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Examples of c-exhaustive pathological submeasures
by

Ilijas Farah (Toronto)

Abstract. For any given € > 0 we construct an e-exhaustive normalized pathological
submeasure. To this end we use potentially exhaustive submeasures and barriers of finite
subsets of N.

A submeasure 6 on a Boolean algebra B is pathological if it does not
dominate a positive finitely additive functional. It is e-exhaustive if every
sequence {Ay} of pairwise disjoint sets in B satisfies limsup,, 0(A,) < e. It
is exhaustive if it is 0-exhaustive. It is normalized if 6(15) = 1.

QUESTION 1. Is there a mormalized exhaustive pathological submeasure
on the algebra of clopen subsets of the Cantor space?

This is an equivalent reformulation of Maharam’s problem ([5]) on char-
acterization of measure algebras, also known as the Control Measure Prob-
lem. The importance of Maharam’s problem largely derives from a variety
of forms in which it appears (see [1], [2], [8]).

It was apparently unknown even whether there is a normalized e-exhaus-
tive pathological submeasure for some small € > 0. The example of a normal-
ized e-exhaustive submeasure constructed by Roberts in [8] is not pathologi-
cal, since every nonempty set has submeasure at least €. We should note that
this submeasure is weakly pathological: no strictly positive finitely additive
functional f dominated by it satisfies f(13) = 1. For Roberts’s submeasure
there is an arbitrarily long finite sequence of pairwise disjoint sets of sub-
measure 1, and by [3] the existence of an exhaustive submeasure with this
property is equivalent to the existence of a normalized exhaustive patholog-
ical submeasure.

A game. For a submeasure 1 on a Boolean algebra B consider a game
E(v) for players I and II. Player I challenges by playing reals €; > 0, and II
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258 I. Farah
responds by finding normalized e;-exhaustive submeasures ¢; < ¢;_; (where
¢o = ). Player I also plays a decreasing sequence of countable ordinals.

I‘a1<w1,51>0 ag < ap, g2 >0 s ap < ap-1, €, >0

I | $1 <9 $2< 1 ... $n < b1

It is required that each ¢; is a normalized ¢;-exhaustive submeasure. The
first player who is unable to make a move loses.

THEOREM 2. There is a normalized submeasure v on the algebra of
clopen subsets of the Cantor space K such that

(i) ¢ is pathological,
(ii) ¢ is normalized,
(iii) II wins the game E(1).
In particular, ¢ dominates a normalized e-exhaustive pathological submea-
sure for every e > 0.

The submeasure v is taken from a family of “simple pathological submea-
sures” constructed by Talagrand [9]. Our construction has two independent
ingredients. One is introduction of the notion of potentially erhaustive sub-
measure in §3. The other ingredient is a result about sequences of barriers
of finite subsets of N and interval selectors (see the beginning of §2 and
Theorem 2.3).

On the other hand, by Theorem 5.3, if £; < 1/2 then the submeasure ¢;
used in the winning strategy for player II in F(v) provided in our proof of
Theorem 2 does not dominate a normalized exhaustive submeasure.

Acknowledgments. Theorem 2 was obtained while I was attending
the Special Programme on Set Theory and Analysis at the Fields Institute,
in Fall 2002. I would like to thank the referee for making several suggestions
that have improved the presentation.

1. A submeasure on the countable product. Fix a sequence X,,, 0,
(n € N) so that X, is a finite set and 6, is a normalized submeasure on X,
(that is, on the power set of X,). From this sequence we define a submeasure
Ypon X =][, X, Let

TO:{<>}7 Tn:HXZ forn > 1, T = UTn
=1 n=0

For t € T let |t| be the unique m such that ¢t € T,,. If A is a set then |A]
denotes its cardinality. Let

[t]={zeX:(Vn<Jt|) x(n) =t(n)}.
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Consider X as a topological space with the compact metric topology gener-
ated by {[t] : t € T} and let A = cl(X) denote the algebra of clopen subsets
of X.

For A C X and m € N let

Al = J{[] : [t| = m and [t] N A # 0}

and write A, = {B € A : [B],, = B}. This is a finite subalgebra of A and
by compactness we have A = J,, Ax.

LEMMA 1.1.
(1)  For every A and m we have [A]py O [Almy1 2 A for all m.
(2) If AC X is clopen, then A = [A]n, for all large enough m.
(3)  If [Alm < [B]m, then [t] C [A]lm \ [Blm for somet € T),. n

For n € N and a subset F of
[o@)
r=J{n} x Xn,
n=1

define
(F)={z € X :(3(n,k) € F) z(n) =k},

Fln)= (k= (n.k) € FY, Fl<n) = J{i} x Flil.  Flzn] = P\ Fl<n],

Ze

S(F )—{n (3k) (n, k) € F}.
Then (F) is the set covered by F, w(F') is the weight of F' and S(F) is the
support of F.

LEMMA 1.2. If F C I is finite then (F) is a clopen subset of X, and
[(F)]m = (F) form =max(S(F))+ 1. =
For t € T define a submeasure ¥; on A by
Yd(A) = I;Iéi}{w(F) ANt C(F), FC I and |[t| <minS(F)},

e(A) = min(1, 47 (A)).
We will write ¢ for 9.
LEMMA 1.3.
(4)  For all F',F? C T we have (F* U F?) = (F1) U (F?).
(5) If A € cl(X) and for some n we have Y (A) < € for all t € T, then
P(A) <elTn|.
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Proof. (4) Obvious.
(5) For each t € T,, fix F* C I' such that (F') D AN [t] and w(F?) < e.
Let F = U;eq, F'. Then w(F) < €|T,|, and by (4) we have (F) D A. u

The following is one of the key properties of ¥ used in our construction.
LEMMA 1.4. Assumet €T, m > |t|, B € Ay, and C € A. Then
Pi(BNC) > min(¢y(B), min{ys(C) : |[s| =m, [s]N B # 0 and s D t}).
In particular, if 1s(C) > 4(B) for all s € T, with s DO t, then ¥(B N C)
= (B).

Proof. Let 6 = min(¢(B), min{¢s(C) : |s| = m, [s]N B # 0}). Fix F
such that |[t| < min(S(F)) and w(F') < §. We need to check that BNCN([t] Z
(F'). Since w(F[<m]) < §, BN[t] £ (F[<m]). Since both BN[t] and (F[<m])
belong to A, by (3) of Lemma 1.1 there is s € T}, with s D t such that
[s] C(BN[t])\ (F[<m]). Since ¥5(C) > 4, we have

(CN[s]) € (F[=ml).
But Cn|s] € BNJt] and therefore BNCN[t]  (F). Since F was arbitrary,
we have x(BNC)> 4. =

ForUCX andneN deﬁne
(U)n = = : 1t =n, (] C U}

By (1) of Lemma 1.1 for m < n we have
() C (U)a CU.

LEMMA 1.5. Assume m < n, (F[<n]) D (U)n, and X; € F[i] for all
i € [m,n). Then (F[<m]) D (U)m.

Proof. Assume otherwise, that (U),,\(F[<m]) # 0. By (3) of Lemma 1.1,
there is ¢t € T, such that [t] C (U)m \ (F[<m]). For each i € [m,n) fix
s(i) € X; \ Fli], and let s(i) = t(¢) if ¢ < m. Then [s] C [t], therefore
[s] € (U)p. By the choice, [s|N(F[<n]) = 0, and therefore (F[<n]) 2 (U);,. =

LEMMA 1.6. If U C X is open and ¥((U),) < 1 for all n, then there is
an F C I such that (F) 2 U and w(F[<n]) <1 for all n.

Proof. For n € N let
Pn={FCI:(F)2U)pn S(F) Cn and w(F[<n]) < 1}.
If F € Py, then w([F' < k]) <1 for all k£ < n, and in particular X Z F[k].
Therefore Lemma 1.5 implies that (F[<m]) D (U),, and therefore F[<m]| €
P, whenever m < n. Hence | J;2 | Py, is a finitely branching tree with respect
to the ordering F' < G if F' = G[<n] for some n. By the assumption, each P,

is nonempty, hence by Kénig’s lemma there exists F' such that F[<n] € P,
for all n, and this concludes the proof. m
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2. Barriers and interval selectors. Let Fin denote the family of all
finite subsets of N. For F' C Fin we say that g is an interval selector for F
if g is a function with domain F' such that
(6) g(s) =[m,n) for some m < n in s,

(7)  g(s)Ng(t) =0 for all distinct s and ¢ in F.

The following lemma is implicit in [8].
LEmMMA 2.1. If F C Fin is nonempty and |F| < min{|s| : s € F}| — 1,
then F' has an interval selector.

Proof. Assume |F| = N and min{|s| : s € F} > N 4+ 1. For all s € F' let
m;j(s), 1 < j < N + 1, be the enumeration of the first N + 1 elements of s.
Forall1 <j < N, set I;(s) = [mj, mj4+1) and define inductively s; such that
max([;(s;)) < min(ljy1(s)) for all s € F\ {s1,...,s;}. Then s; — I;(s;) is
clearly an interval selector. =

A reader interested only in the construction of e-exhaustive normalized
pathological submeasures may skip the rest of this section and proceed di-
rectly to §3. For s and t in Fin we write

sCt
to denote that s = ¢t N'm for some m € N, and we write
sWt
to denote s Ut while at the same time asserting max(s) < min(¢).

DEFINITION 2.2. A family F C Fin is well-founded if there is no infinite
C-increasing sequence included in F. A family F C Fin is a barrier if for
every infinite A C N there is exactly one m € N such that AnNm € F.

Every barrier of finite rank is included in [N]" = {s C N : |s| = m} for
some m € N. If F; (i € N) are barriers, then
\Y Fi= {S €Fin:se fmin(s)}a
i=1

flquZ{Sl&JSQ181€f1,82€f2},
k
|_|.7:¢:{31Lﬂ-~-Lﬂsk:si€.7%,i§k}
=1

are barriers as well. As a matter of fact, every barrier can be obtained from
[N]! by iterating the 57 operation. Results of [7] give a structure theory for
barriers (note that each barrier is thin in the terminology of [7]).

For barriers F; and F5 and m € N we write

Fo =m F1
if for every s € F; such that min(s) > m there is t € F, such that t C s.
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Identify each t € (w; x N)<N with a pair (¢o,#1) such that ty € wi
and t; € N<N, Consider the set P C (w; x N)<N consisting of all ¢ such
that (to(7) : ¢ < |t|) is a decreasing sequence of ordinals. Ordered by the
end-extension, C, it is a well-founded tree of rank w;. Let B be the family

pa—

of all barriers on N.

THEOREM 2.3. There is a function £: P — B such that for everyt € P
and F; C &(t]i) satisfying |F;| < t1(i — 1) for i < |t| the set

||

U~r

i=1
has an interval selector.

[N]™+1 Assume

Proof. We construct £ by recursion. Let £((0,m)) =
i € N} enumerate all

&(t) is defined for all ¢ such that t¢(0) < . Let {F; :
{&(t) : to(0) < a}, and let

]—":ni([!}}).

Note that for every i there is m such that F; <,,, F.

Define £({a,m)) = [N]™* U F. If t5(0) = o and [t| > 2, let £ € P be

such that
= 1t| -1,

fo(’b) = to(i + 1) for1 <i< |t’,

f1<’i):t1(i+1)+t1(0) forl1 <i< ‘t‘
Let m € N be minimal such that £(¢]i) <7 F for all i < |¢|. Define

() ={s:s\me D)}

This defines £: P — B. Note that if s € {(¢) and |s N k| < ¢1(0), then s\ k
includes a member of F.

For t € P we need to prove that if F; C £(¢[4) are such that |F;| = ¢(i—1)
for i < |t|, then (J; F; has an interval selector. The proof is by induction on
a = to(0). Assume that the statement holds for all § < « and fix t, F;
(i < |t]). If |t| = 1, then F} has an interval selector by the construction and

Lemma 2.1. Assume |t| > 2, and let m ¢, £ be as in the definition of &(¢]7),
for i > 2. Define

F(/) = {S e F ]sﬂm2] > tl(O)},
Fl=FU{s\m’:se F\ F]},
F _,=F, fori>3.
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By Lemma 2.1, F{, has an interval selector g; such that g;(s) C m? for all s.
For s € Fy \ F}, the set s\ m? includes an element of & (£%). Therefore F| C
¢(t?), and it has size at most ¢1(0) 4 ¢1(1) = (£?)1(0). Hence if £ = f};/, then
F! C&(tli) (i < |t]) satisty the conditions and by the inductive assumption
this family has an interval selector, go. But m; > Mo for all i, therefore
g2(s) N = 0 for all s, hence g1 U g2 is an interval selector for | J, F;. =

3. Potentially exhaustive submeasures. If 1,9 are submeasures
on a Boolean algebra B, then ¢ = 11 A 19 is a submeasure defined by

6(A) = inf{v1(B) + ¥2(C) : A= BUC},

If S is a subset of a Boolean algebra B and f: S — [0, 1] then ¢ = ~[S, f] is
a submeasure defined by

#(C) = min (1,}%{ S f(B):FCAand | JF2 C})
- BeF

where the infimum is taken over all finite F* C S. If f(B) =¢ for all B € S,
write v[S, €] instead of +[S, f].

DEFINITION 3.1. A submeasure ¢ on A is potentially exhaustive if for
every B € A, every § > 0 and every sequence A,, (n € N) of pairwise disjoint
sets in A there is B’ C B in A such that ¢(B’) = ¢(B) and

¢(B/ N Az) <46
for all but finitely many i.

Small sets. Let ¢ be a submeasure on the algebra A of clopen subsets of
X =12, Xi, where X; are finite sets and the topology on X is the product
topology. Recall that

A, ={B € A:[B], = B}.

An A € A is m-small (with respect to ) if for every B € A,, such that
P(B) =1 we have p(B\ A) = 1. If m < n then an A € cl(X) is (m, n)-small
(with respect to 1) if [A],, is m-small (with respect to ). If K > 2 and
s ={my,...,my} € Fin (with m; < --- < my), then A € cl(X) is s-small
(with respect to v) if it is (m;, mit1)-small for ¢ < k — 1. If F C Fin, then
A € cl(X) is F-small (with respect to 1) if there is s € F such that A
is s-small. Let Sx denote the family of all F-small sets. We will suppress
writing “with respect to 9” whenever the choice of v is clear from the
context.

LEMMA 3.2. Assume that F C cl(X) is finite, each A € F is sa-small
for some sy € Fin, and {spx : A € F} has an interval selector g. Then

PXA\UF) =1.
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Proof. Enumerate F' = {A,..., A} so that if we write s; = sa,, ki =
min(g(s;)), li = max(g(s;)), then k; < l; < kit for all 4. Since A; is (ki, 1;)-
small, we can recursively find E; € A;, such that ¢(E;) = 1, E; N A; = 0,
and E;;1 C E; for all i. Then X \ |JF D Ej and the conclusion follows. =

LEMMA 3.3. Assume v is a potentially exhaustive submeasure on cl(X),
where X = [[;2, X; and all X; are finite. Then for every sequence A,
(n € N) of pairwise disjoint clopen subsets of X, every m € N, and every
e > 0 there is C € cl(X) such that
(8) C is m-small,

(9) Y(A;\ C) < e for all but finitely many i.

Proof. Let B; (i < k) be an enumeration of all sets in A,, such that
Y(B;) = 1. For each i find B, C B; such that ¢(B; N A;) < ¢/k for all but
finitely many j and ¢(B]) = 1. Let B = Ule B]. Then ¢)(BNB;) =1 for all
i <k, and (BN A;) < e for all but finitely many i. Therefore C = X \ B
is as required. =

LEMMA 3.4. Under the assumptions of Lemma 3.3, for every infinite
Z C N and every § > 0 we can find an increasing sequence n; of elements
of Z and sets C; € Ap,,, such that for all i

(10)  Ci41 = DN C; for some (n;,ni+1)-small D,
(11)  ¥(A;\ C;) <6 for all but finitely many j.

Proof. The construction is by recursion. Assume C;,n; (i < ip) are cho-
sen so that both (10) and the following strengthening of (11):

(12) B(A;\ G < 27715
hold for i < ig and all but finitely j. Apply Lemma 3.3 to the sequence
Al = A; N Cj, and m = n;, to obtain Cj,11 satisfying (8) and (12). Now
(10) is ensured by the choice of n;,+1, since [Ci0+1]ni0 = Cigr1.

If C; and n; are constructed in this manner, then

BANC) <> 25 <6
k=0

for all ¢ and all but finitely many j. =

LEMMA 3.5. Assume 1 is a potentially exhaustive submeasure on cl(X),
where X = [[;2, X;. If F C Fin is such that every infinite A C N has an
initial segment in F, then the submeasure ¢ = 1 A y[Sr, €] is e-ezhaustive.

Proof. Fix a sequence A,, (n € N) of pairwise disjoint sets in cl(X) and
6 > 0. Find n; and C; as in Lemma 3.4 applied with Z = N. There is k
such that {ni,...,n;} € F, and therefore ¢(Cy) < €. But ¥(4; \ C) < d
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for all large enough j, hence ¢(A;) < e+ ¢ for all such A;. Since 6 > 0 was
arbitrarily small, the submeasure is e-exhaustive. m

Let X, (n € N) be finite sets, let 6,, be a submeasure on X,,, and let the
tree T' and submeasures ¢, (¢t € T') be as defined in §1.

DEFINITION 3.6. For a submeasure § on X let ¢y be a function on P(X)
defined by

cp(A) = min{m :(3B1,...,By) A= U B; and max6(B;) < 1}.
i=1 !
We write ¢y for cp(X).

Note that ¢y is a submeasure. We will write ¢, instead of ¢y, .

LEMMA 3.7. We have ¢y, > ming,>y| cn, and ¢ is normalized for every
telT.

Proof. Assume k < min, > ¢, and Ay, ..., Ag C [t] are such that ¥ (A4;)
< 1 for all i < k. We need to check that

k
[\ [ Ai # 0.
i=1
For each i < k fix F; C I such that (F;) 2 A; and w(F;) < 1, and
min(S(F;)) > |t|. Since for each n > |t| we have k < ¢,, we can pick
xz(n) € X, \ Ule Fi[n]. Let z(n) = t(n) for n < |t|; then z € [t] \ Ule A;.

Now we check that v, is normalized. By definition, ¥(X) < 1. Since
each 6,, is normalized, we have ¢, > 2 for all n. By Lemma 3.7, we have
¢y, > 2, and therefore ¢;(X) > 1. m

We record a related fact with a very similar proof.

LEMMA 3.8. If F C I' is such that c¢,({{n} x F[n])) < c,(X,,) for all
n > |t], then [t] \ (F) # 0 for every t such that |t| < min(S(F)). =

LEMMA 3.9. If B€ A, F CI', (F[<m]) 2 B and cp,((F[n])) < cn(Xy)
for all n > m, then (F) 2 B.

Proof. If B and F' are as above, then B and (F[<m]) belong to A,,.
By (3) of Lemma 1.1 there is s € T, such that [s] C B\ (F[<m]). Since
cn((Fn])) < en(Xy) for all n > m, by Lemma 3.8 we have [s] \ (F[>m])
#0. m

LEMMA 3.10. Assume 6, is a submeasure on X, such that ¢, > 3 for
alln. For everyt € T, every sequence A,, (n € N) of pairwise disjoint clopen
subsets of X and every e > 0 there is a clopen B C [t| such that ¢¢(B) =1
and V(BN Ay) < e for all but finitely many n.
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Proof. First assume that ¢ (|J;~, Ai) = 1 for some m. Then B =
Ui%, 4; N [t] satisfies ¢¢(B) = 1 and (B N A,) = 0 for all but finitely
many n.

So we may assume that ¢ (|J;~, A;) < 1 for all m. Since each level of T},
is finite, for every n there is a large enough mg such that for all m > mg
we have (|J"y Ai)n = (U;2p Ai)n- So U = ;2 A; satisfies ¢((U),) < 1 for
all n. By Lemma 1.6, there is F' C I" such that w(F[<n]) < 1 for all n and
(F) D U;2, A;. Let m be such that w(F[>m]) < e, and let B = [t]\(F[<m]).
Then BNA; C (F[>m]), hence :(BNA;) < ¢ for all i. Since ¢,, > 3 for all n,
by Lemma 3.7 we have ¢, > 3. Since w(F[<m]) < 1, we have ¢;(B) = 1. =

LEMMA 3.11. Under the notation and assumptions of Lemma 3.10, v is
potentially erhaustive.

Proof. Fix a sequence A, (n € N) of pairwise disjoint sets in cl(X) and
B € cl(X). Let n be such that B € A,,. By Lemma 3.10, for each t € T,
we can find By C B N [t] such that ¢ (B; N A4;) < ¢/|T,| for all but finitely
many i and ¢¢(B;) = 1. Let B' = (J;cp, Bi- Then for all but finitely many
i we have ¢(B'N A;) < e by (5) of Lemma 1.3. By Lemma 1.4 applied with
C = B’ we have ¢(B’) = 1)(B), as required. =

4. Proof of Theorem 2. We will construct a sequence 6, (m € N) of
submeasures such that 1 as in §1 satisfies the conclusion of Theorem 2. Al-
though essentially any sequence of “increasingly pathological” submeasures
{6,,} would do, we will provide a concrete (and well-known) example. Fix a
function o: N — Fin such that |o(n)| > 2n for all n and the sets o(m) are
pairwise disjoint. Let 17 =, o(m) and

X?={CCI?:|Cna(n)|>oc(n)/2 for all n}.
Write
[Z)2F ={sC Z:|s| > k}.
If X,m = [m]2™/2, we can identify X7 with [[2° | X,, 5(n). Let 0pm be a
submeasure on X, ,, defined by

Brm(A) = %min{|F\ . F Co(n) and (Va € A)3k € F) k € a}.

LeMMA 4.1. For all m > 2n we have ¢y m = [(m+1)/2(n —1)].

Proof. If | = [(m +1)/2(n —1)] and F; (i < l) are pairwise disjoint
subsets of m such that |F;| = n—1, then F' = Uizl F; hassize [(n—1) > m/2,
and therefore every a € X, ,, intersects F. Therefore if A; = {a € X, 1 :
anNF; # 0} then 0, ,(4;) = (n —1)/n, and Ui:l Ai = Xpm, S0 Cpm < L.

On the other hand, assume [ < [(m 4+ 1)/2(n — 1)] and A; (i <) are
subsets of X, ,,, each of submeasure < 1. Let F; C m be of size < n and
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such that 4; C {a : aN F; # 0}. Then Uézl F; has size at most m/2, and
therefore U§:1 A; does not cover X, 1, 50 €y > 1. m

Let 17 be the submeasure 1)y obtained from the sequence 0,, ;(,,), X,.0(n)
as in §1. This is the “simple example of a pathological submeasure” defined
in [9].

LEMMA 4.2. If o(n) > 6n for all n, then 17 is potentially exhaustive.

Proof. By Lemma 4.1, ¢, > [(o(n) +1)/2(n —1)] > 3 for all n, so the
conclusion follows by Lemma 3.11. =

Proof of Theorem 2. We will take X for our copy of the Cantor set, and
17 as defined above for ¢ (here o (i) > 6i for all ).

Let us first construct an e-exhaustive normalized pathological submea-
sure for every given € > 0; this proof does not require results of §2 past
Lemma 2.1. Fix € > 0, and let n > [1/¢] 4+ 1 and F = [N]". We claim that

is pathological, normalized and e-exhaustive.

Since ¢ < 1 and v is pathological, so is ¢. To prove that ¢ is normalized
we need to check that if X = AUJF for F C S, then ¢(A) +¢|F| > 1.
Assume 1p(A) 4+ ¢|F| < 1. Then |F| < 1/e for all j. By Lemma 2.1 there is
an interval selector g for {sp : B € F}. By Lemma 3.2, (X \UF) =1,
and therefore X ¢ AUJF.

The submeasure 1 is potentially exhaustive by Lemma 4.2. Since ev-
ery infinite set has a proper initial segment in [N]", ¢ is e-exhaustive by
Lemma 3.5. This concludes the proof that ¢ is pathological, normalized,
and e-exhaustive.

The proof of the unrestricted version of Theorem 2 is in order. We will
describe a winning strategy for player II. For a position in E(%) in which it
is II's turn, after I has played a1,¢e1,...,ag, g, let t* € (w1 x N)* be such
that t5(i — 1) = a; and t§(i — 1) > 1/g; for 1 < i < k. Player II responds by
playing

2
bk = A N\ VSerriyr€i/2,
i=1

Note that t1 C --- C tk, and therefore ¢1 > -+ > ¢, so this is a legal
strategy for II.

We prove this is a winning strategy.

To prove ¢p(X) = 1 we need to check that if FF = U§:1 F; for F; C
Se(tr1j), then X = AU U§=1 F; implies ¢(A) + Z?Zl gj|Fj| > 1. Assume
Z?:l gj|Fj| < 1. Therefore |F;| < 1/¢; for all j. By Theorem 2.3 there is an
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interval selector g for {sp : B € U§:1 F;}. By Lemma 3.2, (X \ F) = 1.
Therefore 1(A) =1 and ¢p(X) = 1.

The submeasure ¢ is potentially exhaustive by Lemma 4.2. Since each
£(tF14) is a barrier, ¢; is g;-exhaustive by Lemma 3.5. This concludes the
proof. m

Variations on E(1). Let E*(1¢) be a version of E(1) in which I is
not required to play ordinals. Therefore I is always able to make a move,
and if II wins, ¥, = inf,, ¢, is a normalized exhaustive pathological sub-
measure. Let E’(y)) be another modification of E(v), obtained by drop-
ping only the requirement that a; < w;. Both games are open and there-
fore determined. If there is ¢ such that player I does not have a win-
ning strategy for E’(x)) and there is a measurable cardinal (or z# ex-
ists, where x is a real coding %) then a classical argument using indis-
cernibles (see [6]) shows that II wins E°°(1)). Therefore under these as-
sumptions there is a normalized exhaustive pathological submeasure below
1. As a matter of fact, it is not difficult to see that the Kunen—Martin
theorem (see [4]) implies a bit more. Let E” () be a modification of E(v)
in which I is required to play ordinals less than ws. Assuming that I does
not have a winning strategy in this game, there is an infinite decreasing
sequence {¢;} of normalized pathological submeasures such that each ¢;
is g;~exhaustive, hence inf; ¢; is a normalized pathological exhaustive sub-
measure.

Talagrand ([9]) proved that if there is a normalized pathological ex-
haustive submeasure, then there is one on some atomless subalgebra B of
cl(X7) dominated by 9?8, for some o: N — Fin such that |o(n)| > 2n
for all n. This suggests a variation of E(i¢) such that the existence of
a winning strategy for II for some ¢ is equivalent to the existence of a
normalized pathological exhaustive submeasure. (Added in proof: This is
true for every %7, and actually for every normalized ¢ as defined in §1.
See the author’s preprint, A universal pathological submeasure, available at
http: //www.math.yorku.ca/"ifarah/.)

However, results of the next section diminish the hope that these obser-
vations may lead to the solution of Maharam’s problem.

5. Limitations. We now prove three results giving some limitations to
what kind of submeasure can be constructed by using methods exploited
in this paper. The assumptions are not optimal and theorems can easily be
strengthened, but already the versions presented here show that the methods
introduced above alone cannot lead to the solution of Maharam’s problem,
unless supplemented with some substantial new ideas.
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THEOREM 5.1. Assume o(n) > 2n for all n. If &, > 0, lim, e, = 0,
and each F,, (n € N) includes a barrier, then the submeasure ¢ = 17 A
Ao 1 V[SF,,en] vanishes.

THEOREM 5.2. For every k € N there is a 1/k-exhaustive normalized
submeasure on A such that for every normalized 0 < ¢ and every e < 1/k,
0 is not e-exhaustive.

THEOREM 5.3. Assume F is well-founded and contains a barrier, and
¢ = Y[SF, €] is computed using Y° for o satisfying o(n) > 2n for all n. If
¢ < ¢ is exhaustive, then ¢'(X) < 2e. In particular, if e < 1/2 then ¢ does
not dominate a normalized exhaustive submeasure.

We will be using the notation and terminology of §1. For Y C X,,, write
Y={ze€X:2(m)eY}
Note that (assuming 6,,(X,) > 1 for all n)
YY) = (V).

LEMMA 54. If m € N and Y; C Xp4i (i € N) and 0,,44(Y;) = 1 for
all i, then the sets

k
Ae=X\[Yi
=1

are m-small for every k.

Proof. By induction on k. For k = 1, we have ¢4(X \ A1) = 0,,(Y1) =1
for every t € T,. Lemma 1.4 implies /(B \ A1) = ¢(B) for every B € A,,.
Since X \ Apy1 = (X \ Ax)NY,yq and ¢y (Y1) = 1 for all t € Ty qpr1, we
have (B \ Ag+1) = Y((B\ Ax) NY11) = ¢(B) by Lemma 1.4. =

LEMMA 5.5. Assume v is obtained from X,,0, (n € N) such that for
infinitely many n there is a partition X, = X0 U X} satisfying 0,(X2) =
0,(X}) = 1. Then for every s € Fin of size at least 2 there is an s-small set
A such that X \ A is (min(s), max(s))-small.

Proof. Let s = {ny,...,ni}, where ny < --- < ng and k > 2. By
Lemma 1.4, each X[ is (n,niy1)-small, so A = Nl X
Lemma 5.4, X \ A = Uf;ll X1 is (n1,ny)-small. =

0. is s-small. By

LEMMA 5.6. Under the assumptions of Lemma 5.5, for every m € N
there is a sequence A,, (n € N) of pairwise disjoint clopen subsets of X such
that each AE s m-small.

Proof. Let n; (i € N) be the increasing enumeration of all n; > m
such that X,, = X? U X} so that 0,,(X?) = 6,,(X}) = 1 for all i. Let
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A = ﬂf;ll XN Y}c. Then Xl0 separates A; from Ay for [ < k, so the sets
are pairwise disjoint. By Lemma 5.4, each Al = Ui:ll 7} UY? is m-small. =

LEMMA 5.7. If o(n) > 2n then ¢ = ¢ satisfies the assumptions of
Lemma 5.5.

Proof. Fix m and i = i,, € o(m) and let
X0 ={x Co(m):icuaz}.
Then 60,,(X2,) = 1 because if u C o(m) has size less than n, then there is

r € X0 such that x Nu = . Similarly, X} = X, \ X9, satisfies 0,,,(X},)
=1 n

Proof of Theorem 5.1. Fix ¢ > 0 and find an infinite C' C N so that
> icc €i < €. To simplify the notation, assume C' = N. We will find & € N
and A; € Sr, (i < k) so that X = Ule A;.

Fix an infinite D C N such that JF; is a barrier on D. Recursively find
np < ng < ...and s; € F; (i > 2) so that n; € D, n; < min(s;) and
max(s;) < n;y1 for all i. Then for some k we have s1 = {n; : i < k+1} € Fi.
By Lemmas 5.5 and 5.7, for 2 < ¢ < k there is an s;-small A; such that X'\ 4;
is (ni, nj+1)-small. Therefore A} = X \ Uf:g A; is s1-small, and Ay, ..., Ag
are as required.

So ¢(X) < S°F & < e. Since € > 0 was arbitrary, we have ¢(X) = 0. =

Proof of Theorem 5.3. In this proof, s-small means s-small with respect
to 1. Assume ¢’ < [, €] is exhaustive. We claim that if s € Fin\{0}
and B € A is s-small, then ¢/(B) < e. Assume not. Since F is a barrier
and every s € F satisfies the claim, there is ¢t € Fin and a t-small B such
that ¢/(B) > ¢ yet for every s D t every s-small C' satisfies ¢/(C) < e. Let
m = max(t). By Lemmas 5.6 and 5.7, there is a sequence of pairwise disjoint
sets A, with m-small complements. Since BN AL is tU{k, }-small for a large
enough k, and ¢’ is exhaustive, we have

¢/(B) < liminf(¢/(B N AY 4 ¢(BNA,)) <e.

If Ay € Ag then both A; and A? are (m, k)-small, and therefore we have
¢ (X) < ¢/ (A1) + ¢/ (AF) = 2¢. u
It remains to prove Theorem 5.2. Although it is a consequence of other

results from this note that such a submeasure exists, we will provide a
construction of a simple submeasure with the required properties.

LEMMA 5.8. Under the assumptions of Lemma 5.5, for every k > 2
there is s € [N]* and (s,1)-small sets By, ..., By such that Ule B, = X.
Moreover, min(s) can be chosen to be arbitrarily large.
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Proof. First we prove that for every m € N there are sets Zy,..., Z; in
A satisfying the following;:

(a) ZiNnZ;=0if i # j,

(b) ¥4 (Z;) =1 for all t € T}, and i < k.

The proof is by induction on k. If k = 2, let Z; = X° and Zy = X_..
By Lemma 1.4, these sets are as required.

Assume that the assertion is true for k£ and prove it for k£ + 1. Fix m,
and find Z1,..., 7 satisfying (a) and (b). Find n large enough such that
Z; € A, for all i < k, and consider a partition X = X% U X! such that
0n(X)) = 0,(X}) = 1. Then let Z;, = Z, N XY, Z ., = Z, N X,, and
Z; = Z; if i < k. By Lemma 1.4, ¢4(Z;) = ¢(Z;,) = 1 for all k € Ty,
therefore the sets Z! (i < k+ 1) are as required.

Find n1 < -+ < n; and sets Zl.j (1<j<k-—1,1<1i<k)such that for
every j we have

(c) Zf, e Z,z satisfy (a) and (b) with m = n;,

(d) Z] € A,,,, for all i <k.

Then for i < k let B; = X \ =] 2.

Cram 1. X =, B:.

Proof. Fix x € X. For every j < k — 1 there is at most one i(x,j) < k
such that z € X} ).Ifigkandi¢{i(x,j) :j<k—1}thenz € B;. m

Z‘hj

Let s = {n1,...,ng}.
CLAIM 2. Each B; (i < k) is (s,v¢)-small.

Proof. Recall that Q,Z)t(ZZj ) = 1 for all 4,5 and t € T,,. Therefore by
Lemma 1.4, if C' € Ap; then (C'N Zf) = ¢(C). Since B; D Zij, the conclu-
sion follows. m

This concludes the proof of Lemma 5.8. u

Proof of Theorem 5.2. Fix o such that o(n) > 6n for all n, and let

¢ = A{INI*, 1/K).

Then ¢ is 1/k-exhaustive by Lemmas 3.5 and 3.11. If F C [N]* has size
< k, then F' has an interval selector by Lemma 2.1, so by Lemma 3.2,
P(X\UF) =1, hence ¢ is normalized. By Lemmas 5.7 and 5.8 we can find
s € [N]*~1 and (s,v)-small sets By, ..., B,_; that cover X. Let m = max(s).
By Lemma 5.6 we can find pairwise disjoint sets A, (n € N) in A such
that each AE is m-small. If m,, is such that A, € A,,, , then B; N AE is
s U{my,}-small for each i < k.
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Therefore AC is covered by k — 1 many [N]*-small sets and (AC) <
(k—1)/k.1f 0 < ¢ is normalized, it satisfies 1 < 0(A,)+0(AL). Since #(AL) <
(k — 1)/k for all n, we must have limsup,, 0(A,) = 1/k, and therefore 0
cannot be e-exhaustive for ¢ < 1/k. m
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