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Functions of Baire class one
by

Denny H. Leung and Wee-Kee Tang (Singapore)

Abstract. Let K be a compact metric space. A real-valued function on K is said to be
of Baire class one (Baire-1) if it is the pointwise limit of a sequence of continuous functions.
We study two well known ordinal indices of Baire-1 functions, the oscillation index 3 and
the convergence index ~. It is shown that these two indices are fully compatible in the
following sense: a Baire-1 function f satisfies 8(f) < w8 - w82 for some countable ordinals
&1 and & if and only if there exists a sequence (fr) of Baire-1 functions converging to f
pointwise such that sup,, 8(fn) < @' and ((fn)) < w®. We also obtain an extension
result for Baire-1 functions analogous to the Tietze Extension Theorem. Finally, it is shown
that if B(f) < w& and B(g) < w2, then B(fg) < w®, where £ = max{&1 + &2, &2 + &1}
These results do not assume the boundedness of the functions involved.

1. Preliminaries. Let K be a compact metric space. A function f :
K — R is said to be of Baire class one, or simply Baire-1, if there exists a
sequence (f,) of real-valued continuous functions that converges pointwise
to f. Let B;(K) (respectively, Bi(K)) be the set of all real-valued (respec-
tively, bounded real-valued) Baire-1 functions on K. Several authors have
studied Baire-1 functions in terms of ordinal ranks associated to each func-
tion. (See, e.g., [2], [3] and [4].) In this paper, we study the relationship
between two of these ordinal ranks, namely the oscillation rank 5 and the
convergence rank 7.

We begin by recalling the definitions of the indices 3 and . Suppose that
H is a compact metric space, and f is a real-valued function whose domain
contains H. For any € > 0, let HO(f,¢) = H. If H*(f,¢) is defined for some
countable ordinal a, let H*T1(f, ¢) be the set of all those x € H*(f,¢) such
that for every open set U containing x, there are two points x; and x9 in
UnNH(f,e) with |f(x1) — f(z2)] > e. For a countable limit ordinal «, we
let

H*(f.e)= () H*(f.2).

a'<a
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The index Sy (f, ) is taken to be the least o with H*(f,e) = ) if such an
« exists, and wy otherwise. The oscillation index of f is

Bu(f) = sup{Bu(f,e) : € > 0}.

If the ambient space H is clear from the context, we write 5(f,e) and 3(f)
in place of By (f,e) and By (f) respectively.

The ~ index is defined analogously. If (f,) is a sequence of real-valued
functions such that H C (), dom(fy,), let H((f,),e) = H for any £ > 0. If
H((f,), ) has been defined for some countable ordinal o, let H*L((f,),€)
be the set of all those z € H*((fn),e) such that for every open set U
containing x and any m € N, there are two integers ny, no withn; > no > m
and 2’ € U N H*((fn),e) such that |fp, (') — fn,(2")| > €. Define

H((fa)ie) = () HY((fa):e)

a'<a

if a is a countable limit ordinal. Let vg((fn),e) be the least a with
H*((fn),e) = 0 if such an « exists, and w; otherwise. Finally, the con-
vergence index of (f,) is the ordinal

v ((fn)) = sup{ya ((fn),€) - € > O}.

Again, if there is no ambiguity about the space H, we write y((fn),e) and

V((fn)) for v ((fn), &) and v ((fn)) respectively.

It is known that a function f : K — R is Baire-1 if and only if 5(f) < w;.
(See [3, Proposition 1.2].) Following [3], we define the set of functions of small
Baire class € and the set of bounded functions of small Baire class £ for each
countable ordinal £ as

BY(K) = {f € B1(K) : B(f) < o}
and

Bi(K) = {f € Bi(K) : B(f) <t}
respectively. In [4], the following results are shown.

THEOREM 1.1. Let K be a compact metric space.

(a) [4, Theorem 7] If & is a finite ordinal, then a function f is in
Bf“(K) if and only if there exists a sequence (f,) in Bi(K) converging
pointwise to f such that v((fn)) < wt.

(b) [4, Corollary 9] If & is an infinite countable ordinal, and f € Bi(K)
is the pointwise limit of a sequence (f,) in BI(K) such that v((fn)) < w8,
then B(f) < w*.

One of our main results generalizes and unifies the two parts of Theo-
rem 1.1.
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THEOREM 1.2. Let K be a compact metric space and let &1, &2 be count-
able ordinals. A function f is in EB§1+£2 (K), respectively, B§1+£2(K), if and
only if there exists a sequence (f,) in ‘B%l (K), respectively, a bounded se-
quence (fr) in Bfl(K), converging pointwise to f such that y((f,)) < w2.

In the course of proving Theorem 1.2, we show that any Baire-1 function
f on a closed subspace H of a compact metric space K can be extended to
a Baire-1 function g on K such that Sy (f) = Brx(g) (Theorem 3.6). When
Br(f) = 1, this is the familiar Tietze Extension Theorem. Proposition 2.1
and Theorem 2.3 in [3] imply that for a bounded Baire-1 function f, 5(f) is
the smallest ordinal & such that there exists a sequence (f,) of continuous
functions converging pointwise to f and having v((f,)) = £. Theorem 5.5
below shows that the same result holds without the boundedness assumption
on the function f. In the last section, we consider the product of Baire-1
functions. In contrast to the class Bf(K ), the class ‘B?(K ) is not closed under
multiplication. Theorem 6.5 shows that if f € %%1 (K)and g € ’B? (K), then
fg € iBf(K), where £ = max{&; + &2, &2 + &1 }. It is also shown that this
result is the best possible.

Our notation is standard. In what follows, K will always denote a com-
pact metric space. If H is a closed subset of K, the derived set H’ is the set
of all limit points of H. A transfinite sequence of derived sets is defined in
the usual manner. Let H(® = H and HY) = (H®)Y for any ordinal a.
If « is a limit ordinal, let

g — ﬂ g

o'<a
It is easy to observe that H(f,e) € H® and H*((f,),e) € H®, where
H*(f,e) and H*((fn),e) are the sets associated with the oscillation index
and the convergence index respectively. Given real-valued functions f and ¢
defined on a set S, we let

If = glls = sup{[f(s) — g(s)[ : s € S}
When there is no cause for confusion, we write ||f — g|| for ||f — ¢]|s. Since
we shall be dealing with unbounded functions in general, this functional can
take the value co and is not a “norm”. However, it is compatible with the
topology of uniform convergence on the set RS of all real-valued functions
on S in the sense that the sets

U(f.e)={g:llg—flls <e}
form a basis for the said topology.

Acknowledgements. We thank the referee for pointing out an error
in a previous version of the proof of Theorem 6.9.
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2. Oscillation and convergence of Baire-1 functions. We begin
by proving a result that yields an upper bound of the oscillation index of a
Baire-1 function f as the product of the convergence index of a sequence of
functions ( f,,) converging pointwise to f, and the supremum of the oscillation
indices of f,’s.

LEMMA 2.1. Let U and L be sets such thatU C L C K, where U is open
in K and L is closed in K. Suppose f, fn (n > 1) are Baire-1 functions
on K, a <wi, and € > 0. Then

(a) L*(f,e) € K*(f,e)NL,

(b) L((fn),e) € K*((fn),€) N L,

(c) K*(f,e)nU C L*(f,e),

(d) K*((fn),e) NU S LY((fn), €)-

Proof. We only prove (c). The proof is by induction on a. The statement
is trivial if a = 0 or a limit ordinal. Suppose the statement is true for all
ordinals not greater than . Let z € KT1(f,e)NU. If N is a neighborhood
of x in K, then N NU is open in K. Thus there exist x1,292 € (NNU) N
K%(f,e) = NN(UNK*(f,e)) € NNLY(f,e) such that | f(z1) — f(x2)| > e.
Hence x € LL(f,¢). u

PROPOSITION 2.2. Let (fy) be a sequence in B1(K) and let € > 0. Sup-

pose that B(fn,e) < o for all n € N, and v((fn),€) < 0. If (fn) converges
pointwise to a function f, then B(f,3¢) < Bo - 7o-

Proof. We first consider the case g = 1. Then K'((f,),e) = (. For each
x € K, there exist an open neighborhood U, of x and p, € N such that
whenever n > m > p,,

|fn(x/) - fm(x/)’ <e

for all 2’ € U,. By the compactness of K, there exist x1, ...,z such that
k
K C|]JUs,.
i=1

Let po = max{py,,...,ps, }- Then for all n > m > py and y € K, we have
y € Uy, for some i, 1 <17 < k. Since n > m > py,,

| fn(y) — fm(y)] <e.
Taking the limit as n — oo, we have
(2.1) IIf = fmll < e  for all m > po.
Using (2.1), it is easy to verify by induction that
KO(£,3¢) € K*(fps1,)
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for all @ < wy. In particular,
K™ (f,3¢) C K™ (fyyr1,6) = 0.

Hence (3(f,3¢) < B0 = Bo - 0.

Suppose the assertion is true for some 7. Let (f,) be a sequence
in B,(K) that converges pointwise to a function f. Suppose there ex-
ists € > 0 such that G(f,,e) < fp for all n € N and v((fpn),e) < 70 + 1.
We need to show G(f,3¢) < o - (70 + 1). Since y((fn),€) < o + 1, we have
K"+ ((f,),e) = 0. For each m € N, let U,, denote the 1/m-neighborhood
of K"((f,),¢). Denote K \ Uy, by Kp,. From Lemma 2.1(a), (b), for each
n €N, B (fn,e) < Poand v ((fa),€) < 0. By the inductive hypothesis,
we see that

ﬁ%m(fa 35) < ﬂ[) *70-

From this and applying Lemma 2.1(c) with U = K \ U,,, L = K,, for all
m € N, we see that K00(f,3¢) C K ((f,),e). Let

K = K%70(f,32) € K™((fa), 2)-

Then f(fu,2) < fo and 7 ((fa),€) = 1. Thus Sz(f,3¢) < By by the case
when 9 = 1. Therefore

K00t (f,36) = Koot (f,3¢) = K (f,3¢) = 0.

Hence
B(f,3¢) < Bo- (v +1).

Suppose g < wi is a limit ordinal and the statement holds for all ordinals
v < 7. Let (fn) C B1(K) be a sequence that converges pointwise to a
function f and let € > 0 be given. Suppose that G(f,,e) < Gy for all n € N,
and Y((fn),€) < . Then v((fn), &) < 70 since ¥((frn), €) must be a successor
ordinal. Hence 3(f,3¢) < fo- 4((fn):¢) < fo - 70- m

THEOREM 2.3. Let (f,) be a sequence in B1(K) converging pointwise to

a function f. Suppose sup{B(fn) :n € N} < By and v((fn)) < 0. Then f
is Baire-1 and ((f) < Bo - 0-

For the next corollary, recall that DBSC(K) is the space of all differ-
ences of bounded semicontinuous functions on K. It is known that B} (K) is
the closure of DBSC(K) in the topology of uniform convergence ([3, Theo-
rem 3.1)).

COROLLARY 2.4 ([4, Corollary 9]). Let f € B1(K) be the pointwise limit
of a sequence (f,) € DBSC(K). If v((fn)) < w® and w < & < wy, then
B(f) < wh.
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3. Extension of Baire-1 functions. In this section, we establish sev-
eral results regarding the extension of Baire-1 functions. They are analogs
of the Tietze Extension Theorem for continuous functions. These results are
applied in the next section in proving the converse of Theorem 2.3.

LEMMA 3.1. Suppose that F' is a closed subspace of K and that f is a

Baire-1 function on F. For any € > 0, there exists a continuous function
g: K\ F'(f,e) — R such that

lg = fllprire) < e

Proof. For any x € F\ F1(f,¢), choose an open neighborhood U, of x in
K such that U,NF1(f,e) = 0 and |f(x1)— f(x2)| < € for all 21,29 € U,NF.
The collection U = {U, : # € F\ F'(f,e)} U{K \ F} is an open cover of
K\ F'(f,¢). By [1, Theorems I1X.5.3 and VIII.4.2], there exists a partition
of unity (¢u )uey subordinate to . If U = U,, € U for some = € F\ F1(f,¢),
let ay = f(z);if U = K\ F, let ay = 0. Define g : K \ F!(f,e) — R by
9= > peyavpy- The sum is well defined and continuous since {supp ¢y :
U € U} is locally finite. Let z € F\F'(f,¢). Then V = {U € U : py(x) # 0}
is a finite set, py(x) > 0 forall U € V and ) ;5 wu(z) = 1. If U € V, then
z € UN F; hence U # K \ F. Therefore, U = Uy, for some y € F \ F1(f,¢).
But then z,y € U, N F implies that |ay — f(z)| = |f(y) — f(z)| < e. Tt
follows that

|g(x \—‘ZGMPU ‘—‘ZGWPU > f=) ‘

veud vey vev
<Y law = f@)leu(z) <e.
Uev
This shows that ||g — fllp\pi(fe) <€ =

THEOREM 3.2. Suppose that F' is a closed subspace of K and that f is
a Baire-1 function on F. For any 1 < By < wy and any € > 0, there exists

g: K\ F%(fe) =R such that
g — fHF\FBo(f,s) <e€
and
Br(g) < Bo  for all compact subsets H of K\ F(f,¢).

Proof. Let h: K\F!(f,¢)— R be the function obtained from Lemma 3.1.
Ifl<a<p,let K=F= F(f,e). Applying Lemma 3.1 with K, F, and
the function f yields a continuous function g, : F*(f,¢) \ FoT!(f,e) - R
such that

90 = fllpa(renrati(re) < e
Let g = hUUq<gy 9o : K\ F®(f,€) = R. Then |lg — fll p\poo sy < €
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Suppose that § > 0 and H is a compact subset of K\ F%(f, ). We claim
that

H%(g,0) CHNF*(f,e) ifl<a<pf.
This claim will be verified by induction on «, the only nontrivial case being
that for successor ordinals. Thus suppose that « is a successor ordinal < 3y
and either @ = 1 or the claim holds for its immediate predecessor c — 1. Let
x € H%(g,9). If x & F*(f,¢), then there exists an open neighborhood U of
x such that

UNF*(f,e)=0.

If a # 1, then H*"!(g,6) C F*~I(f,¢) by the inductive hypothesis. Hence

UNH""Y(g,6) C F*'(f,e) \ F*(f,e).

In particular, g = go_1 on U N H* !(g,6) and hence is continuous on the
same set. Similarly, if & = 1, then g = h is continuous on U N H C K \
F1(f,¢). By Lemma 2.1(c),

H%(g,8)NU = (H*"(g,8))"(9,8) NU C (H*"*(g,0) N T)*(g,6) = 0.
Thus, x € H%(g,9). This shows that H%(g,0) € H N F*(f,e). It follows
from the claim that H(g,6) = (. Hence 8z (g) < fo, as required. =

We obtain the following corollaries by taking F' = K and By = Or(f)
respectively.

COROLLARY 3.3. Let f be a Baire-1 function on K such that B(f,¢)
< Bo for some 1 < By < w1 and € > 0. Then there exists g : K — R such
that

lg—fll <&, B(g) < bo

COROLLARY 3.4. Let F be a closed subspace of K. If f is a Baire-1
function on F', then for every € > 0 there exists a Baire-1 function g on K
such that

lg — fllr <e,  Br(g) < Br(f)
Next we show that Corollary 3.4 can be improved to an exact extension

theorem (i.e., the case € = 0). In the statement of Lemma 3.5, the vacuous
sum 29:1 g; is taken to be the zero function.

LEMMA 3.5. Let F be a closed subspace of K and let f be a Baire-1
function on F. Then there exists a sequence (gn) of Baire-1 functions on K
such that

(a) gn is continuous on K\ F1(f — Z?:_ll gj,1/2"7Y) for all n € N,

) I1f =221 gillmmr(papan—y < 1/277 1 neN,

(©) llgnllx <1/27% if n > 2, and

(d) F'(f = Xj=195,0) € F'(f,6/2") if 0<5<1/2"% neN.
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Proof. The functions (g,,) are constructed inductively. By Lemma 3.1,
there exists a continuous function g; : K \ F'(f,1) — R such that
If = g1llm\ (1) < 1. Extend g1 to a function on K by defining it to be 0 on
F1(f,1). Then (a) and (b) hold. Condition (c) holds vacuously. Moreover,
if v € F\ F(f,§/2), 0 < § < 2, then there exists a neighborhood U; of
x in F' such that |f(z1) — f(z2)| < 0/2 for all 1,29 € Uj. Note that since
r € F\ FY(f,6/2), g1 is continuous at z. Hence there exists a neighbor-
hood Uz of z in F' such that |gi(x1) — g1(z2)| < §/2 for all x1,x9 € Us. Let
U = U; NUs. Then U is a neighborhood of x in F. For all z1,x9 € U,

[(f = g1)(z1) — (f — g1)(z2)] < 6.
Hence = & F1(f — g1,6). This proves (d).

Suppose that g1, ..., g, have been chosen. By Lemma 3.1, there exists a
continuous function h : K \ F(f — > 7-194-1/2") — R such that

1
< —.
Hf Zgj HF\Fl (f-Xr_ygj1/2m) — 27

Define h on K \ Fl(f S 95:1/2%) by ho= (R A1/2" 1) v (=1/277 ).
Then & is continuous. By (d), F1(f — > i=195:1/2") C F1(f,1/4™). Hence
h is defined and continuous on K \ F!(f,1/4™). Moreover, it follows from
(b) that

(3.1) Hf ZQJHF\Fl (f,1/4m) = ”1—1'

From inequality (3.1) and the definition of h, we have

Yo <flr=Xo-| '
Hf ;g’ F\FL(f,1/4") / ;gﬂ F\FL(f,1/4")
Therefore, ||f — >0, gj — %||F\F1(f71/4n) < 1/2™. Now define

~ . 0o

s = {h on K\ FY(f = Y1) g;,1/2M),
0 otherwise.

Then g,.1 is continuous on K \ FI(f — > 7-194:1/2"). This proves (a).

Furthermore,

Hf Zg]HF\FI (f,1/4m) - Hf Zg] HF\Fl (f,1/4m) = zin

This proves (b). Also,

1
lgn+1llx < 1Rl g\ m (- S g51/2) S G
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by the definition of h. This proves (c). Finally, suppose 0 < § < 1/2"7L.
Assume that z € F\ F1(f,6/2"*!). Then = ¢ F(f — > j=19j,9/2). Thus
there exists a neighborhood Uy of z in F' such that

‘(f—égy)(ml) - (f—égj>(x2)’ < g

whenever z1, 72 € U;. Note that since z € F\ F1(f — > 7=19§:0/2), gn1 is
continuous at x. Therefore, there exists a neighborhood Us of z in F' such
that |gn41(21) — gny1(x2)| < 6/2 for all x1,x9 € Us. Let U = U; NUs. Then
U is a neighborhood of x in F' such that

\(f—%gj)m) - (f—%gj)m)\ <6
j=1 i=1

whenever 1,79 € U. Hence x ¢ F*(f — Z;L;rll gj,9). This proves (d). m

THEOREM 3.6. Let F' be a closed subspace of K and let f be a Baire-1
function on F'. Then there exists a Baire-1 function g on K such that

gr=1r  Blg)=Br(f)
Proof. Let (gy) be the sequence given by Lemma 3.5. Define g on K by

g:{z(;ilgj on K\ F,
f on F.

Note that by Lemma 3.5(c), Z;’;l g; converges uniformly on K. Hence g is
well defined. Obviously, gjr = f.

Cram. Kl(g,1/2773) C FY(f,1/4") for all n € N.

Proof. Let x € K \ F(f,1/4™). We consider two cases. Suppose x ¢ F.
By Lemma 3.5(a), g; is continuous on K\ F' for all j. Since Z;’il g; converges
uniformly to g on K \ F, and K \ F is an open subset of K, it follows
that ¢ is continuous at . Hence z ¢ K'(g,1/2"3). Now suppose x € F.
Then x € F \ F!(f,1/4™). There is a neighborhood U; of z in K such that
|f(z) — f(a')| < 1/4™ for all 2’ € Uy N F. Also, for 1 <k <mn,

k
F! (f -3 1/2’<f) C F1(,1/4%) by Lemma 3.5(d)
j=1

C FI(f,1/4™).

Since gx1 is continuous on K \ F(f — Zle g;,1/2F), it follows that giy1
is continuous on K \ F1(f,1/4") for all k, 1 < k < n. Similarly, F1(f,1) C
F1(f,1/4™) and g; is continuous on K \ F'(f,1) by Lemma 3.5(a); thus, g1
is continuous on K \ F(f,1/4™). Hence there exists a neighborhood Uy of
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r in K such that Uy C K \ F'(f,1/4™) and
n+1 n+1

’ZQ;‘(CE/) - Zgj(a:)‘ <1/2" for all 2’ € Us.
J=1 j=1

Let U = Uy NUsy. Then U is a neighborhood of z in K. If 2/ € UNF,
then 2’ € Uy N F. Thus [g(2') — g(x)| = [f(2) = f(2)] < 1/4" < 1/2" 72 1f
' € U\ F, then

(')~ gla)|
= > g@") - 1@)
j=1

n+1 n+1 n+1
<3060 - S|+ | aw - @] | X o
Jj=1 j=1 j=1 j=n-+2
n+1 00
< +(Zgj f@)|+ Y lgsll  since o* € U
j=n+2
Sont ‘ ZQJ x)| + Z ] by Lemma 3.5(c)
j=n-+2
1 1 3 1 n
32—-1-2”4-2 — by Lemma 3.5(b) since x € F'\ F"(f,1/4")
1
- on—2"

Thus |g(2') — g(x)| < 1/2"72 if 2/ € U. Hence |g(z1) — g(z2)| < 1/2"73
whenever 1,9 € U. Therefore z ¢ K'(g,1/2"3). This proves the Claim.
It follows by induction that

K%(g,1/2"73) C F(f,1/4") for1<a <w.
Indeed, the Claim yields the assertion for o« = 1. If the inclusion holds
for some o, 1 < o < wi, let F = F(f,1/4"). Then K*t1(g,1/2"3) C
Fl(g,1/273) = F(f,1/2"=3) C F!(f,1/4") = F¥1(f,1/4™). Hence the
inclusion holds for o + 1. If the inclusion holds for all 1 < o' < «, where
a < wi is a limit ordinal, then
E*(g,1/2" %)= () KY(g,1/2"*)C (] F¥(f,1/4") = F*(f,1/4"),
1<o'<a 1<a/'<a

This proves the inclusion for 1 < a < wj.

In particular, if Bp(f) = fBo, then KP0(g,1/27=3) C FA(f,1/4") = (.
Thus Bk (g,1/2"3) < By for all n € N. Hence Bk (g) < Bo. Of course, since
gip = [, we have Bx(g) > Br(f) > Bo. Therefore Bx(g) = fo = Br(f). =
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REMARK 3.7. If Sp(f) = 1, Theorem 3.6 is the familiar Tietze Exten-
sion Theorem. If Bp(f) is transfinite, the conclusion of Theorem 3.6 can be
obtained easily by defining the extension g to be 0 on K \ F. However, we
do not see a simple proof for finite Sr(f).

4. Decomposition of Baire-1 functions. In this section, we give a
proof of Theorem 1.2. The extension results in §3 are employed in the course
of the proof.

THEOREM 4.1. Let f be a Baire-1 function on K, 1 < (g, 790 < w1 and
€ > 0. Then there exist

FrENEP0(fe) 5 R and fn: K\EK%"(fe) >R

such that (fy) converges to f pointwise, ||f— fll\gsomo(re) < € Bu(fn)
< Bo and yu((fn)) < o for all compact subsets H of K\ K500(f ¢).

Proof. For a < g, let K, = K%%(f ¢). If a < 7, it follows from Theo-
rem 3.2 that there exists g, : Ko\ Kat1 — Rsuch that [|go — fllx k.. <€
and Op(ga) < Bp for all compact subsets H of K, \ Kq41. List the or-
dinals in [0,7) in a (possibly finite) sequence (a,)"_,. Here p € N or
p = oo. For all n and «, let UY be the 1/n-neighborhood of K, in K
and set F, = U?i{’(Kaj \US7*Y). Then F, is a closed subset of K. It is also
easy to see that K, \ Ut and K, \ U¥*! are disjoint if o # o'. Thus
(Ka; \ Uﬁ“jﬂ)?ﬁf is a partition of F), into clopen (in F},) subsets.

Now define g, : F;, — K to be U?ﬁ’f 9, K AU Since H = K, \US]’“
Jlhag n

is a compact subset of Ko, \ Ko, +1, we have 8p(ga,;) < Bo. As the partition

(Ka, \Ugﬁl);ﬁ}f is clopen, it follows readily that B, (g,) < Bo. By The-

orem 3.6, there exists a function f], on K such that f;ban = gn and B (f})
< Bo. ~
Finally, define f,, to be f;‘K\KW and f to be U()KWO 9o|Ko\Ka- 1t follows
0 ~
from the choice of the gq’s that || f — f x\x,, < €. Since Uney Fn = K\ Ky,

and the sets F;, are increasing, lim f,, = f pointwise on K \ K,. Suppose H
is a compact subset of K \ K. Then Sy (f,) < Br(f;) < Bo.
To complete the proof, we claim that

HY((fn),0) € Ky

for any § > 0 and any v < ~g. This is proved by induction on «. The case
v = 0 and the limit case are trivial. Now assume that the claim holds for
some 7y < 9. Let x € HV((f),9)\Ky41. Choose ji, j2 € N such that aj, =~
and d(z, Ky41) > 1/j2, where d is the metric on K. Denote H7((f,),6) by L
and the 1/(2jo)-ball in K centered at « by U, where jo = max{j1, 2j2}. Note
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that L C K, by the inductive hypothesis. For all n > jo = max{ji,2j2},
LAUCLNTC Koy \Up" "' CF,.
This implies that fn\LnU = §n|LﬂU = Yo, |LNT = Gy|L0T for all n > jg. Thus
(LNU) ((fn),6) = 0. By Lemma 2.1(d),
LY((fn),0)n(LNU) = 0.

In particular,
@ & LN((fn):6) = H ™ ((fa). 9)-

Since z € HY((fn),8) \ K41 is arbitrary, this shows that HY*((f,),8) C
Kyl m

In particular, if Sx(f) < Bo - Y0, we have the following.

THEOREM 4.2. Let f be a Baire-1 function on K, 1 < (o, 70 < w1, and
B(f) < Bo- . For any € > 0, there exist f : K — R and a sequence of

functions fp, : K — R such that (f,) converges to f pointwise, Hf— fll <e,
B(fn) < Bo for all n € N, and v((fn)) < 7.

A couple more preparatory steps will allow us to improve Theorem 4.2
to an exact result (i.e., with ¢ = 0) when g is of the right form.

THEOREM 4.3 ([3, Lemma 2.5]). If (fn) and (gn) are two sequences of
real-valued functions on K such that v((f,)) < w® and v((gn)) < W& for
some & < wi, then Y((fn + gn)) < W

PROPOSITION 4.4. For 1 < £ < wy, B(K) = {f € RX : 5(f) < v}
is a vector subspace of RE that is closed under the topology of uniform
convergence.

We postpone the proof of Proposition 4.4 until the next section. We are
now ready to prove the converse of Theorem 2.3 in certain cases.

THEOREM 4.5. If f € B1(K) and B(f) < Bo-w for some 1 < [y < wy
and v9 < wi, then there exists (fn) C B1(K) such that (fn) converges
pointwise to f, B(fn) < Bo for all n € N and v((fn)) < w?.

Proof. First we assume (g is of the form w®, where ag < wi. By The-
orem 4.2 there exist a sequence (f,}) C B1(K) and a function f! € B;(K)
such that B(fl) < w® for all n, (f}) converges pointwise to f*, ||f! — f||

< 1/2, and Y((f})) < w. Then B(f!) < w® - WP = W0 by Theo-
rem 2.3. This implies that 3(f — f!) < w®*0 by Proposition 4.4. Hence
there exist (f2) C B1(K) and f? such that B(f2) < w® for all n € N,
(f2) converges pointwise to f2,||f — f1 — f?|| < 1/22, and v((f?)) < w™.

We may assume that || f2|| < 1/2 for all n € N, for otherwise, simply replace
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f2by f2 = (f2V(—1/2)) A1/2. Continuing, we obtain f™ and (™), for
each m such that

o IF7] <1/2m7h m > 2,

o 5(fi) <w® for all m,n € N,

o Y((fiM)n) <w for all m € N,

e f™ =lim, f/" (pointwise) for all m € N,

e > >, f™ converges uniformly to f on K.

Let g = fl+ f2+ ...+ f™and g, = > oo, f™. By Theorem 4.3,
Y((g")n) < w for all m € N. Given € > 0, there exists mg such that
gm0 — gn|l < e for all n € N. Then K“™((gn),3¢) € K“°((g™0),e) = 0.
Therefore y((gn)) < w?. By Proposition 4.4, 3(g") < w® for all m,n.
Therefore, 5(g,) < w* by Proposition 4.4. Moreover,

lim g, = limlimg;' = limlim g,*
n n m m n

m
— 1 k _ . ise.
im gl f f  pointwise

This proves the theorem in case fy = w, with (g,) in place of (fy).
For a general nonzero countable ordinal 3y, write 3y in Cantor normal
form as
Bo=w - my 4+ my+ . 4 my,
where k,mqy,...,mp € Ny w; > 81 > ... > Bi. If v9 # 0, then [y - w? =
wPt.w. By the previous case, there exists (f,) € B1(K) such that 8(f,) <
WPt < By, Y((fn)) < w and (f,) converges pointwise to f. If v9 = 0, take

fn = f for all n. Then B(f,) < fo for all n, v((fn)) = 1 = W and (f,)
converges pointwise to f. m

The combination of Theorem 2.3 and Corollary 4.6 yields Theorem 1.2.
It is clear from the proof of Theorem 4.5 that the sequence (f,) in the
statement of Theorem 4.5 may be chosen to be bounded if f is bounded.

COROLLARY 4.6. Let f € %%(K), respectively, Bf(K), for some & < wi.
For all countable ordinals p, v such that p+ v > &, there exists a sequence
(fn) C BY(K), respectively, a bounded sequence (f,) C By (K), such that
fn — [ pointwise and y((fn)) < w”.

We do not know if Theorem 4.5 holds without the restriction on the form
of the ordinal v((f))-

PROBLEM 4.7. Is it true that if f € B1(K) with B(f) < Bo-o for some
countable ordinals By and 7o, then there exists a sequence (f,) converging

pointwise to f so that sup,, B(fn) < Bo and v((fn)) < v0?

As another application of our results, we give the proof of another char-
acterization of the classes Bf(K ) due to Kechris and Louveau.
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DEFINITION 4.8 ([3, Section 4]). A family {®¢ : 0 < { < wi} of real-
valued functions on K is defined as follows:

&y = C(K),
Der1 = {f: f is the pointwise limit of a bounded sequence

(fn) c {Pg such that 7((fn)) < w}a
and for limit ordinals A,

@) = {f : [ is the uniform limit of a bounded sequence (f) C g\ P¢}-
COROLLARY 4.9 ([3, Theorem 4.2]). For each & < wy, Bf(K) = &e.

Proof. The case £ = 0 is trivial. Suppose the assertion holds for some
E<w. If f e B§+1(K ), it follows from Corollary 4.6 that f is the pointwise
limit of a bounded sequence (f,) in Bf(K) such that v((f)) < w. Since
Bﬁ(K) = &¢ by the inductive hypothesis, f € ®¢, 1. Conversely, if f € Peyq,
then f is the pointwise limit of a sequence (fy) in @¢ with v((fn)) < w.
Since ¥ = BS(K), it follows that 8(f) < w®t! by Theorem 2.3. Thus
fe B (K).

Now assume that the assertion holds for all £’ < £, where £ is a countable
limit ordinal. Let f € &¢. By the inductive hypothesis, ®¢ = Bfl(K ) C
Bf(K) for & < & Hence f is the uniform limit of a sequence in Bf(K),
and thus belongs to B?(K ). Conversely, assume that f € Bf (K). For every
n € N, there exists &, < ¢ such that 8(f,1/n) < w® . By Corollary 3.3,
there exists f, € Bf" (K) = &, such that || f — fu|| < 1/n. Thus f € &, as
required. m

REMARK 4.10. If a family {¥¢ : 0 < & < wq} is defined in a similar way
to {®¢ : 0 < & < w1} except that the boundedness condition on the sequence

(fn) is removed, then ¥ = %ﬁ(K) for all £ < wy.

5. Optimal limit of continuous functions. In this section we prove
the equivalence of the indices # and ~ for functions in B (K) in the same
sense that was established for B;(K) in Theorem 2.3 of [3]. Namely, it is
shown that for all f € B1(K), B(f) is the smallest ordinal 7 for which there
exists a sequence (f,) in C(K) converging pointwise to f and satisfying
Y((fn)) < 0. Note that this result is also the converse of Theorem 2.3 when
Bo = 1.

DEFINITION 5.1. Let (f,) C RX and f € REX. We write:

(a) (gn) < (fn) if (gn) is a convex block combination of (fy), i.e., there
exist a sequence of nonnegative real numbers (ay) and a strictly increasing
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sequence (p,,) in N such that ?:pn_ﬁl ar = 1 and g, = Z?;pn_ﬁl a fx
for all n (po = 0),

(b) (gn) < (fn) if there exists m € N such that (g,)52,, < (fn),
(¢) [f1M; = (fV—M)AM, where 0 < M € R.

The easy proof of the next lemma is left to the reader.

LEMMA 5.2. If (9n) < (fa), then v((gn),€) < V((fa),€) for all &> 0.

LEMMA 5.3. Let f be a Baire-1 function on K. Suppose H is a countable
collection of compact subsets of K such that ||f||g < oo for all H € H and
Ugen H = K. Then there exists (f,) € C(K) such that

(i) fn — f pointwise,

(i) (fnym) s a bounded subset of C(H) for all H € H.

Proof. Write H as a sequence (H,,)o_;. Without loss of generality,
assume that H,, € H,,+1 for all m € N. Since f is Baire-1, there ex-
ists (f) € C(K) such that (f0) converges pointwise to f. Assume that
(fm=1), C C(K) has been chosen so that lim, f~! = f pointwise. If
m,n € N, let U™ be the 1/n-neighborhood of H,, in K and let M,, =
Il |z, For all n, the function [f,T_l]Jffﬁmmm U 77"Z|117(<Um is continuous on
H,,U(K\U"). Let f] be its continuous extension onto K.Ifze H,,, then
lim,, fi () = Tim (£~ (@) = [ (@)Y, = f(e) since |[f]la, = M.
If x ¢ H,y,, then there exists ng such that z € K\ U}?; thus x € K \ U] for
all n > ng. Therefore f™(x) = fm1(x) for all n > ng. Hence lim,, f7(z)
= f(x). Thus lim, f}* = f pointwise. Now for each n € N, let f,, = f}.
Since H,,, C H, for all n > m, on H,, we have

fo= 10 =1,

_ n—2 Mnfl Mn _ _ m—1 Mm Mm+l Mn
ol 17 B V) i Rl S [ /Al i A 5 AR . /8

= [fgl_l]%\"/}m as My, < Mypaq < ... < M,.
Thus f, = [fﬂ_l]%\"jm on H,, for all n > m. In particular, on the set H,,,
lim f, = [lim £ 712 = (A%, = f
since ||f|lm,, = Mm. As K = |J Hy,, we see that f, — f pointwise. Also,

for each m, (fy|m,, oz is bounded (by M,y,) in C(Hp,); thus (fn)q,, )neq 18
bounded in C(Hy,). m

For the next lemma, recall that for a real-valued function f defined on
a set S, osc(f,S) = sup{|f(s1) — f(s2)| : s1,s2 € S}.

LEMMA 5.4. Let (fy) be bounded in C(H), where H is a compact metric

space. Suppose (f,) converges pointwise to f and H'(f,e) = 0 for some
e > 0. Then there exists (gn) < (fn) such that H'((gn),7) = 0.
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Proof. By Corollary 3.3, there exists f € C(H) such that ||f — f|lg
< e. Then (f, — f) is bounded in C(H), f, — f — f - f pointwise and
osc(f — ]?,H) < 2¢. By the first statement in the proof of Theorem 2.3
in [3], there exists (hn) < (fn — f) such that ||k, — (f — f)||lz < 3e. Let
gn = hn + f for all n € N. Then (g,) < (fn) and ||gn — fllz < 3¢ for all

n € N. It follows that H'((g,),7¢) = 0. =

THEOREM 5.5. Let f be a Baire-1 function on K. There exists a se-
quence (fn) C C(K) such that (f,) converges pointwise to f and ~v((fn))
= B(f)-

Proof. Let By = B(f). For each a < [y, and all m, j € N, let Uy, ; be the
1/j-neighborhood of K“(f,1/m) in K. Define

H={K*(f,1/m)\Ust! : a < Bo, m,j € N}.

Then H is a countable collection of compact subsets of K such that |J <y, H
= K.If a < By and m, j € N, by Lemma 3.1, there is a continuous function g
on H=K*(f,1/m) \ Uﬁ:}l such that ||g — f|lz < 1/m. Hence || f|lg < o0
for all H € H. By Lemma 5.3, there exists (g,) C C(K) such that (gy)
converges pointwise to f and (g, ) is bounded in C(H) for all H € 'H.

List the elements of H in a sequence (Hy)32,. Take ¢, = 1/m if H
is of the form K<(f,1/m)\ Ufr‘:;-l for some «, m, j. Let (%) = (gn). Sup-
pose (g¥™1),, < (gn)n has been chosen. Then (gk~1),, converges to f point-
wise, (gz"_Hlk) is a bounded sequence in C(Hy), and (Hg)(f,ex) = 0. By
Lemma 5.4, there exists (g%), < (g51),, such that (Hp)'((g5)n, 7er) = 0.
Let f, = g for all n € N. Then (f,) < (gn). Therefore (f,) € C(K) and
(fn) converges pointwise to f.

We claim that for all m € N and for all o < fy,

K((fn), 7/m) € K*(f,1/m).

We prove the claim by induction on «. The claim is trivial if a = 0
or « is a limit ordinal. Assume that o« < [y is a successor ordinal
and that the claim holds for a« — 1. Let « € K%((fn),7/m). Then
r € KY(fn),7/m) C K¥Yf,1/m). If = ¢ K(f,1/m), then there
exists j € N such that d(z, K*(f,1/m)) > 1/j. Choose k such that
H = Ko(f,1/m) \ US,. Then (fa) % (gh)n and 7, ((gE)s Ter) < 1
since (Hg)'((g5)n,Tex) = 0. By Lemma 5.2, (H)'((fy),7er) = 0. Thus
(H) ' ((fn),7/m) = 0. But since d(z, K*(f,1/m)) > 1/, there exists an
open set U in K = K®(f 1/m) such that z € U C H, C K. By
Lemma 2.1(d), (K)Y((f),7/m) N U C (H)*((fn),7/m) = 0. Therefore
& (K)((fn),7/m) 2 K%(f),7/m), a contradiction. This proves the
claim.
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From the claim, K% ((f,),7/m)

Therefore v((fr)) < Bo. Since v((fr))
orem 2.3), v((fn)) = Bo = 0B(f). =

REMARK 5.6. Theorem 2.3 of [3] actually implies that if (f,) is a
bounded sequence in C(K) converging pointwise to some f € Bi(K), then
there exists (gn) < (fn) such that v((g»)) = B(f). This does not hold in gen-
eral for unbounded sequences of functions. Indeed, let K = [0, 1] and for each
n € N let f,, be a continuous function that vanishes outside [1/(n + 1),1/n]
such that {, f, = 1. Then (f,) converges pointwise to f = 0. If (g,,) < (fn),
then {,. g, = 1 for all n € N. Thus (g,) does not converge uniformly to f,

ie., v((gn)) > 1= B(f).

Proof of Proposition 4.4. It is easy to see that af € ‘Bf(K) for all f €

%%(K) and a € R.If f g € ‘Bﬁ(K), then by Theorem 5.5 there exist two
sequences (f) and (g,) of continuous functions converging pointwise to f
and g respectively such that v((f,)) < w® and v((gn)) < w®. According to
Theorem 4.3, Y((fn + gn)) < w¢. Hence by Theorem 2.3, f 4+ g € %?(K)

Finally, given f € iBﬁ(K) and € > 0, choose g € iBﬁ(K) such that [|f — ¢
< ¢/3. Then K“*(f,e) C K“*(g,¢/3) = 0. Thus f € B{(K). =

(f,1/m) = 0 for all m € N.

C KPo
> (o by [3, Proposition 2.1] (or The-

6. Product of Baire-1 functions. In [3], it is observed that the classes
Bf (K), £ < wy, are closed under multiplication. However, it is relatively easy
to see that this fails for the classes %f (K). In this section, we show that if f €
B (K) and g € B (K), then fg € BS(K), where &€ = max{&; +&, £+ .
It is also shown that the result is sharp. The proof of the next lemma is left
to the reader.

LEMMA 6.1. If f is bounded and v((gn)) <&, then v((fgn)) < &.

LEMMA 6.2. If f € B (K) and g € BE(K), then fg € B3 T2 (K).

Proof. By Theorem 5.5, there exists a sequence (g,) C C(K) converg-
ing to g pointwise such that v((g,)) < w®. For each n € N, g, € O(K)
- Bfl(K) and f € Bfl (K). By [3] (see the remark in [3, p. 217]), we have
fan € B? (K). Lemma 6.1 implies that v((fgn)) < w*. Since (fg,) con-

verges to fg pointwise, it follows from Theorem 2.3 that £(fg) < wét€2,
ie., fge B TR(K).

Now suppose f € ‘B?(K) and g € ‘B?(K). By Lemma 3.1, for all
a < w®, there is a continuous function g, : K*(g,1)\ K**'(g,1) — R such
that
190 = 9l ko (g )\ Kot1(g,1) < 1.
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Let b = Uyt 9a- It follows from the proof of Theorem 3.2 that 3(h) < ws2,
Given a closed set H C K, we write

ds(H) = {z € H : limsup f(y)| = oo}.
yell
It is easy to see that d¢(H) is a closed subset of H such that d;(H) C
H(f,e) for any & > 0.

LEMMA 6.3. Suppose that o < wy,d >0 and s > 2. If v € [K\K*(g,1)]
NK*(fh,d), then

xEKa<f,m/\l>.

Proof. The proof is by induction on «. For brevity, set

ks = k(s M)

The result is clear if @« = 0 or a limit ordinal. Assume that the lemma
holds for some a < wi. Suppose § > 0 and s > 2 are given. Let x €
[K\ K'(g, )] N K*TY(fh,d). If z € dp(KS,), then 2 € K& and we are
done. Otherwise, assume that = ¢ dy(Kg', ). Then there exist a neighborhood
Up of z in K and M < oo such that |f(y)| < M for all y € Uy N K¢,.
Since h = gy on K \ K'(g,1), and g is continuous on K \ K'(g,1), there
exists a neighborhood Us of x in K such that |h(z1) — h(z2)| < §/(2M) and
2(|h(z1)]+1) < s(Jh(x)|+1) for all 21,29 € Us. Set U = (U1 NU2)\ K'(g,1).
Then U is a neighborhood of x.

Cram. K%(fh,6)NU C K¢,.

To see this, note that if y € U, then y € Us. Hence there exists ¢t > 2
such that t(|h(y)|+1) < s(|h(x)| +1). Also, y € K*(fh,0) NU implies that
y € [K\ K'(g,1)]NK*(fh,d). Thus y € K}, by the inductive hypothesis.
Since

S R S
trpw)+1)  — s(h(@)[+1)

we have y € K, as required.

Now if V' is a neighborhood of x in K, then there exist 1,29 € UNV
NK*(fh,d) such that

6 < [f(z1)h(z1) — f(22)h(22)]
< 1(1) = (@)l )] + [AGer) = Re)] | (22)
< 1) = )] )] + oz - M

where, in the last inequality, | f(x2)] < M since 2o € U N K¢, by the claim.
Therefore,

A,
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)
|f(z1) = f(w2)] = @D 1.

By the claim, x1, 22 € VN K¢, Since V' is an arbitrary neighborhood of z,
this shows that x € Kfj‘j{l and completes the induction. =

It follows from Lemma 6.3 that
K" (fh,6) € K'(g,1).
Repeating the argument in Lemma 6.3 inductively yields
LEMMA 6.4. K‘”il'o‘(fh, 0) C K%(g,1) for all @« < wy and § > 0.

In particular, K< “**(fh,8) = 0 for all § > 0, i.e., fh € B T2 (K).

THEOREM 6.5. If f € B3 (K) and g € BY(K), then fg € BS(K),
where £ = max{&; + &2, &o + &1}

Proof. From the above, we obtain a function h on K such that ||g — hl|
< 1, B(h) < w® and fh € %EH&(K). Since g,h € %?(K), it follows
from Proposition 4.4 that g — h € ‘B?(K). As g — h is bounded, we see
that g — h € BY(K). By Lemma 6.2, (g — h)f € B2 (K) € BY(K).
Also, fh € ‘B?H_& (K) C %ﬁ(K) Applying Proposition 4.4 again gives fg =
flg—h) + fhe BK). =

Theorem 6.9 below shows that the result is sharp. First we show a strong

result in this direction on spaces of ordinals. For a@ < wq, denote the ordinal
interval [0, w?®] by I,.

PROPOSITION 6.6. Let 0 < o, &1 < wi, and h: 1 ., — R be a bounded
function. Then there exist f,g: 1 ¢ ., — R so that

(a) B(f) < w,

) g takes values in N,

(b
(c) g(w™ ) =1,

(d) (Ie, a> (9.€) C {w"} for all £ >0,
(e) fg=nh

The proof of Proposition 6.6 is postponed to the end of the section. The
next two lemmas allow us to transplant the result onto general compact
metric spaces.

LEMMA 6.7. Let K be a compact metric space. If zo € K@ for some

a < wy, then there is a countable compact subspace H C K such that {z¢} =
H(),

Proof. The proof is by induction on «. The result is obvious if a = 0.
Suppose that the lemma is true for some a. If 2o € K@Y then there
exists a sequence (x,) in K(O‘), Tn # xo for all n, that converges to xg. We
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may also find a sequence (U,) of open sets with disjoint closures so that
x, € U, for all n € N and diam(U,,) — 0. Note that =z, € K®ny, C
(U,)@. Therefore by the inductive hypothesis, for all n € N, there is a
countable compact set H, C U, such that (H,)® = {z,}. It is clear that
H = {20} US>, H, is a countable compact set such that H(@+Y) = {zq}.

Suppose the lemma is true for all o/ < «, where o < wj is a limit
ordinal. Tf 29 € K@), then there exist a sequence (a;,)S%, of ordinals that
strictly increases to «, a sequence (z,) converging to zy and a sequence
(Uy) of open sets with disjoint closures so that z,, € (U,)@) for all n € N
and diam(U,,) — 0. By the inductive hypothesis, for all n € N, there is a
countable compact set H,, C U,, such that (Hn)(a”) = {zp}. It is clear that
H = {20} U2, H, is a countable compact set such that H(®) = {z,}.

LEMMA 6.8. Let K be a compact metric space. If K@ £ ( for some
0 < a < wy, then there is a subspace L C K such that L is homeomorphic
to I,,.

Proof. Suppose that zo € K(®. By Lemma 6.7, there is a countable
compact set H such that H(® = {zq}. Since H is countable and compact,
by a theorem of Mazurkiewicz and Sierpinski (see, e.g., [5, Theorem 8.6.10]),
H is homeomorphic to an ordinal interval [0, 5]. Since H(®) = {0}, it follows
that w® < 8 < w® - 2. Therefore H is homeomorphic to [0,w®] = I,. =

A consequence of Proposition 6.6 and Lemma 6.8 is the following.

THEOREM 6.9. Suppose that &1, & are countable ordinals, and let

§ = max{{1 + &2, o+ &1}
If K is a compact metric space such that K© # 0, then
sup{B(fg) : | € BY (K), g € BY (K)} = .

Proof. We may of course assume that neither & nor & is 0, and that
€ =& +&. Let 0 < a < w®. The assumption on K yields a subspace
H C K that is homeomorphic to I ¢ ., (Lemma 6.8) and a {0, 1}-valued
function h in B;(H) such that H“’gl'a(h, 1) # (. Applying Proposition 6.6
to h : H — R, we obtain f,g : H — R with properties as given in the
proposition. Extend f, g, and h to K by defining them to be 0 on K \ H.
Then B (h) > Bu(h) > W' Also, K'(f,e) C H for all ¢ > 0. Hence
KW (f ) € H"'(f, ) = 0. Therefore 3(f) < w'. Likewise, 3(g) < 1 +
a+1 < w2, Summarizing, we have functions f and ¢ such that f € ‘BEI(K),
g e %?(K) and B(fg) > ws - a. Since a < w*? is arbitrary, the theorem is
proved. =

Proof of Proposition 6.6. The proof is by induction on . Let h : I ¢,
— R be a function so that |h| < M for some M > 0. Choose a sequence
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(T)72, of ordinals with 79 = 0 that strictly increases to w&. Define a func-
tion G : I ¢, — R by
koif w1 <t <w*, keN,
G(t) = { 1 ift= Wbl
ift=0,1, or w“ .
Ifa=1,let g= G and f = h/g. Note that g is constant on each of the open
sets (w™-1,w™]. Therefore, for all € > 0, (I ¢, )'(g,e) C {w Y If by, by >
w™-1 then |f(t1) — f(t2)| < 2M/k. This implies that (I ¢, )'(f,2M/k) C
[0,w™1] U {w*"}. Hence (Ie, ) +7a-141(f, 2M/k) C [0, w™-1](T-1F1) = ¢,
Thus (I, )** (f,2M/k) = 0 for all k, which means that 8(f) < w®!.
Suppose that the proposition is true for some «. For each A < wwgl, let
Jy denote the clopen ordinal interval (w®® . A, w**>. (X + 1)]. Since J is
homeomorphic to I g, for all A < w“’gl, by the inductive hypothesis, there
are functions fy, gx : Jy» — R such that

a) 5(f)\) < w&?

b) gx takes values in N,

¢) g (A +1)) =1,

d) (J)*(gx,e) C {w - (A +1)} for all £ > 0,
(e) fagn = hys,-

Define g : I¢1.(q41) — R by

A~ N /N

g(t) = {G(A)gx(t) ifte gy, 0< A<
1 ift=0or ww§1~(a+1)’
and let f = h/g. It suffices to verify properties (a) and (d). For each

W&l

A< W
(Lot (as1)) " (g:6) NN € (JN)*(G(M)ga,e) by Lemma 2.1(c)

= (Jk)a(g)\,S/G()\)) C {wwil-a . ()\ + 1)}
Therefore
(I 51'(Oc-|-].))0((g)5) g {wwgl.a . )\ : )\ S wwgl}.

w

Using the fact that g(w* - (A + 1)) = G(A) for all A < w**' and the fact,
proved above, that (I_¢, )} (G,¢e) C {w**1}, we see that (Iwgll(aﬂ))o‘“(g,s)
C {w ety

Now consider f. Note that on Jy, f = h/g =h/(G(N)gx) = fr/G()\) and
that G(\) > 1. As a result,

(6.1) Lyer (o) (£,2) NIy C (N (frye) =0

Since | f] < M/G(X) on Jy, we have | f| < M/k on | J{Jy : w1 < A < w1}
Hence
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(Iw51~(a+1))1(f7 QM/k) C U{J)\ A< w‘rk—l} U {wwéy(a—i-l)}.
In particular, w* (@) ¢ (I 51,(a+1))2(f, 2M/k) for all k € N. This fact

w

together with (6.1) implies that (Iwgl_(aﬂ))“ﬁl (f,e) =0 for all € > 0. This
proves the proposition for o+ 1.

Suppose a < wq is a limit ordinal and the statement holds for all ordinals
o/ < a. Choose a sequence of ordinals (1) with ng = 0 that strictly increases
to a. For each k € N, let L;, be the ordinal interval (w“’gl'"’“—l , w“’gl‘”k], which
is homeomorphic to L& ., By the inductive hypothesis, for each £ € N,
there are f%, gr : Ly — R such that

(a) B(fi) < w®,
(b) gi takes Values in N,

() gr(w " m) =1,
(d) (Li)™ (gre) © {3,
() fegr = ML,
Define g : I ¢, , — N by
kgk(t), te Ly,
t) =
9(t) {1, t=0,1, or w e,
and set f = h/g. Clearly,
(I 61.0)™(g,e) N Ly, € (Lg)™(gk,e) by Lemma 2.1(c)
C {wwﬁlm}.
Hence ¢
(Lser.a)"(g,€) C {w* .
Since |h| < M, we have | f(t)| < M/k whenever ¢ € | J;Z; L;. Therefore
k—1

Wil
(Ioer.a) ' (f.2M k) C | L U{w" ).
j=1
Since w**@ is an isolated point in U’?_lL- U {w?*"e} it follows that
W (L. o)2(f,2M k) for all k € N. Finally, (L o) (f,2M/k) N

Lk C (Lp)“™ (f,2M/k) = 0. Hence (I, )" (f,e) = 0 for all £ > 0. This
completes the induction. m
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