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Fσ-mappings and the invariance of absolute Borel classes

by

Petr Holický and Jǐŕı Spurný (Praha)

Abstract. It is proved that Fσ-mappings preserve absolute Borel classes, which im-
proves results of R. W. Hansell, J. E. Jayne and C. A. Rogers. The proof is based on
the fact that any Fσ-mapping f : X → Y of an absolute Suslin metric space X onto an
absolute Suslin metric space Y becomes a piecewise perfect mapping when restricted to a
suitable Fσ-set X∞ ⊂ X satisfying f(X∞) = Y .

1. Introduction. We recall that a mapping f : X → Y of a metric
space X to a metric space Y is called an Fσ-mapping if f maps Fσ-sets in
X to Fσ-sets in Y and f−1 maps Fσ-sets in Y to Fσ-sets in X. A mapping
f of a metric space X into a metric space Y is said to be piecewise closed if
there is a sequence {Xn}n∈N of closed subsets of X such that X =

⋃
n∈NXn,

and the restriction of f to Xn is a closed continuous mapping of Xn to Y
for every n ∈ N.

R. W. Hansell, J. E. Jayne and C. A. Rogers proved in [2, Theorem 3]
that an Fσ-mapping f of an absolute Suslin metric space X onto an absolute
Suslin metric space Y is in fact piecewise closed if

(a) Fleissner’s axiom holds, or
(b) each point of X has a neighbourhood that is mapped by f onto a

set in Y which is σ-locally of weight at most ℵ1, or
(c) f is an open mapping, or
(d) f−1(y) is compact for each y in Y .

Each of these assumptions ensures that f maps discrete families to “almost
σ-discretely decomposable families”, which is the crucial point in the proof
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of [7, Theorem 1] used in the proof of [2, Theorem 3] (for the definition of
almost σ-discretely decomposable families see below).

We are going to prove a weaker statement which does not need any of
the assumptions (a)–(d) and which is still sufficient to get some significant
corollaries of [2, Theorem 3]. The crucial point is that we deal with σ-discrete
refinements instead of almost σ-discrete decomposability and we may use
the following result [9, Theorem 3.5]:

Let f : X → Y be a mapping of a metric space X to an absolute Suslin
metric space Y such that f maps Fσ-sets in X to Fσ-sets in Y . Then f maps
any σ-discrete family of Fσ-sets in X onto a family admitting a σ-discrete
refinement.

Our modification of [2, Theorem 3] reads:

Any Fσ-mapping f of an absolute Suslin metric space X onto an absolute
Suslin metric space Y has a piecewise closed restriction to an Fσ-set X∞
⊂ X satisfying f(X∞) = Y .

By [7, Theorem 3] there is a restriction which is even piecewise perfect.
Our Theorems 4.1 and 4.2 appeared already as [5, Theorem 2] and [6, Theo-
rem 2]. However, as explained in [2, Theorem 3], the authors needed at least
one of the extra assumptions (a)–(d) mentioned above.

2. Preliminaries. By a space we mean a metrizable space without
mentioning it explicitly. We write (X, %) when a compatible metric % is
specified.

We use N<N to denote the space of finite sequences of positive integers.
If s ∈ N<N, then l(s) stands for the length of s. As usual, for s, t ∈ N<N,
we write s ≺ t if t is an extension of s, i.e., l(s) ≤ l(t) and si = ti if
1 ≤ i ≤ l(s). Using ∅ to denote the empty sequence, we adopt the conven-
tion that l(∅) = 0. If s ∈ N<N and n ∈ N, we write s∧n for the sequence
(s1, . . . , sl(s), n).

The space NN with the usual product topology will be denoted by I.
For σ ∈ I, σ = {σk}∞k=1, and n ∈ N, we put σ�n = (σ1, . . . , σn). We adopt
the convention that σ�0 = ∅. For a given s ∈ Nn, the Baire interval I(s) is
defined by

I(s) = {σ ∈ I : σ�n = s}.
A subset A of a space X is said to be Suslin if there exists a family

{Fs}s∈N<N of closed sets in X so that

A =
⋃

σ∈I

∞⋂

n=1

Fσ�n.
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A space X is called an absolute Suslin space if X is homeomorphic to
a Suslin subset of some completely metrizable space. We use a well known
fact that X is an absolute Suslin space if and only if X is a Suslin subset of
every space containingX (this observation easily follows from the Lavrent’ev
theorem [8, §35, II, Theorem]).

A set A in a space X is discrete if for every point x ∈ X there exists a
neighbourhood U of x which has at most one common point with A. If A
can be written as a union of countably many discrete sets, it is said to be
σ-discrete.

Let A be a family of sets in a space X. Then A is said to be discrete
in X if each point x ∈ X has a neighbourhood that meets at most one set
from A. If A is a countable union of discrete families An, then it is said
to be σ-discrete. It readily follows that A ⊂ X is a discrete (respectively
σ-discrete) set in X if and only if the family {{x} : x ∈ A} is discrete
(respectively σ-discrete) in X.

We say that A is σ-discretely decomposable if every set A ∈ A can be
written as A =

⋃
n∈NA(n), where {A(n) : A ∈ A} is a discrete family for

every n ∈ N.
A family A is said to be almost σ-discretely decomposable if it becomes

σ-discretely decomposable when restricted to the complement of some σ-
discrete set.

A family R is called a refinement of A if
⋃R =

⋃A and for each R ∈ R
there exists A ∈ A with R ⊂ A. We say that A has a σ-discrete refinement
if there exists a refinement R of A which is a σ-discrete family. Clearly, any
almost σ-discretely decomposable family has a σ-discrete refinement but the
converse need not hold in general.

A mapping f : X → Y is perfect if f is closed, continuous, and the fiber
f−1(y) is a compact subset of X for every y ∈ Y .

If X is a union of countably many closed sets Xn and the restriction of
f to Xn is a perfect mapping of Xn to Y , then f is called piecewise perfect.

Without further reference we shall use the well known fact that any
metrizable space has a σ-discrete base of open sets (see [8, §21, XVI, Corol-
lary 1a]).

If % is a metric on a space X and A,B ⊂ X, then dist%(A,B) stands for
the distance of A and B, and diam%A for the diameter of A. For a sequence
{An}n∈N of nonempty sets in X and x ∈ X, we write An → {x} (as n tends
to infinity) if for every neighbourhood U of x there exists k ∈ N so that
An ⊂ U for all n ≥ k.

If f : X → Y is a mapping and A is a family of subsets of X, we write
f(A) for the family {f(A) : A ∈ A}. Similarly we use f−1(B) = {f−1(B) :
B ∈ B} for a family B in Y .
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3. Piecewise closed and piecewise perfect mappings. We are go-
ing to prove our main result on Fσ-mappings in Theorem 3.6. We use [4,
Theorem 5] to reduce the problem to the case when f is, moreover, continu-
ous. Then we prove Proposition 3.5 by modifying the inductive construction
of [7, Lemma 2]. Here we essentially use the above-mentioned result [9, The-
orem 3.5] instead of [7, Lemma 1].

We use the following easy fact without further reference (see, e.g., [9,
Lemma 3.4]):

Let a family A of Fσ-sets in X have a σ-discrete refinement. Then A
has a σ-discrete refinement consisting of Fσ-sets.

We first introduce our key auxiliary notion.

Definition 3.1. Let f : X → Y be a mapping of a spaceX to a space Y .
We say that a set A ⊂ X is covered by f if there exist Fσ-sets F,H ⊂ X such
that A ⊂ F , the restriction of f to H is piecewise closed, and f(H) ⊃ f(F ).

Remark 3.2. Note that B ⊂ X is covered by f whenever B ⊂ A and
A is covered by f . Hence this notion is hereditary with respect to inclusion.
Further, if A ⊂ X is covered by f , we may demand without loss of generality
that the set F from Definition 3.1 satisfies F ⊂ A. It also easily follows from
the definition that the union of countably many sets covered by f is covered
by f as well. Let us point out that, if A ⊂ X is not covered by a mapping
f : X → Y , then the restriction of f to A is not piecewise closed.

The following lemma indicates a situation in which the union of a σ-
discrete family of sets covered by f is also covered by f .

Lemma 3.3. Let f : X → Y be a continuous mapping of a space X to a
space Y such that

(i) f maps Fσ-sets in X to Fσ-sets in Y , and
(ii) f(F) has a σ-discrete refinement in Y for any σ-discrete family F

of Fσ-sets in X.

If A is a σ-discrete family of sets covered by f , then
⋃A is covered by f .

Proof. For every A ∈ A, let FA and HA be Fσ-sets in X such that
A ⊂ FA, the restriction of f to HA is piecewise closed, and f(HA) ⊃ f(FA).
By Remark 3.2, we may suppose that the family F = {FA : A ∈ A} is
σ-discrete.

Find a σ-discrete refinement R of f(F) consisting of Fσ-sets. For every

R ∈ R find A(R) ∈ A with R ⊂ f(FA(R)). Set

H(R) = f−1(R) ∩HA(R), R ∈ R, H =
⋃

R∈R
H(R), F =

⋃
F .
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Then F is an Fσ-set in X and
⋃A ⊂ F . Since f is continuous and R is a

σ-discrete family of Fσ-sets, {H(R) : R ∈ R} is also a σ-discrete family of
Fσ-sets and thus H is an Fσ-set in X.

It is sufficient to prove that f(H) ⊃ f(F ) and that the restriction of f
to H is piecewise closed.

Since
⋃R =

⋃
f(F) = f(F ) and f(H(R)) = R for every R ∈ R, we

have f(H) ⊃ f(F ).
To show that f�H is piecewise closed, write R =

⋃
nRn so that Rn is

discrete for n ∈ N. For every R ∈ R find closed sets Rk, k ∈ N, in Y and

closed sets H
A(R)
m , m ∈ N, in X such that

R =
∞⋃

k=1

Rk, HA(R) =
∞⋃

m=1

HA(R)
m ,

and such that the restriction of f to each H
A(R)
m is a closed mapping.

Fix n, k,m ∈ N and set

Hn,k,m =
⋃
{f−1(Rk) ∩HA(R)

m : R ∈ Rn}.
Then Hn,k,m, as a discrete union of closed sets, is closed, and the restriction
of f to Hn,k,m is a closed mapping.

Indeed, let E be a closed set in Hn,k,m. Then

f�Hn,k,m(E) = f(E) =
⋃

R∈Rn
f(E ∩ f−1(Rk) ∩HA(R)

m )

=
⋃

R∈Rn
f�

H
A(R)
m

(E ∩ f−1(Rk)).

As the restriction of f to H
A(R)
m is a closed mapping of H

A(R)
m to Y , the

latter set is a discrete union of closed sets in Y . Thus f�Hn,k,m(E) is a closed

set and the restriction of f to Hn,k,m is a closed continuous mapping as
required.

Finally, H =
⋃
n,k,mHn,k,m since

H(R) = f−1(R) ∩HA(R) =

∞⋃

k,m=1

(f−1(Rk) ∩HA(R)
m ) for R ∈ R.

Lemma 3.4. Let f : X → Y be a continuous mapping of (X, %) to (Y, σ)
such that f maps Fσ-sets in X to Fσ-sets in Y and f(F) has a σ-discrete
refinement in Y for any σ-discrete family F of Fσ-sets in X. Let A ⊂ X be
not covered by f and ε > 0 be arbitrary. Then there exist a sequence {Lk}k∈N
of subsets of A that are not covered by fand an element x of A such that

(i) {Lk : k ∈ N} is a discrete family in X;
(ii) dist%(Lk, Ll) > 0 and diam% Lk < ε for k, l ∈ N, k 6= l;
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(iii) f(Lk)→ {f(x)} as k tends to infinity ;
(iv) distσ(f(Lk), f(Ll)) > 0 and distσ(f(Lk), {f(x)}) > 0 for k, l ∈ N,

k 6= l.

Proof. Let B be a σ-discrete base of open sets in X. Set

B̂ = {B ∈ B : A ∩B is covered by f}, G = A ∩
⋃
B̂, F = A \G.

Since the family {A ∩ B : B ∈ B} is σ-discrete, it follows from Lemma 3.3
that G is covered by f . The assumption that A is not covered by f implies
that the restriction of f to F is not piecewise closed.

Since f(F ) is an Fσ-set in Y , we can write f(F ) =
⋃
n Yn, where Yn are

closed in Y . Since the restriction of f to F is not piecewise closed, there
exists n ∈ N so that the restriction of f to F ∩ f−1(Yn) is not a closed

mapping. Thus we can find a closed set F̂ ⊂ F ∩ f−1(Yn) such that f(F̂ ) is
not closed. Find pairwise distinct points y, yk, k ∈ N, so that

(1) y ∈ Yn \ f(F̂ ), yk ∈ f(F̂ ), yk → y.

Since y ∈ f(F ) \ f(F̂ ), it is possible to select x ∈ F \ F̂ with f(x) = y. We

choose further a sequence {xk} ⊂ F̂ with f(xk) = yk.
Find open balls Ck in Y centred at yk so that

diamσ Ck < ε, distσ(Ck, Cl) > 0 for k, l ∈ N, k 6= l,

distσ({y}, Ck) > 0, Ck → {y}.
Since B is a base of open sets and f is continuous, we can inductively find
Bk ∈ B for k ∈ N so that

xk ∈ Bk, diam%Bk < ε/k, f(Bk) ⊂ Ck,
dist%(Bk, Bl) > 0 for k, l ∈ N, k 6= l.

We claim that the family {Bk : k ∈ N} is discrete in X.
Indeed, if we suppose the contrary, then there exists a point z ∈ X an

increasing sequence {kn} of positive integers such that Bkn → {z} and so

xkn → z as n tends to infinity. Then z ∈ F̂ . The continuity of f implies
f(z) = y, which contradicts (1).

As xk ∈ F ∩Bk, the set F ∩Bk is nonempty for every k ∈ N. Put

Lk = F ∩Bk, k ∈ N.
So the point x and the sequence {Lk} satisfy the required conditions (i)–(iv).

It remains to verify that Lk is not covered by f for every k ∈ N. Suppose
that Lk = F ∩Bk is covered by f for some k ∈ N. Since G is covered by f ,

A ∩Bk = (G ∩Bk) ∪ (F ∩Bk)
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is covered by f likewise (see Remark 3.2). Thus Bk ∈ B̂ and A ∩ Bk ⊂ G,
which contradicts the fact that Bk ∩ F 6= ∅. Hence no Lk is covered by f
and the proof is finished.

Proposition 3.5. Let f : X → Y be a continuous mapping of an ab-
solute Suslin space X onto an absolute Suslin space Y which maps Fσ-sets
in X to Fσ-sets in Y . Then X is covered by f , i.e., there exists an Fσ-subset
X∞ of X so that f(X∞) = Y and the restriction of f to X∞ is piecewise
closed.

Proof. We may and do suppose that X ⊂ (X̂, %) and Y ⊂ (Ŷ , σ), where

X̂ and Ŷ are completions of (X, %) and (Y, %), respectively, diam% X̂ < 1,

and diamσ Ŷ < 1. Let

X =
⋃

σ∈I

∞⋂

n=1

F (σ�n),

where {F (s)}s∈N<N are closed sets in X̂. We write A
X

(respectively A
X̂

) for

the closure of a set A ⊂ X in X (respectively in X̂). Similarly we use B
Y

and B
Ŷ

for B ⊂ Y . For s ∈ N<N, set

X(s) =
⋃

τ∈I(s)

∞⋂

n=1

F (τ�n).(2)

We want to prove that the space X is covered by f . Suppose that this
is not the case. We shall construct by induction nonempty sets Ls ⊂ X,

s ∈ N<N, that are not covered by f , points xs ∈ LXs , and finite sequences
σs ∈ N<N, so that, for every finite sequence s ∈ N<N of length n (including
the empty sequence s = ∅), we have:

(i) {Ls∧k : k ∈ N} is a discrete family in X;

(ii) L
X̂
s∧k, k ∈ N, are pairwise disjoint and diam% Ls < 2−n;

(iii) f(Ls∧k)→ {f(xs)} as k tends to infinity;

(iv) the sets {f(xs)}, f(Ls∧k)
Ŷ

, k ∈ N, are pairwise disjoint;
(v) σs is of length n+ 1 and σs ≺ σŝ if s ≺ ŝ; and
(vi) Ls∧k ⊂ Ls ∩X(σs).

We first find L∅, x∅, σ∅, and Lk for k ∈ N so that (i)–(vi) are satisfied for
them. Put L∅ = X. As X =

⋃
j∈NX(j), there is a σ∅ ∈ N such that X(σ∅)

is not covered by f (cf. Remark 3.2). The assumptions on the mapping f
in Lemma 3.4 are satisfied due to [9, Theorem 3.5] recalled above. Applying
it with A = X(σ∅) and ε = 2−1, we obtain sets Lk ⊂ A, k ∈ N, which

are not covered by f , and a point x∅ ∈ A
X

satisfying conditions (i)–(iv) of
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Lemma 3.4. So L∅, x∅, σ∅, and Lk for k ∈ N satisfy (i)–(vi), which concludes
the first step of the inductive construction.

Let xs, σs, Ls∧k with s ∈ N<N, l(s) < n, k ∈ N satisfying (i)–(vi) be
already constructed for an n ≥ 1. Pick a finite sequence s of length n and
an i ∈ N. As Ls∧i ⊂ X(σs) =

⋃
j∈NX(σs

∧j) and Ls∧i is not covered by f ,

using Remark 3.2 we may find j ∈ N so that Ls∧i ∩X(σs
∧j) is not covered

by f . Define
σs∧i = σs

∧j.

If we put A = Ls∧i ∩ X(σs∧i) and ε = 2−n−1 in Lemma 3.4 (again [9,

Theorem 3.5] allows us to use it), we obtain a point xs∧i ∈ AX and sets

Ls∧i∧k ⊂ A, k ∈ N,
so that all the properties (i)–(iv) in Lemma 3.4 are satisfied. This finishes
the construction.

Set

Q =

∞⋂

k=1

( ⋃

s : 0≤l(s)≤k−1

{f(xs)} ∪
⋃

s : l(s)=k

f(Ls)
Ŷ
)
,

Q0 = {f(xs) : s ∈ N<N}, Q1 =
∞⋂

k=1

⋃

s : l(s)=k

f(Ls)
Ŷ
,

P =

∞⋂

k=1

⋃

s : l(s)=k

L
X̂
s .

Note that Q = Q0∪Q1 and that Q0∩Q1 = ∅ by (iv). According to (iii), (iv),

and the fact that f(xs∧k) ∈ f(Ls∧k)
Ŷ

, the countable set Q0 is dense-in-itself.
Claims 1 and 2 below imply that Q1 = f(P ) is an Fσ-set in Y . Using (iii)

inductively, we deduce that Q is closed in Ŷ . As Q ⊂ Y , the set Q1 is an

Fσ-subset of Ŷ . Finally, Q0 is a countable dense-in-itself Gδ-subset of the

complete space Ŷ , which is a contradiction.
It remains to prove the following two claims.

Claim 1. The set P is a closed subset of X.

Claim 2. f(P ) = Q1 and so Q ⊂ Y .

Proof of Claim 1. First of all we show that P ⊂ X. Indeed, if s, t ∈ N<N
are given, we know from (ii) and (vi) that

L
X̂
s ∩ L

X̂
t 6= ∅

if and only if either s ≺ t or t ≺ s. Thus, for a given x ∈ P , there exists
% ∈ I so that

x ∈ LX̂%�n for every n ≥ 1.
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Using (v) we find a sequence σ(%) ∈ I so that

σ%�n−1 = σ(%)�n, n ≥ 1.

Then equality (2) and condition (vi) give

x ∈
∞⋂

n=1

L
X̂
%�n ⊂

∞⋂

n=1

F (σ(%)�n) ⊂ X

and so P ⊂ X. To check that P is closed, note that a use of (i) entails that
the set ⋃

s : l(s)=n

L
X
s =

⋃

s : l(s)=n

(L
X̂
s ∩X),

as the union of a discrete family of closed sets in X, is closed in X. From
the equalities

P =
( ∞⋂

n=1

⋃

s : l(s)=n

L
X̂
s

)
∩X =

∞⋂

n=1

⋃

s : l(s)=n

L
X
s

it follows that P is closed in X.

Proof of Claim 2. Pick x ∈ P . By the reasoning in Claim 1, there exists
% ∈ I so that

x ∈
∞⋂

n=1

L
X̂
%�n.

Choose xn ∈ L%�n. Then the sequence {xn}n∈N converges to x according
to (ii). Since f is continuous, we get

f(x) ∈
∞⋂

k=1

f(L%�k)
Ŷ ⊂ Q1.

Conversely, let y ∈ Q1 be given. Due to condition (iv),

Q1 =
∞⋂

n=1

⋃

s : l(s)=n

f(Ls)
Ŷ

=
⋃

%∈I

∞⋂

n=1

f(L%�n)
Ŷ
.

Hence there exists % ∈ I so that

y ∈
∞⋂

n=1

f(L%�n)
Ŷ
.

Since X̂ is a complete space and {LX̂%�n}n∈N is a decreasing sequence of
nonempty closed sets with diameters converging to zero, there exists a point

x ∈ X̂ with

{x} =
∞⋂

n=1

L
X̂
%�n.
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Obviously x ∈ P . Due to Claim 1, x ∈ X, and from the continuity of f it
follows that f(x) = y, which concludes the proof.

Theorem 3.6. Let f : X → Y be an Fσ-mapping of an absolute Suslin
space X onto an absolute Suslin space Y . Then there is an Fσ-set X∞ ⊂ X
such that f(X∞) = Y and the restriction of f to X∞ is piecewise perfect.

Proof. According to [4, Theorem 5], the mapping f is piecewise contin-
uous, i.e., X can be written as a union of closed sets Zn such that f is
continuous on every Zn. Since f preserves Fσ-sets, we can find closed sets
Yn,k ⊂ Y , n, k ∈ N, with

f(Zn) =
∞⋃

k=1

Yn,k, n ∈ N.

Then f is a continuous Fσ-mapping on each closed set

Zn,k = Zn ∩ f−1(Yn,k), n, k ∈ N.
By Proposition 3.5, for each couple n, k ∈ N there exists an Fσ-set Hn,k

in Zn,k such that f(Zn,k) = f(Hn,k) and the restriction of f to Hn,k is a
piecewise closed mapping of Hn,k to Y . Then H =

⋃
n,kHn,k is an Fσ-subset

of X, the restriction of f to H is a piecewise closed mapping of H to Y and
f(H) = Y .

By [7, Theorem 3] it is possible to find a sequence {Fm} of closed sets
in H so that the restriction of f to Fm is a perfect mapping of Fm to Y and
f(
⋃
m Fm) = f(H) = Y . Write H =

⋃
j Hj , where every Hj is closed in X,

and set

Xm,j = Fm ∩Hj , m, j ∈ N, X∞ =

∞⋃

m,j=1

Xm,j .

Then f(X∞) = Y and the restriction of f to Xm,j is a perfect mapping of
Xm,j to Y for every m, j ∈ N, which concludes the proof.

4. The invariance of Borel sets and absolute Borel spaces. We
recall the definition of the Borel hierarchy in metrizable spaces. For a space
X, the sets of additive, or multiplicative, class zero are just the open, or
closed, sets in X. If 1 ≤ α < ω1, the sets of additive, or multiplicative, class
α are just the unions, or intersections, of sets each being contained in some
lower additive or multiplicative class.

Now we are ready to prove [5, Theorem 6] and [6, Theorem 2] without
the assumptions (a)–(d) of [2, Theorem 3] that were implicitly used in [5]
and in [6] as mentioned above.

Theorem 4.1. Let f be an Fσ-mapping of an absolute Suslin space X
onto an absolute Suslin space Y . Let α ≥ 1 be a countable ordinal. If B is
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a subset of Y such that f−1(B) is a set of additive, or multiplicative, class
α in X, then B is of the same class in Y . Similarly , if f−1(B) is a Suslin
set in X, then B is a Suslin set in Y .

Proof. According to Theorem 3.6, there exists a sequence {Xn} of closed
sets in X such that, for every n ∈ N, fn = f�Xn is a perfect mapping of Xn

to Y and f(
⋃
nXn) = Y .

Let α ≥ 1 and B ⊂ Y be such that f−1(B) is of additive class α in X.
Fix n ∈ N and set Yn = f(Xn).

Then f−1(B)∩Xn is of additive class α in Xn. Since fn is perfect on Xn

and f−1(B) ∩ Xn = f−1
n (B ∩ Yn), the assumptions of [6, Lemma 3] are

satisfied for fn : Xn → Yn and B ∩ Yn. Thus B ∩ Yn is of additive class α
in Y .

Since B =
⋃
n (B ∩ Yn) and every Yn is closed in Y , we see that B is of

additive class α in Y as needed.
The case of a multiplicative class α follows from the previous argument

by taking the complements.
If f−1(B) is a Suslin set in X for B ⊂ Y , we can use the same consid-

erations as above and the fact that the image of an absolute Suslin space
under a closed mapping is an absolute Suslin space ([1, Theorem 3.3]).

The next Theorem 4.2 asserts that Fσ-mappings preserve absolute Borel
classes. We recall that a space X is said to be of absolute additive, or absolute
multiplicative, class α, 1 ≤ α < ω1, if X is of the same class whenever it is
embedded in a space.

Note that X is of absolute multiplicative class one, i.e., an absolute
Gδ-space, if and only if X is completely metrizable.

Let α ≥ 2 (respectively α ≥ 1) be a countable ordinal. We note that
X is of absolute additive (respectively multiplicative) class α if X is of the
same class in some completely metrizable space. This easily follows from the
Lavrent’ev theorem (see [8, §35, II, Theorem]).

Spaces of absolute additive class one, i.e., absolute Fσ-spaces, were char-
acterized by Stone in [10, Theorem 2].

Theorem 4.2. Let f : X → Y be an Fσ-mapping of a space X onto an
absolute Suslin space Y . If X is of absolute additive class α, 1 ≤ α < ω1,
or of absolute multiplicative class α, 2 ≤ α < ω1, then Y is of the same
absolute class.

Proof. Since X is assumed to be a Borel set in some completely metriz-
able space and Borel sets are Suslin, X is an absolute Suslin space. By
Theorem 3.6 we can find an increasing sequence {Xn} of closed sets in X
so that f is a perfect mapping on each Xn, every f(Xn) is closed in Y and
f(X∞) = f(

⋃
nXn) = Y .
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If X is of absolute additive, or multiplicative, class α, α ≥ 2, then X∞
is an absolute Borel space of the same class. This follows from the remark
preceding the theorem. Now we can use [5, Corollary to Theorem 2] to
deduce that Y is of the same absolute class.

Since the assertion for spaces of absolute Borel class one is not proved
in the aforementioned [5, Corollary to Theorem 2], we briefly indicate its
proof. Let us assume that X is of absolute additive class one, i.e., X is an
absolute Fσ-space. Let Xn, n ∈ N, be as above. Fix n ∈ N. It follows from
[3, Claim] that Xn =

⋃
k(Fk ∩ Gk), where every Fk (respectively Gk) is

a closed (respectively open) set in the Stone–Čech compactification of X.
According to [3, Corollary 14], Xn is a countable union of intersections of
closed and open sets in every Tikhonov topological space. Consecutive use
of [3, Corollary 15 and Claim] shows that f(Xn) is an absolute Fσ-space.
Thus Y =

⋃
n f(Xn) is an absolute Fσ-space as well.
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