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On certain regularity properties of Haar-null sets

by

Pandelis Dodos (Athens)

Abstract. Let X be an abelian Polish group. For every analytic Haar-null set A ⊆ X
let T (A) be the set of test measures of A. We show that T (A) is always dense and co-
analytic in P (X). We prove that if A is compact then T (A) is Gδ dense, while if A is
non-meager then T (A) is meager. We also strengthen a result of Solecki and we show that
for every analytic Haar-null set A, there exists a Borel Haar-null set B ⊇ A such that
T (A) \ T (B) is meager. Finally, under Martin’s Axiom and the negation of Continuum
Hypothesis, some results concerning co-analytic sets are derived.

1. Introduction and auxiliary lemmas. A universally measurable
subset A of an abelian Polish group X is called Haar-null if there exists
a probability Borel measure µ on X, called a test measure of A, such that
µ(x+A) = 0 for every x ∈ X. This definition is due to J. P. R. Christensen
[3] and extends the usual notion of a Haar-measure zero set. The complement
of a Haar-null set is called prevalent. The class of Haar-null sets has also
been considered by Hunt, Sauer and Yorke in [5]. They used the term shy
instead of Haar-null.

If X is locally compact, then a universally measurable set A is Haar-null
if and only if there exists a Borel Haar-null set B ⊇ A. In the non-locally
compact case the situation is different. As R. Dougherty observed in [4],
answering a problem of Mycielski (see [9]), assuming Continuum Hypothesis
(or just Martin’s Axiom) there exists a universally measurable set A which
is not contained in any Borel Haar-null set. However S. Solecki (see [11],
[12]) proved that if A is an analytic Haar-null set, then this can be done.

In this paper we are concerned with the properties of the set of test mea-
sures T (A) of an analytic Haar-null set A. We show that this set is always
dense and co-analytic in P (X) (by P (X) we denote the space of all probabil-
ity Borel measures on X endowed with the weak topology). If A is not mea-
ger and Haar-null, then we prove that T (A) is meager in P (X). On the other
hand we show that compact sets are tested by co-meager many measures.
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We also strengthen the above-mentioned result of Solecki. We prove that
for every analytic Haar-null set A, there exists a Borel Haar-null set B ⊇ A
such that T (A)\T (B) is meager in P (X). That is, almost every test measure
for A is a test measure for B. Actually, we prove a general theorem which
permits us to derive, besides the just mentioned result, an approximation
type result for analytic sets. The proof of this theorem is combinatorial in
nature.

Under stronger set-theoretic assumptions, in particular under Martin’s
Axiom and the negation of Continuum Hypothesis, we show that Π1

2 sets
still behave well at least with respect to translations over co-meager sets. We
also derive a reduction type result for analytic and co-analytic sets. Again,
under Martin’s Axiom and the negation of Continuum Hypothesis, we show
that for every analytic or co-analytic set A ⊆ X there exists a Borel set
B ⊆ A such that T (B) \ T (A) is meager in P (X). Finally, an application of
these ideas is given in the last section, in the theory of essentially smooth
Lipschitz functions.

Notations. In what follows, for any Polish space X, by P (X) we denote
(as we have already mentioned) the space of all Borel probability measures
on X. The set P (X) equipped with the weak topology becomes a Polish
space (see for instance [7, p. 112]). If d is a compatible complete metric
for X, then a compatible complete metric for P (X) is the so-called Lévy
metric %, defined by

%(µ, ν) = inf{δ ≥ 0 : µ(A) ≤ ν(Aδ) + δ and ν(A) ≤ µ(Aδ) + δ}
where Aδ = {x ∈ X : d(x,A) ≤ δ}. For every µ ∈ P (X) by suppµ we denote
the support of µ. All the other pieces of notation we use are standard (for
more information we refer to [7]).

Some auxiliary lemmas. Let X be an abelian Polish group. Given µ ∈
P (X) and x ∈ X, we define the measure µx ∈ P (X) by µx(A) = µ(x+ A)
for every Borel subset A of X.

Lemma 1. (i) For every µ ∈ P (X), the function x 7→ µx is continuous.
(ii) The function (µ, x) 7→ µx is (jointly) continuous.

Proof. Part (i) follows from Lebesgue’s dominated convergence theorem,
while (ii) follows from Theorem 9.14 in [7] and (i).

Lemma 2. Let ε ≥ 0. Then:

(i) If F ⊆ X is closed , then the set {(µ, x) ∈ P (X)×X : µ(x+F ) ≥ ε}
is closed in P (X)×X.

(ii) If B ⊆ X is Borel and µ ∈ P (X), then the set {x ∈ X : µ(x+B) > ε}
is Borel in X.
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Proof. (i) Recall that if F ⊆ X is closed, then the function µ 7→ µ(F )
is upper semicontinuous (see [7, p. 111]). As the composition of a contin-
uous function with an upper semicontinuous real-valued function is upper
semicontinuous, the result follows by Lemma 1(ii).

(ii) We recall that if B ⊆ X is Borel, then the function µ 7→ µ(B) is
Borel measurable (see [7, p. 112]). So the result follows by Lemma 1(i).

2. The set of test measures. In this section X will be an uncountable
abelian Polish group (locally or non-locally compact). For every universally
measurable set A ⊆ X we put

T (A) = {µ ∈ P (X) : µ(x+ A) = 0 for every x ∈ X}.
That is, T (A) is the set of all test measures of A. Clearly A is Haar-null
if and only if T (A) 6= ∅. The following simple fact will be useful in what
follows. The proof is trivial.

Lemma 3. Let (An)n be a sequence of universally measurable subsets
of X. Then T (A) =

⋂
n T (An), where A =

⋃
nAn.

We have the following estimate for the complexity of the set of test
measures of an analytic set.

Lemma 4. If A ⊆ X is analytic, then T (A) is a co-analytic subset of
P (X).

Proof. By Theorem 29.26 in [7], the set {(µ, x) ∈ P (X)×X : µ(x+ A)
= 0} is Π1

1 and the lemma follows.

Remark 1. If A is a co-analytic subset ofX, then it is also easily verified
that the set T (A) is Π1

2.

In the following proposition we state some properties of the set of test
measures.

Proposition 5. Let A ⊆ X be a universally measurable Haar-null set.
Then:

(i) T (A) is always dense in P (X).
(ii) If A is analytic non-meager , then T (A) is meager.
(iii) If A is σ-compact , then T (A) is co-meager.

Proof. (i) Fix a compatible complete metric d for X. For x ∈ X and
r ≥ 0, we put B(x, r) = {y ∈ X : d(x, y) ≤ r}. Recall that if D is a
countable dense subset of X, then the set of all convex combinations of Dirac
measures (δx)x∈D is dense in P (X) (see [7, p. 110]). So let ν =

∑l
i=1 aiδxi

and r > 0, where xi ∈ D and
∑l

i=1 ai = 1, with ai > 0. We will find
µ ∈ T (A) with %(ν, µ) < r. As r and ν were arbitrary, this will finish the
proof. Let r′ > 0 be small enough so that r′ < r and B(xi, r′)∩B(xj, r′) = ∅
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for every i, j ∈ {1, . . . , l} with i 6= j. It is easy to verify that for every
i ∈ {1, . . . , l} we may find a measure µi ∈ T (A) such that xi ∈ suppµi
and suppµi ⊂ B(xi, r′). Put µ =

∑l
i=1 aiµi. Then %(ν, µ) < r and clearly

µ ∈ T (A).
(ii) Let (xn)n be a countable dense subset of X and put B =

⋃
n(xn+A).

Then B is co-meager in X and moreover T (A) = T (B). Pick a dense Gδ

subset G of B. Note that T (A) ⊆ P (X) \ {µ ∈ P (X) : µ(G) = 1}. As
{µ ∈ P (X) : µ(G) = 1} is co-meager (see [7]), the result follows.

(iii) By Lemma 3, it is enough to show that if K ⊆ X is compact, then
T (K) is co-meager. We already know from (i) that T (K) is dense in P (X).
We will show that it is also Gδ. Let

A = {µ ∈ P (X) : ∃x ∈ X such that µ(x+K) > 0}.
Also, for every m ≥ 1, let

Am = {µ ∈ P (X) : ∃x ∈ X such that µ(x+K) > 1/m}.
Clearly A =

⋃
mAm. Then observe that T (K) = P (X) \ A. We will show

that for every m we have Am ⊆ A. This implies that A =
⋃
mAm and in

particular that T (K) is Gδ.
Fix m and let (µn)n ⊆ Am with µn → µ in P (X). We will show that

µ ∈ A. As µn ∈ Am, for every n there exists an xn ∈ X such that µn(xn+K)
> 1/m. Put D = (xn)n. We distinguish two cases.

First assume that D = D. In this case D is countable and closed. Put
F =

⋃
n(xn + K). Then, as K is compact, F is a closed subset of X. Also

note that for every n we have µn(F ) ≥ µn(xn +K) > 1/m. As µn → µ and
F is closed, we get

µ(F ) = lim supµn(F ) ≥ 1/m > 0.

From the fact that F is the countable union of the sets xn +K we conclude
that there exists an n such that µ(xn +K) > 0, which implies that µ ∈ A.

Now assume that D ⊃ D. In this case pick x ∈ D and a subsequence
(xnk)k of (xn)n such that xnk → x. Set L = {x} ∪ {xnk}k≥1 and put
F =

⋃
x∈L(x + K). Then F is closed (in fact compact). Note that the cor-

responding subsequence (µnk)k of µn still converges to µ. Arguing as before
we conclude that µ ∈ A and the proof is complete.

Remark 2. (a) The fact that T (A) is always dense in P (X) has been
proved implicitly by Christensen (see [1] or [3]).

(b) D. Preiss and J. Tǐser proved the existence of non-meager Haar-null
sets in all separable Banach spaces, with many remarkable additional
properties (see [10] or [1]).

(c) Note that part (iii) of Proposition 5 immediately implies that the
set of all non-atomic Borel probability measures of X is co-meager
in P (X).
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(d) We should point out that the converse implication of part (iii) of
Proposition 5 does not hold. For instance, every proper closed sub-
space of a separable Hilbert space is a Haar-null set (see [1, p. 130])
for which the set of test measures is co-meager. As a matter of fact it
can be shown that for every separable reflexive Banach space X and
every F ⊆ X weakly closed Haar-null set, the set T (F ) is co-meager
in P (X).

3. Covering analytic Haar-null sets. In [11], S. Solecki proved that
if A is an analytic Haar-null set and µ ∈ P (X) is a test measure of A, then
there exists a Borel Haar-null set B ⊇ A, also tested by µ. The aim of this
section is to show that the Borel set B may be chosen so that T (A) \ T (B)
is meager in P (X). In fact we are going to prove the following theorem.

Theorem 6. Let X be an abelian Polish group, r ≥ 0, A ∈ Σ1
1(X) and

Z ⊆ P (X) × X Borel , such that µ(x + A) ≤ r for every (µ, x) ∈ Z. Then
there exists a Borel set B ⊇ A such that µ(x+B) ≤ r for every (µ, x) ∈ Z.

Theorem 6 may be proved using the same arguments of Solecki (he used
reflection). We will give a different proof of this fact, combinatorial in nature.

Let Z ⊆ P (X)×X as in Theorem 6. Enlarge the topology on P (X)×X to
make Z clopen (see [7, p. 82]). Denote this topology by τ . Then Z equipped
with the τ topology becomes a Polish space. Fix a compatible complete
metric d for (Z, τ). Let also δ be a compatible complete metric for the
original topology of X. We make the following definition, crucial for the
proof.

Definition 7. Let A ⊆ X, ε ≥ 0 and F ⊆ Z. We will say that A is
(ε, F )-covered if there is a Borel set B ⊇ A such that µ(x+B) ≤ ε for every
(µ, x) ∈ F .

We will need the following two simple lemmas concerning (ε, F )-covered
sets. The first one is obvious.

Lemma 8. Let A ⊆ X, r ≥ 0 and F ⊆ Z. Then A is (r, F )-covered if
and only if A is (ε, F )-covered for every ε > r.

Lemma 9. Let ε ≥ 0, A ⊆ X and (Am)m a sequence of subsets of X
such that Am ↑ A. Let also F ⊆ Z and (Fn)n a sequence of arbitrary subsets
of Z such that F =

⋃
n Fn. Then the following are equivalent :

(i) A is (ε, F )-covered.
(ii) For every n,m the set Am is (ε, Fn)-covered.

Proof. Clearly only the implication (ii)⇒(i) needs to be proved. So as-
sume that for every n,m the set Am is (ε, Fn)-covered. Pick Bn,m ⊇ Am
Borel witnessing this fact. Thus µ(x + Bn,m) ≤ ε for every (µ, x) ∈ Fn.
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Put Cm =
⋂
n

⋂
k≥mBn,k. Then Cm is Borel and Cm ⊇ Am for every m,

since Bn,k ⊇ Ak ⊇ Am for every n and every k ≥ m. In addition we have
µ(x + Cm) ≤ ε for every (µ, x) ∈ F . As the sequence (Cm)m is increasing,
setting C =

⋃
mCm we see that C is Borel, C ⊇ A and µ(x + C) ≤ ε

for every (µ, x) ∈ F (the last inequality holds from the continuity of the
measure). This implies that A is (ε, F )-covered and the proof is complete.

For every K ⊆ X closed (in the original topology of X) and every i ≥ 1,
we put Ki = {x ∈ X : δ(x,K) ≤ 1/i} (recall that δ is the fixed compatible
complete metric for X). Note that K =

⋂
iKi and that K ⊆ Int(Ki) for

every i (again the interior is taken in the original topology of X).

Lemma 10. Let (Fi)i be a decreasing sequence of τ -closed subsets of Z
such that d-diamFi → 0. Let also K ⊆ X be closed (in the original topology)
and (r, Z)-covered. Then for every ε > r, there exists an i such that Fi ⊆
{(µ, x) : µ(x+Ki) < ε}.

Proof. Suppose not. Then there exists an ε > r such that for every i we
have Fi 6⊆ {(µ, x) : µ(x + Ki) < ε} or equivalently Fi ∩ {(µ, x) : µ(x + Ki)
≥ ε} 6= ∅. We set Li = Fi ∩ {(µ, x) : µ(x + Ki) ≥ ε}. By Lemma 2(i), Li
is a τ -closed subset of Z (recall that the τ topology on Z is larger than
the original topology). Moreover, the sequence (Li)i is decreasing, as the
sequences (Fi)i and (Ki)i are decreasing, and obviously d-diamLi → 0.
Hence

⋂
i Li = {(ν, y)} ∈ Z. But then ν(y + K) = lim ν(y + Ki) ≥ ε > r,

contradicting the fact that K is (r, Z)-covered.

We will also need the following representation of analytic sets. For a
proof we refer to [7, p. 200].

Theorem 11. Let X be a Polish space and A an analytic subset of X.
Then there is a regular Suslin scheme (Ps)s∈N<N with A = AsPs such that :

(i) Ps is analytic.
(ii) P∅ = A, Ps =

⋃
n Psan and also Psan ⊆ Psam if n ≤ m.

(iii) For every y ∈ N , Py =
⋂
n Py|n is compact.

(iv) If U ⊆ X is open such that Py ⊆ U , there there is an n such that
Py|m ⊆ U for every m ≥ n.

We are ready to complete the proof of Theorem 6.

Proof of Theorem 6. Assume that the conclusion of the theorem fails.
So, according to our terminology, A is not (r, Z)-covered. By Lemma 8, there
exists an ε > r such that A is not (ε, Z)-covered. Put Z =

⋃
n F

1
n , where

each F 1
n is τ -closed and d-diamF 1

n ≤ 1/2. Let (Ps)s∈N<N be the regular
Suslin scheme obtained from Theorem 11 for A. Then A = P∅ =

⋃
m Pm

with Pm ↑ A. As A is not (ε, Z)-covered, by Lemma 9 there exist n1 and m1

such that Pm1 is not (ε, F 1
n1

)-covered.
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Continuing this way, we define (recursively) a y ∈ N and a decreasing
sequence Z ⊇ F 1

n1
⊇ · · · ⊇ F ini ⊇ · · · of τ -closed subsets of Z such that for

every i,

(i) Py|i is not (ε, F ini)-covered,

(ii) d-diamF ini → 0.

Put K =
⋂
i Py|i, which is a compact (hence closed) subset of A. So K

is (r, Z)-covered. Applying Lemma 10 to the sequence (F i
ni)i and K, we

find that there exists an i such that F ini ⊆ {(µ, x) : µ(x + Ki) < ε}. As
K ⊆ Int(Ki), by the adopted representation, for this particular i there is
an n such that Py|m ⊆ Int(Ki) for every m ≥ n. We set l = max{n, i}.
Then Py|l ⊆ Py|n ⊆ Int(Ki) ⊆ Ki and moreover F lnl ⊆ F ini ⊆ {(µ, x) :
µ(x + Ki) < ε}. This implies that Py|l is (ε, F lnl)-covered and we derive a
contradiction.

A corollary of Theorem 6 is the following.

Corollary 12. Let A ⊆ X be an analytic Haar-null set. Then there
exists a Borel Haar-null set B ⊇ A such that T (A) \ T (B) is meager in
P (X).

Proof. By Lemma 4, T (A) is co-analytic in P (X). So it has the Baire
property. Pick L ⊆ T (A) Borel such that T (A) \ L is meager in P (X). Put
Z = L×X. Then Z is Borel and obviously µ(x+A) = 0 for every (µ, x) ∈ Z.
Applying Theorem 6, we get a Borel set B ⊇ A such that µ(x+B) = 0 for
every (µ, x) ∈ Z. Clearly B is as desired.

Let us point out that the Borel set B obtained by Corollary 12 need not
be a Gδ set even if the group X is locally compact. To see this, it is enough
to consider an analytic Haar-null set A such that A is dense in X and T (A)
is co-meager (by Proposition 5(iii), such sets do exist). Now note that if B
is a Gδ Haar-null set with B ⊇ A, then B must be co-meager and so, by
Proposition 5(ii), T (B) is meager. Hence B does not satisfy the conclusion
of Corollary 12.

Using Theorem 6 we will also derive an approximation type result for
analytic sets. We recall that by a result of Solecki (see [11, p. 208]) in every
non-locally compact abelian Polish group there exists an analytic set which
cannot be approximated up to Haar-null sets by Borel or even co-analytic
sets.

Proposition 13. Let A ⊆ X analytic and µ ∈ P (X). Then there exist
B ⊇ A Borel and G ⊆ X co-meager such that µ(x+A) = µ(x+B) for every
x ∈ G.
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Proof. Let n ≥ 1. For every k = 0, . . . , n+ 1 put

Fnk =
{
x ∈ X :

k

n+ 1
≤ µ(x+ A) <

k + 1
n+ 1

}
.

Then observe that X =
⋃n+1
k=0 F

n
k . Moreover, it is easy to verify that each

Fnk is the intersection of an analytic and a co-analytic set. So each F n
k has

the Baire property. Pick Gnk ⊆ Fnk Borel such that F nk \ Gnk is meager. Let
Znk = {µ} × Gnk . Then for every k = 0, . . . , n + 1 the set Znk is Borel in
P (X) × X and µ(x + A) ≤ (k + 1)/(n+ 1) for every x ∈ Gn

k , thus for
every (µ, x) ∈ Znk . Apply Theorem 6 to get a Borel set Bn

k ⊇ A such that
µ(x+Bn

k ) ≤ (k + 1)/(n+ 1) for every (µ, x) ∈ Znk . Put Bn =
⋂n+1
k=0 B

n
k and

Gn =
⋃n+1
k=0 G

n
k . Then Gn ⊆ X is co-meager, Bn ⊇ A is Borel and

µ(x+Bn)− µ(x+ A) ≤ 1
n+ 1

for every x ∈ Gn. Finally, let B =
⋂
nBn and G =

⋂
nGn. Clearly B and G

are as desired.

4. Results under Martin’s axiom. The aim of this section is to
show that under some stronger set-theoretic assumptions, in particular un-
der Martin’s Axiom and the negation of Continuum Hypothesis (abbreviated
as MA +¬CH), Π1

2 sets satisfy the conclusion of Proposition 13. As before,
X is an abelian Polish group. For the following proposition let us recall that
if (Aξ)ξ<ω1 is a transfinite sequence of universally measurable subsets of X,
then under MA + ¬CH the set

⋂
ξ<ω1

Aξ is universally measurable (see [8]
for a proof).

Proposition 14. (MA + ¬CH) Let A ∈ Π1
2(X) and µ ∈ P (X) be such

that µ(x + A) = 0 for every x ∈ G, where G is a co-meager subset of X.
Then there exist a Borel set B ⊇ A and a co-meager set G′ ⊆ X such that
µ(x+B) = 0 for every x ∈ G′.

Proof. By a classical result of Sierpiński (see [7, p. 324]), there exists
a decreasing transfinite sequence (Bξ)ξ<ω1 of Borel sets such that A =⋂
ξ<ω1

Bξ. Let C =
⋂
ξ<ω1

Cξ, where Cξ = {x ∈ X : µ(x + Bξ) > 0}.
By assumption there is ξ0 < ω1 with Cξ0 \ C meager. Moreover, for each
x ∈ G there is λ < ω1 with µ(x+Bλ) = 0, hence G∩C = ∅. It follows that
C is meager and therefore so is Cξ0 . We set B = Bξ0 and G′ = X \ Cξ0 .

Note that the Borel set B obtained from Proposition 14 need not be
Haar-null even if its translates are µ-null over a large set (in the topological
sense). This phenomenon does not occur if co-meagerness is replaced by
prevalence, as the following proposition shows.
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Proposition 15. Let µ ∈ P (X) and A,G ⊆ X be universally measur-
able sets such that µ(x+A) = 0 for every x ∈ G. If G is prevalent , then A
is Haar-null.

Proof. Note that −G = {−x : x ∈ G} is also prevalent. Let ν ∈ P (X) be
a test measure for −G. So ν(x−G) = 1 for every x ∈ X. Then we observe
that

(ν ∗ µ)(x+ A) =
�

X

µ(x+A− y) dν(y)

=
�

x−G
µ(x+ A− y) dν(y) +

�

X\x−G
µ(x+ A− y) dν(y)

≤ ν(X \ x−G) = 1− ν(x−G) = 0

for every x ∈ X. So A is Haar-null and ν ∗ µ is a test measure for A.

We will also show that if A ⊆ X is analytic or co-analytic, then there
exists a Borel set B ⊆ A such that T (B)\T (A) is meager in P (X). Actually,
for co-analytic sets one does not need the full strength of MA + ¬CH, but
only the statement that “all Σ1

2 sets have the Baire property” (for the re-
lationship between these statements see [6]). The following proposition has
been suggested to us by the referee.

Proposition 16. Assume that all Σ1
2 sets have the Baire property. Then

for any co-analytic set A, there exists a Borel set B ⊆ A such that T (B) \
T (A) is meager in P (X).

Proof. Let WO ⊆ 2N
2

be the set of all well-orderings of N. For γ ∈WO,
|γ| stands for the ordinal isomorphic to the well-ordering coded by γ. The
set WO is Π1

1-complete and the map γ 7→ |γ| is a Π1
1-rank for WO (see

[7, pp. 213 and 267]). So there is a Borel function f : X → 2N
2

such that
x ∈ A iff f(x) ∈ WO. Let φ : A → ω1 be defined by φ(x) = |f(x)|.
Then φ is a Π1

1-rank for A. For every countable ordinal ξ, set as usual
Aξ = {x ∈ A : φ(x) ≤ ξ} and note that each Aξ is Borel and A =

⋃
ξ<ω1

Aξ.

Claim. We have T (A) =
⋂
ξ<ω1

T (Aξ).

Proof. It is clear that T (A) ⊆ ⋂ξ<ω1
T (Aξ). To show the other inclu-

sion, let µ ∈ ⋂ξ<ω1
T (Aξ). Let x ∈ X arbitrary. From the regularity of the

measure µ, there exists a Borel set B ⊆ A with µ(x + A) = µ(x + B). As
B ⊆ A is Borel, by the Boundedness Theorem for Π1

1-ranks (see [7, p. 288]),
it follows that sup{φ(x) : x ∈ B} = λ < ω1 and so B ⊆ Aλ ⊆ A. From the
fact that µ ∈ T (Aλ), we get

µ(x+ A) = µ(x+B) = µ(x+ Aλ) = 0.

As x was arbitrary, we conclude that µ ∈ T (A) as desired. �
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Consider the relation

R = {(x, y, γ) ∈ X ×X × 2N
2

: γ 6∈WO or

(f(x− y) ∈WO and |f(x− y)| ≤ |γ|)}.
As the relation

γ 6∈WO or (δ ∈WO and |δ| ≤ |γ|)
is Σ1

1 on (δ, γ) ∈ 2N
2 × 2N

2
(see [7, p. 269]), it follows that R is Σ1

1. Further-
more, if γ ∈WO and y ∈ X, for the section R(y,γ) = {x ∈ X : (x, y, γ) ∈ R}
we have

R(y,γ) = y + A|γ|.(1)

For µ, ν ∈ P (X) define

µ ≤∗ ν ⇔ (µ, ν 6∈ T (A) and

∀γ ∈ 2N
2

[∀y ∈ X ν(R(y,γ)) = 0⇒ ∀y ∈ X µ(R(y,γ)) = 0]).

The set P (X) \ T (A) is Σ1
2. Moreover, since R is Σ1

1, the rest of the right
hand side of the above formula is Π1

2 by Theorem 29.26 in [7]. Thus, by our
assumption, ≤∗⊆ P (X) × P (X) has the Baire property in P (X) × P (X).
Moreover, by (1), for µ, ν 6∈ T (A), µ ≤∗ ν is equivalent to saying that for
each γ ∈WO,

ν ∈ T (A|γ|) ⇒ µ ∈ T (A|γ|),

that is,
µ ≤∗ ν ⇔ ξµ ≤ ξν ,

where ξµ = min{ξ < ω1 : µ 6∈ T (Aξ)} and similarly for ξν . As (T (Aξ))ξ<ω1

is a decreasing transfinite sequence of sets with the Baire property, there
is ξ0 < ω1 such that for all ξ ≥ ξ0 the set T (Aξ0) \ T (Aξ) is meager. By
Exercise 8.49 in [7], applied to ≤∗ on T (Aξ0) \ T (A), we deduce that

T (Aξ0) \ T (A) =
⋃

ξ0≤ξ<ω1

(T (Aξ0) \ T (Aξ))

is meager and the proof is complete.

Under MA + ¬CH, the above result is also valid for analytic sets. First
we need the following extension of Lemma 3. Again the proof is omitted.

Lemma 17. (MA + ¬CH) Let (Aξ)ξ<ω1 be an increasing transfinite se-
quence of Borel sets. Then T (A) =

⋂
ξ<ω1

T (Aξ), where A =
⋃
ξ<ω1

Aξ. In
particular T (A) has the Baire property.

We also need the following. Its proof is left to the reader.

Lemma 18. (MA+¬CH) Let (Aξ)ξ<ω1 and A be as in Lemma 17. Then
there exists a countable ordinal ξ such that T (Aξ)\T (A) is meager in P (X).
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Combining Lemma 18 with Sierpiński’s result, we get the following.

Proposition 19. (MA+¬CH) Let A ⊆ X be analytic. Then there exists
a Borel set B ⊆ A such that T (B) \ T (A) is meager in P (X).

Remark 3. In [4], R. Dougherty asked whether any analytic non Haar-
null set must include a Borel non-Haar-null set. By Proposition 19, under
MA+¬CH any analytic non-Haar-null set A includes a Borel set B such that
T (B) is meager in P (X). That is, the set B may be Haar-null, but only a
relatively small set of measures witness this fact. We should point out that
not every universally measurable non-Haar-null set shares this property.
For instance, Dougherty considered a set A ⊆ X such that |A ∩ B| < 2ℵ0

whenever B is a σ-compact set and |A ∩ B| = 2ℵ0 whenever B is a Borel
set not included in a σ-compact set (see [4, p. 85]). Under Martin’s Axiom,
this set A is universally measurable and Haar-null. So its complement is
prevalent. However, if B is any Borel set included in X \ A, then B must
be included in a σ-compact set. Hence, by Proposition 5(iii), T (B) must be
co-meager in P (X).

Let us conclude this section with some remarks concerning a possible
extension of Corollary 12 to co-analytic sets. To the best of our knowledge,
even the problem whether for any co-analytic Haar-null set A ⊆ X there
exists a Borel Haar-null set B ⊇ A, is open. In this direction it seems quite
natural to ask whether under MA + ¬CH the conclusion of Corollary 12 is
valid for co-analytic sets.

5. An application. Let X be a separable Banach space. A locally
Lipschitz function f : X → R is said to be an essentially smooth Lipschitz
function if the set

Sf = {x ∈ X : ∂f(x) is not a singleton}
is contained in the σ-ideal generated by the Borel Haar-null sets (by ∂f we
denote the subdifferential of f in the sense of Clarke). That is, f is said to
be essentially smooth if there exists a Borel Haar-null set B ⊆ X such that
B ⊇ Sf . The class of essentially smooth Lipschitz functions was defined and
studied extensively by J. M. Borwein and W. B. Moors in [2]. They proved
that the members of this class possess differentiability properties similar to
the ones of convex functions (for instance their Clarke subdifferential is both
minimal and integrable). In addition they showed that this class has very
strong stability properties (it is closed under addition, multiplication and
lattice operations).

Note however that the set Sf is not Borel in general. So it might belong
to the σ-ideal of universally measurable Haar-null sets but not to the σ-ideal
generated by the Borel Haar-null sets (as we have already mentioned, the
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existence of such sets was observed by Dougherty). We will show that in
this particular situation there is no difference.

Proposition 20. If the set Sf is contained in the σ-ideal of universally
measurable Haar-null sets, then there exists a Borel Haar-null set B ⊆ X
such that B ⊇ Sf .

Proof. First of all observe that since X is a separable Banach space, the
space (X∗, B(X∗w∗)), i.e. the Borel σ-algebra of the weak∗ topology of X∗, is
a standard Borel space (see [7, p. 79]). So fix a Polish topology τ on X∗ such
that B(X∗τ ) = B(X∗w∗). From the fact that ∂f has closed graph in X ×X∗w∗
we get

Gr ∂f ∈ B(X)⊗B(X∗w∗) = B(X)⊗B(X∗τ ) = B(X ×X∗τ ).

As Gr ∂f is a Borel subset of X×X∗τ , it admits a co-analytic uniformization
A ⊆ X ×X∗τ (see [7, p. 306]). But then observe that

Sf = projX{Gr ∂f ∩ ((X ×X∗) \A)}.
Clearly the set Sf is analytic. So if Sf is Haar-null, by Corollary 12, there
exists a Borel Haar-null set B ⊆ X such that Sf ⊆ B.
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