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Examples of ε-exhaustive pathological submeasures

by

Ilijas Farah (Toronto)

Abstract. For any given ε > 0 we construct an ε-exhaustive normalized pathological
submeasure. To this end we use potentially exhaustive submeasures and barriers of finite
subsets of N.

A submeasure θ on a Boolean algebra B is pathological if it does not
dominate a positive finitely additive functional. It is ε-exhaustive if every
sequence {An} of pairwise disjoint sets in B satisfies lim supn θ(An) ≤ ε. It
is exhaustive if it is 0-exhaustive. It is normalized if θ(1B) = 1.

Question 1. Is there a normalized exhaustive pathological submeasure
on the algebra of clopen subsets of the Cantor space?

This is an equivalent reformulation of Maharam’s problem ([5]) on char-
acterization of measure algebras, also known as the Control Measure Prob-
lem. The importance of Maharam’s problem largely derives from a variety
of forms in which it appears (see [1], [2], [8]).

It was apparently unknown even whether there is a normalized ε-exhaus-
tive pathological submeasure for some small ε > 0. The example of a normal-
ized ε-exhaustive submeasure constructed by Roberts in [8] is not pathologi-
cal, since every nonempty set has submeasure at least ε. We should note that
this submeasure is weakly pathological : no strictly positive finitely additive
functional f dominated by it satisfies f(1B) = 1. For Roberts’s submeasure
there is an arbitrarily long finite sequence of pairwise disjoint sets of sub-
measure 1, and by [3] the existence of an exhaustive submeasure with this
property is equivalent to the existence of a normalized exhaustive patholog-
ical submeasure.

A game. For a submeasure ψ on a Boolean algebra B consider a game
E(ψ) for players I and II. Player I challenges by playing reals εi > 0, and II
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258 I. Farah

responds by finding normalized εi-exhaustive submeasures φi ≤ φi−1 (where
φ0 = ψ). Player I also plays a decreasing sequence of countable ordinals.

I α1 < ω1, ε1 > 0 α2 < α1, ε2 > 0 . . . αn < αn−1, εn > 0

II φ1 ≤ ψ φ2 ≤ φ1 . . . φn ≤ φn−1

It is required that each φi is a normalized εi-exhaustive submeasure. The
first player who is unable to make a move loses.

Theorem 2. There is a normalized submeasure ψ on the algebra of
clopen subsets of the Cantor space K such that

(i) ψ is pathological ,
(ii) ψ is normalized ,
(iii) II wins the game E(ψ).

In particular , ψ dominates a normalized ε-exhaustive pathological submea-
sure for every ε > 0.

The submeasure ψ is taken from a family of “simple pathological submea-
sures” constructed by Talagrand [9]. Our construction has two independent
ingredients. One is introduction of the notion of potentially exhaustive sub-
measure in §3. The other ingredient is a result about sequences of barriers
of finite subsets of N and interval selectors (see the beginning of §2 and
Theorem 2.3).

On the other hand, by Theorem 5.3, if ε1 < 1/2 then the submeasure φ1

used in the winning strategy for player II in E(ψ) provided in our proof of
Theorem 2 does not dominate a normalized exhaustive submeasure.

Acknowledgments. Theorem 2 was obtained while I was attending
the Special Programme on Set Theory and Analysis at the Fields Institute,
in Fall 2002. I would like to thank the referee for making several suggestions
that have improved the presentation.

1. A submeasure on the countable product. Fix a sequence Xn, θn
(n ∈ N) so that Xn is a finite set and θn is a normalized submeasure on Xn

(that is, on the power set of Xn). From this sequence we define a submeasure
ψ on X =

∏∞
n=1Xn. Let

T0 = {〈〉}, Tn =
n∏

i=1

Xi for n ≥ 1, T =
∞⋃

n=0

Tn.

For t ∈ T let |t| be the unique m such that t ∈ Tm. If A is a set then |A|
denotes its cardinality. Let

[t] = {x ∈ X : (∀n ≤ |t|) x(n) = t(n)}.
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Consider X as a topological space with the compact metric topology gener-
ated by {[t] : t ∈ T} and let A = cl(X) denote the algebra of clopen subsets
of X.

For A ⊆ X and m ∈ N let

[A]m =
⋃
{[t] : |t| = m and [t] ∩A 6= ∅}

and write An = {B ∈ A : [B]n = B}. This is a finite subalgebra of A and
by compactness we have A =

⋃
nAn.

Lemma 1.1.

(1) For every A and m we have [A]m ⊇ [A]m+1 ⊇ A for all m.
(2) If A ⊆ X is clopen, then A = [A]m for all large enough m.
(3) If [A]m 6⊆ [B]m, then [t] ⊆ [A]m \ [B]m for some t ∈ Tm.

For n ∈ N and a subset F of

Γ =
∞⋃

n=1

{n} ×Xn,

define

〈F 〉 = {x ∈ X : (∃(n, k) ∈ F ) x(n) = k},

F [n] = {k : (n, k) ∈ F}, F [<n] =

n−1⋃

i=1

{i} × F [i], F [≥n] = F \ F [<n],

w(F ) =
∞∑

n=1

θn(F [n]),

S(F ) = {n : (∃k) (n, k) ∈ F}.
Then 〈F 〉 is the set covered by F , w(F ) is the weight of F and S(F ) is the
support of F .

Lemma 1.2. If F ⊆ Γ is finite then 〈F 〉 is a clopen subset of X, and
[〈F 〉]m = 〈F 〉 for m = max(S(F )) + 1.

For t ∈ T define a submeasure ψt on A by

ψ0
t (A) = inf

F⊆Γ
{w(F ) : A ∩ [t] ⊆ 〈F 〉, F ⊆ Γ and |t| ≤ minS(F )},

ψt(A) = min(1, ψ0
t (A)).

We will write ψ for ψ〈〉.

Lemma 1.3.

(4) For all F 1, F 2 ⊆ Γ we have 〈F 1 ∪ F 2〉 = 〈F 1〉 ∪ 〈F 2〉.
(5) If A ∈ cl(X) and for some n we have ψt(A) < ε for all t ∈ Tn, then

ψ(A) < ε|Tn|.
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Proof. (4) Obvious.
(5) For each t ∈ Tn fix F t ⊆ Γ such that 〈F t〉 ⊇ A ∩ [t] and w(F t) < ε.

Let F =
⋃
t∈Tn F

t. Then w(F ) < ε|Tn|, and by (4) we have 〈F 〉 ⊇ A.

The following is one of the key properties of ψ used in our construction.

Lemma 1.4. Assume t ∈ T , m ≥ |t|, B ∈ Am, and C ∈ A. Then

ψt(B ∩ C) ≥ min(ψt(B),min{ψs(C) : |s| = m, [s] ∩B 6= ∅ and s ⊇ t}).
In particular , if ψs(C) ≥ ψt(B) for all s ∈ Tm with s ⊇ t, then ψt(B ∩ C)
= ψt(B).

Proof. Let δ = min(ψt(B),min{ψs(C) : |s| = m, [s] ∩ B 6= ∅}). Fix F
such that |t| ≤ min(S(F )) and w(F ) < δ. We need to check that B∩C∩[t] 6⊆
〈F 〉. Since w(F [<m]) < δ, B∩[t] 6⊆ 〈F [<m]〉. Since both B∩[t] and 〈F [<m]〉
belong to Am, by (3) of Lemma 1.1 there is s ∈ Tm with s ⊇ t such that
[s] ⊆ (B ∩ [t]) \ 〈F [<m]〉. Since ψs(C) ≥ δ, we have

(C ∩ [s]) 6⊆ 〈F [≥m]〉.
But C ∩ [s] ⊆ B ∩ [t] and therefore B ∩C ∩ [t] 6⊆ 〈F 〉. Since F was arbitrary,
we have ψt(B ∩ C) ≥ δ.

For U ⊆ X and n ∈ N define

(U)n = ([U{]n){ =
⋃
{[t] : |t| = n, [t] ⊆ U}.

By (1) of Lemma 1.1 for m ≤ n we have

(U)m ⊆ (U)n ⊆ U.
Lemma 1.5. Assume m ≤ n, 〈F [<n]〉 ⊇ (U)n, and Xi 6⊆ F [i] for all

i ∈ [m,n). Then 〈F [<m]〉 ⊇ (U)m.

Proof. Assume otherwise, that (U)m\〈F [<m]〉 6= ∅. By (3) of Lemma 1.1,
there is t ∈ Tm such that [t] ⊆ (U)m \ 〈F [<m]〉. For each i ∈ [m,n) fix
s(i) ∈ Xi \ F [i], and let s(i) = t(i) if i < m. Then [s] ⊆ [t], therefore
[s] ⊆ (U)n. By the choice, [s]∩〈F [<n]〉 = ∅, and therefore 〈F [<n]〉 6⊇ (U)n.

Lemma 1.6. If U ⊆ X is open and ψ((U)n) < 1 for all n, then there is
an F ⊆ Γ such that 〈F 〉 ⊇ U and w(F [<n]) < 1 for all n.

Proof. For n ∈ N let

Pn = {F ⊆ Γ : 〈F 〉 ⊇ (U)n, S(F ) ⊆ n and w(F [<n]) < 1}.
If F ∈ Pn, then w([F < k]) < 1 for all k ≤ n, and in particular Xk 6⊆ F [k].
Therefore Lemma 1.5 implies that 〈F [<m]〉 ⊇ (U)m, and therefore F [<m] ∈
Pm whenever m ≤ n. Hence

⋃∞
n=1 Pn is a finitely branching tree with respect

to the ordering F � G if F = G[<n] for some n. By the assumption, each Pn
is nonempty, hence by König’s lemma there exists F such that F [<n] ∈ Pn
for all n, and this concludes the proof.
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2. Barriers and interval selectors. Let Fin denote the family of all
finite subsets of N. For F ⊆ Fin we say that g is an interval selector for F
if g is a function with domain F such that

(6) g(s) = [m,n) for some m < n in s,
(7) g(s) ∩ g(t) = ∅ for all distinct s and t in F .

The following lemma is implicit in [8].

Lemma 2.1. If F ⊆ Fin is nonempty and |F | ≤ min{|s| : s ∈ F}| − 1,
then F has an interval selector.

Proof. Assume |F | = N and min{|s| : s ∈ F} ≥ N + 1. For all s ∈ F let
mj(s), 1 ≤ j ≤ N + 1, be the enumeration of the first N + 1 elements of s.
For all 1 ≤ j ≤ N , set Ij(s) = [mj,mj+1) and define inductively sj such that
max(Ij(sj)) < min(Ij+1(s)) for all s ∈ F \ {s1, . . . , sj}. Then sj 7→ Ij(sj) is
clearly an interval selector.

A reader interested only in the construction of ε-exhaustive normalized
pathological submeasures may skip the rest of this section and proceed di-
rectly to §3. For s and t in Fin we write

s v t
to denote that s = t ∩m for some m ∈ N, and we write

s ] t
to denote s ∪ t while at the same time asserting max(s) < min(t).

Definition 2.2. A family F ⊆ Fin is well-founded if there is no infinite
v-increasing sequence included in F . A family F ⊆ Fin is a barrier if for
every infinite A ⊆ N there is exactly one m ∈ N such that A ∩m ∈ F .

Every barrier of finite rank is included in [N]m = {s ⊆ N : |s| = m} for
some m ∈ N. If Fi (i ∈ N) are barriers, then

∞
5
i=1
Fi = {s ∈ Fin : s ∈ Fmin(s)},

F1 t F2 = {s1 ] s2 : s1 ∈ F1, s2 ∈ F2},
k⊔

i=1

Fi = {s1 ] · · · ] sk : si ∈ Fi, i ≤ k}

are barriers as well. As a matter of fact, every barrier can be obtained from
[N]1 by iterating the 5 operation. Results of [7] give a structure theory for
barriers (note that each barrier is thin in the terminology of [7]).

For barriers F1 and F2 and m ∈ N we write

F2 �m F1

if for every s ∈ F1 such that min(s) ≥ m there is t ∈ F2 such that t ⊆ s.
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Identify each t ∈ (ω1 × N)<N with a pair (t0, t1) such that t0 ∈ ω<N1

and t1 ∈ N<N. Consider the set P ⊆ (ω1 × N)<N consisting of all t such
that 〈t0(i) : i < |t|〉 is a decreasing sequence of ordinals. Ordered by the
end-extension, v, it is a well-founded tree of rank ω1. Let B be the family
of all barriers on N.

Theorem 2.3. There is a function ξ : P → B such that for every t ∈ P
and Fi ⊆ ξ(t�i) satisfying |Fi| ≤ t1(i− 1) for i ≤ |t| the set

|t|⋃

i=1

Fi

has an interval selector.

Proof. We construct ξ by recursion. Let ξ(〈0,m〉) = [N]m+1. Assume
ξ(t) is defined for all t such that t0(0) < α. Let {Fi : i ∈ N} enumerate all
{ξ(t) : t0(0) < α}, and let

F =
∞
5
n=1

( n⊔

i=1

Fi
)
.

Note that for every i there is m such that Fi �m F .
Define ξ(〈α,m〉) = [N]m+1 t F . If t0(0) = α and |t| ≥ 2, let t ∈ P be

such that

|t| = |t| − 1,

t0(i) = t0(i+ 1) for 1 ≤ i < |t|,
t1(i) = t1(i+ 1) + t1(0) for 1 ≤ i ≤ |t|.

Let m ∈ N be minimal such that ξ(t�i) �m F for all i ≤ |t|. Define

ξ(t) = {s : s \m ∈ ξ(t)}.
This defines ξ : P → B. Note that if s ∈ ξ(t) and |s ∩ k| < t1(0), then s \ k
includes a member of F .

For t ∈ P we need to prove that if Fi ⊆ ξ(t�i) are such that |Fi| = t(i−1)
for i ≤ |t|, then

⋃
i Fi has an interval selector. The proof is by induction on

α = t0(0). Assume that the statement holds for all β < α and fix t, Fi
(i ≤ |t|). If |t| = 1, then F1 has an interval selector by the construction and
Lemma 2.1. Assume |t| ≥ 2, and let m i, ti be as in the definition of ξ(t�i),
for i ≥ 2. Define

F ′0 = {s ∈ F1 : |s ∩m2| ≥ t1(0)},
F ′1 = F2 ∪ {s \m2 : s ∈ F1 \ F ′1},

F ′i−1 = Fi for i ≥ 3.
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By Lemma 2.1, F ′0 has an interval selector g1 such that g1(s) ⊆ m2 for all s.

For s ∈ F0 \ F ′0 the set s \m2 includes an element of ξ(t
2
). Therefore F ′1 ⊆

ξ(t 2), and it has size at most t1(0) + t1(1) = (t 2)1(0). Hence if t = t|t|, then

F ′i ⊆ ξ(t�i) (i < |t|) satisfy the conditions and by the inductive assumption
this family has an interval selector, g2. But mi ≥ m2 for all i, therefore
g2(s) ∩m2 = ∅ for all s, hence g1 ∪ g2 is an interval selector for

⋃
i Fi.

3. Potentially exhaustive submeasures. If ψ1, ψ2 are submeasures
on a Boolean algebra B, then φ = ψ1 ∧ ψ2 is a submeasure defined by

φ(A) = inf{ψ1(B) + ψ2(C) : A = B ∪ C}.
If S is a subset of a Boolean algebra B and f : S → [0, 1] then φ = γ[S, f ] is
a submeasure defined by

φ(C) = min
(

1, inf
F⊆S

{∑

B∈F
f(B) : F ⊆ A and

⋃
F ⊇ C

})
,

where the infimum is taken over all finite F ⊆ S. If f(B) = ε for all B ∈ S,
write γ[S, ε] instead of γ[S, f ].

Definition 3.1. A submeasure φ on A is potentially exhaustive if for
every B ∈ A, every δ > 0 and every sequence An (n ∈ N) of pairwise disjoint
sets in A there is B′ ⊆ B in A such that φ(B′) = φ(B) and

φ(B′ ∩Ai) < δ

for all but finitely many i.

Small sets. Let ψ be a submeasure on the algebra A of clopen subsets of
X =

∏∞
i=1Xi, where Xi are finite sets and the topology on X is the product

topology. Recall that

Am = {B ∈ A : [B]m = B}.
An A ∈ A is m-small (with respect to ψ) if for every B ∈ Am such that
ψ(B) = 1 we have ψ(B \A) = 1. If m < n then an A ∈ cl(X) is (m,n)-small
(with respect to ψ) if [A]n is m-small (with respect to ψ). If k ≥ 2 and
s = {m1, . . . ,mk} ∈ Fin (with m1 < · · · < mk), then A ∈ cl(X) is s-small
(with respect to ψ) if it is (mi,mi+1)-small for i ≤ k − 1. If F ⊆ Fin, then
A ∈ cl(X) is F-small (with respect to ψ) if there is s ∈ F such that A
is s-small. Let SF denote the family of all F-small sets. We will suppress
writing “with respect to ψ” whenever the choice of ψ is clear from the
context.

Lemma 3.2. Assume that F ⊆ cl(X) is finite, each A ∈ F is sA-small
for some sA ∈ Fin, and {sA : A ∈ F} has an interval selector g. Then
ψ(X \⋃F ) = 1.
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Proof. Enumerate F = {A1, . . . , Ak} so that if we write si = sAi , ki =
min(g(si)), li = max(g(si)), then ki < li < ki+1 for all i. Since Ai is (ki, li)-
small, we can recursively find Ei ∈ Ali such that ψ(Ei) = 1, Ei ∩ Ai = ∅,
and Ei+1 ⊆ Ei for all i. Then X \⋃F ⊇ Ek and the conclusion follows.

Lemma 3.3. Assume ψ is a potentially exhaustive submeasure on cl(X),
where X =

∏∞
i=1Xi and all Xi are finite. Then for every sequence An

(n ∈ N) of pairwise disjoint clopen subsets of X, every m ∈ N, and every
ε > 0 there is C ∈ cl(X) such that

(8) C is m-small ,
(9) ψ(Ai \ C) < ε for all but finitely many i.

Proof. Let Bi (i ≤ k) be an enumeration of all sets in Am such that
ψ(Bi) = 1. For each i find B′i ⊆ Bi such that ψ(B′i ∩ Aj) < ε/k for all but

finitely many j and ψ(B′i) = 1. Let B =
⋃k
i=1B

′
i. Then ψ(B∩Bi) = 1 for all

i ≤ k, and ψ(B ∩ Aj) < ε for all but finitely many i. Therefore C = X \ B
is as required.

Lemma 3.4. Under the assumptions of Lemma 3.3, for every infinite
Z ⊆ N and every δ > 0 we can find an increasing sequence ni of elements
of Z and sets Ci ∈ Ani+1 such that for all i

(10) Ci+1 = D ∩ Ci for some (ni, ni+1)-small D,
(11) ψ(Aj \ Ci) < δ for all but finitely many j.

Proof. The construction is by recursion. Assume Ci, ni (i ≤ i0) are cho-
sen so that both (10) and the following strengthening of (11):

(12) ψ(Aj \ Ci) < 2−i−1δ

hold for i ≤ i0 and all but finitely j. Apply Lemma 3.3 to the sequence
A′j = Aj ∩ Ci0 and m = ni0 to obtain Ci0+1 satisfying (8) and (12). Now

(10) is ensured by the choice of ni0+1, since [Ci0+1]ni0+1 = Ci0+1.
If Ci and ni are constructed in this manner, then

ψ(Aj \ Ci) ≤
i∑

k=0

2−k−1δ < δ

for all i and all but finitely many j.

Lemma 3.5. Assume ψ is a potentially exhaustive submeasure on cl(X),
where X =

∏∞
i=1Xi. If F ⊆ Fin is such that every infinite A ⊆ N has an

initial segment in F , then the submeasure φ = ψ ∧ γ[SF , ε] is ε-exhaustive.

Proof. Fix a sequence An (n ∈ N) of pairwise disjoint sets in cl(X) and
δ > 0. Find ni and Ci as in Lemma 3.4 applied with Z = N. There is k
such that {n1, . . . , nk} ∈ F , and therefore φ(Ck) ≤ ε. But ψ(Aj \ Ck) < δ
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for all large enough j, hence φ(Aj) < ε+ δ for all such Aj . Since δ > 0 was
arbitrarily small, the submeasure is ε-exhaustive.

Let Xn (n ∈ N) be finite sets, let θn be a submeasure on Xn, and let the
tree T and submeasures ψt (t ∈ T ) be as defined in §1.

Definition 3.6. For a submeasure θ on X let cθ be a function on P(X)
defined by

cθ(A) = min
{
m : (∃B1, . . . , Bm) A =

m⋃

i=1

Bi and max
i
θ(Bi) < 1

}
.

We write cθ for cθ(X).

Note that cθ is a submeasure. We will write cn instead of cθn .

Lemma 3.7. We have cψt ≥ minn≥|t| cn, and ψt is normalized for every
t ∈ T .

Proof. Assume k < minn≥|t| cn and A1, . . . , Ak ⊆ [t] are such that ψt(Ai)
< 1 for all i ≤ k. We need to check that

[t] \
k⋃

i=1

Ai 6= ∅.

For each i ≤ k fix Fi ⊆ Γ such that 〈Fi〉 ⊇ Ai and w(Fi) < 1, and
min(S(Fi)) ≥ |t|. Since for each n ≥ |t| we have k < cn, we can pick

x(n) ∈ Xn \
⋃k
i=1 Fi[n]. Let x(n) = t(n) for n < |t|; then x ∈ [t] \⋃k

i=1Ai.
Now we check that ψt is normalized. By definition, ψt(X) ≤ 1. Since

each θn is normalized, we have cn ≥ 2 for all n. By Lemma 3.7, we have
cψt ≥ 2, and therefore ψt(X) ≥ 1.

We record a related fact with a very similar proof.

Lemma 3.8. If F ⊆ Γ is such that cn(〈{n} × F [n]〉) < cn(Xn) for all
n ≥ |t|, then [t] \ 〈F 〉 6= ∅ for every t such that |t| < min(S(F )).

Lemma 3.9. If B ∈ Am, F ⊆ Γ , 〈F [<m]〉 6⊇ B and cn(〈F [n]〉) < cn(Xn)
for all n ≥ m, then 〈F 〉 6⊇ B.

Proof. If B and F are as above, then B and 〈F [<m]〉 belong to Am.
By (3) of Lemma 1.1 there is s ∈ Tm such that [s] ⊆ B \ 〈F [<m]〉. Since
cn(〈F [n]〉) < cn(Xn) for all n ≥ m, by Lemma 3.8 we have [s] \ 〈F [≥m]〉
6= ∅.

Lemma 3.10. Assume θn is a submeasure on Xn such that cn ≥ 3 for
all n. For every t ∈ T , every sequence An (n ∈ N) of pairwise disjoint clopen
subsets of X and every ε > 0 there is a clopen B ⊆ [t] such that ψt(B) = 1
and ψt(B ∩ An) < ε for all but finitely many n.
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Proof. First assume that ψt(
⋃m
i=1Ai) = 1 for some m. Then B =⋃m

i=1Ai ∩ [t] satisfies ψt(B) = 1 and ψt(B ∩ An) = 0 for all but finitely
many n.

So we may assume that ψt(
⋃m
i=1Ai) < 1 for all m. Since each level of Tn

is finite, for every n there is a large enough m0 such that for all m ≥ m0

we have (
⋃m
i=0Ai)n = (

⋃∞
i=0Ai)n. So U =

⋃∞
i=0Ai satisfies ψ((U)n) < 1 for

all n. By Lemma 1.6, there is F ⊆ Γ such that w(F [<n]) < 1 for all n and
〈F 〉 ⊇ ⋃∞i=1Ai. Let m be such that w(F [≥m]) < ε, and let B = [t]\〈F [<m]〉.
Then B∩Ai ⊆ 〈F [≥m]〉, hence ψt(B∩Ai) < ε for all i. Since cn ≥ 3 for all n,
by Lemma 3.7 we have cψt ≥ 3. Since w(F [<m]) < 1, we have ψt(B) = 1.

Lemma 3.11. Under the notation and assumptions of Lemma 3.10, ψ is
potentially exhaustive.

Proof. Fix a sequence An (n ∈ N) of pairwise disjoint sets in cl(X) and
B ∈ cl(X). Let n be such that B ∈ An. By Lemma 3.10, for each t ∈ Tn
we can find Bt ⊆ B ∩ [t] such that ψt(Bt ∩ Ai) < ε/|Tn| for all but finitely
many i and ψt(Bt) = 1. Let B′ =

⋃
t∈Tn Bt. Then for all but finitely many

i we have ψ(B′ ∩Ai) < ε by (5) of Lemma 1.3. By Lemma 1.4 applied with
C = B′ we have ψ(B′) = ψ(B), as required.

4. Proof of Theorem 2. We will construct a sequence θm (m ∈ N) of
submeasures such that ψ as in §1 satisfies the conclusion of Theorem 2. Al-
though essentially any sequence of “increasingly pathological” submeasures
{θn} would do, we will provide a concrete (and well-known) example. Fix a
function σ : N → Fin such that |σ(n)| ≥ 2n for all n and the sets σ(m) are
pairwise disjoint. Let Iσ =

⋃
m σ(m) and

Xσ = {C ⊆ Iσ : |C ∩ σ(n)| ≥ σ(n)/2 for all n}.
Write

[Z]≥k = {s ⊆ Z : |s| ≥ k}.
If Xn,m = [m]≥m/2, we can identify Xσ with

∏∞
n=1Xn,σ(n). Let θn,m be a

submeasure on Xn,m defined by

θn,m(A) =
1

n
min{|F | : F ⊆ σ(n) and (∀a ∈ A)(∃k ∈ F ) k ∈ a}.

Lemma 4.1. For all m ≥ 2n we have cn,m = d(m+ 1)/2(n− 1)e.
Proof. If l = d(m + 1)/2(n − 1)e and Fi (i ≤ l) are pairwise disjoint

subsets ofm such that |Fi| = n−1, then F =
⋃l
i=1 Fi has size l(n−1) > m/2,

and therefore every a ∈ Xn,m intersects F . Therefore if Ai = {a ∈ Xn,m :

a ∩ Fi 6= ∅} then θn,m(Ai) = (n− 1)/n, and
⋃l
i=1Ai = Xn,m, so cn,m ≤ l.

On the other hand, assume l < d(m + 1)/2(n − 1)e and Ai (i ≤ l) are
subsets of Xn,m, each of submeasure < 1. Let Fi ⊆ m be of size < n and
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such that Ai ⊆ {a : a ∩ Fi 6= ∅}. Then
⋃l
i=1 Fi has size at most m/2, and

therefore
⋃l
i=1Ai does not cover Xn,m, so cn,m > l.

Let ψσ be the submeasure ψ〈〉 obtained from the sequence θn,σ(n),Xn,σ(n)

as in §1. This is the “simple example of a pathological submeasure” defined
in [9].

Lemma 4.2. If σ(n) > 6n for all n, then ψσ is potentially exhaustive.

Proof. By Lemma 4.1, cn ≥ d(σ(n) + 1)/2(n − 1)e ≥ 3 for all n, so the
conclusion follows by Lemma 3.11.

Proof of Theorem 2. We will take X for our copy of the Cantor set, and
ψσ as defined above for ψ (here σ(i) > 6i for all i).

Let us first construct an ε-exhaustive normalized pathological submea-
sure for every given ε > 0; this proof does not require results of §2 past
Lemma 2.1. Fix ε > 0, and let n > d1/εe+ 1 and F = [N]n. We claim that

φ = ψ ∧ γ[SF , ε/2]

is pathological, normalized and ε-exhaustive.
Since φ ≤ ψ and ψ is pathological, so is φ. To prove that φ is normalized

we need to check that if X = A ∪ ⋃F for F ⊆ SF , then ψ(A) + ε|F | ≥ 1.
Assume ψ(A) + ε|F | < 1. Then |F | < 1/ε for all j. By Lemma 2.1 there is
an interval selector g for {sB : B ∈ F}. By Lemma 3.2, ψ(X \ ⋃F ) = 1,
and therefore X 6⊆ A ∪⋃F .

The submeasure ψ is potentially exhaustive by Lemma 4.2. Since ev-
ery infinite set has a proper initial segment in [N]n, φ is ε-exhaustive by
Lemma 3.5. This concludes the proof that φ is pathological, normalized,
and ε-exhaustive.

The proof of the unrestricted version of Theorem 2 is in order. We will
describe a winning strategy for player II. For a position in E(ψ) in which it
is II’s turn, after I has played α1, ε1, . . . , αk, εk, let tk ∈ (ω1 × N)k be such
that tk0(i− 1) = αi and tk1(i− 1) > 1/εi for 1 ≤ i ≤ k. Player II responds by
playing

φk = ψ ∧
k∧

i=1

γ[Sξ(tk�i), εi/2],

Note that t1 v · · · v tk, and therefore φ1 ≥ · · · ≥ φk, so this is a legal
strategy for II.

We prove this is a winning strategy.

To prove φk(X) = 1 we need to check that if F =
⋃k
j=1 Fj for Fj ⊆

Sξ(tk�j), then X = A ∪ ⋃k
j=1 Fj implies ψ(A) +

∑k
j=1 εj |Fj| ≥ 1. Assume∑k

j=1 εj|Fj | < 1. Therefore |Fj | < 1/εj for all j. By Theorem 2.3 there is an



268 I. Farah

interval selector g for {sB : B ∈ ⋃k
j=1 Fj}. By Lemma 3.2, ψ(X \ F ) = 1.

Therefore ψ(A) = 1 and φk(X) = 1.
The submeasure ψ is potentially exhaustive by Lemma 4.2. Since each

ξ(tk�i) is a barrier, φi is εi-exhaustive by Lemma 3.5. This concludes the
proof.

Variations on E(ψ). Let E∞(ψ) be a version of E(ψ) in which I is
not required to play ordinals. Therefore I is always able to make a move,
and if II wins, ψ∞ = infn φn is a normalized exhaustive pathological sub-
measure. Let E′(ψ) be another modification of E(ψ), obtained by drop-
ping only the requirement that α1 < ω1. Both games are open and there-
fore determined. If there is ψ such that player I does not have a win-
ning strategy for E′(ψ) and there is a measurable cardinal (or x# ex-
ists, where x is a real coding ψ) then a classical argument using indis-
cernibles (see [6]) shows that II wins E∞(ψ). Therefore under these as-
sumptions there is a normalized exhaustive pathological submeasure below
ψ. As a matter of fact, it is not difficult to see that the Kunen–Martin
theorem (see [4]) implies a bit more. Let E ′′(ψ) be a modification of E(ψ)
in which I is required to play ordinals less than ω2. Assuming that I does
not have a winning strategy in this game, there is an infinite decreasing
sequence {φi} of normalized pathological submeasures such that each φi
is εi-exhaustive, hence inf i φi is a normalized pathological exhaustive sub-
measure.

Talagrand ([9]) proved that if there is a normalized pathological ex-
haustive submeasure, then there is one on some atomless subalgebra B of
cl(Xσ) dominated by ψσ�B, for some σ : N → Fin such that |σ(n)| ≥ 2n
for all n. This suggests a variation of E(ψ) such that the existence of
a winning strategy for II for some σ is equivalent to the existence of a
normalized pathological exhaustive submeasure. (Added in proof : This is
true for every ψσ, and actually for every normalized ψ as defined in §1.
See the author’s preprint, A universal pathological submeasure, available at
http://www.math.yorku.ca/˜ifarah/.)

However, results of the next section diminish the hope that these obser-
vations may lead to the solution of Maharam’s problem.

5. Limitations. We now prove three results giving some limitations to
what kind of submeasure can be constructed by using methods exploited
in this paper. The assumptions are not optimal and theorems can easily be
strengthened, but already the versions presented here show that the methods
introduced above alone cannot lead to the solution of Maharam’s problem,
unless supplemented with some substantial new ideas.
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Theorem 5.1. Assume σ(n) ≥ 2n for all n. If εn > 0, limn εn = 0,
and each Fn (n ∈ N) includes a barrier , then the submeasure φ = ψσ ∧∧∞
n=1 γ[SFn , εn] vanishes.

Theorem 5.2. For every k ∈ N there is a 1/k-exhaustive normalized
submeasure on A such that for every normalized θ ≤ φ and every ε < 1/k,
θ is not ε-exhaustive.

Theorem 5.3. Assume F is well-founded and contains a barrier , and
φ = γ[SF , ε] is computed using ψσ for σ satisfying σ(n) ≥ 2n for all n. If
φ′ ≤ φ is exhaustive, then φ′(X) ≤ 2ε. In particular , if ε < 1/2 then φ does
not dominate a normalized exhaustive submeasure.

We will be using the notation and terminology of §1. For Y ⊆ Xm write

Y = {x ∈ X : x(m) ∈ Y }.
Note that (assuming θn(Xn) ≥ 1 for all n)

ψ(Y ) = θm(Y ).

Lemma 5.4. If m ∈ N and Yi ⊆ Xm+i (i ∈ N) and θm+i(Yi) = 1 for
all i, then the sets

Ak = X \
k⋂

i=1

Y i

are m-small for every k.

Proof. By induction on k. For k = 1, we have ψt(X \ A1) = θm(Y1) = 1
for every t ∈ Tm. Lemma 1.4 implies ψ(B \ A1) = ψ(B) for every B ∈ Am.
Since X \Ak+1 = (X \Ak)∩ Y k+1 and ψt(Y k+1) = 1 for all t ∈ Tm+k+1, we
have ψ(B \ Ak+1) = ψ((B \Ak) ∩ Y k+1) = ψ(B) by Lemma 1.4.

Lemma 5.5. Assume ψ is obtained from Xn, θn (n ∈ N) such that for
infinitely many n there is a partition Xn = X0

n ∪̇ X1
n satisfying θn(X0

n) =
θn(X1

n) = 1. Then for every s ∈ Fin of size at least 2 there is an s-small set
A such that X \A is (min(s),max(s))-small.

Proof. Let s = {n1, . . . , nk}, where n1 < · · · < nk and k ≥ 2. By

Lemma 1.4, each X0
ni is (ni, ni+1)-small, so A =

⋂k−1
i=1 X

0
ni is s-small. By

Lemma 5.4, X \A =
⋃k−1
i=1 X

1
ni is (n1, nk)-small.

Lemma 5.6. Under the assumptions of Lemma 5.5, for every m ∈ N
there is a sequence An (n ∈ N) of pairwise disjoint clopen subsets of X such

that each A{n is m-small.

Proof. Let ni (i ∈ N) be the increasing enumeration of all ni > m
such that Xni = X0

i ∪̇ X1
i so that θni(X

0
i ) = θni(X

1
i ) = 1 for all i. Let
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Ak =
⋂k−1
i=1 X

0
i ∩X1

k. Then X0
l separates Al from Ak for l < k, so the sets

are pairwise disjoint. By Lemma 5.4, each A{k =
⋃k−1
i=1 X

1
i ∪X0

i is m-small.

Lemma 5.7. If σ(n) ≥ 2n then ψ = ψσ satisfies the assumptions of
Lemma 5.5.

Proof. Fix m and i = im ∈ σ(m) and let

X0
m = {x ⊆ σ(m) : i ∈ x}.

Then θm(X0
m) = 1 because if u ⊆ σ(m) has size less than n, then there is

x ∈ X0
m such that x ∩ u = ∅. Similarly, X1

m = Xm \ X0
m satisfies θm(X1

m)
= 1.

Proof of Theorem 5.1. Fix ε > 0 and find an infinite C ⊆ N so that∑
i∈C εi < ε. To simplify the notation, assume C = N. We will find k ∈ N

and Ai ∈ SFi (i ≤ k) so that X =
⋃k
i=1Ai.

Fix an infinite D ⊆ N such that F1 is a barrier on D. Recursively find
n1 < n2 < . . . and si ∈ Fi (i ≥ 2) so that ni ∈ D, ni < min(si) and
max(si) < ni+1 for all i. Then for some k we have s1 = {ni : i ≤ k+1} ∈ F1.
By Lemmas 5.5 and 5.7, for 2 ≤ i ≤ k there is an si-small Ai such that X\Ai
is (ni, ni+1)-small. Therefore A1 = X \⋃k

i=2Ai is s1-small, and A1, . . . , Ak
are as required.

So φ(X) ≤∑k
i=1 εi < ε. Since ε > 0 was arbitrary, we have φ(X) = 0.

Proof of Theorem 5.3. In this proof, s-small means s-small with respect
to ψ. Assume φ′ ≤ γ[ψ, ε] is exhaustive. We claim that if s ∈ Fin \{∅}
and B ∈ A is s-small, then φ′(B) ≤ ε. Assume not. Since F is a barrier
and every s ∈ F satisfies the claim, there is t ∈ Fin and a t-small B such
that φ′(B) > ε yet for every s ) t every s-small C satisfies φ′(C) ≤ ε. Let
m = max(t). By Lemmas 5.6 and 5.7, there is a sequence of pairwise disjoint

sets An with m-small complements. Since B∩A{n is t∪{kn}-small for a large
enough kn and φ′ is exhaustive, we have

φ′(B) ≤ lim inf
n

(φ′(B ∩ A{n) + φ′(B ∩ An)) ≤ ε.

If A1 ∈ Ak then both A1 and A{1 are (m,k)-small, and therefore we have

φ′(X) ≤ φ′(A1) + φ′(A{1) = 2ε.

It remains to prove Theorem 5.2. Although it is a consequence of other
results from this note that such a submeasure exists, we will provide a
construction of a simple submeasure with the required properties.

Lemma 5.8. Under the assumptions of Lemma 5.5, for every k ≥ 2

there is s ∈ [N]k and (s, ψ)-small sets B1, . . . , Bk such that
⋃k
i=1Bi = X.

Moreover , min(s) can be chosen to be arbitrarily large.
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Proof. First we prove that for every m ∈ N there are sets Z1, . . . , Zk in
A satisfying the following:

(a) Zi ∩ Zj = ∅ if i 6= j,
(b) ψt(Zi) = 1 for all t ∈ Tm and i ≤ k.

The proof is by induction on k. If k = 2, let Z1 = X0
m and Z2 = X1

m.
By Lemma 1.4, these sets are as required.

Assume that the assertion is true for k and prove it for k + 1. Fix m,
and find Z1, . . . , Zk satisfying (a) and (b). Find n large enough such that
Zi ∈ An for all i ≤ k, and consider a partition X = X0

n ∪̇ X1
n such that

θn(X0
n) = θn(X1

n) = 1. Then let Z ′k = Zk ∩ X0
n, Z ′k+1 = Zk ∩ X1

n, and
Z ′i = Zi if i < k. By Lemma 1.4, ψt(Z

′
k) = ψt(Z

′
k+1) = 1 for all k ∈ Tm,

therefore the sets Z ′i (i ≤ k + 1) are as required.

Find n1 < · · · < nk and sets Zji (1 ≤ j ≤ k − 1, 1 ≤ i ≤ k) such that for
every j we have

(c) Zj1, . . . , Z
j
k satisfy (a) and (b) with m = nj ,

(d) Zji ∈ Anj+1 for all i ≤ k.

Then for i ≤ k let Bi = X \⋃k−1
j=1 Z

j
i .

Claim 1. X =
⋃k
i=1Bi.

Proof. Fix x ∈ X. For every j ≤ k − 1 there is at most one i(x, j) ≤ k
such that x ∈ X i

i(x,j). If i ≤ k and i /∈ {i(x, j) : j ≤ k − 1} then x ∈ Bi.
Let s = {n1, . . . , nk}.

Claim 2. Each Bi (i ≤ k) is (s, ψ)-small.

Proof. Recall that ψt(Z
j
i ) = 1 for all i, j and t ∈ Tnj . Therefore by

Lemma 1.4, if C ∈ Anj then ψ(C ∩Zji ) = ψ(C). Since Bi ⊇ Zji , the conclu-
sion follows.

This concludes the proof of Lemma 5.8.

Proof of Theorem 5.2. Fix σ such that σ(n) > 6n for all n, and let

φ = ψ ∧ γ[[N]k, 1/k].

Then φ is 1/k-exhaustive by Lemmas 3.5 and 3.11. If F ⊆ [N]k has size
< k, then F has an interval selector by Lemma 2.1, so by Lemma 3.2,
ψ(X \⋃F ) = 1, hence φ is normalized. By Lemmas 5.7 and 5.8 we can find
s ∈ [N]k−1 and (s, ψ)-small sets B1, . . . , Bk−1 that cover X. Let m = max(s).
By Lemma 5.6 we can find pairwise disjoint sets An (n ∈ N) in A such

that each A{n is m-small. If mn is such that An ∈ Amn , then Bi ∩ A{n is
s ∪ {mn}-small for each i ≤ k.
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Therefore A{n is covered by k − 1 many [N]k-small sets and ψ(A{n) ≤
(k−1)/k. If θ ≤ φ is normalized, it satisfies 1 ≤ θ(An)+θ(A{n). Since θ(A{n) ≤
(k − 1)/k for all n, we must have lim supn θ(An) = 1/k, and therefore θ
cannot be ε-exhaustive for ε < 1/k.

References

[1] D. H. Fremlin, Measure Theory, Volume 3, Torres–Fremlin, 2002.
[2] N. J. Kalton, The Maharam problem, in: Séminaire d’initiation à l’analyse, 28e année,
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