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Complexity of curves
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Udayan B. Darji (Louisville, KY) and Alberto Marcone (Udine)

Abstract. We show that each of the classes of hereditarily locally connected, finitely
Suslinian, and Suslinian continua is Π1

1-complete, while the class of regular continua is
Π0

4-complete.

1. Introduction. In this note we study some natural classes of continua
from the viewpoint of descriptive set theory: motivations, style and spirit
are the same of papers such as [Dar00], [CDM02], and [Kru03]. Pol and Pol
use similar techniques to study problems in continuum theory in [PP00].

By a continuum we always mean a compact and connected metric space.
A subcontinuum of a continuumX is a subset ofX which is also a continuum.
A continuum is nondegenerate if it contains more than one point. A curve
is a one-dimensional continuum.

Let us start with the definitions of some classes of continua: all these can
be found in [Nad92], which is our main reference for continuum theory.

Definition 1.1. A continuumX is hereditarily locally connected if every
subcontinuum of X is locally connected, i.e. a Peano continuum.

A continuum X is hereditarily decomposable if every nondegenerate sub-
continuum of X is decomposable, i.e. is the union of two proper subcontinua.

A continuum X is regular if every point of X has a neighborhood basis
consisting of sets with finite boundary.

A continuum X is rational if every point of X has a neighborhood basis
consisting of sets with countable boundary.

The following classes of continua were defined by Lelek in [Lel71].

Definition 1.2. A continuum X is Suslinian if each collection of pair-
wise disjoint nondegenerate subcontinua of X is countable.
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A continuum X is finitely Suslinian if for every ε > 0 each collection of
pairwise disjoint subcontinua of X with diameter ≥ ε is finite.

Theorem 1.3. The following chain of implications for continua holds:

regular⇒ finitely Suslinian⇒ hereditarily locally connected

⇒ rational⇒ Suslinian⇒ hereditarily decomposable⇒ curve.

Proof. The fact that every hereditarily locally connected continuum is
rational, is well known and originally due to Whyburn ([Why42, Theorem
V.3.3]). The last implication follows from Mazurkiewicz’s theorem (see e.g.
[Nad92, Theorem 13.57]) asserting that every compact metric space of di-
mension at least 2 contains a nondegenerate indecomposable continuum. All
other implications are proved by Lelek in [Lel71].

In particular all classes of continua introduced in Definitions 1.1 and 1.2
are classes of curves.

None of the implications of Theorem 1.3 reverses, although Lelek no-
ticed that every planar hereditarily locally connected continuum is finitely
Suslinian.

Our goal is to understand the complexity of the notions we just defined.
To this end we use the hierarchies of descriptive set theory. We explain
briefly how descriptive set theory deals with (classes of) continua.

If X is a compact metric space, we denote by K(X) the hyperspace of
nonempty compact subsets of X, equipped with the Vietoris topology which
is generated by the Hausdorff metric, denoted by dH. Then K(X) is compact
metric ([Kec95, §4.F] or [Nad92, Chapter IV]). We denote by C(X) the sub-
set of K(X) which consists of all subcontinua of X; C(X) is closed in K(X)
and, therefore, it is a compact metric space. Denote by I the closed interval
[0, 1]. Every compact metric space, and in particular every continuum, is
homeomorphic to a closed subset of the Hilbert cube IN. Hence C(IN) is a
compact metric space containing a homeomorphic copy of every continuum.
Similarly, C(I2) is a compact metric space containing a homeomorphic copy
of every planar continuum. Therefore, if P is a class of continua closed under
homeomorphisms (as those introduced in Definitions 1.1 and 1.2), it makes
sense to identify P with the set of all subcontinua of IN belonging to P, so
that P becomes a subset of C(IN). Therefore P can be studied with the tools
and techniques of descriptive set theory, which studies Polish (i.e. separ-
able and completely metrizable) spaces. Similarly, by considering P ∩ C(I2)
we study the class of planar continua belonging to P. When P is a class
of continua which has been studied for its own sake in continuum theory,
as those introduced in Definitions 1.1 and 1.2 (rather than being built ad
hoc to exhibit certain descriptive set-theoretic features), we say that P is



Complexity of curves 81

a natural class (this is obviously a sociological, rather than a mathematical
notion).

We recall the basic definitions of the hierarchies of descriptive set theory
(for more details see e.g. [Kec95]). If X is a metric space we denote by
Σ0

1(X) the family of open subsets of X. Then Π0
n(X) is the family of all

complements of sets in Σ0
n(X), while, for n ≥ 1, Σ0

n+1(X) is the class of

countable unions of elements of Π0
n(X). This hierarchy (called the Borel

hierarchy) can be continued in the transfinite, to include all Borel subsets
of X. At the lowest stages, Π0

1(X) is the family of closed subsets of X, while
Σ0

2(X) and Π0
2(X) are respectively the Fσ and Gδ subsets of X. We will also

be interested in sets which are in Π0
4: in the classical notation these are Gδσδ

sets. We then denote by Σ1
1(X) the family of analytic subsets of X, i.e. of

continuous images of a Polish space. Π1
1(X) is the class of all complements

of sets in Σ1
1(X), also called coanalytic sets. These families are the first level

of the projective hierarchy.
By establishing the position of a set in the Borel and projective hier-

archies (i.e. the smallest family to which the set belongs), we obtain some
information about the complexity of P. This gives lower limits for the com-
plexity of any characterization of the elements of the set. This also has
continuum-theoretic consequences: e.g. a class of continua which is not Σ1

1

does not have a model, i.e. a continuum M such that the continua in the
class are exactly the continuous images of M .

The main tool for establishing lower bounds on the complexity of a set
is Wadge reducibility. If X and Y are metric spaces, A ⊆ X, and B ⊆ Y ,
we say that A is Wadge reducible to B (and write A ≤W B) if A = f−1(B)
for some continuous function f : X → Y . Notice that if e.g. B is Σ0

n and
A ≤W B then A is also Σ0

n. Thus, proving that A ≤W B for some A of
known complexity yields a lower bound on the complexity of B. If Γ is a
class of sets in Polish spaces (like the classes Σ0

n, Π0
n, Σ1

1 and Π1
1 introduced

above), Y is a Polish space and A ⊆ Y , we say that A is Γ-hard if B ≤W A
for every B ∈ Γ(X) where X is a zero-dimensional Polish space. We say
that A is Γ-complete if, in addition, A ∈ Γ(Y ). It turns out that a set is
Σ0
n-complete if and only if it is Σ0

n but not Π0
n, and similarly interchanging

Σ0
n and Π0

n. If a set is Π1
1-complete then it is not Σ1

1.
Several natural classes of continua have already been classified according

to the hierarchies described above: e.g. the class of hereditarily decomposable
continua is Π1

1-complete ([Dar00]). In this paper we show that the classes of
hereditarily locally connected, finitely Suslinian and Suslinian continua are
each Π1

1-complete (the first two results are proved in Section 2, the latter in
Section 3), while the class of regular continua is Π0

4-complete (this is proved
in Section 4). It is apparent from the proofs that each of our results applies
to planar continua, even if we do not state this explicitly. The result about
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regular continua is noteworthy because natural sets which appear for the
first time in the Borel hierarchy at the fourth level are quite rare (and there
are no natural examples which appear for the first time at later levels, see
[Kec95, p. 189]).

We leave as an open problem the classification of the class of rational
continua (it is easily seen to be Σ1

2, i.e. the continuous image of a Π1
1 set,

and Π1
1-hard). In the remainder of this section we fix our notation and quote

some results we will use frequently.
If X is a metric space, we always denote the metric by d. Furthermore,

we write B(p; ε) for the open ball of center p ∈ X and radius ε > 0, while
diam(A) is the diameter of the set A ⊆ X. If A ⊆ X, A is the closure of A
and ∂A its boundary. We use N to denote the set of nonnegative integers.
2N is the Cantor space consisting of the infinite sequences of 0’s and 1’s
equipped with the product topology obtained from the discrete topology on
{0, 1}; it is a compact metric space homeomorphic to Cantor’s middle third
set.

We will deal with finite sequences of 0’s and 1’s, which form the set 2<N.
Let s, t ∈ 2<N. Then

• |s| is the length of s,
• s0 (resp. s1) is the sequence of length |s|+ 1 obtained by extending s

with a final 0 (resp. 1),
• s ⊆ t means that s is an initial segment of t,
• if n < |s| then s(n) is the (n+ 1)th element of s,
• if n ≤ |s| then s�n is the initial segment of s which has length n, and
• s∧ t denotes the longest sequence which is an initial segment of both s

and t.

If α ∈ 2N, then s ⊂ α, α(n), and α�n also make sense. By ∀∞n we mean for
all but finitely many n’s.

To show that a set A is, say, Π1
1-hard one usually picks an already known

Π1
1-complete set B, and shows that B ≤W A. Here are the sets we will use

in our proofs. (IN×N is the space of functions from N × N to I, with the
product topology.)

Lemma 1.4. (1) Let D = {α ∈ 2N | ∀∞n α(n) = 0}. Then {C ∈ K(2N) |
C ⊆ D} is Π1

1-complete.

(2) The set of all countable compact subsets of 2N is Π1
1-complete.

(3) The set Q = {α ∈ IN×N | ∀k ∀∞n α(k, n) < 1} is Π0
4-complete.

Proof. (1) and (2) are classical results of Hurewicz (see e.g. [Kec95, The-
orem 27.5 and §33.B]).

To prove (3), notice that the results in [Kec95, §23.A] imply that the set

P = {β ∈ 2N×N×N | ∀k ∀∞n ∃m β(k, n,m) = 0}
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is Π0
4-complete. Therefore it suffices to show P ≤W Q. To this end define a

continuous f : 2N×N×N → IN×N by f(β)(k, n) =
∑∞

m=0 β(k, n,m) · 2−m−1.
Checking that β ∈ P if and only if f(β) ∈ Q is straightforward.

In establishing the upper bounds for the classes we study, the following
simple fact is useful; for a proof (of a slightly more general version) see
[AM97, Lemma 1.3].

Lemma 1.5. Let X be Polish and Y compact metric. If A ⊆ X × Y is
Σ0

2 then {x ∈ X | ∃y ∈ Y (x, y) ∈ A} is also Σ0
2. Similarly , if B ⊆ X × Y

is Π0
2 then {x ∈ X | ∀y ∈ Y (x, y) ∈ A} is also Π0

2.

The following facts about subsets of K(X) are also useful (see [Kec95,
Exercise 4.29]).

Lemma 1.6. If X is a metric space, each of the sets {(K,L) ∈ K(X)2 |
K ⊆ L}, {K ∈ K(X) | diam(K) ≥ ε}, and {(K,L) ∈ K(X)2 | K ∩ L 6= ∅} is
closed.

Recall also the following well known theorem of continuum theory; for a
proof see [Nad92, Theorem 5.4].

Theorem 1.7 (Boundary Bumping Theorem). Let X be a continuum
and U a nonempty proper open subset of X. If K is a connected component
of U , then K ∩ ∂U 6= ∅.

2. Hereditarily locally connected continua

Definition 2.1. Let X be a continuum and K be a nondegenerate
subcontinuum of X. Then K is a continuum of convergence within X if
there exists a sequence {Ki}i∈N of subcontinua of X which converges (in
the Vietoris topology) to K and is such that Ki ∩K = ∅ for every i.

The following theorem provides a well known characterization of hered-
itarily locally connected continua (see e.g. [Nad92, Theorem 10.4]).

Theorem 2.2. A continuum X is hereditarily locally connected if and
only if no subcontinuum of X is a continuum of convergence within X.

The following fact about continua of convergence will be useful.

Lemma 2.3. Let X be a continuum and K be a continuum of conver-
gence within X. If U is open in K and p is such that p ∈ U , there exists
H which is a continuum of convergence within X such that p ∈ H ⊆ U .

Proof. Let V be open in X such that U = V ∩K, and pick W open in
X such that p ∈ W and W ⊆ V . Let η > 0 be the distance of p from ∂W .
Let {Ki}i∈N be a sequence of subcontinua of X which converges to K and
is such that Ki ∩K = ∅ for every i.
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For every n ∈ N there exists in ∈ N such that Kin ∩ B(p; 2−n) 6= ∅. Let
pn belong to this intersection and let Hn be the connected component of
Kin ∩W which contains pn. Notice that the Boundary Bumping Theorem
implies that diam(Hn) ≥ η − 2−n. By extracting a subsequence we may
assume that {Hn}n∈N converges to some H, which is obviously a subcontin-
uum of X.

Notice that diam(H) ≥ η, and hence H is nondegenerate. Since Hn ⊆
Kin , we have H ⊆ K and Hn ∩ H = ∅, so that H is a continuum of
convergence within X. Since d(p,Hn) ≤ d(p, pn) < 2−n we have p ∈ H.
Since Hn ⊆W we have H ⊆W and hence H ⊆ V ; hence H ⊆ V ∩K = U .

To prove that the class of planar hereditarily locally connected continua
is Π1

1-hard we use a modification of the main argument in [Dar00]. Actually
Lemma 2.11 gives another proof (more complicated than the original one)
of Darji’s main result, i.e. the Π1

1-hardness of the class of planar hereditarily
decomposable continua. We start with some definitions: some of these are
minor variants of the definitions used in [Dar00].

Definition 2.4. A finite list G = 〈G0, . . . , Gn〉 of sets is a chain if
Gi ∩ Gj 6= ∅ if and only if |i − j| ≤ 1. Any Gi is called a link of G and we
write (with slight abuse of notation) Gi ∈ G.

If the Gi’s are subsets of a metric space, the mesh of G, denoted by
mesh(G), is max{diam(Gi) | i ≤ n}.

Definition 2.5. A finite collection G of sets is coherent if
⋃G′∩⋃G′′ 6=

∅ whenever G = G ′ ∪ G′′ and G′,G′′ 6= ∅.

The following lemma is folklore, and besides an easy exercise.

Lemma 2.6. Let G be a coherent collection of sets and let a, b ∈ ⋃G.
Then there exists a chain H whose links are elements of G such that a, b ∈⋃H.

Definition 2.7. If H = 〈H0, . . . ,Hn′〉 and G = 〈G0, . . . , Gn〉 are chains
of subsets of a topological space we say that:

• H is a subchain of G, denoted by H ⊆ G, if all links of H are links
of G (and hence there exists i such that H is either 〈Gi, . . . , Gi+n′〉 or
〈Gi+n′ , . . . , Gi〉);
• H refines G, denoted by H � G, if the closure of every link of H is

contained in some link of G and if for every G ∈ G there exists H ∈ H
such that H ∩⋃(G \ {G}) = ∅;
• H goes straight through G, denoted by H �s G, if H � G, H0 ⊆ G0,

and for each i ≤ n there exist j ′0 ≤ i′0 ≤ i′1 ≤ j′1 ≤ n′ such that
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◦ Hi′ ∩Gi 6= ∅ if and only if j′0 ≤ i′ ≤ j′1;
◦ Hi′ ⊆ Gi if and only if i′0 ≤ i′ ≤ i′1;

in this case the chain 〈Hi′0
, . . . ,Hi′1

〉 ⊆ H is the pass of H through Gi;
• H follows z-pattern through G, denoted by H �z G if H � G and there

exist 0<i′<j′<n′ such that 〈H0, . . . ,Hi′〉�s G, 〈Hj′ ,Hj′−1, . . . ,Hi′〉
�s G, and 〈Hj′ ,Hj′+1, . . . ,Hn′〉 �s G.

Our definition of H �s G is more restrictive than the one of [Dar00],
to allow for a precise definition of the pass of H through Gi (a notion that
Darji did not need in his earlier paper). Notice that if H �z G then H has
three (or two, if i ∈ {0, n}) passes through Gi.

Lemma 2.8. Suppose {Gn}n∈N is a sequence of chains of open sets in a
metric space such that

• some Gn has at least two links,
• limn→∞mesh(Gn) = 0,
• each link of Gn is connected ,
• Gn+1 �s Gn for all n.

Then
⋂
n(
⋃Gn) is an arc.

Proof. This lemma (usually for the less restrictive notion of �s) is well
known and its proof is essentially contained in the proof of Theorem 1 of
[Moo62] on p. 84.

Lemma 2.9. Suppose {Gn}n∈N is a sequence of chains of open sets in a
metric space such that

• limn→∞mesh(Gn) = 0,
• each link of Gn is connected ,
• Gn+1 � Gn for all n,
• Gn+1 �z Gn for infinitely many n’s.

Then
⋂
n(
⋃Gn) is a nondegenerate indecomposable continuum.

Proof. This follows (for the less restrictive notion of �z, which employs
the less restrictive notion of �s) from the characterization of indecompos-
able continua given in [IC68].

Definition 2.10. If ε > 0 and G and H are chains in a metric space we
say that G and H are ε-entangled , denoted by G ./ε H, if the first link and
the last link of G and H coincide, and whenever K ⊆ G ∪H is a chain with
diam(

⋃K) ≥ ε, K ∩ G ∩H 6= ∅.

Lemma 2.11. Any set of hereditarily decomposable continua which con-
tains all planar hereditarily locally connected continua is Π1

1-hard.
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Proof. Recall the notation of Lemma 1.4(1). We will define F : K(2N)→
C(I2) continuous and such that if C ⊆ D then F (C) is hereditarily locally
connected, while if C * D then F (C) is not hereditarily decomposable.

To define F we construct sequences {Gs | s ∈ 2<N} and {Is,n | s ∈ 2<N,
n > |s|} such that the following conditions are satisfied:

(1) Gs is a chain of open and connected subsets of I2;

(2) mesh(Gs) < 2−|s|−1;
(3) Gs0 �s Gs and Gs1 �z Gs;
(4) Gs0 ./2−|s| Gs1;
(5) if t 6= t′ both have length n and s = t ∧ t′ then Gt ∩ Gt′ = Is,n;
(6) for every n > |s| and L ∈ Is,n there exists L ⊆ Is,n+1 such that

L′ ⊆ L for every L′ ∈ L, and for every t ⊃ s with |t| = n + 1 the
first and last link of each pass of Gt through L belong to L.

Figure 1 pictures the first stages of this construction. Sets delimited by
dashed lines are the elements of G∅, while the two chains of smaller sets are
G0 and G1. The sets filled with gray are the elements of I∅,1.

Notice that condition (4) implies that Gs has at least two links whenever
|s| > 0, and that by condition (5) we have Is,n ⊆ Gt for every t ⊃ s with
|t| = n.

If α ∈ 2N let Mα =
⋂
n(
⋃Gα�n). Lemmas 2.8 and 2.9 and conditions

(1)–(3) imply that if α ∈ D then Mα is an arc, while if α 6∈ D then Mα is
indecomposable.

Before defining F we establish two claims about our construction.

Claim 2.11.1. Let s∈2<N, n> |s| and H be a chain such that diam(
⋃H)

> 2−|s| and H ⊆ ⋃{Gt | |t| = n & s ⊂ t}. Then H ∩ Is,n 6= ∅.
Proof. We argue by induction on n. The base case is n = |s| + 1 and

follows from conditions (4) and (5). Suppose the claim holds for n ≥ |s|+ 1

and let H ⊆ ⋃{Gt | |t| = n+ 1 & s ⊂ t} be a chain with diam(
⋃H) > 2−|s|.

Let
H′ =

{
L′ ∈

⋃
{Gt′ | |t′| = n & s ⊂ t′}

∣∣∣∃L ∈ H L ⊂ L′
}
.

Clearly diam(
⋃H′) ≥ diam(

⋃H) > 2−|s| so that there exist a, b ∈ ⋃H′ with

d(a, b) > 2−|s|. Since H is a chain, H′ is coherent and by Lemma 2.6 there

exists a chainH′′ ⊆ H′ such that a, b ∈ ⋃H′′ and hence diam(
⋃H′′) > 2−|s|.

By induction hypothesis there exists L′ ∈ H′′ ∩ Is,n. Since L′ ∈ H′ there

exists L ∈ H with L ⊂ L′. Since diam(
⋃H) > 2−|s| > 2−n−1, by condition

(2) there are links of H which are not contained in L′. By condition (6) there
exists a link in H ∩ Is,n+1.

Claim 2.11.2. Let s ∈ 2<N and X ⊆ ⋃
α⊃sMα be a continuum with

diam(X) > 2−|s|. Then X ∩Mα 6= ∅ for every α ⊃ s.
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Fig. 1. The construction of Lemma 2.11

Proof. Fix a, b ∈ X with d(a, b) > 2−|s|. For every n > |s| let

Kn =
{
L ∈

⋃
{Gt | |t| = n & s ⊂ t}

∣∣∣L ∩X 6= ∅
}
.

Since X is connected, Kn is coherent and Lemma 2.6 implies that there
exists a chain Hn ⊆ Kn with a, b ∈ ⋃Hn, so that diam(

⋃Hn) > 2−|s|. By
Claim 2.11.1 there exists Ln ∈ Hn∩Is,n. Let pn ∈ Ln∩X. Since Ln ∈ Gα�n,
condition (2) implies that d(pn,Mα) < 2−n−1. Some subsequence of {pn}
converges to some p, and clearly p ∈ X ∩Mα.

We now define F : K(2N) → C(I2) by setting F (C) =
⋃
α∈CMα. To

check that F is continuous it suffices to show that F (C) =
⋂
n

⋃
α∈C(

⋃Gα�n)
and use condition (2). One inclusion is trivial, while for the other let p ∈⋂
n

⋃
α∈C(

⋃Gα�n). For every n we have p ∈ ⋃Gαn�n for some αn ∈ C.
There exists a subsequence {αnk} which converges to some α ∈ C. We
claim that p ∈ Mα ⊆ F (C), so that we need to show that p ∈ ⋃Gα�n
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for every n. Given n, pick k such that nk ≥ n and αnk�n = α�n; then
p ∈ ⋃Gαnk �nk ⊆

⋃Gαnk �n =
⋃Gαn�n.

We now show that F has the properties stated at the beginning of the
proof.

If C * D then some indecomposable Mα is contained in F (C), and
therefore F (C) is not hereditarily decomposable.

Now suppose that C ⊆ D; we need to prove that F (C) is hereditarily
locally connected. To this end, by Theorem 2.2, it suffices to show that F (C)
contains no continuum of convergence. Towards a contradiction suppose K
is a continuum of convergence within F (C). Since K is the countable union
of the K ∩Mα with α ∈ C, for some α ∈ C, K ∩Mα is not nowhere dense
in K and there exists U ⊆ K ∩Mα open in K. By Lemma 2.3 there exists
H ⊆ U which is a continuum of convergence within F (C). In particular H is

a subarc of Mα and there exist ε > 0 and p ∈ H such that B(p; ε)∩Mα ⊂ H;
we may assume ε < 1

3 diam(H). Let m be such that 2−m+1 < ε and write
s = α�m. Let {Hi}i∈N be a sequence of subcontinua of F (C) which converges
to H and is such that Hi ∩H = ∅. Let i be so large that dH(H,Hi) < ε/2,
diam(Hi) > 2ε and Hi ⊆

⋃
β⊃sMβ . Pick x ∈ Hi with d(x, p) < ε/2 and

let J be the connected component of B(p; ε) ∩Hi which contains x. Since
Hi * B(p; ε) (because diam(Hi) > 2ε) and x ∈ J , the Boundary Bumping
Theorem implies that diam(J) > ε/2 > 2−m. By Claim 2.11.2, J ∩Mα 6= ∅
and—since J ∩Mα ⊆ B(p; ε) ∩Mα ⊂ H—we have J ∩ H 6= ∅ and hence
Hi ∩H 6= ∅. This contradicts our hypothesis and completes the proof of the
lemma.

Theorem 2.12. The class of hereditarily locally connected continua is
Π1

1-complete.

Proof. The class of hereditarily locally connected continua is Π1
1-hard by

Lemma 2.11. Since the class of locally connected continua is Borel (in fact
Π0

3-complete, according to a classical result of Kuratowski and Mazurkiewicz
[Kur31, Maz31]) it is immediate that the class of hereditarily locally con-
nected continua is Π1

1.

Theorem 2.13. The class of finitely Suslinian continua is Π1
1-complete

Proof. Since in the plane hereditarily locally connected and finitely Sus-
linian continua coincide ([Lel71]), Lemma 2.11 also establishes Π1

1-hardness
of the class of finitely Suslinian continua.

If X is a continuum then X is finitely Suslinian if and only if for all ε > 0
we have

∀(Yn) ∈ C(IN)N (∀n (Yn ⊆ X & diam(Yn) ≥ ε)
⇒ ∃n,m (n 6= m & Yn ∩ Ym 6= ∅)).
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By Lemma 1.6 this equivalence shows that the class of finitely Suslinian
continua is Π1

1.

3. Suslinian continua. The following lemma is useful in establishing
the upper bound for the class of Suslinian continua, and follows from [CL78,
2.1].

Lemma 3.1. Every non-Suslinian continuum has a Cantor set of pair-
wise disjoint nondegenerate subcontinua.

Theorem 3.2. The class of Suslinian continua is Π1
1-complete.

Proof. By Lemma 3.1, we see that for any continuum X ∈ C(IN), X is
Suslinian if and only if

∀C ∈ K(C(X)) (C is uncountable & ∀C ∈ C (diam(C) > 0)

⇒ ∃C,D ∈ C (C ∩D 6= ∅)).
In view of Lemmas 1.5 and 1.6, and the fact that the uncountable compacta
of a compact space form a Σ1

1 set (see e.g. [Kec95, Theorem 27.5]), this
formula defines a Π1

1 set.
Π1

1-hardness of the class of Suslinian continua can be proved in several
ways: it follows from each of Lemma 2.11, the main proof of [Dar00], and
Camerlo’s dichotomy for σ-ideals of continua ([Cam03]). A simpler proof is
the following: view 2N as a subset of I × {0}, let p = (0, 1) and to each
K ∈ K(2N) associate the continuum C(K) which is the union of all straight
segments joining any x ∈ K to p (the cone on K). It is clear that the map
K(2N) → C(I2) we just defined is continuous and that C(K) is Suslinian if
and only if K is countable. By Lemma 1.4(2), the set of Suslinian continua
is Π1

1-hard.

4. Regular continua. The following lemma collects some useful char-
acterizations of regular continua.

Lemma 4.1. Let X be a continuum. The following conditions are equiv-
alent :

(1) X is regular ;
(2) whenever p, q ∈ X are distinct , there exists a finite set F such that

p and q belong to different connected components of X \ F (in this
case we say that F separates p and q in X);

(3) for every ε > 0 there exists n such that every collection of pairwise
disjoint subcontinua of X of diameter ≥ ε has size at most n.

Proof. (2) is a well known characterization of regular continua ([Nad92,
Theorem 10.19]). The equivalence of (1) and (3) is due to Lelek ([Lel71]).
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Lemma 4.2. Any set of hereditarily locally connected continua which
contains all planar regular continua is Π0

4-hard.

Proof. We will use the set Q of Lemma 1.4(3). We are going to define a
continuous function IN×N → C(I2), α 7→ Lα, such that

(1) if α ∈ Q then Lα is regular;
(2) if α 6∈ Q then Lα is not hereditarily locally connected.

This suffices to prove the lemma.
Each Lα is a subcontinuum of the continuum L described by Nadler in

[Nad92, Example 10.38] and drawn in Figure 2: L is not hereditarily locally
connected and hence not regular.

Fig. 2. The continuum L

To define Lα we need to introduce some notation describing L in some de-
tail (our notation is more detailed than and slightly different from Nadler’s).
Let A = I × {0} and, for n ∈ N, An = I × {2−n}. For n ∈ N and m ≤ 2n+1

let Bn,m = {(m · 2−n−1, y) | 0 ≤ y ≤ 2−n}. Then

L = A ∪
⋃

n∈N
An ∪

⋃

n∈N

⋃

m≤2n+1

Bn,m.

For n ∈ N and m < 2n+1, let also

An,m = {(x, 2−n) | m · 2−n−1 ≤ x ≤ (m+ 1) · 2−n−1},
so that An =

⋃
m<2n+1 An,m. If r ∈ I, let

Arn,m = {(x, 2−n) | m · 2−n−1 ≤ x ≤ (m+ r) · 2−n−1},
so that Arn,m is the left portion of An,m of length r times the length of the

whole segment. For each n and m < 2n+1, let kn,m be such that 1−2−kn,m ≤
m · 2−n−1 < 1− 2−kn,m−1.
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We can now define Lα. If α ∈ IN×N let

Lα = A ∪
⋃

n∈N

⋃

m<2n+1−1

A
α(kn,m,n)
n,m ∪

⋃

n∈N

⋃

m≤2n+1

Bn,m.

In other words, Lα always contains A and the vertical segments contained
in L, while α dictates how much of the An,m’s are in Lα (notice that we are
always leaving out every An,2n+1−1). A sample Lα is drawn in Figure 3.

Fig. 3. A sample Lα: we are assuming α(0, 0) = 7/8, α(0, 1) = 1/2, α(1, 1) = 1,
α(0, 2) = 1, α(1, 2) = 2/3, α(2, 2) = 1/3, α(0, 3) = 1/2, α(1, 3) = 0, α(2, 3) = 1/4,
α(3, 3) = 1, α(0, 4) = 2/3, α(1, 4) = 1, α(2, 4) = 1/2, α(3, 4) = 1, and α(4, 4) = 1/3.

It is immediate that the function α 7→ Lα from IN×N to C(L) ⊂ C(I2) is
continuous.

In the remainder of the proof we will use implicitly some straightforward
observations we summarize here. If m < 2n+1 − 1 then the following hold:

• (m+ 1) · 2−n−1 ≤ 1− 2−kn,m−1;
• kn,m ≤ n;
• kn,m = n if and only if m = 2n+1 − 2;

• m · 2−n−1 ≤ m′ · 2−n′−1 < (m′ + 1) · 2−n′−1 ≤ (m + 1) · 2−n−1 if and
only if n ≤ n′ and kn′,m′ = kn,m.

We are now ready to prove (1) and (2).
(1) Suppose α ∈ Q. To prove that Lα is regular we will use condition (2)

of Lemma 4.1. Let p and q be given. It is immediate that if p 6∈ A then there
exists F containing at most four points which separates p and q in L, and
a fortiori in Lα. Thus we may assume that p, q ∈ A, so that p = (a, 0) and
q = (b, 0), and furthermore suppose that a < b. Let c = m · 2−n−1 be such
that a < c < b, so that m < 2n+1. Let k be such that 1−2−k < c ≤ 1−2−k−1.
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Since α ∈ Q there exists N such that α(k, n) < 1 for every n > N . Let

F = {(c, 2−n) | k ≤ n ≤ N} ∪ {(c, 0)}.
The connected component of Lα\F containing p is G = Lα∩{(x, y) | x < c}
(in fact G ⊆ G ∪ F ). Thus p and q are in distinct connected components of
Lα \ F .

(2) Notice that if α(k, n) = 1, we have An,m ⊂ Lα whenever kn,m = k and

thus {(x, 2−n) | 1− 2−k ≤ x ≤ 1− 2−k−1} ⊂ Lα. This shows that if k is such
that α(k, n)=1 for infinitely many n’s then {(x, 0) | 1− 2−k≤x≤1−2−k−1}
is a continuum of convergence within Lα. Therefore if α 6∈ Q then Lα con-
tains a continuum of convergence and hence by Theorem 2.2 is not heredi-
tarily locally connected.

Theorem 4.3. The class of regular continua is Π0
4-complete.

Proof. The class of regular continua is Π0
4-hard by Lemma 4.2. By

Lemma 4.1 a continuum X is regular if and only if

∀ε > 0 ∃n ∀(C0, . . . , Cn) ∈ C(IN)n+1 (∀i ≤ n (Ci ⊆ X & diam(Ci) ≥ ε)
⇒ ∃i, j ≤ n (i 6= j & Ci ∩ Cj 6= ∅)).

By Lemmas 1.5 and 1.6 this formula defines a Π0
4 set.

Theorem 4.3 implies that we can characterize regular continua by a Borel
condition, but this characterization needs to be quite involved.

We like to thank the referee for making valuable changes and improving
the exposition of this paper.
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