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Embedding products of graphs
into Euclidean spaces

by

Mikhail Skopenkov (Moscow)

Abstract. For any collection of graphs G1, . . . , GN we find the minimal dimension
d such that the product G1 × . . .×GN is embeddable into Rd (see Theorem 1 below). In
particular, we prove that (K5)n and (K3,3)n are not embeddable into R2n, where K5 and
K3,3 are the Kuratowski graphs. This is a solution of a problem of Menger from 1929.
The idea of the proof is a reduction to a problem from so-called Ramsey link theory: we
show that any embedding LkO → S2n−1, where O is a vertex of (K5)n, has a pair of
linked (n− 1)-spheres.

Introduction. By a graph we understand a finite compact one-dimen-
sional polyhedron. We write K ↪→ Rd if a polyhedron K is PL embeddable
into Rd. In this paper we solve the following problem: for a given collection
of graphs G1, . . . , GN find the minimal dimension d such that G1× . . .×GN
↪→ Rd. A particular case of this problem was posed in [Men29].

The problem of embeddability of polyhedra into Euclidean spaces is of
primary importance (e.g., see [Sch84, ReSk99, ARS01, Sko03]). Our special
case is interesting because the complete answer can be obtained and is stated
easily, but the proof is non-trivial and contains interesting ideas.

Theorem 1. Let G1, . . . , Gn be connected graphs, distinct from a point ,
I and S1. The minimal dimension d such that G1×. . .×Gn×(S1)s×Ii ↪→ Rd
is

d =
{

2n+ s+ i if either i 6= 0 or some Gk is planar , (1)

2n+ s+ 1 otherwise. (2)
Here the planarity of Gk can be checked easily by applying the Kura-

towski graph planarity criterion.
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Remark. Theorem 1 remains true in the TOP category.

We prove this remark at the end of the paper. From now on till that
moment we work in the PL category.

Theorem 1 was stated (without proof) in [Gal93] (see also [Gal92]). The
proof of embeddability is trivial (see below). The non-embeddability has
been proved earlier in some specific cases. For example, it was known that
Y n 6↪→ R2n−1, where Y is a triod (letter “Y”). (A nice proof of this folklore
result is presented in [Sko03], cf. [ReSk01]). Also it was known that K5 ×
S1 6↪→ R3 (Tom Tucker, private communication). In [Um78] it is proved that
K5×K5 6↪→ R4; that proof contains about 10 pages of calculations involving
spectral sequences. We obtain a shorter geometric proof of this result (see
Example 2 and Lemma 2 below). The proof of the non-embeddability in
case (2), namely, Lemma 2, is the main point of Theorem 1 (while case (1)
is reduced easily to a result of van Kampen).

Our proof of Theorem 1 is quite elementary, in particular, we do not
use any abstract algebraic topology. We use a reduction to a problem from
so-called Ramsey link theory [S81, CG83, SeSp92, RST93, RST95, LS98,
Neg98, SSS98, T00, ShTa]. Let us introduce some notation. Denote by Kn a
complete graph on n vertices and by σmn them-skeleton of an n-simplex. For a
polyhedron σ let σ∗n be the join of n copies of σ. Denote by Kn,n = (σ0

n−1)∗2

a complete bipartite graph on 2n vertices. The classical Conway–Gordon–
Sachs theorem of Ramsey link theory asserts that any embedding of K6

into R3 has a pair of (homologically) linked cycles. In other words, K6 is
not linklessly embeddable into R3. The graph K4,4 has the same property
(the Sachs theorem, proved in [S81]). In our proof of Theorem 1 we use the
following higher dimensional generalization of the Sachs theorem:

Lemma 1. Any embedding (σ0
3)∗n → R2n−1 has a pair of linked (n− 1)-

spheres.

Lemma 1 follows from Lemma 1′ below. For higher dimensional general-
izations of the Conway–Gordon–Sachs theorem see [SeSp92, SSS98, T00].

The easy part of Theorem 1 and some heuristic considera-
tions. Let us first prove all assertions of Theorem 1 except the non-embed-
dability in case (2).

Proof of the embeddability in Theorem 1. We need the following two
simple results:

(∗) If a polyhedron K ↪→ Rd and d > 0, then K× I, K×S1 ↪→ Rd+1 (it
is sufficient to prove this for K = Rd ∼= D̊d, for which it is trivial).

(∗∗) For any d-polyhedron Kd the cylinder Kd × I ↪→ R2d+1 [RSS95].
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Set G = G1 × . . .× Gn. By general position G ↪→ R2n+1. If i 6= 0, then
by (∗∗), G × I ↪→ R2n+1. And if, say, G1 ⊂ D2, then by (∗∗), D2 × G2 ×
. . . × Gn ↪→ R2n, whence G ↪→ R2n. Applying (∗) several times we get the
embeddability assertion in all cases considered.

Proof of the non-embeddability in case (1). Note that any connected
graph, distinct from a point, I and S1, contains a triod Y . So it suffices
to prove that Y n × Is+i 6↪→ R2n+s+i−1. Since CK × CL ∼= C(K ∗ L) and
K ∗ σ0

0 = CK for any polyhedra K and L, it follows that

Y n × Is+i = (Cσ0
2)n × (Cσ0

0)s+i ∼= C . . . C︸ ︷︷ ︸
s+i+1 times

(σ0
2)∗n.

If a polyhedron K 6↪→ Sd then the cone CK 6↪→ Rd+1 (because we work in the
PL category). So the non-embeddability in case (1) follows from (σ0

2)∗n 6↪→
S2n−2 [Kam32] (and also from Y n 6↪→ S2n−1 [Sko03]).

We are thus left with the proof of the non-embeddability in case (2). To
make it clearer we precede it with a heuristic consideration of three simplest
cases.

Example 1. Let us first prove that the Kuratowski graph K5 is not
planar. Suppose to the contrary that K5 ⊂ R2. Let O be a vertex of K5 and
D a small disc with center O. Then the intersection K5 ∩ ∂D consists of 4
points. Denote them by A, B, C, D, in the order along the circle ∂D. Note
that the pairs A,C and B,D are the ends of two disjoint arcs contained in
K5 − D̊, and, consequently, in R2 − D̊. Then the cycles OAC,OBD ⊂ K5

intersect each other transversally at exactly one point O, which is impossible
in the plane. So K5 6↪→ R2.

Example 2. Now let us outline why K5 ×K5 6↪→ R4. (Another proof
is given in [Um78].) Recall that if K is a polyhedron and O ∈ K is a
vertex, then the star StO is the union of all closed cells of K containing O,
and the link LkO is the union of all cells of StO not containing O. In
our previous example LkO consists of 4 points and the proof is based on
the fact that there are two pairs of points of LkO linked in ∂D. Now take
K = K5 × K5. We get LkO ∼= K4,4. So by the Sachs theorem above any
embedding LkO ↪→ ∂D4 has a pair of linked cycles α, β ∈ LkO. Thus we
can prove that K 6↪→ R4 analogously to Example 1, if we construct two
disjoint 2-surfaces in K − StO with boundaries α and β respectively. This
construction is easy; see the proof of Lemma 2 below for details. Analogously
it can be shown that σ2

6 6↪→ R4. (Another proof is given in [Kam32].)

Example 3. Let us show why K5 × S1 6↪→ R3. (Another proof was
given by Tom Tucker.) Suppose that K5 × S1 ↪→ R3; then by (∗) we have
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K5×S1×S1 ↪→ R4. But S1×S1 ⊃ K5, so K5×K5 ↪→ R4, which contradicts
Example 2.

Proof of the non-embeddability in case (2) modulo some lem-
mas. Let us say that a PL map f : K → L between two polyhedra K and
L with fixed triangulations is an almost embedding if for any two disjoint
closed cells a, b ⊂ K we have fa ∩ fb = ∅ [FKT94].

Lemma 2 (for n = 2 [Um78]). The polyhedron (K5)n is not almost em-
beddable into R2n.

Proof of the non-embeddability in case (2) of Theorem 1 modulo Lemma 2.
By the Kuratowski graph planarity criterion any non-planar graph contains
a graph homeomorphic either to K5 or to K3,3. So we may assume that
each Gk is either K5 or K3,3. Analogously to Example 3 we may assume
that s = 0. Now we are going to replace all the graphs K3,3 by K5’s.

Note thatK5 is almost embeddable inK3,3 (Fig. 1). Indeed, map a vertex
of K5 into the middle point of an edge of K3,3 and map the remaining four
vertices to the four vertices of K3,3 not belonging to this edge. Then map
each edge e of K5 onto the shortest (as regards the number of vertices) arc
in K3,3, joining the images of the ends of e, and the almost embedding is
constructed.

Now note that a product of almost embeddings is an almost embedding,
and also a composition of an almost embedding and an embedding is an
almost embedding. Thus the non-embeddability in case (2) of Theorem 1
follows from Lemma 2.
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Fig. 1

For the proof of Lemma 2 we need the following notion. Let A, B be a
pair of PL n-manifolds with boundary and let f : A→ R2n, g : B → R2n be
a pair of PL maps such that f∂A∩ g∂B = ∅. Take a general position pair of
PL maps f : A → R2n and g : B → R2n close to f and g respectively. The
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mod 2 intersection index fA ∩ gB is the number of points mod 2 in the set
fA ∩ gB. We are going to use the following simple result:

(∗∗∗) if both A and B are closed manifolds, then fA ∩ gB = 0.

(This follows from the homology intersection form of R2n being zero.) Lem-
ma 2 will be deduced from the following generalization of Lemma 1:

Lemma 1′. Let L = (σ0
3)∗n. Then for any almost embedding CL→ R2n

there exist two disjoint (n − 1)-spheres α, β ⊂ L such that the intersection
index fCα ∩ fCβ is 1.

Proof of Lemma 2 modulo Lemma 1′. Assume that there exists an almost
embedding f : K = K5 × . . . × K5 → R2n. Let O = O1 × . . . × On be a
vertex of K. By the well-known formula for links,

LkO ∼= LkO1 ∗ . . . ∗ LkOn, StO = C LkO ∼= C(σ0
3)∗n.

Let α, β ⊂ LkO be a pair of (n−1)-spheres given by Lemma 1′. Identify
LkO and LkO1 ∗ . . . ∗ LkOn. Since α and β are disjoint, it follows that for
each k = 1, . . . , n the sets α ∩ LkOk and β ∩ LkOk are disjoint and each of
them consists of two points. By definition, put {Ak, Ck} := α ∩ LkOk and
{Bk,Dk} := β ∩ LkOk. Consider two n-tori

Tα = O1A1C1 × . . .×OnAnCn, Tβ = O1B1D1 × . . .×OnBnDn

contained in K.
Clearly, Tα ⊃ Cα, Tβ ⊃ Cβ and Tα ∩ Tβ = O. Since f is an almost

embedding, it follows that fTα ∩ fTβ = fCα ∩ fCβ. So fTα ∩ fTβ = 1 by
the choice of α and β. By (∗∗∗) we obtain a contradiction, so K 6↪→ R2n.

The proof of Lemma 1′. The proof is similar to that of the Conway–
Gordon–Sachs theorem and applies the idea of [Kam32], only we use a more
refined obstruction. The reader can restrict attention to the case when n = 2
and obtain an alternative proof of the Sachs theorem. (The proof for n > 2
is completely analogous to that for n = 2.)

We show that for any (n− 1)-simplex c of L and any almost embedding
f : CL → R2n there exists a pair of disjoint (n − 1)-spheres α, β ⊂ L such
that α ⊃ c and the intersection index fCα ∩ fCβ is 1.

For an almost embedding f :CL→R2n let v(f) =
∑

(fCα ∩ fCβ) mod 2
be the van Kampen obstruction to linkless embeddability. Here the sum is
over all pairs of disjoint (n− 1)-spheres α, β ⊂ L such that c ⊂ α. It suffices
to prove that v(f) = 1. Our proof is in two steps: first we show that v(f)
does not depend on f , and then we calculate v(f) for certain “standard”
embeddings f : CL→ R2n.

Let us prove that v(f) does not depend on f (cf. [Kam32, CG83]). Take
any two almost embeddings F0, F1 : CL → R2n. By general position in the
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PL category there exists a homotopy F : I ×CL→ R2n between them such
that

(1) there are only a finite number of singular times t, i.e. times t ∈ I
such that Ft is not an almost embedding;

(2) for each singular t there is exactly one pair of disjoint (n−1)-simplices
a, b ⊂ L such that FtCa ∩ Ftb 6= ∅;

(3) the intersection FtCa∩Ftb is “transversal in time”, i.e. F (t×Ca)∩
F ([t− ε, t+ ε]× b) is transversal for some ε > 0.

Consider a singular time t. Property (3) implies that the intersection
index FtCα ∩ FtCβ of a pair of disjoint (n − 1)-spheres α, β ⊂ L changes
with the increase of t if and only if either α ⊃ a, β ⊃ b or α ⊃ b, β ⊃ a. Such
pairs (α, β) satisfying the condition α ⊃ c are called critical. If c∩(a∪b) = ∅,
then there are exactly two critical pairs. Indeed, we have either α ⊃ a∪ c or
α ⊃ b ∪ c. Each of these determines a unique critical pair. If c∩ (a∪ b) 6= ∅,
then there are two distinct vertices v, w ∈ L − (a ∪ b ∪ c) belonging to the
same copy of σ0

3 . Then there is an involution without fixed points on the set
of critical pairs. Indeed, Z2 acts on the set of vertices of L by interchanging
v and w, and it also acts on the set of critical pairs, because v, w 6∈ a∪ b∪ c.
So the number of critical pairs is always even, therefore v(F0) = v(F1).
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Fig. 2

Now let us prove that v(f) = 1 for a certain “standard” embedding
f : CL ↪→ R2n. To define it take a general position collection of n lines
in R2n−1 ⊂ R2n. For each k = 1, . . . , n take a quadruple σk of distinct
points on the kth line. Taking the join of all σk, we obtain an embedding
L ↪→ R2n−1 (Fig. 2 for n = 2). The standard embedding f : CL ↪→ R2n is
defined to be the cone of this embedding. Below we omit f from the notation
of f -images. Clearly, for a pair of disjoint (n− 1)-spheres α, β ⊂ L we have
Cα∩Cβ = lk(α, β) mod 2. Let us show that lk(α, β) = 1 mod 2 if and only
if for each k = 1, . . . , n the 0-spheres α∩σk and β ∩σk are linked in the kth
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copy of R1. Indeed, let I be the segment between the pair of points of α∩σ1.
Set Dα = I ∗(α∩σ2)∗ . . .∗(α∩σn). Then ∂Dα = α. The intersection Dα∩β
is not empty mod 2 if and only if the 0-spheres α∩ σ1 and β ∩ σ1 are linked
in the first copy of R1. This intersection is transversal if and only if α ∩ σk
and β ∩ σk are linked in the remaining copies of R1. Now it is obvious that
there exists exactly one pair α, β such that α ⊃ c and Cα ∩ Cβ = 1 mod 2.
So v(f) = 1, which proves the lemma.

We conclude our paper with the proof of Remark (due to the referee):

Proof of Theorem 1 in the TOP category. For codimension ≥ 3 the as-
sertion of Theorem 1 in the TOP category follows from the one in the PL
category by the result of Bryant [Bry72]. Analogously to Example 3, we
reduce the codimension 1 and 2 cases to the codimension 3 case.
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