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S-unimodal Misiurewicz maps with flat critical points

by

Roland Zweimüller (London)

Abstract. We consider S-unimodal Misiurewicz maps T with a flat critical point c
and show that they exhibit ergodic properties analogous to those of interval maps with
indifferent fixed (or periodic) points. Specifically, there is a conservative ergodic absolutely
continuous σ-finite invariant measure µ, exact up to finite rotations, and in the infinite
measure case the system is pointwise dual ergodic with many uniform and Darling–Kac
sets. Determining the order of return distributions to suitable reference sets we obtain
bounds on the decay of correlations and on wandering rates. Assuming some control of
the local behaviour of T at c, we show that in most cases, e.g. whenever the postcritical
orbit has a Lyapunov exponent, the tail of the return distribution is in fact regularly
varying, which implies various distributional limit theorems.

1. Introduction. While the dynamics of one-dimensional dynamical
systems with nonflat critical points has been the object of intense study, it
seems that little attention has been paid to the case of flat tops (i.e. critical
points where all derivatives of the map vanish). The only references I am
aware of are [BM] and [Th]. The purpose of the present note is to point
out that maps with flat tops do have some very interesting ergodic proper-
ties when regarded as nonsingular transformations with respect to Lebesgue
measure λ and can in fact be interpreted as generalizations of transforma-
tions with indifferent fixed (or periodic) points. The latter class of systems
has recently attracted a lot of attention. In the probability preserving situ-
ation, their slow mixing behaviour and its probabilistic consequences have
been investigated by several authors (see e.g. [LSV], [Hu], [Yo], [Sa], [Ho],
or [Z2]), while the infinite measure case constitutes one of the most popular
families of examples in infinite ergodic theory (cf. [A0], [A2], [T1]–[T4], [Z1]).
Here we advertise maps with flat tops as a class of systems which consider-
ably extends the supply of examples exhibiting these features. The reason
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for their weak hyperbolicity is not as obvious as in the case of neutral fixed
points, which of course makes them even more interesting. Roughly speak-
ing, the critical point has a (usually nonperiodic) “indifferent orbit” along
which the expansion of the system is very poor.

Throughout, λ will denote one-dimensional Lebesgue measure, and B
will be the Borel σ-field of the space under consideration. We consider S-
unimodal interval maps T : [a, b]→ [a, b], i.e. C3 maps with a unique critical
point c ∈ (a, b), T ′c = 0, such that Ta = Tb = a, for which the Schwarzian
derivative ST := T ′′′/T ′ − 3

2(T ′′/T ′)2 is nonpositive (with ST (c) = −∞).

The critical point is said to be flat if T (n)(c) = 0 for all n ≥ 1. A map T
is said to be a Misiurewicz map if there is some open interval IM around
c such that cn := Tnc 6∈ IM for n ≥ 1, and if T has no sinks (open in-
tervals homeomorphically mapped into themselves by some iterate of T ).
It is well known that full families of unimodal maps contain uncountably
many Misiurewicz maps (see e.g. the combinatorial characterization we use
in Section 5 below). In the present paper we shall restrict our attention to
the Misiurewicz case, which is a natural nontrivial starting point for an in-
vestigation of finer ergodic properties of unimodal maps with flat tops. Of
course, one should expect suitably weakened conditions on the recurrence
behaviour of the critical orbit to be sufficient for the results to follow, but
it seems worthwile to expose the effects of flat tops in a setup with limited
technical difficulties.

Example 1 (A basic family of examples). Fix any p > 0, s > p+ 1, and
define Ta = Ta,(p,s) : [−1, 1]→ [−1, 1], a ∈ (0, 1], by

Ta(x) := 2a · (1− es(1−|x|−p)/p)− 1.

We shall see below that the Misiurewicz maps from this family in many
respects resemble the behaviour of maps with indifferent fixed points xT of
the form Tx = x+ const · (x− xT )1+p + o((x− xT )1+p) near xT .

As a warm-up, we will show in the next section that systems of this type
always have σ-finite absolutely continuous invariant measures (acims):

Theorem 1 (Invariant measures for Misiurewicz maps). Every S-uni-
modal Misiurewicz map T is ergodic with respect to λ and has a conser-
vative σ-finite invariant Borel measure µ � λ. The measure µ is finite iff�

log |T ′| dλ > −∞.

By ergodicity, µ is unique up to a constant factor, and Lebesgue a.e.
point is eventually mapped into the support of µ. If µ is finite, we will
always assume it to be normalized.

Remark 1. Existence and basic properties of finite absolutely contin-
uous invariant measures for (not necessarily unimodal) Misiurewicz maps
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with nonpositive Schwarzian derivative, and log |T ′| ∈ L1(λ) (also shown to
be a necessary condition in the presence of the others), have been proved
in [BM]. Needless to say, we will repeatedly use arguments similar to those
of [Mi] and [BM]. In [Th] even a Jakobson-type result for certain families of
S-unimodal maps with flat tops and log |T ′| ∈ L1(λ) (including the family
of Example 1 for p < 1/8) is established.

Example 2 (Continuation of Example 1). The Misiurewicz maps T =Ta
from the family of Example 1 preserve a probability measure µ� λ provided
that p < 1. For p ≥ 1 the acim µ is infinite, but still conservative ergodic.

Below we are going to explore some finer ergodic properties of the mea-
sure preserving systems thus obtained.

2. Preliminaries on the Schwarzian derivative, piecewise mono-
tonic and induced systems. Proof of Theorem 1. We recall some
important concepts, and collect a few fundamental results that will be used
subsequently. Although we use (almost) the same notations and conventions
as in [Z1], we include the relevant definitions for the reader’s convenience.

The Schwarzian derivative and the Koebe principle. Recall first that
ST ≤ 0 implies S(Tn) ≤ 0 for all n ≥ 1. As observed in [Mi], a C3 function
T which has no critical point in an open interval J satisfies ST ≤ 0 on J iff
1/
√
|T ′| is convex on J . Let I ⊆ J be a subinterval; then J is said to contain

a δ-scaled neighbourhood of I if J \ I consists of two components, each of
length at least δλ(I). The above characterization of ST ≤ 0 implies the all
important Koebe principle providing us with good distortion control:

(1) Let I ⊆ J be open intervals and assume that T ∈ C3(J) satisfies
ST ≤ 0 and has no critical point in J . If T (J) contains a δ-scaled
neighbourhood of T (I), then

sup
x,y∈I

∣∣∣∣
T ′x
T ′y

∣∣∣∣ ≤
(

1 + δ

δ

)2

.

Piecewise monotonic systems. A piecewise monotonic system is a triple
(X,T, ξ), where X is the disjoint union of some countable family ξ0 of open
intervals, ξ is a collection of nonempty pairwise disjoint open subintervals
(the cylinders of rank one) with λ(X\⋃ ξ) = 0, and T : X → X is a
map such that T |Z is continuous and strictly monotonic for each Z ∈ ξ.
Given such a system, we let ξn denote the family of cylinders of rank n,
that is, the nonempty sets of the form Z = [Z0, . . . , Zn−1] :=

⋂n−1
i=0 T

−iZi
with Zi ∈ ξ. We let VZ := (Tn|Z)−1 be the inverse of the branch T n|Z . We
denote by ∂ξ the collection of endpoints of members of ξ. The fundamental
partition ξ and the system (X,T, ξ) are said to be Markov if TZ ∩ Z ′ 6= ∅
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implies Z ′ ⊆ TZ whenever Z,Z ′ ∈ ξ. In this case the image partition T∗ξ
(i.e. the coarsest partition into intervals with respect to which each TZ,
Z ∈ ξ, is measurable) is coarser than ξ. We write ξn(x) for the member
of ξn containing the point x. If x is the common endpoint of two cylinders
from ξn, we denote them by ξn(x−) and ξn(x+) respectively.

First-return maps and induced systems. Let T be a nonsingular trans-
formation of some σ-finite measure space (X,B, λ). Consider a recurrent
set Y ∈ B, i.e. one for which Y ⊆ ⋃

n≥1 T
−nY mod λ. (If in fact X =⋃

n≥1 T
−nY mod λ, then Y is called a sweep-out set.) Then the first re-

turn time function ϕY given by ϕY (x) := min{n ≥ 1 : T nx ∈ Y } is fi-
nite a.e. We define the induced or first-return map TY : Y → Y mod λ by
TY x := TϕY (x)x. The nth return time on Y is then given by

ϕY,n(x) :=
n−1∑

k=0

ϕY (T kY x).

If µ is a measure on B with 0 < µ(Y ) <∞, we let µY denote its normalized
restriction to Y : µY (A) := µ(Y )−1µ(A ∩ Y ). Generally, objects associated
with the induced map will notationally be identified by the subscript Y .
We will repeatedly use the well known intimate relation between the basic
ergodic properties of T and TY (see e.g. [T2] or Lemma 1 of [Z1]).

Suppose that (X,T, ξ) is a piecewise monotonic system and consider
some recurrent set Y ⊆ X. Assume that Y is the union of some finite family
ξY,0 of disjoint open subintervals of X, measurable ξ mod λ. We define the
induced partition of ξ on Y to be

ξY :=
⋃

n≥1

{{ϕ = n} ∩ Z ∩ T−nM : Z ∈ ξn, M ∈ ξY,0}.

We see that TY is piecewise monotonic, and ξY is its natural partition into
intervals on which it is continuous and monotonic. We shall call (Y, TY , ξY )
the system which (X,T, ξ) induces on Y .

Some basic properties of S-unimodal maps. Henceforth T : [a, b]→ [a, b]
will be some S-unimodal map with critical point c. If T has no sinks, Theo-
rem 1.2 of [Mi] implies that

(2) the partition ξ = {(a, c), (c, b)} generates.

Also, T has good expansion properties as long as we stay away from the
critical point: The proof of Theorem 1.3 of [Mi] shows that

(3) for any neighbourhood J of the critical point c there are % > 1 and
K > 0 such that for all x ∈ [a, b] and n ≥ 1, from x, Tx, . . . , T n−1x 6∈ J
it follows that |(T n)′(x)| > K · %n.
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Together with a standard distortion argument this reveals that

(4) λ
( n−1⋂

k=0

T−kJc
)

is exponentially small in n,

and in particular that

(5) every neighbourhood J of c is recurrent and sweeps the space.

These observations are enough to prove the existence of a unique conserva-
tive ergodic σ-finite acim for Misiurewicz maps by inducing.

Definition 1. Given an S-unimodal Misiurewicz map T , we fix as a
reference set the interval Y = Y (T ) := ξn(c−) ∪ {c} ∪ ξn(c+) ⊂ IM where
n ∈ N is so large that δ := dist(Y, Ic

M) > 0 and dist(TY, IM) > 0 (recall
(2)).

Proof of Theorem 1. By (5), it is possible to induce on Y = Y (T ), and
we claim that

(6) the induced system (Y, TY , ξY ) is piecewise surjective and has bounded
distortion, i.e. there is some δM > 0 such that

sup
n≥1

x,y∈W∈ξY

∣∣∣∣
(Tn)′(x)

(Tn)′(y)

∣∣∣∣ ≤
(

1 + δM
δM

)2

.

It is straightforward to check that (Y, TY , ξY ) is piecewise onto. Moreover,
each branch TY |W , W ∈ ξY , is the restriction to W of some branch T k|Z ,
Z ∈ ξk, of T with image T kZ covering IM and hence containing a δM-
scaled neighbourhood of Y = TYW , where δM := δ/λ(Y ) does not depend
on W . By the Koebe principle (1), the induced system therefore has bounded
distortion.

Hence some iterate of TY is uniformly expanding and, by folklore results,
TY is exact and preserves a probability measure µY � λ with Lipschitz con-
tinuous density hY satisfying log hY ∈ L∞(Y ). By standard results (see e.g.
Lemma 1 of [Z1], or [T2]), µY extends to some σ-finite T -invariant measure
µ� λ on X, and since Y sweeps X (cf. (5)), there are no other acims for T .
The characterization of finiteness of µ is immediate from Theorems 1 and 4
of [BM] (see also Remark 3 below).

Remark 2. Applying the Koebe principle relative to IM to small inter-
vals (x, y) in Y shows that the induced system (Y, TY , ξY ) in (6) in fact has
the Gibbs property in the sense of [A0], [AD1].

3. Return distributions, decay of correlations, and a central
limit theorem. In the Misiurewicz case it is easy to determine the order
of the tail of the return distribution to our reference set Y = Y (T ) ⊂ IM.
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To formalize this, we need a few more notations. Let T be some S-unimodal
Misiurewicz map and recall that VZ0 = (T |Z0)−1 and VZ1 = (T |Z1)−1 denote
the two inverse branches of T . Define U(x) := c1−T (x−c), x ∈ [a−c, b−c],
and Vi : [0, c1 − a] → [0,∞) as Vi(y) := |VZi(c1 − y)− c|, which transforms
the singularity to the origin, so that the behaviour of the Vi at zero describes
the type of the critical point. (Of course, if T is symmetric about c, then
V0 = V1.) Since ST ≤ 0, there is some δV > 0 such that

(7) the Vi are strictly concave on [0, δV ],

(cf. Lemma 3 of [BM]). We let V := V0 + V1.

Proposition 1 (Asymptotic order of the return distributions). Let T
be an S-unimodal Misiurewicz map. There are constants Kl,Ku > 0 and
ql, qu ∈ (0, 1) such that for n sufficiently large,

Kl · V (qnl ) ≤ µY (Y ∩ {ϕY > n}) ≤ Ku · V (qnu).

In particular , if c is flat , µY (Y ∩{ϕY > n}) does not decrease exponentially
fast.

Proof. We have Y ∩ {ϕY > n} = Y ∩ T−1(
⋂n−1
j=0 T

−jY c), n ≥ 1. As

ST ≤ 0 and T ′(c) = 0, there is some ε > 0 such that for any set M with
λ(M) < ε we have

λ(Zi ∩ T−1M) ≤ λ(Zi ∩ T−1(c1 − λ(M), c1)) = Vi(λ(M)), i ∈ {0, 1}.
Recalling (4) we therefore see that there is some qu ∈ (0, 1) such that for n
sufficiently large,

λ(Zi ∩ {ϕY > n}) ≤ Vi
(
λ
( n−1⋂

j=0

T−jY c
))
≤ Vi(qnu).

Since the invariant density h = dµ/dλ is bounded away from 0 and∞ on Y ,
the upper estimate follows. To prove the lower estimate, consider the subset
of
⋂n−1
j=0 T

−jY c consisting of those points which closely follow the critical

orbit all along, i.e. Mn :=
⋂n−1
j=0 T

−j{x : |x − cj+1| < δ}, n ≥ 1, where

δ := dist(Y, Ic
M) > 0 as in the proof of Theorem 1. The Mn are intervals

adjacent to c1, and therefore λ(Zi ∩ T−1Mn) = Vi(λ(Mn)). However, as T ′

is bounded, λ(Mn) cannot decrease faster than at some fixed exponential
rate, and the argument is completed as before. Finally, if the critical point
is flat, we have xr = o(V (x)) as x → 0 for every r ∈ (0, 1), and hence
γn = o(V (qn)) as n→∞ for any γ, q ∈ (0, 1).

Remark 3 (Finiteness of the invariant measure). Since in any case we
have 0 < µ(Y ) < ∞, Kac’s formula ensures that µ is finite iff the return
time distribution of Y has finite expectation, that is, iff

∑
n≥0 µY (Y ∩

{ϕY > n}) < ∞. Together with (7), Lemmas 1 and 2 of [BM] and our
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proposition show that the latter is equivalent to integrability of any of the
functions log |T ′| and log |T − T (c)|. We thus recover Theorem 4 of [BM]
using the existence of a unique σ-finite acim rather than their Lemma 11.

Example 3 (Continuation of Example 1). Fix p > 0, s > p+1, a ∈ (0, 1],
and consider T := Ta. Then

Vi(y) =

(
−p
s

log

(
y

2aes/p

))−1/p

, i ∈ {0, 1},

so that for any K > 0 and q ∈ (0, 1), Vi(Kq
n) ∼ [p(− log q)/s]−αn−α as

n→∞, where α := p−1. Consequently, µY (Y ∩ {ϕY > n}) ≈ n−α.

Together with the observation (6), these bounds on the tail weights en-
able us at once to apply the results on mixing rates for towers above well
mixing transformations established in [Yo]. We let P : L1(λ) → L1(λ) de-
note the transfer (or Perron–Frobenius) operator of T with respect to λ,
which is characterized by�

Pu · g dλ =

�
u · (g ◦ T ) dλ

for u ∈ L1(λ) and g ∈ L∞(λ), and extends to quasi-integrable functions u
by a straightforward approximation procedure. Given an interval I, we let
H(I) denote the family of (uniformly) Hölder continuous functions on I.

If ν is a probability measure on the measurable space (X,A) and (Rn)n≥1

is a sequence of measurable real functions on X, distributional conver-
gence of (Rn)n≥1 with respect to ν to some random variable R will be

denoted by Rn
ν

=⇒ R. Strong distributional convergence Rn
L(λ)
=⇒ R on

the σ-finite measure space (X,A, λ) means that Rn
ν

=⇒ R for all prob-
ability measures ν � λ. If T is a nonsingular ergodic transformation on

(X,A, λ), a compactness property implies that if Rn ◦ T − Rn λ−→ 0, then

Rn
L(λ)
=⇒ R as soon as Rn

ν
=⇒ R for some ν � λ (compare Section 3.6 of

[A0], or [A1]). Specifically, this applies if T is not completely dissipative and

Rn = b−1
n Sn(f) = b−1

n

∑n−1
k=0 f ◦ T k, n ∈ N, for some f ∈ L1(λ) and suitable

normalization (bn)n≥1.

Theorem 2 (Rates of mixing, decay of correlations, and CLT). Let T
be an S-unimodal Misiurewicz map. Assume that V(t) := V (e−t) = O(t−α)
for some α > 1 (hence µ is finite).

(a) For any probability density u ∈ H(Y ),

‖Pnu− h‖L1(λ) = O(n1−α) as n→∞,
and for any f ∈ L∞(λ) and g ∈ H(Y ),∣∣∣

�
f(g ◦ Tn) dµ− µ(f)µ(g)

∣∣∣ = O(n1−α) as n→∞.
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(b) If α > 2, then for any f ∈ H(Y ),

1√
n

n−1∑

k=0

(f ◦ T k − µ(f))
L(λ)
=⇒ N (0, σ(f)),

with σ(f) > 0 iff f 6= g ◦ T − g for g measurable.

Example 4 (Continuation of Example 1). Recalling Example 3, we see
that nV(n) ∼ const · n1−α, and the CLT applies if p < 1/2.

Proof of Theorem 2. According to our assumption on V, Proposition 1
implies µY (Y ∩ {ϕY > n}) ≈ v(t). We apply the abstract mixing theorm of
[Yo]. The induced system (Y, TY , ξY ) on our reference set Y = Y (T ) is Rényi
and hence satisfies the assumptions on the return map FR in the abstract
framework of [Yo]. The results of this paper are formulated for the Kakutani
tower (Z, S) above (Y, TY ) with height function ϕ, i.e. Z := {(y, k) ∈ Y ×N :
k ≤ ϕ(y)} and S(y, k) = (y, k + 1) if k < ϕ(y) and S(y, ϕ(y)) = (TY y, 1).
As this tower is always injective outside its roof {(y, ϕ(y)) ∈ Z}, it does not
represent the general system (X,T ) with induced map (Y, TY ) and return
time ϕ. However, it is easily seen that the bounds on the rates of mixing
and the CLT apply to any such system, since in an obvious way (X,T ) is
always a factor of (Z, S).

Remark 4. Theorem 2 of [Sa] shows that in many situations the bounds
given in [Yo] are sharp if µY (Y ∩ {ϕY > n}) ≈ n−α with α > 2. This, too,
applies in our setup, since it is easily seen that the return time function ϕ
is aperiodic.

Remark 5. The extension of Young’s results to the case of slowly vary-
ing orders given in [Ho] also applies in our situation.

4. Tail field, pointwise dual ergodicity, uniform convergence,
and Darling–Kac sets. Recall that T is said to be exact with respect
to λ if for any set A from its tail σ-field B∞ :=

⋂
n≥0 T

−nB either A or Ac

has zero Lebesgue measure. Below we shall prove

Theorem 3 (Finite tail field). S-unimodal Misiurewicz maps T are
Lebesgue exact up to a finite rotation.

The main result of the present section, which (though not void in the
finite measure case) is mainly of interest in the infinite measure preserving
situation, concerns the asymptotic behaviour of the transfer operator. If µ
is infinite, then exactness implies that limn→∞

�
A Pnu dλ = 0 for all u ∈

L1(λ) and A ∈ B with µ(A) < ∞ (cf. [T3]). It is then natural to consider
suitably normalized iterated densities in order to compensate this escape of
mass. Again, we obtain a result which is analogous to what we know about
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transformations with indifferent fixed points (cf. [T3] and Theorem 9 of [Z1]).
In the latter situation the obvious family of good sets of finite measure
consists of those which are bounded away from the neutral fixed points.
Hardly surprising, the collection E(T ) := {M ⊆ X : dist(M, {cn}n≥1) > 0}
plays a similar role in the present setup. Notice that by boundedness of X,
any set A ∈ E(T ) is contained in some finite union of intervals from E(T ).

Theorem 4 (Uniform convergence of averaged iterated densities). Let
T be an S-unimodal Misiurewicz map. Then the invariant density has a
version h with h ∈ D(I) ∩ L∞(λ) for all intervals I ∈ E(T ), and there is
some sequence (an(T ))n≥1 in R+ (an = n if µ is finite, and an = o(n)
otherwise) such that for any Riemann-integrable function u,

1

an(T )

n−1∑

k=0

Pku→ λ(u) · h as n→∞,

uniformly on members of E(T ).

A conservative ergodic measure preserving transformation (cempt) T on
a σ-finite space (X,B, µ) is called pointwise dual ergodic (cf. [A1] or Section
3.7 in [A0]) if there are positive constants an(T ), n ≥ 1, such that

(8)
1

an(T )

n−1∑

k=0

Tkf → µ(f) a.e. as n→∞ for all f ∈ L1(µ),

where T : L1(µ) → L1(µ) is the dual operator of T , that is, the transfer
operator with respect to the invariant measure µ, characterized by

�
X Tu ·

f dµ =
�
X u · f ◦ T dµ for u ∈ L1(µ), f ∈ L∞(µ). (By Hurewicz’s ergodic

theorem, cf. [A0, Section 2.2], this holds as soon as the convergence in (8)
takes place for one function f ∈ L1(µ), µ(f) 6= 0.) The sequence (an(T ))n≥1

which is then uniquely determined up to asymptotic equivalence is called
the return sequence of T . We let U(T ) denote the family of uniform sets,

i.e. those B ∈ B on which a−1
n

∑n−1
k=0 Tkf converges uniformly (mod µ) for

some f ∈ L+
1 (µ).

Whenever T is a cempt of (X,B, µ), a set B ∈ B with 0 < µ(B) <∞ is

called a Darling–Kac set if for some sequence (an) in R+, a−1
n

∑n−1
k=0 Tk1B

converges uniformly (mod µ) on B. The mere existence of Darling–Kac sets
is a rather strong qualitative mixing property for infinite measure preserving
transformations, and in particular implies pointwise dual ergodicity (with
return sequence (an), cf. Proposition 3.7.5 of [A0]).

As the invariant density h of T is bounded away from zero and infinity
on members of E(T ), and Tu = h−1P(hu), Theorem 4 implies:

Corollary 1 (Pointwise dual ergodicity, uniform sets, and DK sets).
Let T be an S-unimodal Misiurewicz map. Then T is pointwise dual ergodic
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with E(T ) ⊆ U(T ), and any B ∈ E(T ) satisfying λ(∂B) = 0 is a Darling–Kac
set for T .

According to Theorem 10 of [Z1], the collection of Darling–Kac sets can-
not be too large, which also shows that there is no way to extend Theorem 4
to all Lebesgue-integrable functions u.

Remark 6 (Existence of Darling–Kac sets by Aaronson’s method). Let
us point out that an alternative quick proof of (pointwise dual ergodicity
and) the fact that T has Darling–Kac sets can be given by applying Lemma
3.7.4 of [A0] to our reference set Y = Y (T ) (compare also [A2]). The ad-
vantage of our approach is that it provides us with still more uniform and
Darling–Kac sets.

The main ingredient for the proof of Theorems 3 and 4 are the nice
ergodic properties common to Markovian piecewise monotonic systems with
nonpositive Schwarzian derivative. We are going to exploit these via suitable
Markov extensions.

Canonical Markov extensions. Let (X,T, ξ) be a piecewise monotonic
system. For n ≥ 0 define Mn := {T kZ : Z ∈ ξk, 0 ≤ k ≤ n} and M :=⋃
n≥0Mn. (All members ofM are thus connected sets.) ForB ∈ M, let B̂ :=

{(x,B) : x ∈ B}, M̂n := {B̂ : B ∈ Mn} and M̂ :=
⋃
n≥0 M̂n. Finally let

X̂ :=
⋃
B∈M B̂ =

⋃M̂. The map T̂ given by T̂ (x,B) := (Tx, T (B ∩ ξ(x)))

is well defined a.e. on X̂, and for m ≥ 1 we have

T̂m(x,B) = (Tmx, Tm(B ∩ ξm(x)))

(cf. [K1]). The natural projection π : X̂ → X, π(x,B) := x is onto and

satisfies π ◦ T̂ = T ◦ π. Letting ξ̂ := M̂ ∨ π−1ξ we obtain a system (X̂, T̂ , ξ̂)
which is Markov by construction and satisfies the definition of a piecewise
monotonic system. It is called the canonical Markov extension (CME) of

(X,T, ξ). Concerning topology and measures, X̂ will be regarded as the sum

of the spaces B̂ for B ∈ M. One-dimensional Lebesgue measure thereon will

again be denoted by λ. Observe that the image partition T̂∗ξ̂ equals M̂. If M

is some object (point, cylinder, or image interval) belonging to M̂n \M̂n−1,

then we say it is on level n, and write Λ(M) := n. Notice that Λ◦ T̂ ≤ Λ+1.
Notice also that the construction strongly depends on the choice of ξ. It

can also change if we refine ξ0 by removing a single point from X. Therefore

it is important to always keep in mind that T̂ does not only depend on T
but on the whole ensemble (X,T, ξ). On the other hand, we can systemati-
cally exploit this flexibility to choose particularly convenient extensions by
refining the partitions ξ0 and ξ. We will do so in Section 4 below (see also
Section 4 of [Z1]). Given two partitions η, η′ of X, we define η ./ η′ to be the
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coarsest partition of X into subintervals which refines η and η′. In general,
this is finer than η ∨ η′.

The transfer operators P and P̂ respectively associated with T and T̂

are also closely related to each other. For û : X̂ → [0,∞) measurable and

(π∗û)(x) :=
∑

π(x̂)=x û(x̂) we have π∗(P̂û) = P(π∗û). (π∗ is just the transfer

operator of π.) Given u : X → [0,∞) we define its lift to the base of (X̂, T̂ , ξ̂)

to be the function û vanishing on X̂∩{Λ ≥ 1} for which π∗û = u. Sometimes
a convenient way to see that an acim µ̂ for the CME projects onto an acim
µ of T is to use the fact that

(9) if there is some Y ⊆ X such that µ̂(π−1Y ) <∞, then µ := µ̂ ◦ π−1 is
a σ-finite acim for T,

which is easily seen by inducing on Y and π−1Y .

Function spaces for Markov systems with nonpositive Schwarzian de-
rivative. As shown in [Mi], the transfer operator of a map with nonpositive
Schwarzian derivative preserves certain convenient function spaces. This has
been exploited systematically for Markovian situations in §2 of [K2]. For an
open interval J we let D(J) denote the family of all continuous functions
u : J → (0,∞) for which 1/

√
u is concave, together with the constant func-

tion u = 0. Assume now that (X̂, T̂ , ξ̂) is a Markov system with nonpositive

Schwarzian derivative, and consider the cone D̂ := {û ∈ C(X̂) : û|
D̂
∈ D(D̂)

for all D̂ ∈M}. Then (X̂, T̂ , ξ̂, λ, D̂) is a regular Markov system in the sense
of [K2], meaning that

(10) if û ∈ D̂ and Ẑ ∈ ξ̂k then P̂k(1
Ẑ
û) ∈ D̂,

(11) D̂ is closed in the topology of uniform convergence on compact sub-
sets (u.c.s. convergence),

(12) D̂ − D̂ is dense in L1(X̂, λ),

(13) for all D̂ ∈ M and all compact K ⊆ D̂, the set {log û|K : û ∈ D̂} is
equicontinuous.

As a consequence,

(14) if û ∈ D̂, then P̂nû ∈ D̂ ∪ {∞} for n ≥ 0.

In particular, Theorem 1 of [K2] applies to our CME, showing that its basic
ergodic structure is quite nice.

More on distortion properties of Markov systems with nonpositive Schwa-
rzian derivative. Let us point out that systems of this type also fit into the
framework of Markov maps with distortion properties as studied in [A0].
(This also offers an alternative approach to the structure theorem of [K2].)
Specifically,
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(15) if (X̂, T̂ , ξ̂) is a conservative Markov system with nonpositive Schwa-

rzian derivative, then, slightly refining ξ̂, it has the weak distortion
property in the sense of [A0, §4.3].

To see this, assume without loss of generality that (X̂, T̂ , ξ̂) is conservative

ergodic. The higher-order dynamical partitions ξ̂m, m ≥ 1, are also Markov

for T̂ , and we may choose m so large that there is an image interval B = T̂ V ,

V ∈ ξ̂, which contains a δ-scaled neighbourhood, δ > 0, of some cylinder Z ∈
ξ̂m. Refining the partition once again, we let η̂ := ξ̂m ./ T̂−1{Z,Zc}, and ob-

serve that (X̂, T̂ , η̂) again is a Markov system. Define r := {W ∈ η̂n : n ≥ 1,

T̂nW = Z}; then, by ergodicity, r exhausts our space,
⋃

r = X̂ mod λ, and

for W ∈ r we obviously have V ∩ T̂−nW ∈ r ∪ {∅} for any V ∈ η̂n, n ≥ 1.
Together with the Koebe principle (1) this shows that r satisfies the defin-

ing properties of a Schweiger collection for (X̂, T̂ , η̂) (cf. [A0, §4.3]), whose
existence is asserted by the weak distortion property.

Theorem 4.4.7 of [A0] now ensures that the conservative ergodic system

(X̂, T̂ , η̂) is exact if its incidence graph is aperiodic, and hence that in the
general case it is the product of an exact system and a finite rotation. It is
easily seen that this extends to systems with a dissipative part, so that we
find that

(16) any ergodic Markov system (X̂, T̂ , ξ̂) with nonpositive Schwarzian
derivative, not totally dissipative, is exact up to a finite rotation,

which will lead to the corresponding statement for S-unimodal maps.
Below we are going to apply these observations to a CME of our S-

unimodal Misiurewicz map T . However, we won’t just take the CME of
(X,T, ξ) with ξ = {(c2, c), (c, c1)}. The following trick reveals that in the
Misiurewicz case the theorem is an easy corollary of the Markovian re-
sults.

Lemma 1 (Towers trivializing Misiurewicz intervals). Let (X,T, ξ) be a
piecewise monotonic system and assume that the open interval I ⊆ X is
(contained in some B ∈ ξ0 and) measurable with respect to some ξn, n ∈ N,
and disjoint from the orbits of points from ∂ξ. Refine ξ0 and ξ by letting
ξ′0 := ξ0 ./ {I, Ic}, X ′ :=

⋃
ξ′0, and ξ′ := ξn ./ T

−1{I, Ic}. Then the CME

(X̂ ′, T̂ , ξ̂′) of (X ′, T, ξ′) is trivial above I in that π−1I = π−1I ∩ {Λ = 0} =
I × {I}.

Proof. Replacing ξ1 by ξn if necessary, we may assume without loss
of generality that n(I) = 1. ξ′0 is the collection of connected components
of X ′ and contains I. Any (higher-order) cylinder Z ′ ∈ ξ′n is of the form

Z ′ =
⋂n−1
k=0 T

−kZ ′k, Z
′
k ∈ ξ′, n ≥ 1, with Z ′k = Zk ∩ T−1Jk, where Zk ∈ ξ

and Jk ∈ ξ′0. Since all J ∈ ξ′0 are measurable ξ′, we see that in fact Z ′ =
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Z ∩ T−nJn−1 with Z :=
⋂n−1
k=0 T

−kZk. By assumption, however, T nZ either
covers I or is disjoint from it, and our assertion follows.

We are now ready to prove the main results of this section.

Proof of Theorems 3 and 4. Recall that by boundedness of X and the
fact that ξ generates (cf. (2)), for any M ∈ E(T ) there is a finite collection
I of open intervals I ∈ E(T ), each measurable ξn for some n ≥ 1, such that
cl(M) ⊂ ⋃ I. Therefore it is enough to consider the case where cl(M) is
contained in a single open interval I ∈ E(T ) measurable ξn. We refine ξ
as in the preceding lemma, ξ′ := ξn ./ T

−1{I, Ic}, and take a closer look

at the CME (X̂ ′, T̂ , ξ̂′) of (X ′, T, ξ′). Theorem 1 of [K2] applies to describe
the possible types of ergodic behaviour of this Markov extension, and the
following arguments are based on its conclusions.

Assume that µ(I) > 0 (e.g. I := Y = Y (T )). By Theorem 1, I is a

sweep-out set for (X,T ). In turn, Î := π−1I is a sweep-out set for the CME,

showing that µ̂(Î) > 0 for any acim µ̂ of T̂ , hence ĥ := dµ̂/dλ is strictly

positive on Î in this case, since necessarily ĥ ∈ D̂ by Theorem 1 of [K2]. As

Î is recurrent, there is at least one µ̂, and its restriction µ̂|Î is an acim for

the induced map T̂
Î
. The trivial projection µ̂|

Î
◦ π−1 therefore is an acim

for TI and thus equals (some multiple of) µ|I . This shows that µ̂ is unique
up to a constant factor, and hence ergodic. We also see that h ∈ D(I) for
any interval I ∈ E(T ), and passing to a slightly larger one which covers
cl(I), we conclude that h is also bounded on I. According to (9), we have
µ̂ ◦ π−1 = µ on X if (from this point on) we normalize µ̂ appropriately.
It is easy to see that since π is nonsingular with respect to λ, exactness

of T̂m implies exactness of Tm, and applying (16) to (X̂ ′, T̂ , ξ̂′), we obtain
Theorem 3.

Theorem 1 in [K2] also shows that the cempt T̂ on (X̂,B, µ̂) is pointwise

dual ergodic with return sequence given by âI,n := λ(Î)
∑n−1

k=0 P̂k1
Î
(x0),

n ≥ 1, where x̂0 ∈ Î is fixed. Moreover, although this assertion is not
made explicit in the statement of that result, it is shown in its proof that

letting Ûn :=
∑n−1

k=0 P̂kû, n ≥ 1, we have â−1
I,nÛn → λ(û) · ĥ uniformly

on compact subsets of X̂ whenever û ∈ D̂ ∩ L1(X̂, λ). Using the trivial

projection Î → I this immediately implies that â−1
I,n

∑n−1
k=0 Pku → λ(û) · h

u.c.s. on I for u := π∗(û). Recalling (10), we see that this applies in particular

to P̂j û whenever û is the lift of some ξ′j-simple function u to the base of the
tower. Therefore,

1

âI,n

n−1∑

k=0

Pku→ λ(u) · h u.c.s. on I
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for such u, and since ξ generates, a straightforward sandwich argument
enables us to extend this to Riemann-integrable functions u on X.

To check that the normalizing sequence (âI,n)n≥1 does not depend on I,
we only have to recall that Proposition 3.7.6 of [A0] ensures that the factor

(X,T, µ) of the pointwise dual ergodic system (X̂ ′, T̂ , ξ̂′) is pointwise dual
ergodic as well, and has the same return sequence.

If µ(I) = 0, we consider the same type of extension (X̂ ′, T̂ , ξ̂′) as before,

and it is clear that Î = π−1I belongs to the dissipative part. Hence (as

the iterated densities are in D̂), for ξ′j-simple functions u,
∑n−1

k=0 Pku =∑n−1
k=0 P̂kû is uniformly summable on compact subsets of I, implying the

assertion in this case.

5. More on the return distribution. Regular variation. We let
T be some fixed S-unimodal Misiurewicz map and consider our reference
set Y = Y (T ) with first return (resp. entrance) time function ϕ(x) :=
inf{n ≥ 1 : Tnx ∈ Y }, x ∈ X. We are interested in finer asymptotic
properties of the distribution of ϕ under µY . Specifically, we would like to
improve the estimates of Proposition 1 and determine the asymptotics of
the tail probabilities µY (Y ∩ {ϕ > n}) rather than just their order of mag-
nitude. Of course, the most interesting situation is that of regularly varying
tails, which is the very property leading to fine probabilistic properties (cf.
Sections 7 and 8 below). Recall that a real-valued function a is regularly
varying of index % ∈ R at infinity if for any c > 0, limt→∞ a(ct)/a(t) = c%

(cf. [BGT]). The collection of functions of this type will be denoted by R%.
We shall interpret sequences (an)n≥1 as functions via t 7→ a[t]. Proposition 1
suggests that we can hardly expect the tail to be regularly varying unless
V (e−t) is. The following result shows that this condition is also sufficient if
the critical orbit behaves well.

Theorem 5 (Lyapunov exponent and tail of the return distribution).
Let T be an S-unimodal Misiurewicz map, let V(t) := V (e−t) and assume
that V ∈ R−α for some α > 0 (hence c is flat). If (n−1 log |(Tn)′(c1)|)n≥1

∈ R0, then

(17) µY (Y ∩ {ϕ > n}) ∼ hY (c) · V(log |(T n)′(c1)|)
as n→∞, where hY is the normalized invariant density on Y . In particular ,
if the postcritical orbit has a Lyapunov exponent

λc := lim
n→∞

1

n
log |(Tn)′(c1)| ∈ (0,∞),

then

(18) µY (Y ∩ {ϕ > n}) ∼ λ−αc hY (c) · V(n).
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In the next section we will discuss in which sense existence of λc is typical
for Misiurewicz maps. Notice that if T is symmetric about c, then V = 2U−1,
and V ∈ R−α iff its inverse V−1(t) = − logU(t/2) belongs to R−1/α.

Example 5 (Continuation of Example 1). For our standard example,
V(t) ∼ 2[pt/s]−α ∈ R−α with α = 1/p. Hence, whenever T = Ta is a Misiu-
rewicz map for which λc exists, then µY (Y ∩ {ϕ > n}) ∼ 2(pλc/s)

−αhY (c) ·
n−α as n→∞.

In the proof of Theorem 5 we will refine the arguments which led to
Proposition 1. As a preparation for this (and for the material in the next
section), we introduce a few more notations, most of them related to the
image process of our system. We let X denote the interval [a, b] which T
is initially defined on (so that T (∂X) ⊆ ∂X). The corresponding natural

partition is ξ = {Z0, Z1} = {(a, c), (c, b)}. Define D̃1 := X, and let

D̃n+1 =

{
T (D̃n) if c 6∈ D̃n,

T (Ẽn) if c ∈ D̃n,

where Ẽn is the component of D̃n containing cn. Then D̃n := Tn−1ξn(c1)

for n ≥ 2. Similarly, letting D1 := (c2, c1) ⊆ D̃1 and, for n ≥ 1, defining
Dn+1 := (c1, cn+1) if c ∈ Dn and Dn+1 := T (Dn) otherwise, we have Dn ⊆
D̃n, n ≥ 1. (The D̃n form the extended Hofbauer tower, while the ordinary
Hofbauer tower is given by the Dn.) Let J := T (Z0∩IM)∩T (Z1∩IM), which
is a nondegenerate open interval, and nJ := min{j ≥ 1 : c ∈ T jJ} <∞. We
shall use the easy observation that

(19) if T is Misiurewicz, then each Dn (n ≥ 1) contains some T jJ , j ∈
{1, . . . , nJ}.

The indices n for which c ∈ Dn are called cutting times, and the in-
creasing (and for general unimodal maps possibly terminating) sequence of
integers they form is denoted by (Sk)k≥0 (so that S0 = 1). If Sk and Sk−1

exist, the difference Sk − Sk−1 is again a cutting time, and this leads to the
definition of the kneading map Q : N→ N ∪ {∞} via Sk−Sk−1 = SQ(k) and
Q(k) :=∞ if there are less than k cutting times. Similarly, the n for which

c ∈ D̃n \Dn are the consecutive co-cutting times S̃k, k ≥ 0, and differences

S̃k − S̃k−1, if well defined, are again cutting times S
Q̃(k)

, which defines the

co-kneading map Q̃ : N→ N ∪ {∞} with Q̃(k) :=∞ if there are less than k
co-cutting times. We shall use the fact (cf. [B1, p. 98]) that

(20) T is a Misiurewicz map iff Q̃ (and hence also Q) is bounded.

The proof of the theorem requires more information about the distortion
properties of T : The map T has bounded distortion along the postcritical
orbit, and V has bounded distortion on geometrically scaled intervals.



16 R. Zweimüller

Lemma 2 (Distortion properties of T ). Let T be an S-unimodal Misiu-
rewicz map.

(a) There is some δ̃ > 0 such that

(21) (cn − 2δ̃, cn + 2δ̃) ⊆ Tnξn(c1) for n ≥ 0.

In particular , the restrictions of T n to ξn(c1) ∩ T−n(cn − δ̃, cn + δ̃)
have uniformly bounded distortion by the Koebe principle.

(b) For any r ∈ (0, 1), V has uniformly bounded distortion on intervals
of the form (rt, t) with t > 0.

Proof. (a) We mentioned before (cf. (19)) that the Dn-part of D̃n has a
certain positive mimimum length, so that we need only consider the length

of the other component D̃n\Dn of D̃n\{cn}. It is enough to prove (21) along
some subsequence of N with bounded gaps, since the intermediate steps are
then given by a finite number of restricted branches of T i of bounded distor-

tion. The subsequence we use is that of the co-cutting times S̃k introduced

above, which by (20) has bounded gaps. At these times n = S̃k, D̃n \ Dn

covers IM, and hence has some definite minimal length.
(b) It is enough to consider the Vi, i ∈ {0, 1}, separately. The distortion

of a diffeomorphism between open intervals equals that of its inverse. The
inverse of Vi, defined on some (0, η), has nonpositive Schwarzian derivative
and hence uniformly bounded distortion on intervals which map into some
(rt, r), t > 0, by the Koebe principle.

Proof of Theorem 5. We are going to show that the tail probabilities are
determined by the probabilities to stay close to the postcritical orbit for a
long time. Since T itself need not be expanding outside Y , we study the
shadowing set of c1 under a suitable iterate T s. For ε > 0 and n ≥ 1 we
let U(n, ε) := Dn ∩ (cn − ε, cn + ε) be the one-sided ε-neighbourhood of cn
in Dn. Take K > 0 and % > 1 as in (3) for J := Y , fix some s ∈ N so large

that K%s > 2, and define δE := δ̃(supX |T ′|)−s with δ̃ as in Lemma 2(a),

without loss of generality δ̃ < dist(Y, Ic
M). For any n ≥ 1 then,

(22)
T iU(n, δE) ⊆ U(n+ i, δ̃) if 0 ≤ i ≤ s,

U(n+ s, 2δE) ⊆ T sU(n, δE) ⊆ U(n+ s, δ̃).

Letting Y ∗1 := U(1, δE) and Y ∗n+1 := Y ∗n ∩T−nsU(ns, δE), n ≥ 1, we obtain a
decreasing sequence of neighbourhoods of c1 in Y ∗0 := TY . Observe that Y ∗n
is the n-δE-shadowing set of c1 under T s, and the first part of (22) shows
that the intermediate iterates T ks+ix, x ∈ Y ∗n , 0 ≤ i < s, at least belong to

the sets U(ks+ i, δ̃). Therefore Y ∗0 ∩ {ϕ ≥ ns} ⊇ Y ∗n , n ≥ 1, and hence

(23) µY (Y ∩{ϕ > ns}) ≥
�

Y ∩T−1Y ∗n

hY dλ ∼ hY (c)·V (λ(Y ∗n )) as n→∞.
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The upper bound for the tail probabilities requires a bit more work. We
are going to prove the following counterpart to (23): For any γ ∈ (0, 1) there

are K̃ > 0 and q̃ ∈ (0, 1) such that

(24) µY (Y ∩ {ϕ > ns}) ≤ un(γ) + K̃ · q̃n for n ≥ 1,

where un(γ) := µY (Y ∩ T−1Y ∗γn) ∼ hY (c) · V (λ(Y ∗γn)) as n → ∞. The
differences E∗n := Y ∗n \ Y ∗n+1, n ≥ 0, contain the points which escape from

the δE-neighbourhood of the orbit (T ksc1)k≥1 at step n. Notice also that

(25) TnsE∗n ⊆ U(ns, δ̃) is an interval of length larger than δE ,

since by (22) it contains U(ns, 2δE)\U(ns, δE). Together with (4) this lower
bound for the lengths easily yields a uniform exponential bound on the
tails of the conditional entrance-distributions to Y on the T nsE∗n: There are
Kϕ > 0 and qϕ ∈ (0, 1) such that

(26) λTnsE∗n(TnsE∗n ∩ {ϕ ≥ j}) ≤ Kϕ · qjϕ for n, j ≥ 1.

Since Y ∗0 = Y ∗n ∪
⋃n−1
k=0 E

∗
k , for n ≥ 1, we find that for any γ ∈ (0, 1),

Y ∗0 ∩ {ϕ ≥ ns} = Y ∗n ∪
n−1⋃

k=0

(E∗k ∩ {ϕ ≥ ns})(27)

⊆ Y ∗γn ∪
γn⋃

k=0

(E∗k ∩ {ϕ ≥ ns}),

and we take a closer look at the right-hand union of sets. Observing that
E∗k ∩ {ϕ ≥ ns} = E∗k ∩ T−ks{ϕ ≥ (n − k)s}, and recalling (25), we apply

the second part of Lemma 2(a) to the restrictions T ks|E∗k , k ≥ 1, to see that
there is some κ ≥ 1 such that

λ(E∗k ∩ {ϕ ≥ ns}) ≤ κλ(E∗k)λT ksE∗k
(T ksE∗k ∩ {ϕ ≥ (n− k)s})

≤ κKϕλ(E∗k) · (qsϕ)n−k,

where the second step uses (26). Our construction furthermore ensures that
there is some r ∈ (0, 1) such that

(28) each E∗n is of the form E∗n = (cn− t, cn− qt) or E∗n = (cn + qt, cn + t)
with q ∈ (r, 1) and t > 0.

Together with Lemma 2(b), this shows that there is some κ̃ ≥ 1 such that

µ(Y ∩ T−1(E∗k ∩ {ϕ ≥ ns}))
≤ κ̃(sup

Y
hY ) · λ(Y ∩ T−1E∗k) · λE∗k (E∗k ∩ {ϕ ≥ ns})

≤ κκ̃Kϕ (sup
Y
hY )λ(Y ) · (qsϕ)n−k.
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Therefore, letting K̃ := κκ̃Kϕ (supY hY )λ(Y )/(1− qsϕ) > 0 and q̃ := q
s(1−γ)
ϕ

∈ (0, 1), we have
γn∑

k=0

µ(Y ∩ T−1(E∗k ∩ {ϕ ≥ ns})) ≤ K̃ · q̃n for n ≥ 1.

Combining this with (27) we obtain (24).
In view of the final statement of Proposition 1, (23) and (24) show that

the asymptotic behaviour of λ(Y ∗n ) as n → ∞ is decisive. As δE < δ̃ and
Y ∗n = (Tns|ξns(c1))

−1U(ns, δE), the second part of Lemma 2(a) shows that
there is some D > 1 such that for all n ≥ 1,

λ(Y ∗n ) = dnλ(Y ∗1 )/|(Tns)′(c1)| with dn ∈ (D−1,D),

and hence

V (λ(Y ∗n )) = V(log |(T ns)′(c1)| − log(dnλ(Y ∗1 ))) ∼ V(log |(T ns)′(c1)|)
as n → ∞ since (log(dnλ(Y ∗1 )))n≥1 is a bounded sequence. From (3) we
know that log |(T ns)′(c1)| ≈ n and hence V (λ(Y ∗n )) ≈ V(n) in any case.

Since the regularly varying function V has an asymptotic inverse V−1 ∈
R−1/α (cf. [BGT, Theorem 1.5.12]), we conclude that

(29) (V (λ(Y ∗n )))n≥1 ∈ R−α iff (log |(Tns)′(c1)|)n≥1 ∈ R1.

(And V (λ(Y ∗n )) cannot be regularly varying of a different order.) In this
case, taking γ arbitrarily close to 1, we find that

µY (Y ∩ {ϕ > n}) ∼ hY (c) · V(log |(T n)′(c1)|)
(since the contributions log |(T i)′(cns)|, 0 < i < s, of the intermediate steps
are bounded.)

6. Existence of the postcritical Lyapunov exponent. The purpose
of the present section is to show that in a reasonable sense “most” Misiu-
rewicz maps from a full family have a postcritical Lyapunov exponent λc. Let
T be a unimodal map. Recall that the itinerary of the point x is the sequence
ν(x) = (ν(x)i)i≥1 ∈ {0, C, 1}N with ν(x)i = 0 if T i−1x < c, ν(x)i = C if
T i−1x = c, and ν(x)i = 1 if T i−1x > c. Most important, the kneading
invariant of T is the itinerary of its critical value c1, ν(T ) := ν(c1). In any
case, ν(T )0 = 1 and ν(T )1 = 0 unless the dynamics is trivial. There are
various characterizations of those admissible sequences ν ∈ {0, 1}N which
actually occur as the kneading invariant of some unimodal map, and we
shall use a criterion from [B1], [B2] based on the kneading maps.

Given any symbol sequence ν = ν1ν2 . . . ∈ {0, 1}N starting with 1, there
is a well defined splitting beginning at the second digit:

ν = 1414243 . . . ,
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where each4j is a basic block, meaning that it agrees with an initial segment
of ν except for the last symbol, i.e. 4i = e1 . . . em−1em = ν1 . . . νm−1ν

′
m,

where ν ′m = νm + 1 mod 2. Letting κ := min{i ≥ 1 : νi = 1}, we obtain the
co-splitting of ν which starts at the κ+ 1st digit:

ν = 10 . . . 014̃14̃24̃3 . . . ,

where again the 4̃j are basic blocks. Based on this construction, we define

the cutting and co-cutting times of ν by S0 := 1, Sk := S0 +
∑k

j=1 |4j|, and

S̃0 := κ, S̃k := S̃0 +
∑k

j=1 |4̃j|, where for any block � of symbols we let |�|
denote its length. Bruin’s admissibility condition now states that

(30) ν is admissible iff the differences Sk −Sk−1 and S̃k − S̃k−1 of consec-
utive cutting and co-cutting times are again cutting times,

in which case the kneading and co-kneading maps Q, Q̃ : N → N of ν are

well defined by Sk − Sk−1 = SQ(k) and S̃k − S̃k−1 = S
Q̃(k)

, k ≥ 1, and

agree with the (co-)kneading maps of any unimodal map T with ν(T ) = ν
(and the same is true for the (co-)cutting times). Recalling (20), we call an

admissible ν ∈ {0, 1}N a Misiurewicz kneading sequence if Q̃ is bounded,

which is equivalent to supj≥1 |4̃j | <∞.

Proposition 2 (For typical Misiurewicz kneadings λc exists). Let µσ
be any invariant Borel probability measure for the shift σ on {0, 1}N. If the
Misiurewicz kneading sequence ν is a typical point for µσ, then λc exists for
any S-unimodal map T with kneading invariant ν.

Proof. Fix some T with ν(T ) = ν. As ν is typical for µσ, its orbit O(ν) :=
(σnν)n≥0 is dense in the closed subshift Ω := supp(µσ) ⊆ {0, 1}N. We lift
the potential log |T ′| to Ω by first defining it on the orbit via ψ(σnν) :=
log |T ′(cn+1)|, n ≥ 0. Now ψ|O(ν) is easily seen to be uniformly continuous
and hence extends to a unique uniformly continuous function ψ on Ω. Since
ν is typical for µσ, we have

lim
n→∞

1

n

n−1∑

k=0

ψ(σnν) = lim
n→∞

1

n
log |(Tn)′(c1)| = µσ(ψ).

It remains to check that the concept of being typical for some shift-
invariant probability is not void inside the comparatively small collection of
Misiurewicz kneading sequences. We do so by showing that the latter essen-
tially contains (for example) the golden mean subshift Σ := {ω ∈ {0, 1}N : ω
does not contain a block of two or more zeros}, which has positive topo-
logical entropy htop(σ|Σ) = log((1 +

√
5)/2). Hence there is a rich supply of

invariant measures of positive entropy that live on Misiurewicz sequences.
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Proposition 3 (Golden mean subshift gives Misiurewicz kneadings).
For any ω ∈ Σ,

ν := 100111ω

defines a Misiurewicz kneading sequence.

Proof. From the given initial block ν1 . . . ν6 = 100111 we read off that

S0 = 1, S1 = 2, S2 = 3, κ = S̃0 = 4, 41 = 42 = 0, and 43 = 4̃1 = 11, so

that ν1 . . . ν6 = 14142431 = 10014̃1 in compliance with (30). To prove our
claim, we show inductively that whenever we add blocks of the form � = 1
or � = 01 to our initial piece (which produces all sequences in Σ), we obtain

a sequence ν whose basic blocks 4i and 4̃j from the (co-)splitting above
belong to {0, 11, 101} =: B so that ν has bounded kneading and co-kneading
maps.

Assume then that for some n ≥ 6,

(31) ν1 . . . νn = 141 . . .4i1 = 10014̃1 . . . 4̃j

with basic blocks from B. Adjoining � = 1 we obtain

ν1 . . . νnνn+1 = 141 . . .4i4i+1 = 10014̃1 . . . 4̃j1

with 4i+1 = 11 ∈ B. Similarly, if instead we add � = 01, we get

ν1 . . . νnνn+1νn+2 = 141 . . .4i4i+1 = 10014̃1 . . . 4̃j4̃j+11

with 4i+1 = 101 and 4̃j+1 = 0 both in B. In any case, we are again in the
situation of (31) with the roles of splitting and co-splitting interchanged,
and we can continue with our construction.

7. More on limit distributions if µ is finite. Regular variation
often is the key to questions about limit distributions and enables us to go
beyond the regime of the classical CLT. Again we consider occupation times
of the reference set Y = Y (T ), thus asking for the asymptotic distributional
behaviour of the ergodic sums

Sn(1Y ) =
n−1∑

k=0

1Y ◦ T k, n ≥ 1.

By now we are prepared to expect results analogous to those we have for
maps with indifferent fixed points, and we will in fact see that the same
method as in [Z2] applies to provide us with stable limit theorems. To for-
mulate the result, we need to recall the limit laws we have to expect.

A real-valued random variable R (respectively its distribution) is called
stable (cf. [AD1] or [IL]) if for all a, b > 0 there are c > 0 and d ∈ R such that

aR+bR∗ d
= cR+d, where R∗ is an independent copy of R and R

d
= S means

equality of distributions. In this case aα+ bα = cα for some α ∈ (0, 2], called
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the order of R. Up to translation and scaling, any stable random variable
of order α ∈ (1, 2], which is the case of interest to us, belongs to the family
(Ξα,β)α∈(1,2], β∈[−1,1] of variables, indexed by the order α and the skewness
parameter β, and uniquely determined by their characteristic functions

(32) E[eitΞα,β ] = e−|t|
α(1−iβsgn(t) tan(απ/2))/2.

(For α = 2 this is the standard normal distributionN (0, 1).) The following is
the counterpart to the CLT we obtained in the case α > 2 as a consequence
of the rate of mixing (cf. Theorem 2).

Theorem 6 (Stable limit distributions for occupation times). Let T be
an S-unimodal Misiurewicz map for which λc := limn→∞ n−1 log |(Tn)′(c1)|
∈ (0,∞) exists.

(a) If V(t) := V (e−t) ∈ R−2 and
� ∞
1 V(

√
t) dt = ∞, then there is some

B ∈ R1/2 such that

(33)
1

B(n)

( n−1∑

k=0

1Y ◦ T k − nµ(Y )
) L(λ)

=⇒ µ(Y ) · N (0, 1),

where B is specified by t`(B(t)) ∼ B(t)2 with `(t) := λ−2
c h(c) ·� t

1 V(
√
s) ds.

(b) If V(t) := V (e−t) ∈ R−α for some α ∈ (1, 2), then there is some
B ∈ R1/α such that

(34)
1

B(n)

( n−1∑

k=0

1Y ◦ T k − nµ(Y )
) L(λ)

=⇒ µ(Y ) ·Ξα,1.

Here B(t) := −Γ (1−α) cos(απ/2)h(c)1/αλ−1
c · V−1(1/t) with V−1 ∈

R−1/α asymptotically inverse to V.

Example 6 (Continuation of Example 1). Recall that V(t) ∼ 2[pt/s]−α

as t→∞.

(a) If p = 1/2, then
� t
1 V(
√
s) ds ∼ 2(s/p)2 log t → ∞, and the theorem

applies with `(t) = 2h(c)[s/(pλc)]
2·log t andB(t)=[(s

√
h(c))/(pλc)]·√

t log t.
(b) If p ∈ (1/2, 1), then (34) holds with B(t) = −Γ (1 − α) cos(απ/2) ·

(2h(c))1/α[s/(pλc)] · t1/α.

Proof of Theorem 6. We use the same device as in [Z2] and consider the
centred observable f c := 1Y − µ(Y ) and its induced version f c

Y : Y → R,

f c
Y :=

∑ϕ−1
k=0 f

c ◦ T k. Notice that f c
Y = 1− µ(Y )ϕ, which is bounded above

and by Theorem 5 satisfies

µY ({f c
Y < −n}) ∼ µY ({ϕ > n/µ(Y )}) ∼ (µ(Y )/λc)

αhY (c) · V(n).
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By Remark 2, (Y, TY , ξY ) is a Gibbs–Markov map in the sense of [A0], [AD1],
and [AD2], and clearly ϕ and f c

Y are measurable ξY .

(a) Divergence of
� ∞
1 V(

√
t) dt just means that

�
Y ϕ

2 dµY = ∞, and by
regular variation of the tail, the distributions of ϕ and f c

Y are in the “non-
normal” domain of attraction of the normal law (cf. [IL, Theorem 2.6.2]).
Applying the last corollary of [AD2], we see that

1

B(n/µ(Y ))

n−1∑

k=0

f c
Y ◦ T kY

µY=⇒ µ(Y ) · N (0, 1),

with B as in the statement of the theorem. Proposition 2 of [Z2] now gives

1

B(n)

n−1∑

k=0

f c ◦ T k L(µ)
=⇒ µ(Y ) · N (0, 1),

which easily extends to
L(λ)
=⇒ convergence, thus proving (33).

(b) Theorem 6.1 of [AD1] applies and provides us with a normalizing
function B ∈ R1/α such that

1

B(n/µ(Y ))

n−1∑

k=0

f c
Y ◦ T kY

µY=⇒ µ(Y ) ·Ξα,1,

where B is as specified. Using Proposition 2 of [Z2] again, we end up with
(34).

8. More on wandering rates and limit distributions if µ is infi-
nite. In the infinite measure preserving case, too, regular variation of return
distributions is crucial for strong stochastic properties to hold. First of all,
it enables us to determine the asymptotics of wandering rates and return
sequences.

Recall (see e.g. Section 3.8 of [A0]) that the wandering rate of a set
E ∈ B, 0 < µ(E) < ∞, under a cempt T is the sequence defined by

wn(E) := µ(
⋃n−1
k=0 T

−kE) =
∑n−1

k=0 µ(E ∩ {ϕE ≥ k}), n ≥ 1. The wan-
dering rate depends on E, and, given T , there are no sets with maximal
rate. Still, T may have sets E with minimal wandering rate, meaning that
limn→∞wn(Z)/wn(E) ≥ 1 for all Z ∈ B, 0 < µ(Z) < ∞. If this is the
case, we let W(T ) ⊆ A denote the collection of sets which have minimal
wandering rate under T , and simply write (wn(T ))n≥1 for any sequence rep-
resenting the asymptotic equivalence class of such (wn(E)), which is then
referred to as the wandering rate of T .

Theorem 7 (Wandering rates and return sequences). Suppose T is an
S-unimodal Misiurewicz map for which λc := limn→∞ n−1 log |(Tn)′(c1)| ∈
(0,∞) exists, and assume that V(t) := V (e−t) ∈ R−α for some α ∈ (0, 1].
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Then all E ∈ E(T ) have minimal wandering rate, and

(35) wn(T ) ∼ λ−αc h(c)
n−1∑

k=0

V(k) ∈ R1−α,

with
∑n−1

k=0 V(k) ∼ nV(n)/(1 − α) in case α < 1. Moreover , the return
sequence of T satisfies an(T ) ∼ [Γ (2− α)Γ (1 + α)]−1 · n/wn(T ) ∈ Rα.

Example 7 (Continuation of Example 1). Recalling that V(t) ∼
2[pt/s]−α, we find that

wn(T ) ∼ 2h(c)

(
s

pλc

)α
·
{

logn if p = 1,

n1−α/(1− α) if p > 1,

and

an(T ) ∼ 2h(c)

Γ (2− α)Γ (1 + α)

(
s

pλc

)α
·
{
n/logn if p = 1,

(1− α)n−α if p > 1.

Proof. Consider Y = Y (T ). By Theorem 5, wn(Y ) =
∑n−1

k=0 µ(Y ∩
{ϕ > n})∼λ−αc h(c)

∑n−1
k=0 V(k). By Propositions 1.5.8 and 1.5.9(a) of [BGT],

the rightmost term always belongs toR1−α, and
∑n−1

k=0 V(k) ∼ nV(n)/(1−α)
if α < 1. Since, moreover, Y is a uniform set for T (cf. Corollary 1), Propo-
sition 3.8.7 of [A0] immediately gives the asymptotics of (an(T ))n≥1. Now
Theorem 3.8.3 of [A0] ensures that all uniform sets Y have the same (mini-
mal) wandering rate. (Notice that although this assertion is not stated there,
Theorem 3.8.3 of [A0] actually requires (an(T )) to be regularly varying; see
the corrections to [A0].)

Without any effort, we can now apply Corollary 3.7.3 of [A0] to obtain

Theorem 8 (Darling–Kac theorem). Let T be an S-unimodal Misiu-
rewicz map for which λc := limn→∞ n−1 log |(Tn)′(c1)| ∈ (0,∞) exists, and
assume that V(t) := V (e−t) ∈ R−α for some α ∈ (0, 1]. Then for any
f ∈ L1(µ) with µ(f) 6= 0,

1

an(T )
Sn(f) =

1

an(T )

n−1∑

k=0

f ◦ T k L(λ)
=⇒ µ(f) ·W (α),

where W (α) is a random variable having the normalized Mittag-Leffler dis-
tribution of order α, that is,

E[ezW
(α)

] =
∑

m≥0

Γ (1 + α)m

Γ (1 +mα)
zm.

Again, this applies to the Misiurewicz maps with λc ∈ (0,∞) from the
family of Example 1 (with the normalizations given in Example 7), and
f := 1Y , Y = Y (T ), thus completing the picture of the asymptotic behaviour
of occupation times of Y for the whole parameter range p ∈ R+.
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Remark 7 (Dynkin–Lamperti arcsin law). As another immediate proba-
bilistic consequence of Theorem 7, let us mention that the Dynkin–Lamperti
type arcsin law of Theorem 1 of [T4] applies to sets A ∈ E(T ) for any
S-unimodal Misiurewicz map T for which λc ∈ (0,∞) exists and V(t) :=
V (e−t) ∈ R−α for some α ∈ (0, 1].
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