F_{σ} -mappings and the invariance of absolute Borel classes

by

Petr Holický and Jiří Spurný (Praha)

Abstract. It is proved that F_{σ} -mappings preserve absolute Borel classes, which improves results of R. W. Hansell, J. E. Jayne and C. A. Rogers. The proof is based on the fact that any F_{σ} -mapping $f: X \to Y$ of an absolute Suslin metric space X onto an absolute Suslin metric space Y becomes a piecewise perfect mapping when restricted to a suitable F_{σ} -set $X_{\infty} \subset X$ satisfying $f(X_{\infty}) = Y$.

1. Introduction. We recall that a mapping $f : X \to Y$ of a metric space X to a metric space Y is called an F_{σ} -mapping if f maps F_{σ} -sets in X to F_{σ} -sets in Y and f^{-1} maps F_{σ} -sets in Y to F_{σ} -sets in X. A mapping f of a metric space X into a metric space Y is said to be *piecewise closed* if there is a sequence $\{X_n\}_{n\in\mathbb{N}}$ of closed subsets of X such that $X = \bigcup_{n\in\mathbb{N}} X_n$, and the restriction of f to X_n is a closed continuous mapping of X_n to Y for every $n \in \mathbb{N}$.

R. W. Hansell, J. E. Jayne and C. A. Rogers proved in [2, Theorem 3] that an F_{σ} -mapping f of an absolute Suslin metric space X onto an absolute Suslin metric space Y is in fact piecewise closed if

- (a) Fleissner's axiom holds, or
- (b) each point of X has a neighbourhood that is mapped by f onto a set in Y which is σ -locally of weight at most \aleph_1 , or
- (c) f is an open mapping, or
- (d) $f^{-1}(y)$ is compact for each y in Y.

Each of these assumptions ensures that f maps discrete families to "almost σ -discretely decomposable families", which is the crucial point in the proof

²⁰⁰⁰ Mathematics Subject Classification: 54H05, 54E40, 28A05.

Key words and phrases: F_{σ} -mapping, piecewise closed mapping, absolute Borel space. The first author was supported in part by the grant GAČR 201/03/0931, in part by the grant GAČR 201/03/0933, and in part by the Research Project MSM 1132 00007. The second author was supported in part by the grant GAČR 201/03/0935, in part by the grant GAČR 201/03/D120, and in part by the Research Project MSM 1132 00007.

of [7, Theorem 1] used in the proof of [2, Theorem 3] (for the definition of almost σ -discretely decomposable families see below).

We are going to prove a weaker statement which does not need any of the assumptions (a)–(d) and which is still sufficient to get some significant corollaries of [2, Theorem 3]. The crucial point is that we deal with σ -discrete refinements instead of almost σ -discrete decomposability and we may use the following result [9, Theorem 3.5]:

Let $f: X \to Y$ be a mapping of a metric space X to an absolute Suslin metric space Y such that f maps F_{σ} -sets in X to F_{σ} -sets in Y. Then f maps any σ -discrete family of F_{σ} -sets in X onto a family admitting a σ -discrete refinement.

Our modification of [2, Theorem 3] reads:

Any F_{σ} -mapping f of an absolute Suslin metric space X onto an absolute Suslin metric space Y has a piecewise closed restriction to an F_{σ} -set $X_{\infty} \subset X$ satisfying $f(X_{\infty}) = Y$.

By [7, Theorem 3] there is a restriction which is even piecewise perfect. Our Theorems 4.1 and 4.2 appeared already as [5, Theorem 2] and [6, Theorem 2]. However, as explained in [2, Theorem 3], the authors needed at least one of the extra assumptions (a)–(d) mentioned above.

2. Preliminaries. By a *space* we mean a metrizable space without mentioning it explicitly. We write (X, ρ) when a compatible metric ρ is specified.

We use $\mathbb{N}^{<\mathbb{N}}$ to denote the space of finite sequences of positive integers. If $s \in \mathbb{N}^{<\mathbb{N}}$, then l(s) stands for the length of s. As usual, for $s, t \in \mathbb{N}^{<\mathbb{N}}$, we write $s \prec t$ if t is an extension of s, i.e., $l(s) \leq l(t)$ and $s_i = t_i$ if $1 \leq i \leq l(s)$. Using \emptyset to denote the empty sequence, we adopt the convention that $l(\emptyset) = 0$. If $s \in \mathbb{N}^{<\mathbb{N}}$ and $n \in \mathbb{N}$, we write $s^{\wedge}n$ for the sequence $(s_1, \ldots, s_{l(s)}, n)$.

The space $\mathbb{N}^{\mathbb{N}}$ with the usual product topology will be denoted by \mathbb{I} . For $\sigma \in \mathbb{I}$, $\sigma = \{\sigma_k\}_{k=1}^{\infty}$, and $n \in \mathbb{N}$, we put $\sigma \upharpoonright n = (\sigma_1, \ldots, \sigma_n)$. We adopt the convention that $\sigma \upharpoonright 0 = \emptyset$. For a given $s \in \mathbb{N}^n$, the *Baire interval* $\mathbb{I}(s)$ is defined by

$$\mathbb{I}(s) = \{ \sigma \in \mathbb{I} : \sigma \upharpoonright n = s \}.$$

A subset A of a space X is said to be Suslin if there exists a family $\{F_s\}_{s\in\mathbb{N}^{<\mathbb{N}}}$ of closed sets in X so that

$$A = \bigcup_{\sigma \in \mathbb{I}} \bigcap_{n=1}^{\infty} F_{\sigma \upharpoonright n}.$$

A space X is called an *absolute Suslin space* if X is homeomorphic to a Suslin subset of some completely metrizable space. We use a well known fact that X is an absolute Suslin space if and only if X is a Suslin subset of every space containing X (this observation easily follows from the Lavrent'ev theorem [8, §35, II, Theorem]).

A set A in a space X is *discrete* if for every point $x \in X$ there exists a neighbourhood U of x which has at most one common point with A. If A can be written as a union of countably many discrete sets, it is said to be σ -discrete.

Let \mathcal{A} be a family of sets in a space X. Then \mathcal{A} is said to be *discrete* in X if each point $x \in X$ has a neighbourhood that meets at most one set from \mathcal{A} . If \mathcal{A} is a countable union of discrete families \mathcal{A}_n , then it is said to be σ -discrete. It readily follows that $A \subset X$ is a discrete (respectively σ -discrete) set in X if and only if the family $\{\{x\} : x \in A\}$ is discrete (respectively σ -discrete) in X.

We say that \mathcal{A} is σ -discretely decomposable if every set $A \in \mathcal{A}$ can be written as $A = \bigcup_{n \in \mathbb{N}} A(n)$, where $\{A(n) : A \in \mathcal{A}\}$ is a discrete family for every $n \in \mathbb{N}$.

A family \mathcal{A} is said to be almost σ -discretely decomposable if it becomes σ -discretely decomposable when restricted to the complement of some σ -discrete set.

A family \mathcal{R} is called a *refinement* of \mathcal{A} if $\bigcup \mathcal{R} = \bigcup \mathcal{A}$ and for each $R \in \mathcal{R}$ there exists $A \in \mathcal{A}$ with $R \subset A$. We say that \mathcal{A} has a σ -discrete refinement if there exists a refinement \mathcal{R} of \mathcal{A} which is a σ -discrete family. Clearly, any almost σ -discretely decomposable family has a σ -discrete refinement but the converse need not hold in general.

A mapping $f: X \to Y$ is *perfect* if f is closed, continuous, and the fiber $f^{-1}(y)$ is a compact subset of X for every $y \in Y$.

If X is a union of countably many closed sets X_n and the restriction of f to X_n is a perfect mapping of X_n to Y, then f is called *piecewise perfect*.

Without further reference we shall use the well known fact that any metrizable space has a σ -discrete base of open sets (see [8, §21, XVI, Corollary 1a]).

If ρ is a metric on a space X and $A, B \subset X$, then $\operatorname{dist}_{\rho}(A, B)$ stands for the distance of A and B, and $\operatorname{diam}_{\rho} A$ for the diameter of A. For a sequence $\{A_n\}_{n\in\mathbb{N}}$ of nonempty sets in X and $x \in X$, we write $A_n \to \{x\}$ (as n tends to infinity) if for every neighbourhood U of x there exists $k \in \mathbb{N}$ so that $A_n \subset U$ for all $n \geq k$.

If $f: X \to Y$ is a mapping and \mathcal{A} is a family of subsets of X, we write $f(\mathcal{A})$ for the family $\{f(A) : A \in \mathcal{A}\}$. Similarly we use $f^{-1}(\mathcal{B}) = \{f^{-1}(B) : B \in \mathcal{B}\}$ for a family \mathcal{B} in Y.

3. Piecewise closed and piecewise perfect mappings. We are going to prove our main result on F_{σ} -mappings in Theorem 3.6. We use [4, Theorem 5] to reduce the problem to the case when f is, moreover, continuous. Then we prove Proposition 3.5 by modifying the inductive construction of [7, Lemma 2]. Here we essentially use the above-mentioned result [9, Theorem 3.5] instead of [7, Lemma 1].

We use the following easy fact without further reference (see, e.g., [9, Lemma 3.4]):

Let a family \mathcal{A} of F_{σ} -sets in X have a σ -discrete refinement. Then \mathcal{A} has a σ -discrete refinement consisting of F_{σ} -sets.

We first introduce our key auxiliary notion.

DEFINITION 3.1. Let $f: X \to Y$ be a mapping of a space X to a space Y. We say that a set $A \subset X$ is *covered by* f if there exist F_{σ} -sets $F, H \subset X$ such that $A \subset F$, the restriction of f to H is piecewise closed, and $f(H) \supset f(F)$.

REMARK 3.2. Note that $B \subset X$ is covered by f whenever $B \subset A$ and A is covered by f. Hence this notion is hereditary with respect to inclusion. Further, if $A \subset X$ is covered by f, we may demand without loss of generality that the set F from Definition 3.1 satisfies $F \subset \overline{A}$. It also easily follows from the definition that the union of countably many sets covered by f is covered by f as well. Let us point out that, if $A \subset X$ is not covered by a mapping $f: X \to Y$, then the restriction of f to \overline{A} is not piecewise closed.

The following lemma indicates a situation in which the union of a σ -discrete family of sets covered by f is also covered by f.

LEMMA 3.3. Let $f: X \to Y$ be a continuous mapping of a space X to a space Y such that

- (i) f maps F_{σ} -sets in X to F_{σ} -sets in Y, and
- (ii) f(F) has a σ-discrete refinement in Y for any σ-discrete family F of F_σ-sets in X.

If \mathcal{A} is a σ -discrete family of sets covered by f, then $\bigcup \mathcal{A}$ is covered by f.

Proof. For every $A \in \mathcal{A}$, let F^A and H^A be F_{σ} -sets in X such that $A \subset F^A$, the restriction of f to H^A is piecewise closed, and $f(H^A) \supset f(F^A)$. By Remark 3.2, we may suppose that the family $\mathcal{F} = \{F^A : A \in \mathcal{A}\}$ is σ -discrete.

Find a σ -discrete refinement \mathcal{R} of $f(\mathcal{F})$ consisting of F_{σ} -sets. For every $R \in \mathcal{R}$ find $A(R) \in \mathcal{A}$ with $R \subset f(F^{A(R)})$. Set

$$H(R) = f^{-1}(R) \cap H^{A(R)}, \quad R \in \mathcal{R}, \quad H = \bigcup_{R \in \mathcal{R}} H(R), \quad F = \bigcup \mathcal{F}.$$

Then F is an F_{σ} -set in X and $\bigcup \mathcal{A} \subset F$. Since f is continuous and \mathcal{R} is a σ -discrete family of F_{σ} -sets, $\{H(R) : R \in \mathcal{R}\}$ is also a σ -discrete family of F_{σ} -sets and thus H is an F_{σ} -set in X.

It is sufficient to prove that $f(H) \supset f(F)$ and that the restriction of f to H is piecewise closed.

Since $\bigcup \mathcal{R} = \bigcup f(\mathcal{F}) = f(F)$ and f(H(R)) = R for every $R \in \mathcal{R}$, we have $f(H) \supset f(F)$.

To show that $f \upharpoonright_H$ is piecewise closed, write $\mathcal{R} = \bigcup_n \mathcal{R}_n$ so that \mathcal{R}_n is discrete for $n \in \mathbb{N}$. For every $R \in \mathcal{R}$ find closed sets $R_k, k \in \mathbb{N}$, in Y and closed sets $H_m^{A(R)}, m \in \mathbb{N}$, in X such that

$$R = \bigcup_{k=1}^{\infty} R_k, \quad H^{A(R)} = \bigcup_{m=1}^{\infty} H_m^{A(R)},$$

and such that the restriction of f to each $H_m^{A(R)}$ is a closed mapping.

Fix $n, k, m \in \mathbb{N}$ and set

$$H_{n,k,m} = \bigcup \{ f^{-1}(R_k) \cap H_m^{A(R)} : R \in \mathcal{R}_n \}.$$

Then $H_{n,k,m}$, as a discrete union of closed sets, is closed, and the restriction of f to $H_{n,k,m}$ is a closed mapping.

Indeed, let E be a closed set in $H_{n,k,m}$. Then

$$f \upharpoonright_{H_{n,k,m}}(E) = f(E) = \bigcup_{R \in \mathcal{R}_n} f(E \cap f^{-1}(R_k) \cap H_m^{A(R)})$$
$$= \bigcup_{R \in \mathcal{R}_n} f \upharpoonright_{H_m^{A(R)}} (E \cap f^{-1}(R_k)).$$

As the restriction of f to $H_m^{A(R)}$ is a closed mapping of $H_m^{A(R)}$ to Y, the latter set is a discrete union of closed sets in Y. Thus $f|_{H_{n,k,m}}(E)$ is a closed set and the restriction of f to $H_{n,k,m}$ is a closed continuous mapping as required.

Finally, $H = \bigcup_{n,k,m} H_{n,k,m}$ since

$$H(R) = f^{-1}(R) \cap H^{A(R)} = \bigcup_{k,m=1}^{\infty} (f^{-1}(R_k) \cap H_m^{A(R)}) \quad \text{for } R \in \mathcal{R}.$$

LEMMA 3.4. Let $f: X \to Y$ be a continuous mapping of (X, ϱ) to (Y, σ) such that f maps F_{σ} -sets in X to F_{σ} -sets in Y and $f(\mathcal{F})$ has a σ -discrete refinement in Y for any σ -discrete family \mathcal{F} of F_{σ} -sets in X. Let $A \subset X$ be not covered by f and $\varepsilon > 0$ be arbitrary. Then there exist a sequence $\{L_k\}_{k \in \mathbb{N}}$ of subsets of A that are not covered by f and an element x of \overline{A} such that

- (i) $\{L_k : k \in \mathbb{N}\}$ is a discrete family in X;
- (ii) dist_{ϱ}(L_k, L_l) > 0 and diam_{ϱ} $L_k < \varepsilon$ for $k, l \in \mathbb{N}, k \neq l$;

- (iii) $f(L_k) \to \{f(x)\}$ as k tends to infinity;
- (iv) dist_{σ}(f(L_k), f(L_l)) > 0 and dist_{σ}(f(L_k), {f(x)}) > 0 for k, l \in \mathbb{N}, k \neq l.

Proof. Let \mathcal{B} be a σ -discrete base of open sets in X. Set

$$\widehat{\mathcal{B}} = \{ B \in \mathcal{B} : A \cap B \text{ is covered by } f \}, \quad G = A \cap \bigcup \widehat{\mathcal{B}}, \quad F = A \setminus G.$$

Since the family $\{A \cap B : B \in \mathcal{B}\}$ is σ -discrete, it follows from Lemma 3.3 that G is covered by f. The assumption that A is not covered by f implies that the restriction of f to \overline{F} is not piecewise closed.

Since $f(\overline{F})$ is an F_{σ} -set in Y, we can write $f(\overline{F}) = \bigcup_n Y_n$, where Y_n are closed in Y. Since the restriction of f to \overline{F} is not piecewise closed, there exists $n \in \mathbb{N}$ so that the restriction of f to $\overline{F} \cap f^{-1}(Y_n)$ is not a closed mapping. Thus we can find a closed set $\widehat{F} \subset \overline{F} \cap f^{-1}(Y_n)$ such that $f(\widehat{F})$ is not closed. Find pairwise distinct points $y, y_k, k \in \mathbb{N}$, so that

(1)
$$y \in Y_n \setminus f(\widehat{F}), \quad y_k \in f(\widehat{F}), \quad y_k \to y.$$

Since $y \in f(\overline{F}) \setminus f(\widehat{F})$, it is possible to select $x \in \overline{F} \setminus \widehat{F}$ with f(x) = y. We choose further a sequence $\{x_k\} \subset \widehat{F}$ with $f(x_k) = y_k$.

Find open balls C_k in Y centred at y_k so that

diam_{$$\sigma$$} $C_k < \varepsilon$, dist _{σ} $(C_k, C_l) > 0$ for $k, l \in \mathbb{N}, k \neq l$,
dist _{σ} $(\{y\}, C_k) > 0$, $C_k \to \{y\}$.

Since \mathcal{B} is a base of open sets and f is continuous, we can inductively find $B_k \in \mathcal{B}$ for $k \in \mathbb{N}$ so that

$$x_k \in B_k, \quad \operatorname{diam}_{\varrho} B_k < \varepsilon/k, \quad f(B_k) \subset C_k,$$

 $\operatorname{dist}_{\varrho}(B_k, B_l) > 0 \text{ for } k, l \in \mathbb{N}, k \neq l.$

We claim that the family $\{B_k : k \in \mathbb{N}\}$ is discrete in X.

Indeed, if we suppose the contrary, then there exists a point $z \in X$ an increasing sequence $\{k_n\}$ of positive integers such that $B_{k_n} \to \{z\}$ and so $x_{k_n} \to z$ as *n* tends to infinity. Then $z \in \widehat{F}$. The continuity of *f* implies f(z) = y, which contradicts (1).

As $x_k \in \overline{F} \cap B_k$, the set $F \cap B_k$ is nonempty for every $k \in \mathbb{N}$. Put

$$L_k = F \cap B_k, \quad k \in \mathbb{N}.$$

So the point x and the sequence $\{L_k\}$ satisfy the required conditions (i)–(iv).

It remains to verify that L_k is not covered by f for every $k \in \mathbb{N}$. Suppose that $L_k = F \cap B_k$ is covered by f for some $k \in \mathbb{N}$. Since G is covered by f,

$$A \cap B_k = (G \cap B_k) \cup (F \cap B_k)$$

198

F_{σ} -mappings

is covered by f likewise (see Remark 3.2). Thus $B_k \in \widehat{\mathcal{B}}$ and $A \cap B_k \subset G$, which contradicts the fact that $B_k \cap F \neq \emptyset$. Hence no L_k is covered by f and the proof is finished.

PROPOSITION 3.5. Let $f: X \to Y$ be a continuous mapping of an absolute Suslin space X onto an absolute Suslin space Y which maps F_{σ} -sets in X to F_{σ} -sets in Y. Then X is covered by f, i.e., there exists an F_{σ} -subset X_{∞} of X so that $f(X_{\infty}) = Y$ and the restriction of f to X_{∞} is piecewise closed.

Proof. We may and do suppose that $X \subset (\widehat{X}, \varrho)$ and $Y \subset (\widehat{Y}, \sigma)$, where \widehat{X} and \widehat{Y} are completions of (X, ϱ) and (Y, ϱ) , respectively, diam_{ϱ} $\widehat{X} < 1$, and diam_{σ} $\hat{Y} < 1$. Let

$$X = \bigcup_{\sigma \in \mathbb{I}} \bigcap_{n=1}^{\infty} F(\sigma {\upharpoonright} n),$$

where $\{F(s)\}_{s\in\mathbb{N}^{<\mathbb{N}}}$ are closed sets in \widehat{X} . We write \overline{A}^X (respectively $\overline{A}^{\widehat{X}}$) for the closure of a set $A \subset X$ in X (respectively in \widehat{X}). Similarly we use \overline{B}^Y and $\overline{B}^{\hat{Y}}$ for $B \subset Y$. For $s \in \mathbb{N}^{<\mathbb{N}}$, set

(2)
$$X(s) = \bigcup_{\tau \in \mathbb{I}(s)} \bigcap_{n=1}^{\infty} F(\tau \restriction n).$$

We want to prove that the space X is covered by f. Suppose that this is not the case. We shall construct by induction nonempty sets $L_s \subset X$, $s \in \mathbb{N}^{<\mathbb{N}}$, that are not covered by f, points $x_s \in \overline{L}_s^X$, and finite sequences $\sigma_s \in \mathbb{N}^{<\mathbb{N}}$, so that, for every finite sequence $s \in \mathbb{N}^{<\mathbb{N}}$ of length n (including the empty sequence $s = \emptyset$), we have:

- (i) $\{L_{s^{\wedge}k}: k \in \mathbb{N}\}$ is a discrete family in X;
- (ii) $\overline{L}_{s^{\wedge}k}^{\hat{X}}, k \in \mathbb{N}$, are pairwise disjoint and diam_{ϱ} $L_s < 2^{-n}$; (iii) $f(L_{s^{\wedge}k}) \to \{f(x_s)\}$ as k tends to infinity;
- (iv) the sets $\{f(x_s)\}, \overline{f(L_{s^{\wedge}k})}^{\hat{Y}}, k \in \mathbb{N}$, are pairwise disjoint;
- (v) σ_s is of length n+1 and $\sigma_s \prec \sigma_{\hat{s}}$ if $s \prec \hat{s}$; and
- (vi) $L_{s^{\wedge}k} \subset L_s \cap X(\sigma_s)$.

We first find L_{\emptyset} , x_{\emptyset} , σ_{\emptyset} , and L_k for $k \in \mathbb{N}$ so that (i)–(vi) are satisfied for them. Put $L_{\emptyset} = X$. As $X = \bigcup_{i \in \mathbb{N}} X(i)$, there is a $\sigma_{\emptyset} \in \mathbb{N}$ such that $X(\sigma_{\emptyset})$ is not covered by f (cf. Remark 3.2). The assumptions on the mapping fin Lemma 3.4 are satisfied due to [9, Theorem 3.5] recalled above. Applying it with $A = X(\sigma_{\emptyset})$ and $\varepsilon = 2^{-1}$, we obtain sets $L_k \subset A, k \in \mathbb{N}$, which are not covered by f, and a point $x_{\emptyset} \in \overline{A}^X$ satisfying conditions (i)–(iv) of Lemma 3.4. So L_{\emptyset} , x_{\emptyset} , σ_{\emptyset} , and L_k for $k \in \mathbb{N}$ satisfy (i)–(vi), which concludes the first step of the inductive construction.

Let x_s , σ_s , $L_{s^{\wedge}k}$ with $s \in \mathbb{N}^{<\mathbb{N}}$, $l(s) < n, k \in \mathbb{N}$ satisfying (i)–(vi) be already constructed for an $n \geq 1$. Pick a finite sequence s of length n and an $i \in \mathbb{N}$. As $L_{s^{\wedge}i} \subset X(\sigma_s) = \bigcup_{j \in \mathbb{N}} X(\sigma_s^{\wedge}j)$ and $L_{s^{\wedge}i}$ is not covered by f, using Remark 3.2 we may find $j \in \mathbb{N}$ so that $L_{s^{\wedge}i} \cap X(\sigma_s^{\wedge}j)$ is not covered by f. Define

$$\sigma_{s^{\wedge}i} = \sigma_s^{\wedge}j.$$

If we put $A = L_{s^{\wedge}i} \cap X(\sigma_{s^{\wedge}i})$ and $\varepsilon = 2^{-n-1}$ in Lemma 3.4 (again [9, Theorem 3.5] allows us to use it), we obtain a point $x_{s^{\wedge}i} \in \overline{A}^X$ and sets

$$L_{s^{\wedge}i^{\wedge}k} \subset A, \quad k \in \mathbb{N},$$

so that all the properties (i)–(iv) in Lemma 3.4 are satisfied. This finishes the construction.

Set

$$Q = \bigcap_{k=1}^{\infty} \Big(\bigcup_{s:0 \le l(s) \le k-1} \{f(x_s)\} \cup \bigcup_{s:l(s)=k} \overline{f(L_s)}^{\hat{Y}}\Big),$$
$$Q_0 = \{f(x_s): s \in \mathbb{N}^{<\mathbb{N}}\}, \quad Q_1 = \bigcap_{k=1}^{\infty} \bigcup_{s:l(s)=k} \overline{f(L_s)}^{\hat{Y}},$$
$$P = \bigcap_{k=1}^{\infty} \bigcup_{s:l(s)=k} \overline{L}_s^{\hat{X}}.$$

Note that $Q = Q_0 \cup Q_1$ and that $Q_0 \cap Q_1 = \emptyset$ by (iv). According to (iii), (iv), and the fact that $f(x_{s^{\wedge}k}) \in \overline{f(L_{s^{\wedge}k})}^{\widehat{Y}}$, the countable set Q_0 is dense-in-itself. Claims 1 and 2 below imply that $Q_1 = f(P)$ is an F_{σ} -set in Y. Using (iii) inductively, we deduce that Q is closed in \widehat{Y} . As $Q \subset Y$, the set Q_1 is an F_{σ} -subset of \widehat{Y} . Finally, Q_0 is a countable dense-in-itself G_{δ} -subset of the complete space \widehat{Y} , which is a contradiction.

It remains to prove the following two claims.

CLAIM 1. The set P is a closed subset of X.

CLAIM 2. $f(P) = Q_1$ and so $Q \subset Y$.

Proof of Claim 1. First of all we show that $P \subset X$. Indeed, if $s, t \in \mathbb{N}^{<\mathbb{N}}$ are given, we know from (ii) and (vi) that

$$\overline{L}^{\widehat{X}}_{s}\cap\overline{L}^{\widehat{X}}_{t}\neq \emptyset$$

if and only if either $s \prec t$ or $t \prec s$. Thus, for a given $x \in P$, there exists $\varrho \in \mathbb{I}$ so that

$$x \in \overline{L}_{\varrho \upharpoonright n}^{\widehat{X}}$$
 for every $n \ge 1$.

Using (v) we find a sequence $\sigma(\varrho) \in \mathbb{I}$ so that

$$\sigma_{\varrho \upharpoonright n-1} = \sigma(\varrho) \upharpoonright n, \quad n \ge 1.$$

Then equality (2) and condition (vi) give

$$x\in \bigcap_{n=1}^\infty \overline{L}_{\varrho\restriction n}^{\widehat{X}}\subset \bigcap_{n=1}^\infty F(\sigma(\varrho)\restriction n)\subset X$$

and so $P \subset X$. To check that P is closed, note that a use of (i) entails that the set

$$\bigcup_{s:\,l(s)=n}\overline{L}_s^X = \bigcup_{s:\,l(s)=n} (\overline{L}_s^{\widehat{X}} \cap X),$$

as the union of a discrete family of closed sets in X, is closed in X. From the equalities

$$P = \left(\bigcap_{n=1}^{\infty} \bigcup_{s:\, l(s)=n} \overline{L}_s^{\widehat{X}}\right) \cap X = \bigcap_{n=1}^{\infty} \bigcup_{s:\, l(s)=n} \overline{L}_s^X$$

it follows that P is closed in X.

Proof of Claim 2. Pick $x \in P$. By the reasoning in Claim 1, there exists $\rho \in \mathbb{I}$ so that

$$x \in \bigcap_{n=1}^{\infty} \overline{L}_{\varrho \upharpoonright n}^{\widehat{X}}.$$

Choose $x_n \in L_{\varrho \upharpoonright n}$. Then the sequence $\{x_n\}_{n \in \mathbb{N}}$ converges to x according to (ii). Since f is continuous, we get

$$f(x) \in \bigcap_{k=1}^{\infty} \overline{f(L_{\varrho \restriction k})}^{\widehat{Y}} \subset Q_1.$$

Conversely, let $y \in Q_1$ be given. Due to condition (iv),

$$Q_1 = \bigcap_{n=1}^{\infty} \bigcup_{s: \, l(s)=n} \overline{f(L_s)}^{\widehat{Y}} = \bigcup_{\varrho \in \mathbb{I}} \bigcap_{n=1}^{\infty} \overline{f(L_{\varrho \restriction n})}^{\widehat{Y}}.$$

Hence there exists $\rho \in \mathbb{I}$ so that

$$y \in \bigcap_{n=1}^{\infty} \overline{f(L_{\varrho \upharpoonright n})}^{\widehat{Y}}.$$

Since \widehat{X} is a complete space and $\{\overline{L}_{\varrho \restriction n}^{\widehat{X}}\}_{n \in \mathbb{N}}$ is a decreasing sequence of nonempty closed sets with diameters converging to zero, there exists a point $x \in \widehat{X}$ with

$$\{x\} = \bigcap_{n=1}^{\infty} \overline{L}_{\varrho \upharpoonright n}^{\widehat{X}}.$$

Obviously $x \in P$. Due to Claim 1, $x \in X$, and from the continuity of f it follows that f(x) = y, which concludes the proof.

THEOREM 3.6. Let $f: X \to Y$ be an F_{σ} -mapping of an absolute Suslin space X onto an absolute Suslin space Y. Then there is an F_{σ} -set $X_{\infty} \subset X$ such that $f(X_{\infty}) = Y$ and the restriction of f to X_{∞} is piecewise perfect.

Proof. According to [4, Theorem 5], the mapping f is piecewise continuous, i.e., X can be written as a union of closed sets Z_n such that f is continuous on every Z_n . Since f preserves F_{σ} -sets, we can find closed sets $Y_{n,k} \subset Y, n, k \in \mathbb{N}$, with

$$f(Z_n) = \bigcup_{k=1}^{\infty} Y_{n,k}, \quad n \in \mathbb{N}.$$

Then f is a continuous F_{σ} -mapping on each closed set

$$Z_{n,k} = Z_n \cap f^{-1}(Y_{n,k}), \quad n,k \in \mathbb{N}.$$

By Proposition 3.5, for each couple $n, k \in \mathbb{N}$ there exists an F_{σ} -set $H_{n,k}$ in $Z_{n,k}$ such that $f(Z_{n,k}) = f(H_{n,k})$ and the restriction of f to $H_{n,k}$ is a piecewise closed mapping of $H_{n,k}$ to Y. Then $H = \bigcup_{n,k} H_{n,k}$ is an F_{σ} -subset of X, the restriction of f to H is a piecewise closed mapping of H to Y and f(H) = Y.

By [7, Theorem 3] it is possible to find a sequence $\{F_m\}$ of closed sets in H so that the restriction of f to F_m is a perfect mapping of F_m to Y and $f(\bigcup_m F_m) = f(H) = Y$. Write $H = \bigcup_j H_j$, where every H_j is closed in X, and set

$$X_{m,j} = F_m \cap H_j, \quad m, j \in \mathbb{N}, \quad X_\infty = \bigcup_{m,j=1}^{\infty} X_{m,j}.$$

Then $f(X_{\infty}) = Y$ and the restriction of f to $X_{m,j}$ is a perfect mapping of $X_{m,j}$ to Y for every $m, j \in \mathbb{N}$, which concludes the proof.

4. The invariance of Borel sets and absolute Borel spaces. We recall the definition of the Borel hierarchy in metrizable spaces. For a space X, the sets of additive, or multiplicative, class zero are just the open, or closed, sets in X. If $1 \le \alpha < \omega_1$, the sets of additive, or multiplicative, class α are just the unions, or intersections, of sets each being contained in some lower additive or multiplicative class.

Now we are ready to prove [5, Theorem 6] and [6, Theorem 2] without the assumptions (a)–(d) of [2, Theorem 3] that were implicitly used in [5] and in [6] as mentioned above.

THEOREM 4.1. Let f be an F_{σ} -mapping of an absolute Suslin space X onto an absolute Suslin space Y. Let $\alpha \geq 1$ be a countable ordinal. If B is a subset of Y such that $f^{-1}(B)$ is a set of additive, or multiplicative, class α in X, then B is of the same class in Y. Similarly, if $f^{-1}(B)$ is a Suslin set in X, then B is a Suslin set in Y.

Proof. According to Theorem 3.6, there exists a sequence $\{X_n\}$ of closed sets in X such that, for every $n \in \mathbb{N}$, $f_n = f \upharpoonright_{X_n}$ is a perfect mapping of X_n to Y and $f(\bigcup_n X_n) = Y$.

Let $\alpha \geq 1$ and $B \subset Y$ be such that $f^{-1}(B)$ is of additive class α in X. Fix $n \in \mathbb{N}$ and set $Y_n = f(X_n)$.

Then $f^{-1}(B) \cap X_n$ is of additive class α in X_n . Since f_n is perfect on X_n and $f^{-1}(B) \cap X_n = f_n^{-1}(B \cap Y_n)$, the assumptions of [6, Lemma 3] are satisfied for $f_n : X_n \to Y_n$ and $B \cap Y_n$. Thus $B \cap Y_n$ is of additive class α in Y.

Since $B = \bigcup_n (B \cap Y_n)$ and every Y_n is closed in Y, we see that B is of additive class α in Y as needed.

The case of a multiplicative class α follows from the previous argument by taking the complements.

If $f^{-1}(B)$ is a Suslin set in X for $B \subset Y$, we can use the same considerations as above and the fact that the image of an absolute Suslin space under a closed mapping is an absolute Suslin space ([1, Theorem 3.3]).

The next Theorem 4.2 asserts that F_{σ} -mappings preserve absolute Borel classes. We recall that a space X is said to be of *absolute additive*, or *absolute multiplicative*, class α , $1 \leq \alpha < \omega_1$, if X is of the same class whenever it is embedded in a space.

Note that X is of absolute multiplicative class one, i.e., an absolute G_{δ} -space, if and only if X is completely metrizable.

Let $\alpha \geq 2$ (respectively $\alpha \geq 1$) be a countable ordinal. We note that X is of absolute additive (respectively multiplicative) class α if X is of the same class in some completely metrizable space. This easily follows from the Lavrent'ev theorem (see [8, §35, II, Theorem]).

Spaces of absolute additive class one, i.e., absolute F_{σ} -spaces, were characterized by Stone in [10, Theorem 2].

THEOREM 4.2. Let $f: X \to Y$ be an F_{σ} -mapping of a space X onto an absolute Suslin space Y. If X is of absolute additive class α , $1 \leq \alpha < \omega_1$, or of absolute multiplicative class α , $2 \leq \alpha < \omega_1$, then Y is of the same absolute class.

Proof. Since X is assumed to be a Borel set in some completely metrizable space and Borel sets are Suslin, X is an absolute Suslin space. By Theorem 3.6 we can find an increasing sequence $\{X_n\}$ of closed sets in X so that f is a perfect mapping on each X_n , every $f(X_n)$ is closed in Y and $f(X_\infty) = f(\bigcup_n X_n) = Y$.

If X is of absolute additive, or multiplicative, class α , $\alpha \geq 2$, then X_{∞} is an absolute Borel space of the same class. This follows from the remark preceding the theorem. Now we can use [5, Corollary to Theorem 2] to deduce that Y is of the same absolute class.

Since the assertion for spaces of absolute Borel class one is not proved in the aforementioned [5, Corollary to Theorem 2], we briefly indicate its proof. Let us assume that X is of absolute additive class one, i.e., X is an absolute F_{σ} -space. Let $X_n, n \in \mathbb{N}$, be as above. Fix $n \in \mathbb{N}$. It follows from [3, Claim] that $X_n = \bigcup_k (F_k \cap G_k)$, where every F_k (respectively G_k) is a closed (respectively open) set in the Stone–Čech compactification of X. According to [3, Corollary 14], X_n is a countable union of intersections of closed and open sets in every Tikhonov topological space. Consecutive use of [3, Corollary 15 and Claim] shows that $f(X_n)$ is an absolute F_{σ} -space. Thus $Y = \bigcup_n f(X_n)$ is an absolute F_{σ} -space as well.

References

- R. C. Freiwald, Images of Borel sets and k-analytic sets, Fund. Math. 75 (1972), 35–46.
- [2] R. W. Hansell, J. E. Jayne and C. A. Rogers, *Piece-wise closed functions and almost discretely σ-decomposable families*, Mathematika 32 (1985), 229–247.
- [3] P. Holický and J. Spurný, Perfect images of absolute Souslin and absolute Borel Tychonoff spaces, Topology Appl. 131 (2003), 281–294.
- [4] J. E. Jayne and C. A. Rogers, First level Borel functions and isomorphisms, J. Math. Pures Appl. (9) 61 (1982), 177–205.
- [5] —, —, Invariance of Borel classes in metric spaces, Math. Ann. 263 (1983), 323–341.
- [6] —, —, Invariance of the absolute Borel classes, in: Convex Functions and Optimization (London, 1980), Res. Notes in Math. 57, Pitman, Boston, 1982, 118–151.
- [7] —, —, Piece-wise closed functions, Math. Ann. 255 (1981), 499–518.
- [8] K. Kuratowski, Topology, Academic Press, New York, 1966.
- [9] J. Spurný, F_{σ} -additive families and the invariance of Borel classes, Proc. Math. Amer. Soc., to appear.
- [10] A. H. Stone, Absolute F_{σ} -spaces, ibid. 13 (1962), 495–499.

Faculty of Mathematics and Physics Charles University Sokolovská 83 186 75, Praha 8, Czech Republic E-mail: holicky@karlin.mff.cuni.cz spurny@karlin.mff.cuni.cz

> Received 20 May 2003; in revised form 24 June 2004