Embedding products of graphs into Euclidean spaces

 $\mathbf{b}\mathbf{y}$

Mikhail Skopenkov (Moscow)

Abstract. For any collection of graphs G_1, \ldots, G_N we find the minimal dimension d such that the product $G_1 \times \ldots \times G_N$ is embeddable into \mathbb{R}^d (see Theorem 1 below). In particular, we prove that $(K_5)^n$ and $(K_{3,3})^n$ are not embeddable into \mathbb{R}^{2n} , where K_5 and $K_{3,3}$ are the Kuratowski graphs. This is a solution of a problem of Menger from 1929. The idea of the proof is a reduction to a problem from so-called Ramsey link theory: we show that any embedding $\operatorname{Lk} O \to S^{2n-1}$, where O is a vertex of $(K_5)^n$, has a pair of linked (n-1)-spheres.

Introduction. By a graph we understand a finite compact one-dimensional polyhedron. We write $K \hookrightarrow \mathbb{R}^d$ if a polyhedron K is PL embeddable into \mathbb{R}^d . In this paper we solve the following problem: for a given collection of graphs G_1, \ldots, G_N find the minimal dimension d such that $G_1 \times \ldots \times G_N \hookrightarrow \mathbb{R}^d$. A particular case of this problem was posed in [Men29].

The problem of embeddability of polyhedra into Euclidean spaces is of primary importance (e.g., see [Sch84, ReSk99, ARS01, Sko03]). Our special case is interesting because the complete answer can be obtained and is stated easily, but the proof is non-trivial and contains interesting ideas.

THEOREM 1. Let G_1, \ldots, G_n be connected graphs, distinct from a point, I and S^1 . The minimal dimension d such that $G_1 \times \ldots \times G_n \times (S^1)^s \times I^i \hookrightarrow \mathbb{R}^d$ is

$$d = \begin{cases} 2n+s+i & \text{if either } i \neq 0 \text{ or some } G_k \text{ is planar,} \\ 2n+s+1 & \text{otherwise.} \end{cases}$$
(2)

Here the planarity of G_k can be checked easily by applying the Kuratowski graph planarity criterion.

²⁰⁰⁰ Mathematics Subject Classification: 57Q35, 57Q45.

Key words and phrases: embedding, product, graph, almost embedding, linkless embedding, Kuratowski criterion, Ramsey link theory, van Kampen obstruction.

The author was supported in part by travel grant N 03-01-10825 of the Russian Foundation of Basic Research.

REMARK. Theorem 1 remains true in the TOP category.

We prove this remark at the end of the paper. From now on till that moment we work in the PL category.

Theorem 1 was stated (without proof) in [Gal93] (see also [Gal92]). The proof of embeddability is trivial (see below). The non-embeddability has been proved earlier in some specific cases. For example, it was known that $Y^n \nleftrightarrow \mathbb{R}^{2n-1}$, where Y is a triod (letter "Y"). (A nice proof of this folklore result is presented in [Sko03], cf. [ReSk01]). Also it was known that $K_5 \times S^1 \nleftrightarrow \mathbb{R}^3$ (Tom Tucker, private communication). In [Um78] it is proved that $K_5 \times K_5 \nleftrightarrow \mathbb{R}^4$; that proof contains about 10 pages of calculations involving spectral sequences. We obtain a shorter geometric proof of this result (see Example 2 and Lemma 2 below). The proof of the non-embeddability in case (2), namely, Lemma 2, is the main point of Theorem 1 (while case (1) is reduced easily to a result of van Kampen).

Our proof of Theorem 1 is quite elementary, in particular, we do not use any abstract algebraic topology. We use a reduction to a problem from so-called *Ramsey link theory* [S81, CG83, SeSp92, RST93, RST95, LS98, Neg98, SSS98, T00, ShTa]. Let us introduce some notation. Denote by K_n a *complete graph* on n vertices and by σ_n^m the m-skeleton of an n-simplex. For a polyhedron σ let σ^{*n} be the join of n copies of σ . Denote by $K_{n,n} = (\sigma_{n-1}^0)^{*2}$ a complete bipartite graph on 2n vertices. The classical Conway–Gordon– Sachs theorem of Ramsey link theory asserts that any embedding of K_6 into \mathbb{R}^3 has a pair of (homologically) linked cycles. In other words, K_6 is not linklessly embeddable into \mathbb{R}^3 . The graph $K_{4,4}$ has the same property (the Sachs theorem, proved in [S81]). In our proof of Theorem 1 we use the following higher dimensional generalization of the Sachs theorem:

LEMMA 1. Any embedding $(\sigma_3^0)^{*n} \to \mathbb{R}^{2n-1}$ has a pair of linked (n-1)-spheres.

Lemma 1 follows from Lemma 1' below. For higher dimensional generalizations of the Conway–Gordon–Sachs theorem see [SeSp92, SSS98, T00].

The easy part of Theorem 1 and some heuristic considerations. Let us first prove all assertions of Theorem 1 except the non-embeddability in case (2).

Proof of the embeddability in Theorem 1. We need the following two simple results:

- (*) If a polyhedron $K \hookrightarrow \mathbb{R}^d$ and d > 0, then $K \times I$, $K \times S^1 \hookrightarrow \mathbb{R}^{d+1}$ (it is sufficient to prove this for $K = \mathbb{R}^d \cong \mathring{D}^d$, for which it is trivial).
- (**) For any *d*-polyhedron K^d the cylinder $K^d \times I \hookrightarrow \mathbb{R}^{2d+1}$ [RSS95].

Set $G = G_1 \times \ldots \times G_n$. By general position $G \hookrightarrow \mathbb{R}^{2n+1}$. If $i \neq 0$, then by (**), $G \times I \hookrightarrow \mathbb{R}^{2n+1}$. And if, say, $G_1 \subset D^2$, then by (**), $D^2 \times G_2 \times \ldots \times G_n \hookrightarrow \mathbb{R}^{2n}$, whence $G \hookrightarrow \mathbb{R}^{2n}$. Applying (*) several times we get the embeddability assertion in all cases considered.

Proof of the non-embeddability in case (1). Note that any connected graph, distinct from a point, I and S^1 , contains a triod Y. So it suffices to prove that $Y^n \times I^{s+i} \nleftrightarrow \mathbb{R}^{2n+s+i-1}$. Since $CK \times CL \cong C(K * L)$ and $K * \sigma_0^0 = CK$ for any polyhedra K and L, it follows that

$$Y^n \times I^{s+i} = (C\sigma_2^0)^n \times (C\sigma_0^0)^{s+i} \cong \underbrace{C \dots C}_{s+i+1 \text{ times}} (\sigma_2^0)^{*n}.$$

If a polyhedron $K \not\hookrightarrow S^d$ then the cone $CK \not\hookrightarrow \mathbb{R}^{d+1}$ (because we work in the PL category). So the non-embeddability in case (1) follows from $(\sigma_2^0)^{*n} \not\hookrightarrow S^{2n-2}$ [Kam32] (and also from $Y^n \not\hookrightarrow S^{2n-1}$ [Sko03]).

We are thus left with the proof of the non-embeddability in case (2). To make it clearer we precede it with a heuristic consideration of three simplest cases.

EXAMPLE 1. Let us first prove that the Kuratowski graph K_5 is not planar. Suppose to the contrary that $K_5 \subset \mathbb{R}^2$. Let O be a vertex of K_5 and D a small disc with center O. Then the intersection $K_5 \cap \partial D$ consists of 4 points. Denote them by A, B, C, D, in the order along the circle ∂D . Note that the pairs A, C and B, D are the ends of two disjoint arcs contained in $K_5 - \mathring{D}$, and, consequently, in $\mathbb{R}^2 - \mathring{D}$. Then the cycles $OAC, OBD \subset K_5$ intersect each other transversally at exactly one point O, which is impossible in the plane. So $K_5 \not \to \mathbb{R}^2$.

EXAMPLE 2. Now let us outline why $K_5 \times K_5 \nleftrightarrow \mathbb{R}^4$. (Another proof is given in [Um78].) Recall that if K is a polyhedron and $O \in K$ is a vertex, then the *star* St O is the union of all closed cells of K containing O, and the *link* Lk O is the union of all cells of St O not containing O. In our previous example Lk O consists of 4 points and the proof is based on the fact that there are two pairs of points of Lk O linked in ∂D . Now take $K = K_5 \times K_5$. We get Lk $O \cong K_{4,4}$. So by the Sachs theorem above any embedding Lk $O \hookrightarrow \partial D^4$ has a pair of linked cycles $\alpha, \beta \in \text{Lk }O$. Thus we can prove that $K \nleftrightarrow \mathbb{R}^4$ analogously to Example 1, if we construct two disjoint 2-surfaces in K - St O with boundaries α and β respectively. This construction is easy; see the proof of Lemma 2 below for details. Analogously it can be shown that $\sigma_6^2 \nleftrightarrow \mathbb{R}^4$. (Another proof is given in [Kam32].)

EXAMPLE 3. Let us show why $K_5 \times S^1 \not\hookrightarrow \mathbb{R}^3$. (Another proof was given by Tom Tucker.) Suppose that $K_5 \times S^1 \hookrightarrow \mathbb{R}^3$; then by (*) we have

 $K_5 \times S^1 \times S^1 \hookrightarrow \mathbb{R}^4$. But $S^1 \times S^1 \supset K_5$, so $K_5 \times K_5 \hookrightarrow \mathbb{R}^4$, which contradicts Example 2.

Proof of the non-embeddability in case (2) modulo some lemmas. Let us say that a PL map $f: K \to L$ between two polyhedra K and L with fixed triangulations is an *almost embedding* if for any two *disjoint* closed cells $a, b \subset K$ we have $fa \cap fb = \emptyset$ [FKT94].

LEMMA 2 (for n = 2 [Um78]). The polyhedron $(K_5)^n$ is not almost embeddable into \mathbb{R}^{2n} .

Proof of the non-embeddability in case (2) of Theorem 1 modulo Lemma 2. By the Kuratowski graph planarity criterion any non-planar graph contains a graph homeomorphic either to K_5 or to $K_{3,3}$. So we may assume that each G_k is either K_5 or $K_{3,3}$. Analogously to Example 3 we may assume that s = 0. Now we are going to replace all the graphs $K_{3,3}$ by K_5 's.

Note that K_5 is almost embeddable in $K_{3,3}$ (Fig. 1). Indeed, map a vertex of K_5 into the middle point of an edge of $K_{3,3}$ and map the remaining four vertices to the four vertices of $K_{3,3}$ not belonging to this edge. Then map each edge e of K_5 onto the shortest (as regards the number of vertices) arc in $K_{3,3}$, joining the images of the ends of e, and the almost embedding is constructed.

Now note that a product of almost embeddings is an almost embedding, and also a composition of an almost embedding and an embedding is an almost embedding. Thus the non-embeddability in case (2) of Theorem 1 follows from Lemma 2. \blacksquare

Fig. 1

For the proof of Lemma 2 we need the following notion. Let A, B be a pair of PL *n*-manifolds with boundary and let $f: A \to \mathbb{R}^{2n}, g: B \to \mathbb{R}^{2n}$ be a pair of PL maps such that $f \partial A \cap g \partial B = \emptyset$. Take a general position pair of PL maps $\overline{f}: A \to \mathbb{R}^{2n}$ and $\overline{g}: B \to \mathbb{R}^{2n}$ close to f and g respectively. The

mod 2 intersection index $fA \cap gB$ is the number of points mod 2 in the set $\overline{f}A \cap \overline{g}B$. We are going to use the following simple result:

(***) if both A and B are closed manifolds, then $fA \cap gB = 0$.

(This follows from the homology intersection form of \mathbb{R}^{2n} being zero.) Lemma 2 will be deduced from the following generalization of Lemma 1:

LEMMA 1'. Let $L = (\sigma_3^0)^{*n}$. Then for any almost embedding $CL \to \mathbb{R}^{2n}$ there exist two disjoint (n-1)-spheres $\alpha, \beta \subset L$ such that the intersection index $fC\alpha \cap fC\beta$ is 1.

Proof of Lemma 2 modulo Lemma 1'. Assume that there exists an almost embedding $f : K = K_5 \times \ldots \times K_5 \to \mathbb{R}^{2n}$. Let $O = O_1 \times \ldots \times O_n$ be a vertex of K. By the well-known formula for links,

$$\operatorname{Lk} O \cong \operatorname{Lk} O_1 * \ldots * \operatorname{Lk} O_n, \quad \operatorname{St} O = C \operatorname{Lk} O \cong C(\sigma_3^0)^{*n}.$$

Let $\alpha, \beta \subset \text{Lk } O$ be a pair of (n-1)-spheres given by Lemma 1'. Identify Lk O and Lk $O_1 * \ldots * \text{Lk } O_n$. Since α and β are disjoint, it follows that for each $k = 1, \ldots, n$ the sets $\alpha \cap \text{Lk } O_k$ and $\beta \cap \text{Lk } O_k$ are disjoint and each of them consists of two points. By definition, put $\{A_k, C_k\} := \alpha \cap \text{Lk } O_k$ and $\{B_k, D_k\} := \beta \cap \text{Lk } O_k$. Consider two *n*-tori

 $T_{\alpha} = O_1 A_1 C_1 \times \ldots \times O_n A_n C_n, \quad T_{\beta} = O_1 B_1 D_1 \times \ldots \times O_n B_n D_n$

contained in K.

Clearly, $T_{\alpha} \supset C\alpha$, $T_{\beta} \supset C\beta$ and $T_{\alpha} \cap T_{\beta} = O$. Since f is an almost embedding, it follows that $fT_{\alpha} \cap fT_{\beta} = fC\alpha \cap fC\beta$. So $fT_{\alpha} \cap fT_{\beta} = 1$ by the choice of α and β . By (***) we obtain a contradiction, so $K \nleftrightarrow \mathbb{R}^{2n}$.

The proof of Lemma 1'. The proof is similar to that of the Conway–Gordon–Sachs theorem and applies the idea of [Kam32], only we use a more refined obstruction. The reader can restrict attention to the case when n = 2 and obtain an alternative proof of the Sachs theorem. (The proof for n > 2 is completely analogous to that for n = 2.)

We show that for any (n-1)-simplex c of L and any almost embedding $f: CL \to \mathbb{R}^{2n}$ there exists a pair of disjoint (n-1)-spheres $\alpha, \beta \subset L$ such that $\alpha \supset c$ and the intersection index $fC\alpha \cap fC\beta$ is 1.

For an almost embedding $f: CL \to \mathbb{R}^{2n}$ let $v(f) = \sum (fC\alpha \cap fC\beta) \mod 2$ be the *van Kampen obstruction* to linkless embeddability. Here the sum is over all pairs of disjoint (n-1)-spheres $\alpha, \beta \subset L$ such that $c \subset \alpha$. It suffices to prove that v(f) = 1. Our proof is in two steps: first we show that v(f)does not depend on f, and then we calculate v(f) for certain "standard" embeddings $f: CL \to \mathbb{R}^{2n}$.

Let us prove that v(f) does not depend on f (cf. [Kam32, CG83]). Take any two almost embeddings $F_0, F_1 : CL \to \mathbb{R}^{2n}$. By general position in the PL category there exists a homotopy $F:I\times CL\to \mathbb{R}^{2n}$ between them such that

(1) there are only a finite number of singular times t, i.e. times $t \in I$ such that F_t is not an almost embedding;

(2) for each singular t there is exactly one pair of disjoint (n-1)-simplices $a, b \subset L$ such that $F_t Ca \cap F_t b \neq \emptyset$;

(3) the intersection $F_tCa \cap F_tb$ is "transversal in time", i.e. $F(t \times Ca) \cap F([t - \varepsilon, t + \varepsilon] \times b)$ is transversal for some $\varepsilon > 0$.

Consider a singular time t. Property (3) implies that the intersection index $F_tC\alpha \cap F_tC\beta$ of a pair of disjoint (n-1)-spheres $\alpha, \beta \subset L$ changes with the increase of t if and only if either $\alpha \supset a, \beta \supset b$ or $\alpha \supset b, \beta \supset a$. Such pairs (α, β) satisfying the condition $\alpha \supset c$ are called *critical*. If $c \cap (a \cup b) = \emptyset$, then there are exactly two critical pairs. Indeed, we have either $\alpha \supset a \cup c$ or $\alpha \supset b \cup c$. Each of these determines a unique critical pair. If $c \cap (a \cup b) \neq \emptyset$, then there are two distinct vertices $v, w \in L - (a \cup b \cup c)$ belonging to the same copy of σ_3^0 . Then there is an involution without fixed points on the set of critical pairs. Indeed, \mathbb{Z}_2 acts on the set of vertices of L by interchanging v and w, and it also acts on the set of critical pairs, because $v, w \notin a \cup b \cup c$. So the number of critical pairs is always even, therefore $v(F_0) = v(F_1)$.

Fig. 2

Now let us prove that v(f) = 1 for a certain "standard" embedding $f: CL \hookrightarrow \mathbb{R}^{2n}$. To define it take a general position collection of n lines in $\mathbb{R}^{2n-1} \subset \mathbb{R}^{2n}$. For each $k = 1, \ldots, n$ take a quadruple σ_k of distinct points on the kth line. Taking the join of all σ_k , we obtain an embedding $L \hookrightarrow \mathbb{R}^{2n-1}$ (Fig. 2 for n = 2). The standard embedding $f: CL \hookrightarrow \mathbb{R}^{2n}$ is defined to be the cone of this embedding. Below we omit f from the notation of f-images. Clearly, for a pair of disjoint (n-1)-spheres $\alpha, \beta \subset L$ we have $C\alpha \cap C\beta = \text{lk}(\alpha, \beta) \mod 2$. Let us show that $\text{lk}(\alpha, \beta) = 1 \mod 2$ if and only if for each $k = 1, \ldots, n$ the 0-spheres $\alpha \cap \sigma_k$ and $\beta \cap \sigma_k$ are linked in the kth

copy of \mathbb{R}^1 . Indeed, let I be the segment between the pair of points of $\alpha \cap \sigma_1$. Set $D_{\alpha} = I * (\alpha \cap \sigma_2) * \ldots * (\alpha \cap \sigma_n)$. Then $\partial D_{\alpha} = \alpha$. The intersection $D_{\alpha} \cap \beta$ is not empty mod 2 if and only if the 0-spheres $\alpha \cap \sigma_1$ and $\beta \cap \sigma_1$ are linked in the first copy of \mathbb{R}^1 . This intersection is transversal if and only if $\alpha \cap \sigma_k$ and $\beta \cap \sigma_k$ are linked in the remaining copies of \mathbb{R}^1 . Now it is obvious that there exists exactly one pair α, β such that $\alpha \supset c$ and $C\alpha \cap C\beta = 1 \mod 2$. So v(f) = 1, which proves the lemma.

We conclude our paper with the proof of Remark (due to the referee):

Proof of Theorem 1 in the TOP category. For codimension ≥ 3 the assertion of Theorem 1 in the TOP category follows from the one in the PL category by the result of Bryant [Bry72]. Analogously to Example 3, we reduce the codimension 1 and 2 cases to the codimension 3 case.

Acknowledgements. The author is grateful to Arkady Skopenkov for permanent interest in this work and to the referee for useful suggestions and a remark proving one of the author's conjectures.

References

[ARS01]	P. Akhmetiev, D. Repovs and A. Skopenkov, <i>Embedding products of low</i> -
	dimensional manifolds in \mathbb{R}^m , Topology Appl. 113 (2001), 7–12.
[Bry72]	J. L. Bryant, Approximating embeddings of polyhedra in codimension 3, Trans. Amer. Math. Soc. 170 (1972), 85–95.
[CG83]	J. Conway and C. Gordon, <i>Knots and links in spatial graphs</i> , J. Graph Theory 7 (1983), 445–453.
[FKT94]	M. H. Freedman, V. S. Krushkal and P. Teichner, Van Kampen's embedding obstruction is incomplete for 2-complexes in R ⁴ , Math. Res. Lett. 1 (1994), 167–176.
[Gal92]	M. Galecki, On embeddability of CW-complexes in Euclidean space, preprint, Univ. of Tennessee, Knoxville, 1992.
[Gal93]	—, Enhanced cohomology and obstruction theory, doctoral dissertation, Univ. of Tennessee, Knoxville, 1993.
[Kam32]	E. R. van Kampen, <i>Komplexe in euklidische Räumen</i> , Abb. Math. Sem. Hamburg 9 (1932), 72–78; Berichtigung dazu, 152–153.
[LS98]	L. Lovász and A. Schrijver, A Borsuk theorem for antipodal links and a spec- tral characterization of linklessly embeddable graphs, Proc. Amer. Math. Soc. 126 (1998), 1275–1285.
[Men29]	K. Menger, Über plättbare Dreiergraphen und Potenzen nicht plättbarer Graphen, Ergeb. Math. Kolloq. 2 (1929), 30–31.
[Neg98]	S. Negami, Ramsey-type theorem for spatial graphs, Graphs Combin. 14 (1998), 75–80.
[ReSk99]	D. Repovš and A. Skopenkov, New results on embeddings of polyhedra and manifolds into Euclidean spaces, Uspekhi Mat. Nauk 54 (1999), no. 6, 61–109 (in Russian): English transl.: Russian Math. Surveys 54 (1999), 1149–1196.

198	M. Skopenkov
[ReSk01]	D. Repovš and A. Skopenkov, On contractible n-dimensional compacta, non- embeddable into \mathbb{R}^{2n} , Proc. Amer. Math. Soc. 129 (2001), 627–628.
[RSS95]	D. Repovš, A. B. Skopenkov and E. V. Ščepin, On embeddability of $X \times I$ into Euclidean space, Houston J. Math. 21 (1995), 199–204.
[RST93]	N. Robertson, P. P. Seymor and R. Thomas, <i>Linkless embeddings of graphs</i> in 3-space, Bull. Amer. Math. Soc. 28 (1993), 84–89.
[RST95]	-, -, -, Sach's linkless embedding conjecture, J. Combin. Theory Ser. B 64 (1995), 185–227.
[S81]	H. Sachs, On spatial representation of finite graphs, in: Finite and Infinite Sets, Colloq. Math. Soc. János Bolyai 37, North-Holland, 1981, 649–662.
[Sch84]	E. V. Ščepin, Soft mappings of manifolds, Russian Math. Surveys 39 (1984), 209–224 (in Russian).
[SSS98]	J. Segal, A. Skopenkov and S. Spież, <i>Embeddings of polyhedra in</i> \mathbb{R}^m and the deleted product obstruction, Topology Appl. 85 (1998), 335–344.
[SeSp92]	J. Segal and S. Spież, Quasi-embeddings and embedding of polyhedra in \mathbb{R}^m , ibid. 45 (1992), 275–282.
[ShTa]	M. Shirai and K. Taniyama, A large complete graph in a space contains a link with large link invariant, preprint.
[Sko03]	A. Skopenkov, Embedding and knotting of higher-dimensional manifolds in Euclidean spaces, in: London Math. Soc. Lecture Notes, to appear.
[T00]	K. Taniyama, Higher dimensional links in a simplicial complex embedded in a sphere, Pacific J. Math. 194 (2000), 465–467.
[Um78]	B. R. Ummel, The product of nonplanar complexes does not imbed in 4-space, Trans. Amer. Math. Soc. 242 (1978), 319–328.
Departmen	t of Differential Geometry

Faculty of Mechanics and Mathematics Moscow State University Moscow, 119992, Russia E-mail: stepank@mccme.ru

> Received 5 February 2002; in revised form 14 October 2003