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The dimension of graph directed attractors with
overlaps on the line, with an application to a

problem in fractal image recognition

by

Michael Keane (Middletown, CT, and Amsterdam),
Károly Simon (Budapest) and Boris Solomyak (Seattle, WA)

Abstract. Consider a graph directed iterated function system (GIFS) on the line
which consists of similarities. Assuming neither any separation conditions, nor any re-
strictions on the contractions, we compute the almost sure dimension of the attractor.
Then we apply our result to give a partial answer to an open problem in the field of
fractal image recognition concerning some self-affine graph directed attractors in space.

1. Introduction. Mauldin and Williams [6] computed the Hausdorff
dimension of the attractor for a Graph Directed Iterated Function System
(GIFS) of similarities in Rd assuming that the cylinders are, in some sense,
well separated. If we drop the separation condition in the Mauldin–Williams
theorem, we can expect only “almost all” type results. In this paper we prove
such a result on the line assuming neither any separation conditions nor any
restrictions on the contraction ratios. The only thing we have to assume
is that the matrix of the directed graph is irreducible. Our research was
motivated by an open problem in the field of fractal image compression. This
problem is about the box-counting dimension of a certain graph directed
non-conformal attractor in space. Using techniques similar to the ones in [4],
we can reduce this problem to the computation of the attractor of some GIFS
on the line with overlapping cylinders.

2. The results and the motivating example. This section is orga-
nized as follows: First we state our theorem about the almost sure dimension
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of GIFS on the line. Then we introduce the non-conformal graph directed
attractor coming from fractal image compression which motivated our re-
search. Then we compute the almost sure box-counting dimension of this
attractor.

2.1. GIFS on the line. Let Γ be a directed graph with vertex set V =
{1, . . . ,m} and edge set E . We assume that Γ is strongly connected. For
every ω ∈ E there exists a contracting similarity fω : R→ R,

(2.1) f t
ω(x) := λω · x+ tω,

0 < λω < 1. The reason for this notation is that we consider the contrac-
tion ratios λω as fixed and the translations t = {tω}ω∈E as parameter. Let
` := #E. By a fixed enumeration of E we assign to any t ∈ R` a family of
maps {f t

ω}ω∈E of the form (2.1).
Then, as proved in [6] (see also [3]), there exists a family of non-empty

compact sets Λt
1, . . . , Λ

t
m such that for every 1 ≤ i ≤ m,

(2.2) Λt
i =

m⋃

j=1

⋃

ω∈Eij
f t
ω(Λj),

where Eij is the set of directed edges in Γ connecting i to j, with entries 0
if Eij = ∅. We call the family {Λt

1, . . . , Λ
t
m} a family of graph directed sets

and say that

(2.3) Λt =
m⋃

j=1

Λt
j

is the attractor of {f t
ω}ω∈E . Next we introduce a number α which plays the

role of similarity dimension for graph directed systems (see [6]).

Definition 1 (The definition of α). For β ≥ 0 consider the following
m×m matrix (recall that Γ has m vertices):

(2.4) Aβ :=
[ ∑

ω∈Eij
λβω

]
i,j≤m

.

Let α be the number for which the spectral radius % of the matrix Aα satisfies

%(Aα) = 1.

The symbol Ln denotes the Lebesgue measure in Rn. Our main result is:

Theorem 1. For L`-almost every t ∈ R` we have

(i) dimH Λ
t = min{1, α},

(ii) if α > 1 then L1(Λt) > 0.

2.2. An affine GIFS in space. The following attractor arose naturally in
the field of fractal image compression:
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Fix K ∈ N. Let m := 2K × 2K . By definition, the domain squares
Q1, . . . , Qm are the 2−K × 2−K grid squares of the unit square [0, 1]× [0, 1].
More precisely, for all 1 ≤ ` ≤ m there exist some 0 ≤ i, j ≤ K − 1 such

that Q` = [i/2−K , (i+ 1)/2−K ]× [j/2−K , (j + 1)/2−K ]. If we divide all the
domain squares Q` into four identical squares, we obtain the family of range
squares Qi` (` = 1, . . . ,m; i = 1, . . . , 4) by the following convention about
the placement of Qi

`:

Q` =
Q1
` Q2

`

Q3
` Q4

`

We associate a domain square to every range square (see Figure 1). That is,
we are given a function

ϕ : {1, . . . ,m} × {1, . . . , 4} → {1, . . . ,m}.
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Fig. 1. We assign a big square to every small square. Here ki := ϕ(`, i).

Using ϕ we define a directed graph Γ := (V, E) in the following way:
The set of vertices is V := {1, . . . ,m}. By definition, there is a directed edge
ω ∈ E from vertex ` to vertex k iff there exists i ∈ {1, . . . , 4} such that
k = ϕ(`, i). In this case we write ω = ω(`i, k). So there are exactly 4 edges
leading out of every vertex.

Principal Assumption. We always assume that the directed graph
(V, E) is strongly connected.

The reason we call Qk and Qi` a domain square and a range square is
that for every 1 ≤ ` ≤ m and 1 ≤ i ≤ 4 we are given a one-parameter family
of affine maps (see Figure 2)

St
ω : Qk × R→ Qi` × R,
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PSfrag replacements
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Fig. 2. St
ω maps the box on the right onto the box on the left, where k = ϕ(`, i) and

ω = ω(`i, k).

where ω = ω(`i, k) and the parameter t is in R#E . Moreover,

St
ω(x, y) := (Tω(x), f t

ω(y)),

where Tω is the similarity which maps Qk onto Qi` with DTω =
[

1/2
0

0
1/2

]

and f t
ω(y) = λω · y + tω, 0 < λω < 1. That is, the affine map St

ω in the
horizontal direction is a similarity with contraction ratio 1/2 and in the
vertical direction it is of the form (2.1). The vector whose components are
the translations tω is used as a parameter.

As on the line, we define the graph directed sets {Λ̂t
1, . . . , Λ̂

t
m} as the

unique non-empty compact sets satisfying

Λ̂t
i =

m⋃

j=1

⋃

ω∈Eij
St
ω(Λ̂t

j)

for all i = 1, . . . ,m, and the attractor of {St
ω}ω∈E is

Λ̂t :=
m⋃

j=1

Λ̂t
j .

Note that the projection of Λ̂t to the z-axis is Λt, the attractor of {f t
ω}ω∈E

defined in (2.3).

2.3. Calculating the almost sure box-counting dimension of Λ̂t. Similarly

to [4], we can express the almost sure box-counting dimension of Λ̂t in terms
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of the almost sure dimension of Λt. Define

d(t) := dimH Λ
t.

Note that the box-counting dimension dimB Λ
t exists and equals d(t) as

well, by [3, Corollary 3.5].

Proposition 1. For all t ∈ R`, the box-counting dimension of Λ̂t exists
and equals

dimB Λ̂
t = max

{
2, d(t) +

log %(Ad(t))

log 2

}
.

This, together with Theorem 1, allows us to compute the almost sure

box-counting dimension of Λ̂t:

Theorem 2. For almost all t ∈ R` we have

(2.5) dimB Λ̂
t = max

{
2, 1 +

log %(A1)

log 2

}
.

Remark 1. Recall our principal assumption that the directed graph
(V, E) is strongly connected. Without this assumption we could not verify
the results above.

The rest of the paper is organized as follows: In the next section we prove
Theorem 1. Then in the last section we prove Proposition 1 and Theorem 2.

3. Proof of Theorem 1. First we need some notation. If ω ∈ E`k then
we call ` and k the source and the target of edge ω respectively, and we
write s(ω) = ` and t(ω) = k. When we want to refer to an edge in Γ we
usually write ω or τ . On the other hand, when we refer to a finite or infinite
path in Γ we usually write ω or τ .

3.1. Symbolic space and invariant measure. Our symbolic space is

Σ := {ω ∈ E∞ : t(ωj) = s(ωj+1)}.
That is, the alphabet of our symbolic space is the edge set, and Σ is the set
of all possible infinite paths in Γ . Obviously this is a subshift of finite type.
In fact, let ` := #E and

E := {e1, . . . , e`}.
Further, let R = [rij ]i,j≤` be the `× ` matrix defined by

rij =

{
1 if t(ei) = s(ej),

0 otherwise.

Then Σ can be identified in a trivial way with

Σ`
R := {(i1, i2, . . .) ∈ {1, . . . , `}N : rikik+1

= 1,∀k ≥ 1}.
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The set of all k-paths of the directed graph Γ is denoted Σk. We denote
by Σp the set of all infinite paths in Γ which originate at the vertex p, for
p = 1, . . . ,m. That is, for k ∈ N and 1 ≤ p ≤ m,

Σk := {(ω1, . . . , ωk)∈ Ek : t(ωj) = s(ωj+1)}, Σp := {ω ∈Σ : s(ω1) = p}.
For a path (ω1, . . . , ωk) ∈ Σk we write

λω1...ωk := λω1 . . . λωk ,

and let λ∅ := 1 where ∅ is the empty word. Further, let f t
ω1...ωk

:= f t
ω1
◦ . . .

◦ f t
ωk

. The natural projection Πt : Σ → R is defined by

Πt(ω) := lim
n→∞

f t
ω1...ωn(0) =

∞∑

k=1

tωk · λω1...ωk−1
.

As usual, we write σ for the left shift on Σ.
There is a natural Markov measure on Σ associated with the GIFS.

Recall that α is such that %(Aα) = 1. By the Perron–Frobenius theorem,
since Aα is irreducible, there is a unique strictly positive right eigenvector

(vi)
`
i=1 for Aα, with eigenvalue 1, normalized by

∑`
i=1 vi = 1. Then one can

set, for any k ≥ 1 and any ω1, . . . , ωk ∈ Ek,
µ([ω1, . . . , ωk]) = λαω1...ωk

vωk ,

where [ω1, . . . , ωk] := {τ ∈ Σ : τ1 = ω1, . . . , τk = ωk}. It is easy to
check (see [6]) that µ is consistently defined and σ-invariant. Alternatively,
we can define µ as the Gibbs measure for the Hölder potential ω 7→
α log(f t

ω1
)′(Πt(σω)) = α log λω1 . In any case, there exist c1, c2 > 0 such

that for all k and all (ω1, . . . , ωk) ∈ Σk,

(3.1) c1λ
α
ω1...ωk

≤ µ([ω1, . . . , ωk]) ≤ c2λ
α
ω1...ωk

.

Let P be the set of pairs from Σ having the same initial vertex. That is,

P := {(ω, τ) : s(ω1) = s(τ1)},
where ω = ω1ω2 . . . and τ = τ1τ2 . . . Let η = (η1, . . . , ηk) ∈ Σk. Then we
write

Pη := {(ω, τ) ∈ P : ω ∧ τ = η},
where ω ∧ τ denotes the common initial segment of the words ω and τ . In
particular, we consider P∅ for η = ∅, the empty word. Obviously,

(3.2) P = P∅ ∪
( ⋃

k≥1

⋃

η∈Σk
Pη
)
.

For η ∈ Σk we define Φη : Pη → P∅ by Φη(ω, τ) := (σkω, σkτ). Put µ2 :=

(µ × µ)|P and consider µη2 := Φη∗(µ2|Pη). Then we deduce from (3.1) that
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there exist constants c3, c4 > 0 such that for every A ∈ P∅,

(3.3) c3λ
2α
η ≤

µη2(A)

µ2(A)
≤ c4λ

2α
η .

3.2. A condition which implies that Λt contains an interval almost surely

Definition 2. The weight of a path ω ∈ Σ∗ is defined by w(ω) := λω.
For an edge ω ∈ E let K(ω) be a cycle (i.e. a path with identical initial and
terminal vertices) starting with ω and having maximal weight. Let

rω := w(K(ω)).

Lemma 1. If there exist distinct ω, τ ∈ E , with s(ω) = s(τ), such that

(3.4) rω + rτ ≥ 1,

then for all t ∈ R` \ F the attractor Λt contains an interval , where F is a
hyperplane of codimension 1 (hence for Lebesgue almost all t).

Proof. Let K(ω) = (ω1, . . . , ωk) and K(τ) = (τ1, . . . , τp), so that ω1 = ω
and τ1 = τ . Then

f t
ω1,...,ωk

(x) = λω1,...,ωkx+ tω1,...,ωk , f t
τ1,...,τp(x) = λτ1,...,τpx+ tτ1,...,τp ,

where

tω1,...,ωk = tωkλω1,...,ωk−1
+ . . .+ tω1 , tτ1,...,τp = tτpλτ1,...,τp−1 + . . .+ tτ1 .

Consider the iterated function system (IFS) {f t
ω1,...,ωk

, f t
τ1,...,τp} on the line.

Its attractor consists of all points Πt(η) where η ∈ Σs(ω) is an arbitrary
infinite concatenation of the cycles K(ω) and K(τ). Thus, the attractor of
{f t
ω1,...,ωk

, f t
τ1,...,τp} is contained in Λt

s(ω). The sum of the contraction ratios

of the maps of the IFS is greater than one by assumption. It follows that
the attractor of the IFS contains an interval, as long as f t

ω1,...,ωk
and f t

τ1,...,τp

have different fixed points. (This is an elementary fact, see e.g. [9].)
It remains to note that the set of t for which the fixed points coincide is

a hyperplane. Indeed, the fixed points coincide if and only if

tω1,...,ωk(1− λω1,...,ωk)−1 = tτ1,...,τp(1− λτ1,...,τp)−1,

which is a linear equation in t. It is non-trivial, i.e. not identically satisfied,
since tω = tω1 occurs in tω1,...,ωk only once and does not occur in tτ1,...,τp , by
the choice of K(ω) and K(τ) as cycles of maximal weight.

3.3. Establishing a kind of transversality condition. We fix an arbitrary
% > 0 for the rest of the paper. In all the proofs it is sufficient to restrict
ourselves to t ∈ B%0 = {x ∈ R` : |x| < %0}. Recall that ` = #E . We will
need the following elementary fact.
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Lemma 2. For any %0 > 0 there exists c5 = c5(%0) > 0 such that for
every δ > 0 and for every v ∈ R`,
(3.5) L`{t ∈ B%0 : |t · v| ≤ δ} ≤ c5δ|v|−1.

The following function will play an important role in the rest of the
proof.

Definition 3 (The definition of the function v : P → R`). For any
(ω, τ) ∈ P let v(ω, τ) := (v1, . . . , v`) be such that for every 1 ≤ n ≤ `,

vn = vn(ω, τ) :=
∑

ωk=en

λω1,...,ωk−1
−
∑

τp=en

λτ1,...,τp−1 ,

where E = {e1, . . . , e`} and λ∅ = 1 by definition.

The reason we will use the function v often is that

(3.6) Πt(ω)−Πt(τ) = t · v(ω, τ).

It is immediate from the definitions that if |ω ∧ τ | = k then

(3.7) v(ω, τ) = λω1,...,ωkv(σkω, σkτ).

Lemma 3. Assume that for all ω, τ ∈ E with s(ω) = s(τ) and ω 6= τ ,
we have

rω + rτ < 1.

Then there exists c∗ > 0 such that for all (ω, τ) ∈ P∅ we have

vn(ω, τ) > c∗, ∀n ≤ `.
Proof. Let

c∗ := min

{
1− rω

1− rτ
: ω, τ ∈ E ; s(ω) = s(τ); ω 6= τ

}
.

By assumption, c∗ > 0. Let ω, τ ∈ P∅. Assume that ω1 = en and τ1 = ep;
then we know that s(en) = s(ep). Then, since λj > 0 for all j ∈ E , we have

vn ≥ 1− rep − repren − repr2
en − . . . = 1− rep

1− ren
≥ c∗ > 0.

Under the assumption of Lemma 3, it follows from (3.7) that for
(ω, τ) ∈ P , |ω ∧ τ | = k, we have

(3.8) vn(ω, τ) > λω1,...,ωkc
∗, ∀n ≤ `.

Lemma 4. Under the assumption of Lemma 3, for any %0 > 0 there
exists c6 > 0 such that

A′(r) :=
���

P∅
L`{t ∈ B%0 : |Πt(ω)−Πt(τ)| ≤ r} dµ(τ) dµ(ω) ≤ c6r.
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Proof. Using (3.5) and (3.6) we get

L`{t ∈ B%0 : |Πt(ω)−Πt(τ)| ≤ r} ≤ c5 · r · (v(ω, τ))−1 ≤ r · c5 · (c∗)−1.

So we can choose c6 := c5 · (c∗)−1.

For k ≥ 1 and η ∈ Σk we define

Aη(r) :=
���

Pη
L`{t ∈ B%0 : |Πt(ω)−Πt(τ)| ≤ r} dµ(ω) dµ(τ).

Lemma 5. There exists c7 > 0 such that for all k ≥ 1 and for all η ∈ Σk

we have

Aη(r) ≤ c7r(λmax)k(α−1)µ([η]).

Proof. For every r > 0 and (i, j) ∈ P we introduce the function

gr(i, j) := L`{t ∈ B%0 : |Πt(ω)−Πt(τ)| ≤ r}.
Then, since ω ∧ τ = η, by (3.7),

gr(i, j) = gr/λη(σ
ki, σkj).

Thus, first making a change of variables, then using (3.3), definition of A′(r),
and finally Lemma 4, we obtain

Aη(r) =
� �

Pη
gr/λη(σ

ki, σkj) dµ2(i, j) =
� �

P∅
gr/λη(i, j) dµη2(i, j)

≤ c4λ
2α
η

� �

P∅
gr/λη(i, j) dµ2(i, j) = c4λ

2α
η A

′(r/λη)

≤ c6c4rλ
2α−1
η .

Since µ([η]) � λαη by (3.1), there exists c7 > 0 such that

Aη(r) ≤ c7rλ
α−1
η µ([η]) ≤ c7r(λmax)k(α−1)µ([η]).

Now we are in a position to prove Theorem 1. The argument involves inte-
gration over the parameters and the Fubini theorem, and uses the “transver-
sality condition.” By now such arguments are rather standard, but we pro-
vide all the details for the reader’s convenience. Some of the early references
for this method are [8] and [7].

3.4. Proof of Theorem 1(ii). Here we assume that α > 1. If the assump-
tion of Lemma 3 does not hold, then by Lemma 1, for almost all t ∈ R`, the
attractor Λt contains an interval, which proves the claim of Theorem 1(ii).
So, from now on we may also assume that the assumption of Lemma 3 holds.

We recall that we defined Σ1 = {ω ∈ Σ : s(ω) = 1}. Let νt :=
(Πt|Σ1)∗(µ). Let

D(νt, x) := lim inf
r→0

νt([x− r, x+ r])

2r
.
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Fix an arbitrary %0 > 0. We will be done if we can prove that

I :=
�

B%0

�

R
D(νt, x) dνt dt <∞.

Observe that

�

R
νt([x− r, x+ r]) dνt =

���

Σ1×Σ1

1{(ω,τ) : |Πt(ω)−Πt(τ)|≤r} dµ(ω) dµ(τ)

≤
� �

P
1{(ω,τ) : |Πt(ω)−Πt(τ)|≤r} dµ(ω) dµ(τ).

Using Fatou’s lemma, (3.2), and Lemmas 4 and 5 we get

I ≤ lim inf
r→0

(2r)−1
� �

P
L`{t ∈ B%0 : |Πt(ω)−Πt(τ)| ≤ r} dµ(ω) dµ(τ)

= lim inf
r→0

(2r)−1
(
A′(r) +

∞∑

k=1

∑

η∈Σk
Aη(r)

)

≤ lim inf
r→0

(2r)−1
(
c6r +

∞∑

k=1

∑

η∈Σk
c7r(λmax)k(α−1)µ([η])

)

≤ const ·
∞∑

k=1

(λmax)k(α−1) <∞,

since we assumed that α > 1.

3.5. Proof of Theorem 1(i). Now we may assume that α ≤ 1. Otherwise,
from the second part of Theorem 1 proved above, we would immediately get
the first part. Further, we may also assume that the assumption of Lemma 3
holds. Indeed, otherwise Lemma 1 implies that Λt contains an interval for
almost all t ∈ R` and hence dimH Λ

t = 1 almost surely. Using the trivial
observation that α is always an upper bound for the dimension of Λt, we
would find that α ≥ 1, proving the statement of Theorem 1(i).

As above, we write νt := (Πt|Σ1)∗(µ) and recall that Πt : Σ1 → Λt
1

is onto. Fix an arbitrary %0 > 0. It follows from the potential-theoretic
characterization of the Hausdorff dimension (see e.g. [5] or [3]) that it is
enough to prove that the following integral is finite:

I :=
�

B%0

���

Λt
1×Λt

1

|x− y|−s dνt(x) dνt(y) dt <∞,

for every 0 < s < α, since in this case dimH Λ
t = dimH Λ

t
1 ≥ s almost surely.

Thus, it is enough to show that

I < I2 :=
�

B%0

���

P
|Πt(ω)−Πt(τ)|−s dµ(ω) dµ(τ) dt <∞.
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By (3.6), Lemma 2, and (3.8) we see that there exists c8 > 0 such that

L`{t ∈ B%0 : |Πt(ω)−Πt(τ)| < r} ≤ c8 min{1, r · λ−1
ω∧τ}.

Thus,

�

B%0

|Πt(ω)−Πt(τ)|−sdt =

∞�

r=0

L`{t ∈ B%0 : |Πt(ω)−Πt(τ)| ≤ r−1/s} dr

≤ c8

∞�

r=0

min{1, r−1/s · λ−1
ω∧τ} dr

≤ c8

λ−sω∧τ�

r=0

1 dr + λ−1
ω∧τ

∞�

r=λ−sω∧τ

r−1/s dr = c9λ
−s
ω∧τ ,

for some c9 > 0. Therefore, using (3.2) and (3.1) we have

I2 ≤ c9

� �

P
λ−sω∧τ dµ(ω) dµ(τ)

≤ c9 + c9

∞∑

k=1

∑

η∈Σk
µ([η])2 · λ−sη ≤ c9 + c2c9 ·

∞∑

k=1

∑

η∈Σk
µ([η])λα−sη

≤ c9 + c2c9

∞∑

k=1

λk(α−s)
max

∑

η∈Σk
µ([η]) = c9 + c2c9

∞∑

k=1

λk(α−s)
max <∞,

since s < α. This completes the proof of Theorem 1(i).

4. Proof of Proposition 1 and Theorem 2

Proof of Proposition 1. This proof is very similar to that of [4, Theo-
rem 5.2], which is credited to Falconer in [4]. In this proof we always omit

the superscript t. When we write Λ, Λ̂, S we always think of Λt, Λ̂t, St for
an arbitrary fixed t ∈ R`.

First we need some additional notation. For a bounded set A ⊂ R3 we
denote by M2−k(A) the smallest number of cubes of side 2−k needed to
cover A, such that their sides are parallel to the axes and the projections of
the cubes to the xy plane are dyadic squares. Clearly,

dimBA = lim
k→∞

1

k log 2
logM2−k(A)

if the limit exists. For a bounded set B ⊂ R and r > 0, we denote by Nr(B)
the smallest number of intervals of length r required to cover the set B. It
is immediate that for any c > 0,

Nr(c ·B) = Nr/c(B).
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Let d := dimB Λ (recall that d exists and equals dimH Λ by [3, Corollary 3.5]).
Fix ε > 0. By the definition of the box-counting dimension, there exist
c′1, c

′
2 > 0 such that for every 1 ≤ i ≤ m,

(4.1) c′1 max

{
1,

(
1

r

)d−ε}
≤ Nr(Λ), Nr(Λi) ≤ c′2 max

{
1,

(
1

r

)d+ε}
.

Let I and Ii be the hulls of Λ and Λi respectively (i.e. the smallest
closed intervals containing the respective sets). The union of boxes Ri :=

Qi × Ii provides a natural first level approximation of Λ̂. The kth level

approximation of Λ̂ is the union of all boxes Rω1,...,ωk := Sω1,...,ωk(Rt(ωk)).
Since

Λ̂ i =
⋃

(ω1,...,ωk)∈Σk
s(ω1)=i

Sω1,...,ωk(Λ̂ t(ωk))

we have

Λ̂ ⊂
⋃

(ω1,...,ωk)∈Σk
Rω1,...,ωk .

The dimensions of the box Rω1,...,ωk are 2−(K+k)×2−(K+k)×λω1,...,ωk ·|It(ωk)|.
Therefore,

M2−(K+k)(Rω1,...,ωk ∩ Λ̂) = N2−(K+k)(λω1,...,ωkΛt(ωk))

= N2−(K+k)(λω1,...,ωk
)−1(Λt(ωk)).

By the definition of our GIFS (see Subsection 2.2), the projections of the
boxes Rω1,...,ωk to the xy plane are distinct dyadic squares whose union is
the unit square. Thus we can sum over all possible sequences ω1, . . . , ωk and
use (4.1) to obtain

(4.2) c′1 max
{

#Σk, 2(k+K)·(d−ε) ·
∑

(ω1,...,ωk)∈Σk
λd−εω1,...,ωk

}

≤M2−(K+k)(Λ̂)

≤ c′2
(

#Σk + 2(k+K)·(d+ε) ·
∑

(ω1,...,ωk)∈Σk
λd+ε
ω1,...,ωk

)
.

We claim that

lim
k→∞

1

k
log #Σk = log 4.

In fact, consider the m ×m matrix B = [bi,j ]i,j≤m defined by bij := #Eij.
Let Bk = [b

(k)
ij ]i,j≤m. It is well known that #Σk =

∑
i,j≤m b

(k)
ij . So,

1

k
log #Σk =

1

k
log

∑

i,j≤m
b
(k)
ij → log %(B) = log 4,
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where the last equality follows from the fact that every row sum of B is four
(the out-degree of every vertex in Γ is four), hence the spectral radius of B
equals 4.

Now we take the logarithm in (4.2), divide by k log 2, and pass to the
limit to obtain

c′3 max

{
2, d− ε+

1

log 2
log %(Ad−ε)

}
≤ 1

log 2
lim
k→∞

1

k
logM2−(K+k)(Λ̂)

≤ c′4 max

{
2, d+ ε+

1

log 2
log %(Ad+ε)

}
,

where we used the fact that for β > 0,

lim
k→∞

1

k
log

∑

(ω1,...,ωk)∈Σk
λβω1,...,ωk

= log %(Aβ).

Since ε > 0 is arbitrary,

dimB Λ̂ = max

{
2, d+

log(Ad)

log 2

}
,

as desired.

Proof of Theorem 2. By Theorem 1, d(t) = dimH Λ
t = min{1, α} for

almost all t ∈ R`, where α is such that %(Aα) = 1. If α ≥ 1, then d(t) = 1
for a.e. t ∈ R`, and Proposition 1 implies (2.5). If α < 1, then for a.e. t ∈ R`
we have

d(t) +
log %(Ad(t))

log 2
= α+

log %(Aα)

log 2
= α < 1 < 2,

so dimB Λ̂
t = 2 by Proposition 1. On the other hand, %(A1) ≤ %(Aα) = 1,

since β 7→ %(Aβ) is decreasing, hence the right-hand side of (2.5) equals 2
as well.
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