Embedding products of graphs into Euclidean spaces

by
Mikhail Skopenkov (Moscow)

Abstract

For any collection of graphs G_{1}, \ldots, G_{N} we find the minimal dimension d such that the product $G_{1} \times \ldots \times G_{N}$ is embeddable into \mathbb{R}^{d} (see Theorem 1 below). In particular, we prove that $\left(K_{5}\right)^{n}$ and $\left(K_{3,3}\right)^{n}$ are not embeddable into $\mathbb{R}^{2 n}$, where K_{5} and $K_{3,3}$ are the Kuratowski graphs. This is a solution of a problem of Menger from 1929. The idea of the proof is a reduction to a problem from so-called Ramsey link theory: we show that any embedding $\operatorname{Lk} O \rightarrow S^{2 n-1}$, where O is a vertex of $\left(K_{5}\right)^{n}$, has a pair of linked ($n-1$)-spheres.

Introduction. By a graph we understand a finite compact one-dimensional polyhedron. We write $K \hookrightarrow \mathbb{R}^{d}$ if a polyhedron K is PL embeddable into \mathbb{R}^{d}. In this paper we solve the following problem: for a given collection of graphs G_{1}, \ldots, G_{N} find the minimal dimensiond such that $G_{1} \times \ldots \times G_{N}$ $\hookrightarrow \mathbb{R}^{d}$. A particular case of this problem was posed in [Men29].

The problem of embeddability of polyhedra into Euclidean spaces is of primary importance (e.g., see [Sch84, ReSk99, ARS01, Sko03]). Our special case is interesting because the complete answer can be obtained and is stated easily, but the proof is non-trivial and contains interesting ideas.

Theorem 1. Let G_{1}, \ldots, G_{n} be connected graphs, distinct from a point, I and S^{1}. The minimal dimension d such that $G_{1} \times \ldots \times G_{n} \times\left(S^{1}\right)^{s} \times I^{i} \hookrightarrow \mathbb{R}^{d}$ is

$$
d=\left\{\begin{array}{l}
2 n+s+i \quad \text { if either } i \neq 0 \text { or some } G_{k} \text { is planar } \tag{1}\\
2 n+s+1 \quad \text { otherwise } .
\end{array}\right.
$$

Here the planarity of G_{k} can be checked easily by applying the Kuratowski graph planarity criterion.

[^0]Remark. Theorem 1 remains true in the TOP category.
We prove this remark at the end of the paper. From now on till that moment we work in the PL category.

Theorem 1 was stated (without proof) in [Gal93] (see also [Gal92]). The proof of embeddability is trivial (see below). The non-embeddability has been proved earlier in some specific cases. For example, it was known that $Y^{n} \leftrightarrow \mathbb{R}^{2 n-1}$, where Y is a triod (letter " Y "). (A nice proof of this folklore result is presented in [Sko03], cf. [ReSk01]). Also it was known that $K_{5} \times$ $S^{1} \nprec \mathbb{R}^{3}$ (Tom Tucker, private communication). In [Um78] it is proved that $K_{5} \times K_{5} \nLeftarrow \mathbb{R}^{4}$; that proof contains about 10 pages of calculations involving spectral sequences. We obtain a shorter geometric proof of this result (see Example 2 and Lemma 2 below). The proof of the non-embeddability in case (2), namely, Lemma 2, is the main point of Theorem 1 (while case (1) is reduced easily to a result of van Kampen).

Our proof of Theorem 1 is quite elementary, in particular, we do not use any abstract algebraic topology. We use a reduction to a problem from so-called Ramsey link theory [S81, CG83, SeSp92, RST93, RST95, LS98, Neg98, SSS98, T00, ShTa]. Let us introduce some notation. Denote by K_{n} a complete graph on n vertices and by σ_{n}^{m} the m-skeleton of an n-simplex. For a polyhedron σ let $\sigma^{* n}$ be the join of n copies of σ. Denote by $K_{n, n}=\left(\sigma_{n-1}^{0}\right)^{* 2}$ a complete bipartite graph on $2 n$ vertices. The classical Conway-GordonSachs theorem of Ramsey link theory asserts that any embedding of K_{6} into \mathbb{R}^{3} has a pair of (homologically) linked cycles. In other words, K_{6} is not linklessly embeddable into \mathbb{R}^{3}. The graph $K_{4,4}$ has the same property (the Sachs theorem, proved in [S81]). In our proof of Theorem 1 we use the following higher dimensional generalization of the Sachs theorem:

Lemma 1. Any embedding $\left(\sigma_{3}^{0}\right)^{* n} \rightarrow \mathbb{R}^{2 n-1}$ has a pair of linked $(n-1)$ spheres.

Lemma 1 follows from Lemma 1^{\prime} below. For higher dimensional generalizations of the Conway-Gordon-Sachs theorem see [SeSp92, SSS98, T00].

The easy part of Theorem 1 and some heuristic considerations. Let us first prove all assertions of Theorem 1 except the non-embeddability in case (2).

Proof of the embeddability in Theorem 1. We need the following two simple results:
(*) If a polyhedron $K \hookrightarrow \mathbb{R}^{d}$ and $d>0$, then $K \times I, K \times S^{1} \hookrightarrow \mathbb{R}^{d+1}$ (it is sufficient to prove this for $K=\mathbb{R}^{d} \cong D^{d}$, for which it is trivial).
$(* *) \quad$ For any d-polyhedron K^{d} the cylinder $K^{d} \times I \hookrightarrow \mathbb{R}^{2 d+1}$ [RSS95].

Set $G=G_{1} \times \ldots \times G_{n}$. By general position $G \hookrightarrow \mathbb{R}^{2 n+1}$. If $i \neq 0$, then by $(* *), G \times I \hookrightarrow \mathbb{R}^{2 n+1}$. And if, say, $G_{1} \subset D^{2}$, then by ($* *$), $D^{2} \times G_{2} \times$ $\ldots \times G_{n} \hookrightarrow \mathbb{R}^{2 n}$, whence $G \hookrightarrow \mathbb{R}^{2 n}$. Applying $(*)$ several times we get the embeddability assertion in all cases considered.

Proof of the non-embeddability in case (1). Note that any connected graph, distinct from a point, I and S^{1}, contains a triod Y. So it suffices to prove that $Y^{n} \times I^{s+i} \nLeftarrow \mathbb{R}^{2 n+s+i-1}$. Since $C K \times C L \cong C(K * L)$ and $K * \sigma_{0}^{0}=C K$ for any polyhedra K and L, it follows that

$$
Y^{n} \times I^{s+i}=\left(C \sigma_{2}^{0}\right)^{n} \times\left(C \sigma_{0}^{0}\right)^{s+i} \cong \underbrace{C \ldots C}_{s+i+1 \text { times }}\left(\sigma_{2}^{0}\right)^{* n}
$$

If a polyhedron $K \nrightarrow S^{d}$ then the cone $C K \nLeftarrow \mathbb{R}^{d+1}$ (because we work in the PL category). So the non-embeddability in case (1) follows from $\left(\sigma_{2}^{0}\right)^{* n} \nprec$ $S^{2 n-2}[\mathrm{Kam} 32]$ (and also from $Y^{n} \nrightarrow S^{2 n-1}[$ Sko 03$]$).

We are thus left with the proof of the non-embeddability in case (2). To make it clearer we precede it with a heuristic consideration of three simplest cases.

Example 1. Let us first prove that the Kuratowski graph K_{5} is not planar. Suppose to the contrary that $K_{5} \subset \mathbb{R}^{2}$. Let O be a vertex of K_{5} and D a small disc with center O. Then the intersection $K_{5} \cap \partial D$ consists of 4 points. Denote them by A, B, C, D, in the order along the circle ∂D. Note that the pairs A, C and B, D are the ends of two disjoint arcs contained in $K_{5}-\check{D}$, and, consequently, in $\mathbb{R}^{2}-\check{D}$. Then the cycles $O A C, O B D \subset K_{5}$ intersect each other transversally at exactly one point O, which is impossible in the plane. So $K_{5} \nLeftarrow \mathbb{R}^{2}$.

Example 2. Now let us outline why $K_{5} \times K_{5} \nLeftarrow \mathbb{R}^{4}$. (Another proof is given in [Um78].) Recall that if K is a polyhedron and $O \in K$ is a vertex, then the star $\operatorname{St} O$ is the union of all closed cells of K containing O, and the link $\operatorname{Lk} O$ is the union of all cells of $\operatorname{St} O$ not containing O. In our previous example Lk O consists of 4 points and the proof is based on the fact that there are two pairs of points of $\operatorname{Lk} O$ linked in ∂D. Now take $K=K_{5} \times K_{5}$. We get $\mathrm{Lk} O \cong K_{4,4}$. So by the Sachs theorem above any embedding $\operatorname{Lk} O \hookrightarrow \partial D^{4}$ has a pair of linked cycles $\alpha, \beta \in \operatorname{Lk} O$. Thus we can prove that $K \nprec \mathbb{R}^{4}$ analogously to Example 1, if we construct two disjoint 2-surfaces in $K-\operatorname{St} O$ with boundaries α and β respectively. This construction is easy; see the proof of Lemma 2 below for details. Analogously it can be shown that $\sigma_{6}^{2} \nrightarrow \mathbb{R}^{4}$. (Another proof is given in [Kam32].)

Example 3. Let us show why $K_{5} \times S^{1} \not \leftrightarrow \mathbb{R}^{3}$. (Another proof was given by Tom Tucker.) Suppose that $K_{5} \times S^{1} \hookrightarrow \mathbb{R}^{3}$; then by (*) we have
$K_{5} \times S^{1} \times S^{1} \hookrightarrow \mathbb{R}^{4}$. But $S^{1} \times S^{1} \supset K_{5}$, so $K_{5} \times K_{5} \hookrightarrow \mathbb{R}^{4}$, which contradicts Example 2.

Proof of the non-embeddability in case (2) modulo some lemmas. Let us say that a PL map $f: K \rightarrow L$ between two polyhedra K and L with fixed triangulations is an almost embedding if for any two disjoint closed cells $a, b \subset K$ we have $f a \cap f b=\emptyset[$ FKT94].

Lemma 2 (for $n=2[\mathrm{Um} 78]$). The polyhedron $\left(K_{5}\right)^{n}$ is not almost embeddable into $\mathbb{R}^{2 n}$.

Proof of the non-embeddability in case (2) of Theorem 1 modulo Lemma 2. By the Kuratowski graph planarity criterion any non-planar graph contains a graph homeomorphic either to K_{5} or to $K_{3,3}$. So we may assume that each G_{k} is either K_{5} or $K_{3,3}$. Analogously to Example 3 we may assume that $s=0$. Now we are going to replace all the graphs $K_{3,3}$ by K_{5} 's.

Note that K_{5} is almost embeddable in $K_{3,3}$ (Fig. 1). Indeed, map a vertex of K_{5} into the middle point of an edge of $K_{3,3}$ and map the remaining four vertices to the four vertices of $K_{3,3}$ not belonging to this edge. Then map each edge e of K_{5} onto the shortest (as regards the number of vertices) arc in $K_{3,3}$, joining the images of the ends of e, and the almost embedding is constructed.

Now note that a product of almost embeddings is an almost embedding, and also a composition of an almost embedding and an embedding is an almost embedding. Thus the non-embeddability in case (2) of Theorem 1 follows from Lemma 2.

Fig. 1
For the proof of Lemma 2 we need the following notion. Let A, B be a pair of PL n-manifolds with boundary and let $f: A \rightarrow \mathbb{R}^{2 n}, g: B \rightarrow \mathbb{R}^{2 n}$ be a pair of PL maps such that $f \partial A \cap g \partial B=\emptyset$. Take a general position pair of PL maps $\bar{f}: A \rightarrow \mathbb{R}^{2 n}$ and $\bar{g}: B \rightarrow \mathbb{R}^{2 n}$ close to f and g respectively. The
$\bmod 2$ intersection index $f A \cap g B$ is the number of points mod 2 in the set $\bar{f} A \cap \bar{g} B$. We are going to use the following simple result:
$(* * *) \quad$ if both A and B are closed manifolds, then $f A \cap g B=0$.
(This follows from the homology intersection form of $\mathbb{R}^{2 n}$ being zero.) Lemma 2 will be deduced from the following generalization of Lemma 1:

Lemma 1^{\prime}. Let $L=\left(\sigma_{3}^{0}\right)^{* n}$. Then for any almost embedding $C L \rightarrow \mathbb{R}^{2 n}$ there exist two disjoint $(n-1)$-spheres $\alpha, \beta \subset L$ such that the intersection index $f C \alpha \cap f C \beta$ is 1 .

Proof of Lemma 2 modulo Lemma 1'. Assume that there exists an almost embedding $f: K=K_{5} \times \ldots \times K_{5} \rightarrow \mathbb{R}^{2 n}$. Let $O=O_{1} \times \ldots \times O_{n}$ be a vertex of K. By the well-known formula for links,

$$
\operatorname{Lk} O \cong \operatorname{Lk} O_{1} * \ldots * \operatorname{Lk} O_{n}, \quad \operatorname{St} O=C \operatorname{Lk} O \cong C\left(\sigma_{3}^{0}\right)^{* n}
$$

Let $\alpha, \beta \subset \operatorname{Lk} O$ be a pair of $(n-1)$-spheres given by Lemma 1^{\prime}. Identify $\mathrm{Lk} O$ and $\operatorname{Lk} O_{1} * \ldots * \operatorname{Lk} O_{n}$. Since α and β are disjoint, it follows that for each $k=1, \ldots, n$ the sets $\alpha \cap \operatorname{Lk} O_{k}$ and $\beta \cap \operatorname{Lk} O_{k}$ are disjoint and each of them consists of two points. By definition, put $\left\{A_{k}, C_{k}\right\}:=\alpha \cap \operatorname{Lk} O_{k}$ and $\left\{B_{k}, D_{k}\right\}:=\beta \cap \operatorname{Lk} O_{k}$. Consider two n-tori

$$
T_{\alpha}=O_{1} A_{1} C_{1} \times \ldots \times O_{n} A_{n} C_{n}, \quad T_{\beta}=O_{1} B_{1} D_{1} \times \ldots \times O_{n} B_{n} D_{n}
$$ contained in K.

Clearly, $T_{\alpha} \supset C \alpha, T_{\beta} \supset C \beta$ and $T_{\alpha} \cap T_{\beta}=O$. Since f is an almost embedding, it follows that $f T_{\alpha} \cap f T_{\beta}=f C \alpha \cap f C \beta$. So $f T_{\alpha} \cap f T_{\beta}=1$ by the choice of α and β. By $(* * *)$ we obtain a contradiction, so $K \nsim \mathbb{R}^{2 n}$.

The proof of Lemma $\mathbf{1}^{\prime}$. The proof is similar to that of the Conway-Gordon-Sachs theorem and applies the idea of [Kam32], only we use a more refined obstruction. The reader can restrict attention to the case when $n=2$ and obtain an alternative proof of the Sachs theorem. (The proof for $n>2$ is completely analogous to that for $n=2$.)

We show that for any ($n-1$)-simplex c of L and any almost embedding $f: C L \rightarrow \mathbb{R}^{2 n}$ there exists a pair of disjoint $(n-1)$-spheres $\alpha, \beta \subset L$ such that $\alpha \supset c$ and the intersection index $f C \alpha \cap f C \beta$ is 1 .

For an almost embedding $f: C L \rightarrow \mathbb{R}^{2 n}$ let $v(f)=\sum(f C \alpha \cap f C \beta) \bmod 2$ be the van Kampen obstruction to linkless embeddability. Here the sum is over all pairs of disjoint $(n-1)$-spheres $\alpha, \beta \subset L$ such that $c \subset \alpha$. It suffices to prove that $v(f)=1$. Our proof is in two steps: first we show that $v(f)$ does not depend on f, and then we calculate $v(f)$ for certain "standard" embeddings $f: C L \rightarrow \mathbb{R}^{2 n}$.

Let us prove that $v(f)$ does not depend on f (cf. [Kam32, CG83]). Take any two almost embeddings $F_{0}, F_{1}: C L \rightarrow \mathbb{R}^{2 n}$. By general position in the

PL category there exists a homotopy $F: I \times C L \rightarrow \mathbb{R}^{2 n}$ between them such that
(1) there are only a finite number of singular times t, i.e. times $t \in I$ such that F_{t} is not an almost embedding;
(2) for each singular t there is exactly one pair of disjoint ($n-1$)-simplices $a, b \subset L$ such that $F_{t} C a \cap F_{t} b \neq \emptyset ;$
(3) the intersection $F_{t} C a \cap F_{t} b$ is "transversal in time", i.e. $F(t \times C a) \cap$ $F([t-\varepsilon, t+\varepsilon] \times b)$ is transversal for some $\varepsilon>0$.

Consider a singular time t. Property (3) implies that the intersection index $F_{t} C \alpha \cap F_{t} C \beta$ of a pair of disjoint ($n-1$)-spheres $\alpha, \beta \subset L$ changes with the increase of t if and only if either $\alpha \supset a, \beta \supset b$ or $\alpha \supset b, \beta \supset a$. Such pairs (α, β) satisfying the condition $\alpha \supset c$ are called critical. If $c \cap(a \cup b)=\emptyset$, then there are exactly two critical pairs. Indeed, we have either $\alpha \supset a \cup c$ or $\alpha \supset b \cup c$. Each of these determines a unique critical pair. If $c \cap(a \cup b) \neq \emptyset$, then there are two distinct vertices $v, w \in L-(a \cup b \cup c)$ belonging to the same copy of σ_{3}^{0}. Then there is an involution without fixed points on the set of critical pairs. Indeed, \mathbb{Z}_{2} acts on the set of vertices of L by interchanging v and w, and it also acts on the set of critical pairs, because $v, w \notin a \cup b \cup c$. So the number of critical pairs is always even, therefore $v\left(F_{0}\right)=v\left(F_{1}\right)$.

Fig. 2
Now let us prove that $v(f)=1$ for a certain "standard" embedding $f: C L \hookrightarrow \mathbb{R}^{2 n}$. To define it take a general position collection of n lines in $\mathbb{R}^{2 n-1} \subset \mathbb{R}^{2 n}$. For each $k=1, \ldots, n$ take a quadruple σ_{k} of distinct points on the k th line. Taking the join of all σ_{k}, we obtain an embedding $L \hookrightarrow \mathbb{R}^{2 n-1}$ (Fig. 2 for $n=2$). The standard embedding $f: C L \hookrightarrow \mathbb{R}^{2 n}$ is defined to be the cone of this embedding. Below we omit f from the notation of f-images. Clearly, for a pair of disjoint $(n-1)$-spheres $\alpha, \beta \subset L$ we have $C \alpha \cap C \beta=\operatorname{lk}(\alpha, \beta) \bmod 2$. Let us show that $\operatorname{lk}(\alpha, \beta)=1 \bmod 2$ if and only if for each $k=1, \ldots, n$ the 0 -spheres $\alpha \cap \sigma_{k}$ and $\beta \cap \sigma_{k}$ are linked in the k th
copy of \mathbb{R}^{1}. Indeed, let I be the segment between the pair of points of $\alpha \cap \sigma_{1}$. Set $D_{\alpha}=I *\left(\alpha \cap \sigma_{2}\right) * \ldots *\left(\alpha \cap \sigma_{n}\right)$. Then $\partial D_{\alpha}=\alpha$. The intersection $D_{\alpha} \cap \beta$ is not empty mod 2 if and only if the 0 -spheres $\alpha \cap \sigma_{1}$ and $\beta \cap \sigma_{1}$ are linked in the first copy of \mathbb{R}^{1}. This intersection is transversal if and only if $\alpha \cap \sigma_{k}$ and $\beta \cap \sigma_{k}$ are linked in the remaining copies of \mathbb{R}^{1}. Now it is obvious that there exists exactly one pair α, β such that $\alpha \supset c$ and $C \alpha \cap C \beta=1 \bmod 2$. So $v(f)=1$, which proves the lemma.

We conclude our paper with the proof of Remark (due to the referee):
Proof of Theorem 1 in the TOP category. For codimension ≥ 3 the assertion of Theorem 1 in the TOP category follows from the one in the PL category by the result of Bryant [Bry72]. Analogously to Example 3, we reduce the codimension 1 and 2 cases to the codimension 3 case.

Acknowledgements. The author is grateful to Arkady Skopenkov for permanent interest in this work and to the referee for useful suggestions and a remark proving one of the author's conjectures.

References

[ARS01] P. Akhmetiev, D. Repovš and A. Skopenkov, Embedding products of lowdimensional manifolds in \mathbb{R}^{m}, Topology Appl. 113 (2001), 7-12.
[Bry72] J. L. Bryant, Approximating embeddings of polyhedra in codimension 3, Trans. Amer. Math. Soc. 170 (1972), 85-95.
[CG83] J. Conway and C. Gordon, Knots and links in spatial graphs, J. Graph Theory 7 (1983), 445-453.
[FKT94] M. H. Freedman, V. S. Krushkal and P. Teichner, Van Kampen's embedding obstruction is incomplete for 2-complexes in \mathbb{R}^{4}, Math. Res. Lett. 1 (1994), 167-176.
[Ga192] M. Galecki, On embeddability of CW-complexes in Euclidean space, preprint, Univ. of Tennessee, Knoxville, 1992.
[Ga193] -, Enhanced cohomology and obstruction theory, doctoral dissertation, Univ. of Tennessee, Knoxville, 1993.
[Kam32] E. R. van Kampen, Komplexe in euklidische Räumen, Abb. Math. Sem. Hamburg 9 (1932), 72-78; Berichtigung dazu, 152-153.
[LS98] L. Lovász and A. Schrijver, A Borsuk theorem for antipodal links and a spectral characterization of linklessly embeddable graphs, Proc. Amer. Math. Soc. 126 (1998), 1275-1285.
[Men29] K. Menger, Über plättbare Dreiergraphen und Potenzen nicht plättbarer Graphen, Ergeb. Math. Kolloq. 2 (1929), 30-31.
[Neg98] S. Negami, Ramsey-type theorem for spatial graphs, Graphs Combin. 14 (1998), 75-80.
[ReSk99] D. Repovš and A. Skopenkov, New results on embeddings of polyhedra and manifolds into Euclidean spaces, Uspekhi Mat. Nauk 54 (1999), no. 6, 61-109 (in Russian); English transl.: Russian Math. Surveys 54 (1999), 1149-1196.
[ReSk01] D. Repovš and A. Skopenkov, On contractible n-dimensional compacta, nonembeddable into $\mathbb{R}^{2 n}$, Proc. Amer. Math. Soc. 129 (2001), 627-628.
[RSS95] D. Repovš, A. B. Skopenkov and E. V. Ščepin, On embeddability of $X \times I$ into Euclidean space, Houston J. Math. 21 (1995), 199-204.
[RST93] N. Robertson, P. P. Seymor and R. Thomas, Linkless embeddings of graphs in 3-space, Bull. Amer. Math. Soc. 28 (1993), 84-89.
[RST95] -, —, —, Sach's linkless embedding conjecture, J. Combin. Theory Ser. B 64 (1995), 185-227.
[S81] H. Sachs, On spatial representation of finite graphs, in: Finite and Infinite Sets, Colloq. Math. Soc. János Bolyai 37, North-Holland, 1981, 649-662.
[Sch84] E. V. Ščepin, Soft mappings of manifolds, Russian Math. Surveys 39 (1984), 209-224 (in Russian).
[SSS98] J. Segal, A. Skopenkov and S. Spież, Embeddings of polyhedra in \mathbb{R}^{m} and the deleted product obstruction, Topology Appl. 85 (1998), 335-344.
[SeSp92] J. Segal and S. Spież, Quasi-embeddings and embedding of polyhedra in \mathbb{R}^{m}, ibid. 45 (1992), 275-282.
[ShTa] M. Shirai and K. Taniyama, A large complete graph in a space contains a link with large link invariant, preprint.
[Sko03] A. Skopenkov, Embedding and knotting of higher-dimensional manifolds in Euclidean spaces, in: London Math. Soc. Lecture Notes, to appear.
[T00] K. Taniyama, Higher dimensional links in a simplicial complex embedded in a sphere, Pacific J. Math. 194 (2000), 465-467.
[Um78] B. R. Ummel, The product of nonplanar complexes does not imbed in 4-space, Trans. Amer. Math. Soc. 242 (1978), 319-328.

Department of Differential Geometry
Faculty of Mechanics and Mathematics
Moscow State University
Moscow, 119992, Russia
E-mail: stepank@mccme.ru

Received 5 February 2002;
in revised form 14 October 2003

[^0]: 2000 Mathematics Subject Classification: 57Q35, 57Q45.
 Key words and phrases: embedding, product, graph, almost embedding, linkless embedding, Kuratowski criterion, Ramsey link theory, van Kampen obstruction.

 The author was supported in part by travel grant $\mathrm{N} 03-01-10825$ of the Russian Foundation of Basic Research.

