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On iterated forcing for successors of regular cardinals

by

Todd Eisworth (Cedar Falls, IA)

Abstract. We investigate the problem of when ≤λ-support iterations of <λ-comp-
lete notions of forcing preserve λ+. We isolate a property—properness over diamonds
—that implies λ+ is preserved and show that this property is preserved by λ-support
iterations. Our condition is a relative of that presented by Rosłanowski and Shelah in [2];
it is not clear if the two conditions are equivalent. We close with an application of our
technology by presenting a consistency result on uniformizing colorings of ladder systems
on {δ < λ+ : cf(δ) = λ} that complements a theorem of Shelah [4].

1. Definitions. One of the mysteries of iterated forcing theory is the
lack of a good solution to the following “equation” for an uncountable regular
cardinal λ:

proper forcing
countable support iteration

=
x

λ-support iteration
.

The goal of this paper is to present a generalization of properness to the
context of larger cardinals. We make no claim that ours is the “right” gene-
ralization; however, the proof that our condition is preserved by λ-support
iteration is close to the proof that properness is preserved by countable
support iteration and seems quite natural.

Throughout this paper, we make the following assumptions:

• λ is a regular cardinal satisfying λ = λ<λ.
• D is a normal filter on λ “with diamonds”, i.e., D is closed under

diagonal intersections, and for every S ∈ D+, there is a sequence
〈Aδ : δ ∈ S〉 such that for every A ⊆ λ,

{δ ∈ S : A ∩ δ = Aδ} ∈ D+.

• χ is a regular cardinal that is “large enough”.
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We are going to be looking at when λ+ is preserved by (≤)λ-support
iterations of (<)λ-complete notions of forcing. Just as in the case of pro-
per forcing, we will have to look at how our forcing notions interact with
elementary submodels.

Definition 1.1. Let N be an elementary submodel of H(χ). We say
that N is relevant if

• |N | = λ,
• N<λ ⊆ N ,
• N =

⋃
α<λNα, where 〈Nα : α < λ〉 is a continuous ∈-increasing se-

quence of elementary submodels of H(χ) such that 〈Nβ : β ≤ α〉
∈ Nα+1 and |Nα| < λ. (We say that 〈Nα : α < λ〉 is a filtration
of N .)

The natural attempt at generalizing properness results is a definition
along the following lines:

Definition 1.2. A notion of forcing P is said to be λ-proper if for all
sufficiently large regular cardinals χ, there is some x ∈ H(χ) such that
whenever M is a relevant elementary submodel of H(χ) with {P, x} ∈M
and p is an element of M ∩ P , there is a condition q ≤ p such that

q 
M [ĠP ] ∩Ord = M ∩Ord.

Such a condition q is said to be (M,P )-generic.

Some of the qualities of properness generalize in a straightforward fa-
shion to this new context. For example, λ-proper notions of forcing do not
collapse λ+, and it is easy to prove that both λ+-closed and λ+-c.c. notions
of forcing are λ-proper. Unfortunately, λ-properness is not in general pre-
served in iterations—work of Shelah and Stanley [5] on generalizing Martin’s
Axiom to ℵ1-complete, ℵ2-c.c. notions of forcing made this clear in the early
1980’s (Weiss’s article [6] contains a nice discussion of this phenomenon.)
This paper presents a strengthening of λ-properness that is preserved by
appropriate iterations.

The following assumption is necessary for our arguments to work (al-
though we can weaken it slightly). The most important use is in the proof
of Corollary 1.6.

Assumption. All notions of forcing under consideration in this paper
are assumed to be λ-closed.

Definition 1.3. Let P be a notion of forcing, and let N be a relevant
elementary submodel of H(χ).

(1) A set A ⊆ P is λ-linked if every A0 ∈ [A]<λ has a lower bound in P .
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(2) An (N,P )-diamond over D is a sequence A = 〈Aδ : δ ∈ S〉 such that

• S ∈ D+,
• Aδ is a subset of Nδ ∩ P with a lower bound in P ,
• whenever A ⊆ N ∩ P is λ-linked,

(1.1) {δ ∈ S : Nδ ∩ A = Aδ} ∈ D+.

(3) In the context of (2), if Nδ ∩ A = Aδ then we say that A guesses A
at δ.

Our first observation is that (N,P )-diamonds are nothing mysterious—
they are just regular diamond sequences that have been cosmetically altered.

Lemma 1.4. Let N be a relevant model with filtration 〈Nα : α < λ〉.
Further suppose D has diamonds. Then for S ∈ D+ we can find an (N,P )-
diamond 〈Aδ : δ ∈ S〉.

Proof. Let 〈Bδ : δ ∈ S〉 be a D-diamond sequence, and let f : λ→ N ∩P
be a bijection. Given δ ∈ S, ask if f [Bδ] is a λ-linked subset of Nδ ∩ P . If
so, then we let Aδ = f [Bδ]; if not, then let Aδ be {1P }, where 1P denotes
the maximal element of P .

Now suppose A is a λ-linked subset of N ∩ P . Since 〈Bδ : δ ∈ S〉 is a
diamond sequence, we know that the set of δ for which Bδ = f−1(A) ∩ δ is
in D+.

There is a closed unbounded set C such that f�δ is a bijection between δ
and Nδ ∩P . If δ ∈ C and Bδ = f−1(A)∩ δ, then Aδ = Nδ ∩A. Since C ∈ D,
we see that 〈Aδ : δ ∈ S〉 is an (N,P )-diamond.

Starting with the next lemma, we use without mention the fact that the
filter D has a natural interpretation in generic extensions of the universe—
in V [G], we let D refer to the normal filter generated by D ∩ V .

Lemma 1.5. Let 〈Aδ : δ ∈ S〉 be an (N,P )-diamond , and let Q be a
λ-closed notion of forcing. If Ȧ is a Q-name for a λ-linked subset of N ∩P ,
then

(1.2) 
Q {δ ∈ S : Nδ ∩ Ȧ = Aδ} ∈ D+.

Proof. If not, then we can find a condition q as well as a Q-name Ȧ and
a sequence 〈Ċi : i < λ〉 of Q-names such that

• 
Q Ȧ is λ-linked,
• 
Q Ċi ∈ D ∩ V ,
• q 
 δ ∈ S ∩4i<λĊi ⇒ Aδ 6= Nδ ∩ Ȧ.

Since Q is λ-closed, we can find sequences 〈qα : α < λ〉, 〈Cα : α < λ〉,
and 〈Bα : α < λ〉 such that
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• α < β < λ⇒ qβ ≤ qα ≤ q in Q,
• Cα ∈ D,
• Bα ⊆ Nα ∩ P ,
• qα 
 Ċα = Cα and Nα ∩ Ȧ = Bα.

Define C = 4α<λCα. Since D is a normal filter, we know that C ∈ D.
Note that the sequence 〈Bα : α < λ〉 increases with α. Define

(1.3) B =
⋃

α<λ

Bα.

It is not hard to see that B is λ-linked (in the ground model), so there is
a δ ∈ S ∩ C such that Nδ ∩ B = Aδ. This is a contradiction as qδ is an
extension of q, yet

(1.4) qδ 
 δ ∈ S ∩4i<λĊi and Nδ ∩ Ȧ = Bδ = Aδ.

Corollary 1.6. If A is an (N,P )-diamond and G ⊆ P is a generic
subset of P , then
(1.5) {δ ∈ S : Nδ ∩G = Aδ} ∈ D+.

Proof. This follows because G is λ-directed, hence λ-linked.

Definition 1.7. A sequence R = 〈(Rδ, qδ) : δ ∈ S〉 is said to be an
(N,P )-rule if

• 〈Rδ : δ ∈ S〉 is an (N,P )-diamond,
• qδ is a lower bound for Rδ in N ∩ P ,
• if D ∈ N is a dense subset of P , then qδ ∈ D for all sufficiently large
δ ∈ S.

Definition 1.8. A notion of forcing P is proper over D-diamonds if
(it is λ-closed and) there is an x ∈ H(χ) such that for every relevant model
N with x ∈ N , whenever we are given an (N,P )-rule R = 〈(Rδ, qδ) : δ ∈ S〉,
for every p ∈ N ∩ P there is q ≤ p such that

q 
 for some C ∈ D, if δ ∈ S ∩ C and Rδ = Nδ ∩ ĠP , then qδ ∈ ĠP .

We say that q is (N,P,R)-generic.

In other words, q is (N,P,R)-generic if q forces that in the generic exten-
sion, for D-almost all δ ∈ S, if Rδ guesses Nδ ∩G, then qδ ∈ G. We say that
q forces N ∩ G to obey the rule R. Note as well that the set C appearing
in the above definition is not required to be in the ground model; we only
require that such a set can be found in the generic extension. This fact is
crucial in the arguments we present.

Proposition 1.9. Suppose N is a relevant model containing P , R is an
(N,P )-rule, and q is (N,P,R)-generic. Then q is (N,P )-generic, i.e.,

(1.6) q 
 N [ĠP ] ∩Ord = N ∩Ord.
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In particular , if P is proper over D-diamonds, then forcing with P preserves
the cardinal λ+.

2. Iterations. We begin with an outline that shows how properness for
D-diamonds is preserved in a simple two-step iteration. Thus, suppose P is
proper for D-diamonds and 
P Q̇ is proper for D-diamonds.

Fix x ∈ H(χ) as required in Definition 1.8 for the partial order P , and let
ẏ be a P -name for the parameter associated with Q̇ in the generic extension.
We claim that for every relevant model N containing {x, ẏ}, whenever we
are given an (N,P ∗Q̇)-rule R and p∗ q̇ ∈ N∩P ∗Q̇, we can find an extension
of p ∗ q̇ that forces ĠP∗Q̇ to obey the rule R.

Let R = 〈(Rδ, pδ ∗ q̇δ) : δ ∈ S〉 be an (N,P ∗ Q̇)-rule. For δ ∈ S, define

Aδ := {p : (∃q̇)[p ∗ q̇ ∈ Rδ]}.
If we define R�P = {(Aδ, pδ) : δ ∈ S}, it is straightforward to verify that
R�P is an (N,P )-rule.

Now let G be a generic subset of P containing an (N,P,R�P )-generic
condition. In the extension V [G], let us define

(2.1) S1 := {δ ∈ S : Nδ ∩G = Aδ}.
We know

V [G] |= S1 ∈ D+,

and moreover,

V [G] |= (∃C ∈ D)[δ ∈ S1 ∩ C → pδ ∈ G].

In particular, the set

(2.2) S0 := {δ ∈ S : Nδ ∩G = Aδ and pδ ∈ G}
is in D+.

For δ ∈ S0, let us define

Bδ = {ḃ[G] : a ∗ ḃ ∈ Rδ for some a ∈ P}.
Next, we set

R/G = {(Bδ, q̇δ[G]) : δ ∈ S0}.
Back in the ground model, we let R/ĠP be a P -name for the object R/G
in the generic extension.

Proposition 2.1. If p is (N,P,R�P )-generic, then

p 
 R/ĠP is an (N [ĠP ], Q̇)-rule.

Proof. Let G be a generic subset of P that contains p. We will prove
in detail that {Bδ : δ ∈ S0} is an (N [G], Q̇[G])-diamond; the rest of the
proposition can be verified by similar means.
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Let E be a λ-linked subset of N [G]∩ Q̇[G]. Define H to be the set of all
terms a ∗ ḃ satisfying

• a ∈ N ∩G,
• ḃ is a P -name from N ,
• ḃ[G] ∈ E.

Claim 2.2. V [G] |= H is a λ-linked subset of N ∩ P ∗ Q̇.

Proof. It should be clear that H is a subset of N ∩ (P ∗ Q̇), so we con-
centrate on proving that H is λ-linked. Let H0 ⊆ H have cardinality < λ.
Since P is λ-closed, we know that H0 is in the ground model. Furthermore,
N is closed under sequences of length < λ so we also know that H0 ∈ N
and so there is an ordinal δ ∈ S0 such that H0 ∈ Nδ.

Let us define

HP
0 = {a : a ∗ ḃ ∈ H0 for some ḃ}, HQ

0 = {ḃ : a ∗ ḃ ∈ H0 for some a}.

Clearly HP
0 and HQ

0 are elements of Nδ as they are definable from H0. Our
decision to choose δ ∈ S0 guarantees that pδ is a lower bound for Nδ ∩ G.
By our definition of H, we may conclude that pδ is a lower bound for HP

0 .
Now in V [G], we know that E is λ-linked, so that {ḃ[G] : ḃ ∈ HQ

0 } has
a lower bound in Q. Since Nδ[G] ≺ V [G] there must be a P -name q̇ ∈ Nδ

such that

Nδ[G] |= q̇[G] is a lower bound for {ḃ[G] : ḃ ∈ HQ
0 }.

We will finish upon verifying that pδ ∗ q̇ is a lower bound for H0. Let
a ∗ ḃ ∈ H0 be given. We know immediately that pδ ≤ a, so we need only see

pδ 
 q̇ ≤ ḃ.
This follows because there must exist r ∈ Nδ ∩ G such that r 
 q̇ ≤ ḃ and
pδ ≤ r. Thus H is a λ-linked subset of N ∩ (P ∗ Q̇) in V [G].

To finish our proof that {Bδ : δ ∈ S0} is an (N [G], Q̇[G])-diamond, we
take advantage of Lemma 1.5:

V [G] |= S2 := {δ ∈ S : Nδ ∩H = Rδ} ∈ D+.

Note that S2 is a subset of the set S1 from (2.1), and thus

V [G] |= S0 ∩ S1 ∈ D+.

By the definition of H, for each δ ∈ S0 ∩ S1 we have Nδ[G] ∩ E = Bδ, and
we are done.

The previous definitions make the proof of the following lemma quite
easy.
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Lemma 2.3. Suppose R = 〈(Rδ, pδ ∗ q̇δ) : δ ∈ S〉 is an (N,P ∗ Q̇)-rule. If
p ∈ P is (N,P,R�P )-generic, and

p 
 q̇ is (N [GP ], Q̇, R/ĠP )-generic,

then p ∗ q̇ is (N,P,R)-generic.

Proof. The proof is a straightforward application of the definitions in-
volved. Let G∗ be any generic subset of P ∗Q̇ containing p∗ q̇, and let G ⊆ P
and H ⊆ Q̇[G] be the canonical factorizations of G∗ into generic subsets of
P and Q̇[G].

In V [G∗], let E1 ∈ D exemplify that p is (N,P,R�P )-generic, and let
E2 ∈ D exemplify that q̇[G] is (N [G], Q̇[G], R/G)-generic. Suppose now
that δ ∈ E1 ∩ E2 and Nδ ∩G∗ = Rδ; we must prove that pδ ∗ q̇δ ∈ G∗.

Let S0, Aδ, and Bδ be as in the discussion previous to the statement of
our lemma. Since Nδ∩G∗ = Rδ, we know Nδ∩G = Aδ and Nδ[G]∩H = Bδ.
Since δ ∈ E1, we must have pδ ∈ G. Since δ ∈ E2 (and δ ∈ S0) it follows
that q̇[G] ∈ H. Thus p ∗ q̇ ∈ G∗, as required.

Now what happens with longer iterations? Assume now that P = 〈Pi, Q̇i :
i < κ〉 is a λ-support iteration of λ-closed notions of forcing such that

(2.3) 
Pi Q̇i is proper for D-diamonds.

We will show that Pκ, the limit of P, is proper for D-diamonds, so in parti-
cular forcing with Pκ preserves λ+.

Theorem 1 (Preservation Theorem). Let 〈Pi, Q̇i : i < κ〉 be a λ-support
iteration such that


Pi Q̇i is proper over D-diamonds.

Then Pκ is proper over D-diamonds.

Definition 2.4. Let N be a relevant model with P ∈ N , and suppose
i < j in N ∩ (κ+ 1). Let A = 〈Aδ : δ ∈ S〉 be an (N,Pj)-diamond; without
loss of generality S consists entirely of limit ordinals. Given δ ∈ S, we define

Aδ�i = {p�i : p ∈ Aδ},
A�i = 〈Aδ�i : δ ∈ S〉.

Similarly, if R = 〈(Rδ, qδ) : δ ∈ S〉 is an (N,P )-rule, we define

(2.4) R�i = 〈(Rδ�i, qδ�i) : δ ∈ S〉.
Lemma 2.5. Let N be a relevant model containing P, and let i < j in

N ∩ (κ + 1). If A is an (N,Pj)-diamond , then A�i is an (N,Pi)-diamond.
If R is an (N,Pj)-rule, then R�i is an (N,Pi)-rule.

Proof of the Preservation Theorem. We prove by induction on j ∈ N ∩
κ+ 1 that whenever we are given objects i, ṗ, and r such that
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• i < j,
• r ∈ Pi,
• 
Pi ṗ ∈ Pκ,
• ṗ ∈ N ,
• r 
 ṗ�i ∈ ĠPi ,
• r is (N,Pi, R�i)-generic,

we can find a condition s ∈ Pj such that

• s�i = r,
• s is (N,Pj, R�j)-generic,
• s 
 ṗ�j ∈ Ġj .

Note that our theorem follows from this construction by letting i = 0 and
j = κ. Also note that ṗ is a name for a condition, and not necessarily a
condition itself. We need this extra generality in order to make the inductive
proof go through.

Case 1: j is a successor ordinal. Let j = j0 + 1. Since j0 must be in
N ∩ (κ + 1), we may apply our induction hypothesis to obtain a condition
s0 ∈ Pj0 such that

• s0�i = r,
• s0 is (N,Pj0 , R�j0)-generic,
• s0 forces that ṗ�j0 is in Ġj0 .

At this point, we are essentially in the case where we are doing a two-
step iteration—if we view Pj as a two-step iteration Pj0 ∗ Q̇j0 , then the
arguments presented at the beginning of this section show how to extend s0
to the required (N,Pj, R�j)-generic condition s.

Case 2: j is a limit ordinal of cofinality < λ.

Lemma 2.6. Suppose ε ∈ N ∩ (κ + 1) satisfies cf(ε) < λ, and we are
given sequences 〈iα : α < cf(ε)〉 and 〈rα : α < cf(ε)〉 such that

• 〈iα : α < cf(ε)〉 is a strictly increasing sequence of ordinals in N ∩ ε,
• rα is (N,Piα , R�iα)-generic,
• α < β < κ⇒ rβ�iα = rα.

Then the condition s :=
⋃
α<cf(ε) rα is (N,Pε, R�ε)-generic.

Proof. Clearly s ∈ Pε as we are using λ-support iteration. Let G be
any generic subset of Pε that contains s; we will work in the generic exten-
sion V [G].

For α < cf(ε), let Gα = G�Piα . Clearly rα ∈ Gα and Gα is a generic
subset of Piα , so there is a set Cα ∈ D such that

(2.5) δ ∈ S ∩ Cα and Nδ ∩Gα = Rα�iα ⇒ qδ�iα ∈ Gα.
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Let C =
⋂
α<cf(ε)Cα ∈ D. Given δ ∈ S ∩ C, if R guesses G at δ, then (2.5)

implies that qδ�iα ∈ Gα for all α < cf(ε). Since G is a generic subset of Pε,
it follows that qδ is in G, as required.

Now we return to the case where cf(j) < λ. Let 〈iα : α < cf(j)〉 be
increasing, continuous, and cofinal in N ∩ j; note that we can achieve con-
tinuity because N is closed under sequences of length < λ. Without loss of
generality we assume i0 = i.

By induction on α < cf(j), we choose conditions rα ∈ Piα such that

• r0 = r,
• rα 
 ṗ�iα ∈ ĠPiα ,
• if β < α then rα�iβ = rβ,
• if α is a limit ordinal, then rα =

⋃
β<α rβ,

• rα is (N,Piα , R�iα)-generic.

The construction of 〈rα : α < cf(j)〉 is straightforward—at successor
stages we apply our induction hypothesis, while at limit stages we invoke
Lemma 2.6 to show that the construction continues.

Another application of Lemma 2.6 shows us that the condition s =⋃
α<cf(j) rα is (N,Pj, R�j)-generic; the other requirements for s are also easi-

ly verified.

Case 3: cf(j) = λ. Let 〈iα : α < λ〉 be increasing, continuous, and
cofinal in N ∩ j with i0 = i. Let 〈Dα : α < λ〉 list all dense open subsets of
Pj that are elements of N .

By induction on α < λ, we will define objects ṗα and rα such that

(1) r0 = r, ṗ0 = ṗ�j,
(2) rα is (N,Piα , R�iα)-generic,
(3) rα�iβ = rβ for β < α,
(4) rα 
 ṗα ∈ N ∩ Pj and ṗα�iα ∈ ĠPiα ,
(5) rα+1 
 ṗα+1 ∈ Dα,
(6) for β < α, rα 
 ṗα ≤ ṗβ ,
(7) for α ∈ S, rα forces the statement

(⊗) if qα�iα ∈ Ġiα and qα�j is a lower bound for 〈ṗβ : β < α〉, then
ṗα = qα�j.

Construction of 〈ṗα : α < λ〉 and 〈rα : α < λ〉
Initial stage. We have already defined r0 and ṗ0.

Successor stages. Assume now that α is a successor ordinal, say
α = β+1. Our construction will give us objects rβ and ṗβ satisfying the ap-
propriate conditions. We apply our induction hypothesis with iα, iβ, ṗβ�iα,
rβ, and R�iα standing for the objects j, i, ṗ, r, and R appearing there. This
gives us an object rα such that
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• rα is (N,Piα , R�iα)-generic,
• rα�iβ = rβ,
• rα 
 ṗβ�iα ∈ Ġiα .

Now let G be any generic subset of Piα that contains rα. We know that
N ∩G is Piα-generic over N because rα is (N,Piα)-generic. Since Dβ ∈ N ,
a standard genericity argument tells us that there is a condition pα ∈ N [G]∩
Pj = N ∩ Pj such that

• pα�iα ∈ G,
• pα ≤ ṗβ [G],
• pα ∈ Dβ.

Back in V , we let ṗα be a name for this pα; it should be clear that ṗα is as
required.

Limit stages. If α is a limit ordinal, we know

rα =
⋃

β<α

rβ.

Since cf(α) < λ, Lemma 2.6 implies that rα is (N,Piα , R�iα)-generic. Also,
our inductive assumptions imply that for all β < α,

rα 
 ṗβ�iα ∈ Ġiα .
Let G be any generic subset of Piα with rα ∈ G. In the extension V [G],

each name ṗβ is interpreted as a condition pβ in N ∩ Pj , and we know

• (∀β < α)[pβ�iα ∈ G],
• 〈pβ : β < α〉 is decreasing.

Now we ask the question: Is it the case that

• α ∈ S,
• qα�iα ∈ G,
• qα�j is a lower bound for 〈pβ : β < α〉 in Pj?

If the answer is yes, then we let pα = qα�j. If the answer is no, then we
let pα ∈ N ∩Pj be a lower bound for 〈pβ : β < α〉 in N ∩Pj with pα�iα ∈ G.

Now back in the ground model, we let ṗα be a name forced by rα to be
as above. Note that ṗα is as required in (⊗), and our construction continues.

Once we have defined rα and ṗα for every α < λ, we define

s :=
⋃

α<λ

rα.

Clearly s�i = r and s 
 ṗ�j ∈ Ġj , so we need only verify that s is
(N,Pj, R�j)-generic.

Let G be any generic subset of Pj that contains s, and step into the
model V [G]. Each ṗα is interpreted as some pα ∈ N∩Pj and our construction
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guarantees that the filter generated by 〈pα : α < λ〉 is generic over N and
hence equal to N ∩G. This tells us that s is (N,Pj)-generic.

For each α < λ, the condition rα is (N,Piα , R�iα)-generic so in V [G] we
can find a set Cα ∈ D that witnesses this, i.e., if δ ∈ Cα∩S and qδ�iα guesses
Nδ ∩Giα , then qδ�iα ∈ G�iα.

Since 〈pα : α < λ〉 generates N ∩ G and N ∩ G is generic over N , there
is a closed unbounded set E ⊆ λ such that

(2.6) δ ∈ E ⇒ 〈pα : α < δ〉 generates a generic subset of Nδ ∩ P.
Let C = E ∩4α<λCα; since D is normal, we know that C ∈ D.

Claim 2.7. If δ ∈ C ∩ S and R�j guesses Nδ ∩G, then qδ�j ∈ G.

Proof. Suppose we are given such a δ. It suffices to show that qδ�iδ ∈ Giδ
and qδ�j is a lower bound for 〈pβ : β < δ〉; if this happens, then our con-
struction guarantees pδ = qδ�j and pδ ∈ G.

Our definition of C implies that δ ∈ Cβ for all β < δ. Since R�j gu-
esses Nδ ∩ G, we know that R�iα guesses Nδ ∩ Giα for all α < λ. Given
β < δ, we know that rβ ∈ Giβ and rβ is (N,Piβ , R�iβ)-generic. Putting
all this together, we may conclude that for all β < δ, qδ�iβ ∈ Giβ , hence
qδ�iδ ∈ Giδ .

Now why is qδ�j a lower bound for 〈pβ : β < δ〉? This follows because
δ ∈ C, i.e. the sequence 〈pβ : β < δ〉 generates Nδ∩G, and we have assumed
that R�j guesses Nδ ∩G.

Since rδ forces (⊗) to hold, we know that ṗδ[G] = qδ�j, hence
qδ�j ∈ G.

We have therefore shown that s is (N,Pj, R�j)-generic. Since s�i = r and
our construction guarantees that s 
 ṗ�j ∈ ĠPj , we see that s is as required.

Case 4: cf(j) > λ. The construction in this case is essentially the same
as that of the previous case (in fact, these two cases can easily be handled
together by cosmetically altering the argument). Let k = sup(N∩j); since N
is closed under sequences of length < λ, it follows that cf(k) = λ and we
can fix a continuous increasing sequence 〈iα : α < λ〉 of elements of N ∩ j
cofinal in k.

The idea now is to mimic the construction given for the case where
cf(j) = λ. Let 〈Dα : α < λ〉 list all dense open subsets of Pj that are
elements of N . By induction on α < λ, define objects ṗα and rα satisfying
exactly the same requirements as in the previous case—that construction
did not require that j was an element of N ∩ κ, only that a sequence along
the lines of 〈iα : α < λ〉 exists. One then checks that the resulting condition
s defined as there has all the required properties.
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3. On the λ++-chain condition. In this section, we give a fairly easy
generalization of the fact that CH implies that the limit of a countable
support iteration of proper posets, each of cardinality ≤ ℵ1, has the ℵ2-c.c.;
the proof of Proposition 3.1 follows from the proof of Theorem 2.7 of [1]
mutatis mutandis. We include a proof of this result for completeness and for
the convenience of future citations. We use the standard notation Sλ

++

λ+ to
denote {δ < λ++ : cf(δ) = λ+}.

Proposition 3.1. Assume λ<λ = λ, 2λ = λ+, and let P = 〈Pi, Q̇i :
i < λ++〉 be a λ-support iteration such that

(1) Pi is λ-proper for i ≤ λ++,
(2) 
Pi |Q̇i| ≤ λ+.

Then Pλ++ satisfies the λ++-chain condition.

Proof. Let {pξ : ξ < λ++} be given. For each ξ < λ++, let us fix a model
Mξ ≺ H(χ) such that

• {P, ξ, pξ} ∈Mξ,
• |Mξ| = λ,
• Mξ is closed under sequences of length < λ.

By an application of the 4-system lemma, without loss of generality
there is a set H ⊆ λ++ such that

ξ 6= ζ ⇒ Mξ ∩Mζ ∩ λ++ = H.

For each ξ < λ++, let M ξ be the transitive collapse of Mξ. Each M ξ is an
element of H(λ+) and since |H(λ+)| = 2λ = λ+, without loss of generality
there is a structure M ∈ H(λ+) such that M ξ = M for all ξ < λ++. Let
πξ : Mξ → M be the Mostowski isomorphism between Mξ and M . Since
|M | = λ, without loss of generality

ξ 6= ζ ⇒ πξ(pξ) = πζ(pζ).

Putting all this together, we see that without loss of generality we may
assume that for ξ 6= ζ, there is an isomorphism hξ,ζ : Mξ → Mζ such that
hξ,ζ(pξ) = pζ .

Claim 3.2. There is a stationary set S ⊆ Sλ
++

λ+ such that Mξ ∩ ξ = H
for all ξ ∈ S (where H is the root of our 4-system).

Proof. For ξ < λ++, let us define f(ξ) = sup(Mξ ∩ ξ). Note that cf(ξ) =
λ+ ⇒ f(ξ) < ξ, so by Fodor’s Lemma there is a stationary set S0 ⊆ Sλ++

λ+

and a γ < λ++ such that

ξ ∈ S0 ⇒ γ = sup(Mξ ∩ ξ).
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Now |[γ]λ| = |γ|λ ≤ (λ+)λ = λ+, so there must be a set A ⊆ γ and a
stationary S ⊆ S0 such that

ξ ∈ S ⇒ A = Mξ ∩ ξ.
Note it must be the case that A ⊆ H because A ⊆Mξ ∩Mζ ∩λ++ for ξ 6= ζ
in S. If we choose ξ ∈ S \ sup(H), then H ⊆Mξ ∩ ξ and hence H ⊆ A. Thus
H = A, and we have

ξ ∈ S ⇒ Mξ ∩ ξ = H

as required.

Now let C ⊆ λ++ be the set of ordinals closed under the function ξ 7→
sup(Mξ ∩ λ++). The set I := S ∩C is stationary in λ++, hence of size λ++.
Furthermore, if ξ < ζ in I, then

• H = Mξ ∩Mζ ∩ λ++,
• H ⊆ min(Mξ ∩ λ++ \H),
• Mξ ∩ λ++ ⊆ min(Mζ ∩ λ++ \H).

In other words, the 4-system {Mξ ∩ λ++ : ξ ∈ I} is “not entangled”, and
H is an initial segment of Mξ ∩ λ++ for all ξ ∈ I.

Claim 3.3. H ∩ λ+ is an initial segment of λ+. Furthermore if ξ ∈ I
then Mξ ∩ λ+ = H ∩ λ+.

Proof. The second assertion is obvious. The first assertion follows since
we assumed that each Mξ is closed under sequences of length < λ.

Let us now fix once and for all ξ < ζ in I, and let h : Mξ → Mζ be the
isomorphism that carries pξ to pζ .

Claim 3.4. Suppose θ ∈ H. Let p be (Mξ, Pθ)-generic. If r ∈ Mξ ∩ Pθ
and p extends r, then p also extends h(r).

Proof. The proof is by induction on θ ∈ H.

Case 1: θ is a limit ordinal. Let r ∈ Mξ ∩ Pθ be given. The support of
r is a subset of θ of size at most λ that is an element of Mξ. Since λ ⊆Mξ,
we know that supp(r) ⊆ Mξ ∩ θ and hence supp(r) ⊆ H. This implies that
supp(r) = supp(h(r)) because h�H is the identity.

Thus it suffices to prove for all µ ∈ Mξ ∩ θ that p�µ is an extension
h(r)�µ = h(r�µ), and this follows from the induction hypothesis.

Case 2: θ = µ + 1 for some µ. Our induction hypothesis implies that
p�µ extends h(r)�µ, so we need to establish that

(3.1) p�µ 
 p(µ) extends h(r)(µ).

We do this by showing that every extension t of p�µ has an extension t′

such that
t′ 
 r(µ) = h(r)(µ).
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How can we do this? This is where we take advantage of the assumption
that 
Pµ |Q̇µ| ≤ λ+. Without loss of generality, we can assume that every
condition in Pµ forces that the underlying set of Q̇µ is a subset of λ+, and
hence conditions in Q̇µ are forced to be ordinals < λ+. Now we know that
Mξ ∩ λ+ = Mζ ∩ λ+ = H ∩ λ+, and so ordinals in Mξ ∩ λ+ are fixed by h.

So suppose t is an extension of p�µ in Pµ. Since t is (Mξ, Pµ)-generic
and r(µ) is forced to be an ordinal < λ+, we can find s ∈ Mξ ∩ Pµ and
α ∈Mξ ∩ λ+ such that

• s is compatible with t,
• s 
 r(µ) = α.

By applying the isomorphism h, we see that h(s) 
 h(r)[h(µ)] = h(α).
However, µ and α are fixed by h, so in fact we achieve

h(s) 
 h(r)(µ) = α.

Let t′ be a condition witnessing that s and t are compatible in Pµ. Clearly t′

is (Mξ, Pµ)-generic, so our induction hypothesis (applied to t′ and s) implies
that t′ extends h(s) as well. Thus

t′ 
 r(µ) = h(r)(µ) = α.

Since t was an arbitrary extension of p�µ, we see

p�µ 
 r(µ) = h(r)(µ).

We know that p�µ forces p(µ) to extend r(µ), and therefore

p�µ 
 p(µ) extends h(r)(µ)

as required.

Corollary 3.5. If ξ < ζ in I, then pξ and pζ are compatible.

Proof. Let θ = sup(H). It suffices to prove that pξ�θ and pζ�θ have a
common extension r in Pθ, as

q := r ∪ pξ�(Mξ ∩ λ++ \H) ∪ pζ�(Mζ ∩ λ++ \H)

gives a common extension of pξ and pζ .
This follows easily from what we just proved—let r be an (Mξ, Pθ)-generic

condition stronger than pξ�θ. We know that supp(pξ)∩θ = supp(pζ)∩θ ⊆ H
and for all µ ∈ H, r�µ extends both pξ�µ and pζ�µ.

This finishes the proof that Pλ++ has the λ++-chain condition.

4. An example. Let S ⊆ Sω2
ω1

:= {δ < ω2 : cf(δ) = ω1} be stationary.
Recall that a continuous ladder system on S is a family of functions η =
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〈ηδ : δ ∈ S〉 such that ηδ is a strictly increasing and continuous from ω1 onto
a cofinal subset of δ.

A continuous ladder system η has the club uniformization property if
whenever c = 〈cδ : δ ∈ S〉 is a family of functions from ω1 to {0, 1}, there
is a function h such that for all δ ∈ S, the set {i < ω1 : cδ(i) = h(ηδ(i))}
contains a closed unbounded subset of ω1.

Shelah [4] has shown that if the Continuum Hypothesis is true, then
no continuous ladder system on (all of) Sω2

ω1
has the club uniformization

property. If we are looking at a stationary S ⊆ Sω2
ω1

such that Sω2
ω1
\ S is

stationary as well, then the techniques of [3] show how to build a model
where the Continuum Hypothesis holds and continuous ladder systems on
S have the club uniformization property. Our goal is to show that the Con-
tinuum Hypothesis is compatible with a certain weak version of the club
uniformization property for a continuous ladder system η = 〈ηδ : δ ∈ S〉 on
S := Sω2

ω1
.

Theorem 2. It is consistent with the Continuum Hypothesis that there
exists a stationary set E0 ⊆ ω1 and a continuous ladder system η = 〈ηδ :
δ ∈ S〉 on S := Sω2

ω1
such that for every family of functions c = 〈cδ : δ ∈ S〉

mapping ω1 to {0, 1}, there is a function h : ω2 → {0, 1} such that for each
δ ∈ S,

(4.1) {i ∈ E0 : h(ηδ(i)) 6= cδ(i)} is non-stationary.

Said another way , for each δ ∈ S there is a closed unbounded Cδ ⊆ ω1 such
that

(4.2) i ∈ Cδ ∩E0 ⇒ h(ηδ(i)) = cδ(i),

i.e., h achieves success at almost every point in ηδ[E0].

Proof. We begin by assuming GCH holds in our ground model, and E0
is a stationary and co-stationary subset of ω1 for which ♦(ω1 \ E0) holds.
Let D be the filter of closed unbounded subsets of ω1 restricted to the set
ω1 \ E0 (so D has diamonds). Let us also fix a continuous ladder system
η = 〈ηδ : δ ∈ S〉.

Suppose 〈cδ : δ ∈ S〉 is a family of functions each mapping ω1 to {0, 1}.
Our first goal is to define a notion of forcing that will adjoin a function h
such that (4.1) is satisfied for all δ ∈ S.

A condition p is simply an approximation to the desired h of size ≤ ω1,
i.e., p ∈ P if p is a function satisfying

• dom(p) ∈ [ω2]≤ω1,
• ran(p) ⊆ {0, 1},
• for all δ ∈ S,

{i ∈ E0 : p(ηδ(i)) 6= cδ(i)} is non-stationary.
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Clearly P is <ω1-closed and for each α < ω2, the set of conditions with
α in their domain is dense in P . Thus forcing with P adds no new countable
sequences to the ground model and adjoins a function from ω2 to {0, 1}.

Claim 4.1. P is proper for D-diamonds.

Proof. Let N be a relevant model with filtration 〈Ni : i < ω1〉 and let
p ∈ N ∩P be arbitrary. Suppose E1 ∈ D+ and let R = 〈(Rδ, qδ) : δ ∈ E1〉 be
an (N,P )-rule. Note that we may assume that E0 ∩ E1 = ∅ because of our
definition of D. We will construct a decreasing sequence 〈pα : α < ω1〉 of
conditions in N ∩P in such a way that q :=

⋃
α<ω1

pα is an (N,P,R)-generic
extension of p.

Let γ = N ∩ ω2, and for α < ω1 let γα = Nα ∩ ω2. The sequence
〈γα : α < ω1〉 is strictly increasing, continuous, and cofinal in γ.

As we build the sequence 〈pα : α < ω1〉, we will also be defining a strictly
increasing and continuous sequence of countable ordinals 〈iα : α < ω1〉.

We begin by letting i0 be the least i < ω1 such that p ∈ Ni, and let
p0 ∈ N ∩ P be some totally (Ni0 , P )-generic (1) extension of p.

Given 〈pβ : β ≤ α〉 and 〈iβ : β ≤ α〉, we let iα+1 be the least ordinal i such
that both 〈pβ : β ≤ α〉 and 〈iβ : β ≤ α〉 are elements of Ni. Note that such
an i exists because N<ω1 ⊆ N . We let pα+1 be a totally (Niα+1 , P )-generic
extension of pα in N ∩ P .

Now what happens at limit stages of the construction? If α is a limit
ordinal, we will be handed 〈pβ : β < α〉 and 〈iβ : β < α〉. We are committed
to the continuity of 〈iα : α < ω1〉, so this means that we are forced to choose

iα =
⋃

β<α

iβ.

Let us define
rα =

⋃

β<α

pβ .

Since α is a countable ordinal, we know that rα is a condition in P , and the
relevance of the model N implies that rα ∈ N ∩P . By our construction, we
know that rα is totally (Niα , P )-generic; this follows because

Niα =
⋃

β<α

Niβ .

Now we ask: Is it the case that

• iα = α,
• γα = ηγ(iα),
• α ∈ E0 ∪ E1?

(1) This means that for every dense open subset of P in Ni0 , there is a condition
r ∈ Ni0 ∩P such that p0 ≤ r. We can find such conditions because our forcing is countably
closed.
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If not, we let pα = rα and the construction continues. If the answer is yes,
then we have two cases to consider: the case α ∈ E0 and the case α ∈ E1.

If α ∈ E0, we note first that dom(rα) ⊆ γα; this is because pβ ∈ Nα for
all β < α and dom(rα) =

⋃
β<α dom(pβ). Thus we may define

pα = rα ∪ {〈γα, cγ(α)〉},
and conclude that pα ∈ N ∩ P .

If α ∈ E1, then we ask if Rα is equal to the filter on Nα∩P generated by
〈pβ : β < α〉. If yes, then we let pα = qα (note that qα ≤ rα if this happens);
if not, we let pα = rα.

In either case, the condition pα will be in N ∩ P and the construction
can continue.

Claim 4.2. The sequence 〈pα : α < ω1〉 has a lower bound in P .

Proof. Let q =
⋃
α<ω1

pα. It is clear that q is a partial function from ω2
to {0, 1} with domain a set of cardinality ℵ1. Since each pα is an element
of N , we know that dom(q) ⊆ γ.

What we need to show is that for every δ ∈ S, (4.1) holds. If δ > γ,
then (4.1) holds because dom(q) ⊆ γ. If δ < γ, we note that δ ∈ N (as
N<ω1 ⊆ N implies N ∩ ω2 is an initial segment of ω2), and the set of
conditions whose domain includes {ηδ(i) : i < ω1} is dense in P and an
element of N . Thus there is a stage α such that

{ηδ(i) : i < ω1} ⊆ dom(pα).

Since pα ∈ P , the definition of q implies (4.1) holds for δ.
The last case to consider is when δ = γ. Note that there is a closed

unbounded set of α < ω1 for which iα = α and ηγ(α) = γα. If α ∈ E0 has
these properties, then at stage α we ensured that q(ηγ(α)) = cγ(α). Thus
(4.1) holds for γ = δ, and we have established that q is a condition in P .

Claim 4.3. The condition q is (N,P,R)-generic.

Proof. Again, there is a closed unbounded set of α for which iα = α
and ηγ(α) = γα. Note that for such an α, we automatically achieve that
〈pβ : β < α〉 generates an (Nα, P )-generic filter Gα: this follows because
Nα =

⋃
β<αNiβ . If for such an α it happens that Gα = Rα, then we made

sure that pα = qα. Since

q 
 N ∩ ĠP is generated by 〈pα : α < ω1〉,
we have ensured that q is (N,P,R)-generic.

This finishes the proof of Claim 4.1.

The actual construction of a model where our weak club uniformization
principle holds now follows standard lines—we can use an ℵ1-support ite-
ration of length ℵ3 (with iterands corresponding to the notion of forcing
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above) to destroy any potential counterexample. The limit of this iteration
(i.e., Pω3) is countably complete (so ℵ1 is preserved), proper for D-diamonds
(so ℵ2 is preserved), and ω3-c.c. (so all other cardinals are preserved).

We finish the paper by commenting that there is nothing special about
our use of ω2 and ω1 in the previous result; everything generalizes to λ and
λ+, where λ is regular.

References

[1] U. Abraham, Proper forcing , chapter in the forthcoming Handbook of Set Theory.
[2] A. Rosłanowski and S. Shelah, Iteration of λ-complete forcing notions not collap-

sing λ+, Internat. J. Math. Math. Sci. 28 (2001), 63–82.
[3] S. Shelah, Not collapsing cardinals ≤ κ in (<κ)-support iterations, Israel J. Math.,

to appear.
[4] —, Proper and Improper Forcing, Perspect. Math. Logic, Springer, 1998.
[5] S. Shelah and L. Stanley, Generalized Martin’s Axiom and Souslin’s Hypothesis for

higher cardinals, Israel J. Math. 43 (1982), 225–236.
[6] W. Weiss, Versions of Martin’s Axiom, in: Handbook of Set-Theoretic Topology,

North-Holland, 1984, 827–886.

Department of Mathematics
University of Northern Iowa
Cedar Falls, IA 50614, U.S.A.
E-mail: eisworth@math.uni.edu

Received 10 February 2003;
in revised form 20 October 2003


