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Less than 2ω many translates of a compact
nullset may cover the real line

by

Márton Elekes (Budapest) and Juris Steprāns (Toronto)

Abstract. We answer a question of Darji and Keleti by proving that there exists a
compact set C0 ⊂ R of measure zero such that for every perfect set P ⊂ R there exists
x ∈ R such that (C0 + x) ∩ P is uncountable. Using this C0 we answer a question of
Gruenhage by showing that it is consistent with ZFC (as it follows e.g. from cof(N ) < 2ω)
that less than 2ω many translates of a compact set of measure zero can cover R.

Introduction. The behaviour of the classical cardinal invariants in the
Cichoń diagram is very well described. See e.g. the monograph [BJ] for
definitions and details. We also follow the terminology of [BJ] throughout
the paper.

The invariant we are interested in is cov(N ), that is, the least cardinal
κ for which it is possible to cover R by κ many nullsets (sets of Lebesgue
measure zero), and also some variants of cov(N ). There are two natural ways
to modify this definition. (See [BJ, Chapter 2.6 and 2.7].) First, cov∗(N ) is
the least cardinal κ for which it is possible to cover R by κ many translates
of some nullset. In other words, cov∗(N ) = min{|A| | A ⊂ R, ∃N ∈ N ,
A +N = R}, where |A| is the cardinality of A, N is the σ-ideal of nullsets
and A + N = {a + n | a ∈ A, n ∈ N}. The other possible modification is
cov(cN ), which is the least cardinal κ for which it is possible to cover R by
κ many compact nullsets. (At this point we depart from the terminology of
[BJ] as this notion is denoted by cov(E) there.) It can be found in these two
chapters of this monograph that both cov∗(N ) < 2ω and cov(cN ) < 2ω are
consistent with ZFC.
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G. Gruenhage posed the natural question whether cov∗(cN ) < 2ω is
also consistent, that is, whether we can consistently cover R by less than
continuum many translates of a compact nullset.

The main goal of this paper is to answer this question in the affirmative
via an answer (in ZFC) to a question of U. B. Darji and T. Keleti that is
also interesting in its own right.

We remark here that under CH (the Continuum Hypothesis, or more
generally under cov(N ) = 2ω) the real line obviously cannot be covered
by less than 2ω many nullsets. Therefore it is consistent that the type of
covering we are looking for does not exist.

So the interesting case is when the consistent inequality cov∗(N ) < 2ω

holds. The nullset in this statement can obviously be chosen to be Gδ. So
the content of Gruenhage’s question actually is whether this can be an Fσ
or closed or compact nullset. We formulate the strongest version.

Question 0.1 (Gruenhage). Is it consistent that there exists a compact
set C ⊂ R of Lebesgue measure zero and A ⊂ R of cardinality less than 2ω

such that C +A = R?

For example Gruenhage showed that no such covering is possible if C is
the usual ternary Cantor set (see [DK], and also [GL] for another motivation
of this question).

Working on this question Darji and Keleti [DK] introduced the following
notion.

Definition 0.2 (Darji–Keleti). Let C ⊂ R be arbitrary. A set P ⊂ R is
called a witness for C if P is perfect and for every translate C + x of C the
set (C + x) ∩ P is countable.

Obviously, if there is a witness P for C then less than 2ω many translates
of C cannot cover P , so they cannot cover R. Motivated by a question of
D. Mauldin, who asked what can be said if C is of Hausdorff dimension
strictly less than 1, Darji and Keleti proved the following.

Theorem 0.3 (Darji–Keleti). If C ⊂ R is a compact set of packing
dimension dimp(C) < 1 then there is a witness for C, and consequently less
than 2ω translates of C cannot cover R.

They posed the following question, an affirmative answer to which would
also answer the original question of Gruenhage in the negative.

Question 0.4 (Darji–Keleti). Is there a witness for every compact set
C ⊂ R of Lebesgue measure zero?

We will answer this question in the negative, which still leaves the original
question of Gruenhage open. Then we will show that using the same ideas
it is also possible to give an affirmative answer to Gruenhage’s question.
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1. Answer to the question of Darji and Keleti. The following
set is fairly well known in geometric measure theory, as it is probably the
most natural example of a compact set of measure zero but of Hausdorff and
packing dimension 1. It was investigated for example by Erdős and Kakutani
[EK].

Definition 1.1. Define

C0 =

{ ∞∑

n=2

dn
n!

∣∣∣∣ dn ∈ {0, 1, . . . , n− 2} ∀n
}
.

Think of dn as digits with “increasing base”; then all but countably many
x ∈ [0, 1] have a unique expansion

x =
∞∑

n=2

xn
n!
,

where xn ∈ {0, 1, . . . , n− 1} for every n = 2, 3, . . .
The set of real numbers with prescribed first n digits is a closed interval.

Let us call these basic intervals of level n and denote this collection by Bn.
Let B =

⋃∞
n=0 Bn be the set of all basic intervals. So B forms a tree under

inclusion, the nth level of which is Bn, which consists of n! nonoverlapping
intervals of length 1/n!.

Using the above expansion it is easy to see that C0 ⊂ R is a compact set
of Lebesgue measure zero.

The following theorem answers the question of Darji and Keleti.

Theorem 1.2. For every perfect set P ⊂ R there exists a translate C0+x
of the compact nullset C0 such that (C0 + x) ∩ P is uncountable.

Proof. We will show that there exists a perfect set Q ⊂ P and y ∈ R
such that Q + y ⊂ C0. This is clearly sufficient, as then for x = −y we get
Q ⊂ (C0 +x)∩P , so this intersection is uncountable. First we will construct
Q via a dyadic tree of basic intervals, then we will construct the “digits”
of y.

By translating P if necessary we can assume that P intersects (0, 1/5!).
Instead of P we may as well work with any perfect subset of it, for if we find
the set Q inside this subset then this Q also works for P . So we may find
a perfect subset of P in [0, 1/5!] and therefore we can assume that P itself
is inside [0, 1/5!]. Moreover, as P is uncountable and the endpoints of the
basic intervals form a countable set, we can find a perfect subset of P that
is disjoint from the set of endpoints (we used here twice the well known fact
that every uncountable Borel set contains a perfect set). Therefore we can
assume that P itself is disjoint from the endpoints.

Now we recursively pick an increasing sequence of levels (lk)
∞
k=0 and for

every k choose a set Ilk ⊂ Blk of size 2k such that
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(1) for each I ∈ Ilk there are exactly two intervals in Ilk+1
(at level lk+1)

that are contained in I, the so-called successors of I,
(2) for each I ∈ Ilk we have I ∩ P 6= ∅,
(3) lk ≥ 2k+2 + 1.

The recursion is carried out as follows. Fix p0 ∈ P . Let l0 = 5, and at
level 5 we pick the (unique) basic interval I containing p0 in its interior. Let
Il0 = I5 = {I}. The recursion step is as follows. As P is disjoint from the
endpoints of the basic intervals, each interval I ∈ Ilk (at level lk) contains
some point pI ∈ P in its interior by condition (2). As P is perfect, we can
choose a distinct point p′I ∈ P in I. We can find a large enough n such that

the 2k+1 distinct points pI and p′I (I ∈ Ilk) are all separated by Bn. Define

lk+1 = max{n, 2k+3 + 1}.

Clearly, condition (3) is also satisfied.
Let Ilk+1

be the subcollection of Blk+1
consisting of the 2k+1 basic in-

tervals containing all the points pI and p′I (I ∈ Ilk). This recursion clearly
provides a system of intervals with the required properties.

Now we can define

Q =

∞⋂

k=0

⋃
Ilk .

Let us extend this tree of intervals to the intermediate levels in the
natural way, that is, for every I ∈ Ilk and successor J ∈ Ilk+1

and every
n ∈ (lk, lk+1) let us add to the tree the unique basic interval of level n that
is contained in I and contains J . For n = 2, 3, 4, 5 define In = {[0, 1/n!]}.
Hence we get In for every n = 2, 3, . . . so that

∞⋂

n=2

⋃
In =

∞⋂

k=0

⋃
Ilk = Q.

Our next goal is to define y =
∑∞

n=2 yn/n! so that Q + y ⊂ C0. Define
y2 = y3 = y4 = y5 = 0. For every n ≥ 6 there exists k such that lk < n ≤
lk+1. Clearly, the size of In is 2k+1, and Q ⊂ ⋃ In. This means that there are
at most 2k+1 possible values for qn, where q ∈ Q and q =

∑∞
n=2 qn/n! (we

do not have to worry about nonunique expansions, as Q ⊂ P so Q is disjoint
from the endpoints of the basic intervals). For every such qn there are at
most two values of m such that qn + m ∈ {n − 2, n − 1}. Hence altogether
there are at most 2 · 2k+1 such “bad” values, so if n− 1 > 2 · 2k+1 then we
can fix a yn ∈ {0, 1, . . . , n− 2} such that qn + yn /∈ {n− 2, n− 1} for every
possible qn. But our requirement on n and k, namely n − 1 > 2 · 2k+1, is
clearly satisfied as n > lk ≥ 2k+2 + 1 by condition (3).
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So we can define

y =
∞∑

n=2

yn
n!

so that for every n ≥ 6 we have yn ∈ {0, 1, . . . , n − 2} and that for every
q ∈ Q with q =

∑∞
n=2 qn/n! we have qn + yn /∈ {n− 2, n− 1}. We claim that

Q+ y ⊂ C0, which will complete the proof. Fix q ∈ Q with q =
∑∞

n=2 qn/n!;
then

q + y =
∞∑

n=2

qn + yn
n!

=
∞∑

n=2

qn + yn − nεn
n!

+
∞∑

n=2

nεn
n!

,

where εn is the “carried digit”, so

εn =

{
0 if qn + yn ≤ n− 1,

1 otherwise.

Continuing the above calculation we get

q + y =
∞∑

n=2

qn + yn − nεn
n!

+
∞∑

n=2

εn
(n− 1)!

=
∞∑

n=2

qn + yn − nεn
n!

+
∞∑

n=1

εn+1

n!

= ε2 +

∞∑

n=2

qn + yn − nεn + εn+1

n!
=

∞∑

n=2

qn + yn − nεn + εn+1

n!
,

since ε2 = 0 by e.g. y2 = 0. We now check that for every n ≥ 2 the numerator
qn + yn − nεn + εn+1 ∈ {0, 1, . . . , n− 2}, which shows that q + y ∈ C0. For
n < 6 this is clear, as yn = 0 and also qn = 0 by the assumption P ⊂ [0, 1/5!].
For n ≥ 6 recall that qn ≤ n− 1, yn ≤ n− 2, so qn + yn ≤ 2n − 3 and also
that qn + yn /∈ {n − 2, n − 1}. We separate the cases εn = 0 and εn = 1.
If εn = 0, then qn + yn ≤ n − 1, but then also qn + yn ≤ n − 3. Therefore
qn+yn−nεn+εn+1 = qn+yn+εn+1 ≤ n−2, and we are done. On the other
hand, if εn = 1, then qn + yn−nεn ≤ n− 3, so qn + yn−nεn + εn+1 ≤ n− 2,
so this case is also done. This completes the proof.

2. Answer to the question of Gruenhage. Now we answer the orig-
inal question of Gruenhage. Recall that cof(N ) is the minimal cardinality of
a family F ⊂ N for which every nullset is contained in some member of F .

Theorem 2.1. R can be covered by cof(N ) many translates of C0, and
consequently cov∗(cN ) ≤ cof(N ).

Proof. It is clearly sufficient to cover the unit interval.
Fix f : ω \ {0, 1} → ω \ {0}. A set of the form S =

∏∞
n=2An, where

An ⊂ {0, 1, . . . , n − 1} is of cardinality at most f(n) for every n, is called
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an f -slalom. Suppose limn→∞ f(n) = ∞, f(2) = f(3) = f(4) = f(5) = 1
and also that f(n) < (n− 1)/2 for every n ≥ 6. Combining [BJ, Thm. 2.3.9]
and [GL, Thm. 2.10] we obtain a cover of

∏∞
n=2{0, 1, . . . , n− 1} by cof(N )

many f -slaloms {Sα | α < cof(N )}. (We actually obtain a cover of ωω first,
which is a larger space, so it is trivial to restrict this cover to get a cover of∏∞
n=2{0, 1, . . . , n− 1}. Moreover, [BJ] works with inclusion mod finite, but

that makes no difference, as we can replace each slalom by countably many
slaloms to get around this difficulty.) For a slalom S define

S∗ =

{ ∞∑

n=2

sn
n!

∣∣∣∣ (sn)∞n=2 ∈ S
}
.

Clearly {S∗α | α < cof(N )} covers the unit interval. The following lemma
will complete the proof of the theorem.

Lemma 2.2. Let f be as above and S be an f -slalom. Then there exists
y ∈ R such that S∗ + y ⊂ C0.

Proof. The proof is based on the ideas used in Theorem 1.2. S∗ plays
the role of Q. Our goal is to define

y =
∞∑

n=2

yn
n!

with yn ∈ {0, 1, . . . , n − 2} so that for every (sn)∞n=2 ∈ S and for every
n ≥ 6 we have sn + yn /∈ {n − 2, n − 1}. But this is clearly possible by
our assumptions on f , as there are at most f(n) < (n− 1)/2 possibilities
for sn, hence there are two consecutive values excluded, and so we can find
a suitable yn ∈ {0, 1, . . . , n− 2}.

Then by the same calculation as in the last part of the proof of Theorem
1.2 we check that

∞∑

n=2

sn + yn
n!

∈ C0.

This completes the proof of the lemma.

Hence for every α < cof(N ) there exists yα such that S∗α + yα ⊂ C0;
but then for xα = −yα we have S∗α ⊂ C0 + xα, so we obtain a cover of the
unit interval by cof(N ) many translates of C0 and therefore the proof of
Theorem 2.1 is also complete.

Corollary 2.3. It is consistent that less than continuum many trans-
lates of a compact set of measure zero cover the real line, that is, cov∗(cN ) <
2ω is consistent.

Proof. cof(N ) is consistently less than the continuum [BJ, p. 388].
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3. Remarks and open problems. There are alternative ways to prove
Corollary 2.3. Using Theorem 1.2 one can directly use Sacks forcing to show
that the translates of C0 by the ground model reals cover R. Another method
is to use the so-called CPA axiom (see [CP]). However, in all these cases
cof(N ) is less than the continuum. This is not necessary, as in the Laver
model cof(N ) = 2ω = ω2 but it can be shown that the above slalom argu-
ment still works, that is, using the above f the space

∏∞
n=2{0, 1, . . . , n− 1}

can be covered by ω1 many f -slaloms in the Laver model. (This can be de-
rived from the so-called Laver property, see [BJ].) Therefore cov∗(cN ) is not
the same as cof(N ).

Question 3.1. Is cov∗(cN ) equal to one of the known cardinal invari-
ants?

Another natural question is the following. In most cases the values of
the classical cardinal invariants in the Cichoń diagram remain the same
if we replace R with an arbitrary (uncountable) Polish space. However, in
the case of cov∗(cN ) the situation is not clear. The authors were able to
reprove the results of this paper in the case of the Cantor group or more
generally for countable products of finite discrete groups equipped with the
Haar measure, but not in the general case.

Question 3.2. Can it be shown (without resorting to extra set theoretic
axioms) that there is an uncountable locally compact Polish group G with
Haar measure µ such that for every compact set C ⊂ G with µ(C) = 0 and
every A ⊂ G of cardinality less than 2ω we have C + A 6= G?

As for the cardinal invariants, even the following is open.

Definition 3.3. If G is an uncountable locally compact Polish group
with Haar measure µ then cov∗G(cN ) is the smallest cardinal κ for which
it is possible to find a compact set of µ-measure zero such that G can be
covered by κ many translates of it.

Question 3.4. Is it true that for any uncountable locally compact Polish
groups G1 and G2 we have cov∗G1

(cN ) = cov∗G2
(cN )?
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