(1) = q' \in \mathbb{C}^2$ is a point which belongs to a flow-box $V \subset \mathbb{C}P(2)$ centered at a point $q \in \mathbb{P}^1_\infty \cap L$.

Fig. 1

In particular we may assume that q' and q belong to the same plaque P of $\mathcal{F}|_V$, which is a disk $P \approx \mathbb{D}$. We fix a transverse disk $\Sigma_2 \subset V$ to \mathcal{F} with $\Sigma_2 \cap P = q'$ and choose any simple path $\alpha_1 \colon [0,1] \to P$ with $\alpha_1(0) = q'$, $\alpha_1(1) = q$.

Denote by $h_{\beta}: (\Sigma_1, p'_1) \to (\Sigma_2, q')$ and $h_{\alpha_1}: (\Sigma_2, q') \to (\Sigma'_{\infty}, q)$ the holonomy diffeomorphisms corresponding to β and α_1 respectively, where $\Sigma'_{\infty} = \mathbb{P}^1_{\infty} \cap V$ is transverse to \mathcal{F} . Given a point $a \in \Sigma_{\infty}$ close enough to p, we define $\varphi_{\beta}^{-1}(a) := h_{\alpha_1} \circ h_{\beta} \circ h_{\alpha}^{-1}(a)$.

LEMMA 2. If the holonomy of L is trivial then φ_{β}^{-1} does not depend on the choice of β .

Proof. This is clear. \blacksquare

Proof of Lemma 1. We keep the above notation. Since $\mathcal{F}|_U$ and $\mathcal{F}|_V$ are trivial it follows that for a leaf L with trivial holonomy as above φ_{β}^{-1} is an extension of φ^{-1} to $\Sigma_{\infty} = U \cap \mathbb{P}^1_{\infty}$ and by the Hartogs Extension Theorem φ^{-1} extends to a meromorphic map $\overline{\varphi}^{-1} \colon \mathbb{C}P(2) \dashrightarrow \mathbb{C}P(2)$. Since the same holds for φ and such extensions must clearly satisfy $\overline{\varphi} \circ \overline{\varphi}^{-1} =$ $\mathrm{Id}_{\mathbb{C}P(2)}$ we conclude that φ extends to a bimeromorphism $\overline{\varphi}$ of $\mathbb{C}P(2)$; the bimeromorphism $\overline{\varphi}$ still preserves \mathcal{F} on $\mathbb{C}P(2)$. Using now the fact that for \mathcal{F} arbitrary (with \mathbb{P}^1_{∞} not invariant) the set of leaves with trivial holonomy is residual we obtain Lemma 1.

3.2. Proof of Theorem 1. Let \mathcal{F} be an algebraic foliation on $\mathbb{C}P(2)$ such that $\operatorname{sing}(\mathcal{F}) \cap \mathbb{P}^1_{\infty}$ is hyperbolic and $\operatorname{Aut}(\mathcal{F}|_{\mathbb{C}^2})$ contains a transcendental element $\varphi \colon \mathbb{C}^2 \to \mathbb{C}^2$. According to Lemma 1 the line at infinity is invariant. Denote by $L_{\infty} = \mathbb{P}^1_{\infty} \setminus (\mathbb{P}^1_{\infty} \cap \operatorname{sing}(\mathcal{F}))$ the corresponding leaf of \mathcal{F} . If the holonomy group of L_{∞} is solvable then, according to [21] and [8], due to the fact that the singularities in $\operatorname{sing}(\mathcal{F}) \cap \mathbb{P}^1_{\infty}$ are hyperbolic, the foliation is either a Riccati foliation or a logarithmic foliation. Thus we may assume that $\operatorname{Hol}(\mathcal{F}, L_{\infty})$ is a non-solvable group. Since by the Index Theorem $\operatorname{sing}(\mathcal{F}) \cap \mathbb{P}_{\infty} \neq \emptyset$, the group $\operatorname{Hol}(\mathcal{F}, L_{\infty})$ contains hyperbolic elements. Using now [19], [15], [9], [12], [23] we shall prove that \mathcal{F} is chaotic:

LEMMA 3. In the situation above, \mathcal{F} has no algebraic leaf $C \subset \mathbb{C}^2$.

Proof. Assume that \mathcal{F} has some algebraic invariant curve $C \subset \mathbb{C}^2$; denote by $L = C \setminus \operatorname{sing}(\mathcal{F})$ the corresponding leaf of $\mathcal{F}|_{\mathbb{C}^2}$ (we may work with C irreducible). The leaf L is then a parabolic leaf of $\mathcal{F}|_{\mathbb{C}^2}$; denote by $L' = \varphi(L) \subset \mathbb{C}^2$ its image under φ . If L' is not algebraic (i.e., the closure $\overline{L'} \subset \mathbb{C}^2$ is not an algebraic curve) then the intersection $L' \cap D$ accumulates to the origin $o = D \cap L_{\infty}$ of any disk D transverse to \mathcal{F} and to L_{∞} . Since C is closed in \mathbb{C}^2 the same holds for L' and therefore it induces a pseudo-orbit in the holonomy group $\operatorname{Hol}(\mathcal{F}, l_{\infty}, D)$, which is closed off the origin $o \in D$. According to the density theorem in [19], $\operatorname{Hol}(\mathcal{F}, L_{\infty}, D)$ must be solvable, a contradiction. Thus necessarily L' is algebraic. If \mathcal{F} has infinitely many algebraic leaves then by a theorem of Darboux [13], \mathcal{F} is given by a rational map $R \colon \mathbb{C}P(2) \dashrightarrow \overline{\mathbb{C}}$; this is not compatible with the hyperbolic singularities. We may therefore assume that $\varphi(C) = C$. Now we recall the following notions from [14]:

Let $C \subset \mathbb{C}^2$ be an irreducible algebraic affine curve. We say that C is general if any analytic automorphism of \mathbb{C}^2 which transforms C into an algebraic curve is algebraic.

THEOREM 3 (Kizuka [14]). Let $C \subset \mathbb{C}^2$ be an affine algebraic curve. Then C is general provided that the closure \overline{C} of C on $\mathbb{C}P(2)$ intersects the line at infinity \mathbb{P}^1_{∞} at more than two points. If C is not general then we have the following possibilities for C after an algebraic affine change of coordinates:

- (K.1) $C: \alpha(x) + y\beta(x) = 0$ (special case);
- (K.2) C is a sum of several prime surfaces of a monomial $f = x^m y^n$ where $m, n \in \mathbb{N}$;
- (K.3) C is a sum of several prime surfaces of a polynomial $f = x^m (x^l y + P_{l-1}(x))^n$, where P_{l-1} is a one-variable polynomial of degree at most l-1 with $P_{l-1}(0) \neq 0$, and $m, n \in \mathbb{N}$.

In each case above straightforward calculations show that \mathcal{F} has either some separatrix at infinity which is not smooth at the singularity or some separatrix which is not transverse to the line at infinity. This contradicts the invariance of \mathbb{P}^1_{∞} and the hyperbolicity of the singularities in \mathbb{P}^1_{∞} . Lemma 3 is now proved.

Now we may finish the proof of Theorem 1:

(i) $\mathcal{F}|_{\mathbb{C}^2}$ has no parabolic leaf: otherwise according to [16], [4], [21], $\mathcal{F}|_{\mathbb{C}^2}$ would have some algebraic leaf, contradicting Lemma 3.

(ii) By (i) the leaves of $\mathcal{F}|_{\mathbb{C}^2}$ are hyperbolic (in the sense of potential theory) and covered by the disk \mathbb{D} . Moreover, the leaves of $\mathcal{F}|_{\mathbb{C}^2}$ have exponential growth (otherwise, according to [9], \mathcal{F} would admit some holonomy invariant measure for the holonomy group of $L_{\infty} = \mathbb{P}^1_{\infty}$ and this measure would imply that the holonomy group $\operatorname{Hol}(\mathcal{F}, L_{\infty})$ is solvable, giving a contradiction).

(iii) Since the holonomy group of \mathbb{P}^1_{∞} is non-solvable and contains hyperbolic elements, the foliations $\mathcal{F}|_{\mathbb{C}^2}$ and \mathcal{F} on $\mathbb{C}P(2)$ are topologically rigid and, as follows from the techniques in [15], we may also conclude that $\mathcal{F}|_{\mathbb{C}^2}$ and \mathcal{F} on $\mathbb{C}P(2)$ are ergodic.

(iv) The density of the leaves in \mathbb{C}^2 is proved as in [15] as a consequence of the density results in [19] and [23] for non-solvable groups of germs of one-dimensional complex diffeomorphisms at the origin. Theorem 1 is therefore proved.

4. Case of an algebraic invariant curve in \mathbb{C}^2 —Theorem 2. Let \mathcal{F} be an algebraic foliation on $\mathbb{C}P(2)$ such that $\operatorname{Aut}(\mathcal{F}|_{\mathbb{C}^2})$ contains a transcendental element $\varphi \colon \mathbb{C}^2 \to \mathbb{C}^2$ and having an invariant algebraic curve

 $C \subset \mathbb{C}^2$. As in the proof of Theorem 1 denote by $L = C \setminus \operatorname{sing}(\mathcal{F})$ the corresponding leaf of $\mathcal{F}|_{\mathbb{C}^2}$ and by $L' = \varphi(L) \subset \mathbb{C}^2$ its image under φ .

4.1. If L' is not algebraic (i.e., the closure $\overline{L'} \subset \mathbb{C}^2$ is not an algebraic curve) then by the Darboux Theorem [13], \mathcal{F} has only a finite number of algebraic leaves; we may therefore assume that L' is a transcendental leaf of finite type and properly embedded so that, by the Corollary in [3], necessarily L' (and therefore L) is isomorphic to \mathbb{C} and also $\mathcal{F}|_{\mathbb{C}^2}$ is holomorphically equivalent to the foliation dy = 0 on \mathbb{C}^2 . In this case, up to some entire automorphism, we have $\varphi(x,y) = (a(x,y),b(y))$ and therefore $\varphi(x,y) = (a_0(y)x + a_1(y), b_0 + b_1y)$ for some $b_0, b_1 \in \mathbb{C}$, $b_1 \neq 0, a_0(y), a_1(y) \in \mathcal{O}(\mathbb{C})$, with $a_0(y) \neq 0$ for all $y \in \mathbb{C}$. Again we may find holomorphic coordinates on \mathbb{C}^2 such that $\mathcal{F}|_{\mathbb{C}^2} : dy = 0$ and $\varphi(x,y) = (e^{u(y)}x + v(y), y)$ for some holomorphic $u, v \in \mathcal{O}(\mathbb{C})$.

EXAMPLE 1. Let us see an example of the above situation: $X(x,y) = (1+xy) \frac{\partial}{\partial x} - y^2 \frac{\partial}{\partial y}$ generates a foliation \mathcal{F} on \mathbb{C}^2 with the entire first integral $f(x,y) = ye^{xy}$. The algebraic curve $C : \{y = 0\}$ is \mathcal{F} -invariant and we have an entire non-algebraic automorphism $\varphi(x,y) = (xe^{P(x,y)}, ye^{xy})$ for some polynomial P(x,y) (see [24]) and clearly φ preserves \mathcal{F} . The vector field X is not complete.

4.2. Suppose now C is \mathcal{F} -invariant, algebraic and fixed by φ . According to Kizuka's Theorem above [14], φ is algebraic or, up to polynomial automorphism, C belongs to the following list:

(K.1) $\alpha(x) + y\beta(x) = 0$, where α and β are one-variable polynomials;

- (K.2) a union of irreducible components of fibers of $x^n y^m$, where $n, m \in \mathbb{N}$ satisfy $\langle n, m \rangle = 1$;
- (K.3) a union of irreducible components of fibers of a polynomial Q of type $Q(x,y) = x^n (x^l y + P(x))^m$, with $n,m,l \in \mathbb{N}, \langle n,m \rangle = 1, P$ is a one-variable polynomial of degree at most $l 1, P(0) \neq 0$.

In any of the cases (K.1), (K.2) and (K.3) above the irreducible components of the projective curve $\overline{C} \subset \mathbb{C}P(2)$ are rational and we have $\sharp \overline{C} \cap \mathbb{P}^1_{\infty} \leq 2$; in particular, each irreducible component of C is diffeomorphic either to \mathbb{C} or to $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$. Examples of this situation are given by vector fields of the form

$$X = x(\mu + mC_1) \frac{\partial}{\partial x} - \left\{ \frac{(x^l y + P(x))(\lambda + nC_1)}{x^l} + \frac{(lx^l y + xP'(x))(\mu + mC_1)}{x} \right\} \frac{\partial}{\partial y}$$

with $C_1 = x^n (x^l y + P(x))^m \cdot \tau' (x^n (x^l y + P(x))^m)$. These are complete vector fields (see [11]) whose flow maps $\varphi_t \colon \mathbb{C}^2 \to \mathbb{C}^2$ are not algebraic and preserve

both the foliation $\mathcal{F}_X|_{\mathbb{C}^2}$ and the algebraic invariant curve $C : \{x^n(x^ly + P(x))^m = 0\}.$

4.3. Assume that $\mathcal{F}|_{\mathbb{C}^2}$ has some irreducible algebraic invariant curve C whose image $\varphi(C)$ is algebraic but is not C. Denote by $C_{\text{alg}}(\mathcal{F})$ the union of all irreducible algebraic curves $C_1 \subset \mathbb{C}^2$ which are invariant under \mathcal{F} . We may assume that for any irreducible curve $C_1 \in C_{\text{alg}}(\mathcal{F})$ we have $\varphi(C_1) \in C_{\text{alg}}(\mathcal{F})$ but $\varphi(C_1) \neq C_1$. Then in particular we have $\varphi^n(C) \neq \varphi^m(C)$ for all $n \neq m$ and thus $\sharp C_{\text{alg}}(\mathcal{F}) = +\infty$. By the Darboux Theorem [13], \mathcal{F} admits a rational first integral $R: \mathbb{C}^2 \dashrightarrow \overline{\mathbb{C}}$ and therefore \mathcal{F} is a pencil of curves $\mathcal{F}: \{\lambda P + \mu Q = 0\}, (\lambda; \mu) \in \mathbb{P}^1$, for some $P, Q \in \mathbb{C}[x, y]$.

It remains therefore to consider the following case:

4.4. $\mathcal{F}|_{\mathbb{C}^2}$ has no algebraic leaf, and \mathbb{P}^1_{∞} is \mathcal{F} -invariant. This case contradicts the hypothesis of existence of the invariant curve C. Theorem 2 is therefore proved.

EXAMPLE 2. The linear foliation \mathcal{F}_{λ} given on $\mathbb{C}^2 \subset \mathbb{C}P(2)$ by \mathcal{F}_{λ} : $xdy - \lambda ydx = 0, \ \lambda \in \mathbb{C} \setminus \{0\}$, admits the following subgroup of automorphisms: $\{\varphi \colon \mathbb{C}^2 \to \mathbb{C}^2; \ \varphi(x, y) = (xe^w, cye^{\lambda w}), \ where \ w \in \mathbb{C}, \ c \in \mathbb{C}^2\}$. Conversely, for $\lambda \notin \mathbb{Q}$, up to conjugacy with $\sigma(x, y) = (y, x)$, these are the only automorphisms of \mathcal{F}_{λ} in \mathbb{C}^2 : given $\varphi \colon \mathbb{C}^2 \to \mathbb{C}^2$ preserving \mathcal{F}_{λ} and the coordinate axis we may write $\varphi(x, y) = (x.u, y.v)$ for entire non-vanishing functions u, v on \mathbb{C}^2 . Then a straightforward calculation shows that $\varphi^*(\mathcal{F}_{\lambda}) = \mathcal{F}_{\lambda}$ iff $vu^{-\lambda} \in \mathcal{O}(\mathbb{C}^2)$ is an entire first integral for \mathcal{F}_{λ} iff $vu^{-\lambda} \equiv \text{const.}$ If we write $u = e^w$ then we obtain $\varphi(x, y) = (x.e^w, c.ye^{\lambda w})$ for $w \in \mathcal{O}(\mathbb{C}^2)$. Such a map is a foliation automorphism iff $w \in \mathbb{C}$ is constant.

Examples of transcendental foliation automorphisms are given by complete polynomial vector fields having non-polynomial flows (cf. [11]).

References

- W. Barth, C. Peters and A. Van de Ven, *Compact Complex Surfaces*, Springer, Berlin, 1984.
- M. Brunella, A global stability theorem for transversely holomorphic foliations, Ann. Global Anal. Geom. 15 (1997), 179–186.
- [3] —, Sur les courbes intégrales propres des champs de vecteurs polynomiaux, Topology 37 (1998), 1229–1246.
- [4] —, Foliations on the complex projective plane with many parabolic leaves, Ann. Inst. Fourier (Grenoble) 44 (1994), 1237–1242.
- [5] —, Courbes entières et feuilletages holomorphes, Enseign. Math. 45 (1999), 195–216.
- [6] —, Minimal models of foliated algebraic surfaces, Bull. Soc. Math. France 127 (1999), 289–305.
- [7] C. Camacho, On the local structure of conformal mappings and holomorphic vector fields in C², Astérisque 59–60 (1978), 83–94.

B. Scárdua

- C. Camacho and B. Scárdua, Holomorphic foliations with Liouvillian first integrals, Ergodic Theory Dynam. Systems 21 (2001), 717–756.
- J. Canille and B. Scárdua, On the growth of complex projective foliations, Internat. J. Math. 13 (2002), 695–726.
- [10] S. Cantat and C. Favre, Symétries birationnelles de surfaces feuilletées, J. Reine Angew. Math., to appear.
- [11] D. Cerveau and B. Scárdua, *Complete polynomial vector fields in two complex variables*, Forum Math., to appear.
- [12] Yu. S. Il'yashenko, Density of an individual solution and ergodicity of a family of solutions of the equation $d\eta/d\xi = P(\xi, \eta)/Q(\xi, \eta)$, Mat. Zametki 4 (1968), 741–750 (in Russian).
- J.-P. Jouanolou, Équations de Pfaff algébriques, Lecture Notes in Math. 708, Springer, Berlin, 1979.
- [14] T. Kizuka, Analytic automorphisms and algebraic automorphisms of C², Tôhoku Math. J. 31 (1979), 553–565.
- [15] A. Lins Neto, P. Sad and B. Azevedo Scárdua, On topological rigidity of projective foliations, Bull. Soc. Math. France 126 (1998), 381–406.
- [16] M. McQuillan, Diophantine approximation and foliations, Publ. Math. I.H.E.S. 87 (1998), 121–174.
- [17] L. G. Mendes, Kodaira dimension of singular holomorphic foliations, PhD thesis at IMPA, preprint, 1999.
- [18] A. Mizuhara, On compact complex analytic surfaces admitting nonvanishing holomorphic vector fields, Tensor 32 (1978), 101–106.
- [19] I. Nakai, Separatrices for nonsolvable dynamics on C, 0, Ann. Inst. Fourier (Grenoble) 44 (1994), 569–599.
- [20] J. V. Pereira and P. Sánchez, Transformation groups of holomorphic foliations, Comm. Anal. Geom. 10 (2002), 1115–1123.
- [21] B. Scárdua, A remark on parabolic projective foliations, Hokkaido Math. J. 28 (1999), 231–252.
- [22] —, Holomorphic Anosov systems, fibrations and Kähler manifolds, Dynamical Systems, to appear.
- [23] A. A. Shcherbakov, On the density of the orbit of a pseudogroup of conformal mappings and generalization of the Khudaĭ-Verenov theorem, Moscow Univ. Math. Bull. 37 (1982), no. 4, 10–16; transl. from Vestnik Moskov. Univ. Ser. 1982, no. 4, 10–15.
- [24] H. Shiga, On the automorphism of C² with invariant axes, J. Math. Soc. Japan 29 (1977), 529–535.

Instituto de Matemática Universidade Federal do Rio de Janeiro C.P. 68530 CEP. 21945-970 Rio de Janeiro, RJ, Brazil E-mail: scardua@im.ufrj.br

Received 17 July 2003