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F,-mappings and the invariance of absolute Borel classes
by

Petr Holicky and Jifi Spurny (Praha)

Abstract. It is proved that F,-mappings preserve absolute Borel classes, which im-
proves results of R. W. Hansell, J. E. Jayne and C. A. Rogers. The proof is based on
the fact that any F,-mapping f : X — Y of an absolute Suslin metric space X onto an
absolute Suslin metric space Y becomes a piecewise perfect mapping when restricted to a
suitable Fy-set Xoo C X satisfying f(Xs) =Y.

1. Introduction. We recall that a mapping f : X — Y of a metric
space X to a metric space Y is called an F,-mapping if f maps F,-sets in
X to F,-sets in Y and f~! maps F,-sets in Y to F,-sets in X. A mapping
f of a metric space X into a metric space Y is said to be piecewise closed if
there is a sequence { X, },en of closed subsets of X such that X = UneN X,
and the restriction of f to X, is a closed continuous mapping of X,, to Y
for every n € N.

R. W. Hansell, J. E. Jayne and C. A. Rogers proved in [2, Theorem 3|
that an F,-mapping f of an absolute Suslin metric space X onto an absolute
Suslin metric space Y is in fact piecewise closed if

(a) Fleissner’s axiom holds, or

(b) each point of X has a neighbourhood that is mapped by f onto a
set in Y which is o-locally of weight at most Nq, or

(c) f is an open mapping, or

(d) f~1(y) is compact for each y in Y.

Each of these assumptions ensures that f maps discrete families to “almost
o-discretely decomposable families”, which is the crucial point in the proof
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of [7, Theorem 1] used in the proof of [2, Theorem 3] (for the definition of
almost o-discretely decomposable families see below).

We are going to prove a weaker statement which does not need any of
the assumptions (a)—(d) and which is still sufficient to get some significant
corollaries of [2, Theorem 3]. The crucial point is that we deal with o-discrete
refinements instead of almost o-discrete decomposability and we may use
the following result [9, Theorem 3.5]:

Let f: X — Y be a mapping of a metric space X to an absolute Suslin
metric space Y such that f maps Fy-sets in X to Fy-sets in'Y . Then f maps
any o-discrete family of Fy-sets in X onto a family admitting a o-discrete
refinement.

Our modification of [2, Theorem 3] reads:

Any Fy-mapping [ of an absolute Suslin metric space X onto an absolute
Suslin metric space Y has a piecewise closed restriction to an Fy-set X
C X satisfying f(Xoo) =Y.

By [7, Theorem 3] there is a restriction which is even piecewise perfect.
Our Theorems 4.1 and 4.2 appeared already as [5, Theorem 2| and [6, Theo-
rem 2]. However, as explained in [2, Theorem 3], the authors needed at least
one of the extra assumptions (a)—(d) mentioned above.

2. Preliminaries. By a space we mean a metrizable space without
mentioning it explicitly. We write (X, 0) when a compatible metric o is
specified.

We use N<N to denote the space of finite sequences of positive integers.
If s € NN then I(s) stands for the length of s. As usual, for s,t € N<N/
we write s < ¢ if ¢ is an extension of s, i.e., I(s) < I(t) and s; = ¢t; if
1 <4 < (s). Using 0 to denote the empty sequence, we adopt the conven-
tion that [(0) = 0. If s € NN and n € N, we write s"n for the sequence
(81, ey sl(s),n).

The space NN with the usual product topology will be denoted by I.
For o €I, 0 = {o}2, and n € N, we put o[n = (01,...,0,). We adopt
the convention that o]0 = (). For a given s € N, the Baire interval 1(s) is
defined by

I(s)={c€l:0ln=s}.

A subset A of a space X is said to be Suslin if there exists a family
{Fs}sen<n of closed sets in X so that

A= U ﬂ Fyin-

oeln=1
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A space X is called an absolute Suslin space if X is homeomorphic to
a Suslin subset of some completely metrizable space. We use a well known
fact that X is an absolute Suslin space if and only if X is a Suslin subset of
every space containing X (this observation easily follows from the Lavrent’ev
theorem [8, §35, II, Theorem]).

A set A in a space X is discrete if for every point x € X there exists a
neighbourhood U of & which has at most one common point with A. If A
can be written as a union of countably many discrete sets, it is said to be
o-discrete.

Let A be a family of sets in a space X. Then A is said to be discrete
in X if each point x € X has a neighbourhood that meets at most one set
from A. If A is a countable union of discrete families A,,, then it is said
to be o-discrete. It readily follows that A C X is a discrete (respectively
o-discrete) set in X if and only if the family {{z} : x € A} is discrete
(respectively o-discrete) in X.

We say that A is o-discretely decomposable if every set A € A can be
written as A = |J_ _yA(n), where {A(n) : A € A} is a discrete family for
every n € N.

A family A is said to be almost o-discretely decomposable if it becomes
o-discretely decomposable when restricted to the complement of some o-
discrete set.

A family R is called a refinement of Aif |JR = |J.A and for each R € R
there exists A € A with R C A. We say that A has a o-discrete refinement
if there exists a refinement R of A which is a o-discrete family. Clearly, any
almost o-discretely decomposable family has a o-discrete refinement but the
converse need not hold in general.

A mapping f : X — Y is perfect if f is closed, continuous, and the fiber
f~1(y) is a compact subset of X for every y € Y.

If X is a union of countably many closed sets X,, and the restriction of
f to X, is a perfect mapping of X,, to Y, then f is called piecewise perfect.

Without further reference we shall use the well known fact that any
metrizable space has a o-discrete base of open sets (see [8, §21, XVI, Corol-
lary 1al).

If p is a metric on a space X and A, B C X, then dist,(A, B) stands for
the distance of A and B, and diam, A for the diameter of A. For a sequence
{A} }nen of nonempty sets in X and z € X, we write 4,, — {z} (as n tends
to infinity) if for every neighbourhood U of x there exists k € N so that
A, C U for all n > k.

If f: X — Y is a mapping and A is a family of subsets of X, we write
f(A) for the family {f(A) : A € A}. Similarly we use f~1(B) = {f~1(B) :
B € B} for a family Bin Y.

neN
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3. Piecewise closed and piecewise perfect mappings. We are go-
ing to prove our main result on F,-mappings in Theorem 3.6. We use [4,
Theorem 5| to reduce the problem to the case when f is, moreover, continu-
ous. Then we prove Proposition 3.5 by modifying the inductive construction
of [7, Lemma 2]. Here we essentially use the above-mentioned result [9, The-
orem 3.5] instead of [7, Lemma 1].

We use the following easy fact without further reference (see, e.g., [9,
Lemma 3.4]):

Let a family A of Fy-sets in X have a o-discrete refinement. Then A
has a o-discrete refinement consisting of F,-sets.

We first introduce our key auxiliary notion.

DEFINITION 3.1. Let f : X — Y be a mapping of a space X to aspace Y.
We say that a set A C X is covered by f if there exist F,-sets F, H C X such
that A C F, the restriction of f to H is piecewise closed, and f(H) D f(F).

REMARK 3.2. Note that B C X is covered by f whenever B C A and
A is covered by f. Hence this notion is hereditary with respect to inclusion.
Further, if A C X is covered by f, we may demand without loss of generality
that the set F from Definition 3.1 satisfies ' C A. It also easily follows from
the definition that the union of countably many sets covered by f is covered
by f as well. Let us point out that, if A C X is not covered by a mapping
f: X — Y, then the restriction of f to A is not piecewise closed.

The following lemma indicates a situation in which the union of a o-
discrete family of sets covered by f is also covered by f.

LEMMA 3.3. Let f: X — Y be a continuous mapping of a space X to a
space Y such that

(i) f maps Fy-sets in X to Fy-sets in'Y, and
(ii) f(F) has a o-discrete refinement in'Y for any o-discrete family F
of Fy-sets in X.
If A is a o-discrete family of sets covered by f, then |JA is covered by f.

Proof. For every A € A, let FA and HA be F,-sets in X such that
A C F4, the restriction of f to H* is piecewise closed, and f(H4) D f(F4).
By Remark 3.2, we may suppose that the family F = {FA A e A} is
o-discrete.

Find a o-discrete refinement R of f(F) consisting of Fj,-sets. For every
R € R find A(R) € A with R C f(FAH), Set

HR)=f'R)nH*® ReR, H=|JH®R), F=JF
ReER



Fy-mappings 197

Then F' is an F,-set in X and |J.A C F. Since f is continuous and R is a
o-discrete family of F,-sets, {H(R) : R € R} is also a o-discrete family of
F,-sets and thus H is an F,-set in X.

It is sufficient to prove that f(H) D f(F) and that the restriction of f
to H is piecewise closed.

Since R = J f(F) = f(F) and f(H(R)) = R for every R € R, we
have f(H) D f(F).

To show that f[y is piecewise closed, write R = |J,, Rn so that R, is
discrete for n € N. For every R € R find closed sets Ri, £ € N, in Y and

closed sets H{g(R), m € N, in X such that

R= URk, HA®R U HAR),
k=1

and such that the restriction of f to each Hm( ) is a closed mapping.
Fix n,k,m € N and set

Hygom = | U (Br) NHAB) - R € Ry}

Then H,, i, m, as a discrete union of closed sets, is closed, and the restriction
of f to Hy j.m is a closed mapping.
Indeed, let £ be a closed set in H,, j, ,,. Then

Fli (B =f(B)= | FENFR)NHAD)
ReER,

U Flyam (B0 R)).
RERR
As the restriction of f to Hi(R) is a closed mapping of H;g(R) to Y, the
latter set is a discrete union of closed sets in Y. Thus f| Hytom (E) is a closed
set and the restriction of f to H, 1, is a closed continuous mapping as
required.

Finally, H = U,, . Hnkm since
HR) = RNH® = | J (f {(Re)nHAF)) for RER. m
k,m=1

LEMMA 3.4. Let f: X — Y be a continuous mapping of (X, o) to (Y, 0)
such that f maps Fy-sets in X to Fy-sets in'Y and f(F) has a o-discrete
refinement in 'Y for any o-discrete family F of Fy-sets in X. Let A C X be
not covered by f and e > 0 be arbitrary. Then there exist a sequence { Ly }ren
of subsets of A that are not covered by fand an element x of A such that

(i) {Lk : k € N} is a discrete family in X;
(ii) disty(Lg, L) > 0 and diam, Ly, < € for k,l € N, k # ;
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(iii) f(Lg) — {f(z)} as k tends to infinity;
(iv) di;ta(f(Lk),f(Ll)) > 0 and disty(f (L), {f(z)}) > 0 for k,l € N,
k#1.

Proof. Let B be a o-discrete base of open sets in X. Set
B={BeB:ANBiscovered by f}, G=An|JB F=A\G.

Since the family {A N B : B € B} is o-discrete, it follows from Lemma 3.3
that G is covered by f. The assumption that A is not covered by f implies
that the restriction of f to F is not piecewise closed.

Since f(F) is an F,-set in Y, we can write f(F) = J, Vs, where Y,, are
closed in Y. Since the restriction of f to F is not piecewise closed, there
exists n € N so that the restriction of f to FF'n f~1(Y,) is not a closed
mapping. Thus we can find a closed set FcFn f~1(Y;,) such that f (ﬁ) is
not closed. Find pairwise distinct points vy, yi, £ € N, so that

(1) yEYA\F(E), wef(F), wy—v.
Since y € f(F)\ f(F), it is possible to select z € F \ F with f(z) = y. We
choose further a sequence {zy} C F with f(zx) = ys.
Find open balls C, in Y centred at y; so that
diam, Cy, < e, disty(Cy,C;) >0 for k,l e N, k # 1,
dist,({y},Cx) >0, Cr — {y}.
Since B is a base of open sets and f is continuous, we can inductively find
By, € B for k € N so that
xy € By, diam, By <e/k, f(Bg) C Ch,
disty(Bg, By) >0 for k, l e N, k # L.
We claim that the family {By : k € N} is discrete in X.
Indeed, if we suppose the contrary, then there exists a point z € X an

increasing sequence {ky} of positive integers such that By, — {z} and so

Zk, — %z as n tends to infinity. Then z € F. The continuity of f implies
f(2) =y, which contradicts (1).
As x; € F'N By, the set F'N By, is nonempty for every k € N. Put

Ly = FnN By, ke N.

So the point z and the sequence { Ly} satisfy the required conditions (i)—(iv).
It remains to verify that L; is not covered by f for every k € N. Suppose
that L = F N By is covered by f for some k € N. Since G is covered by f,

AN By =(GNBg)U(FNBy)
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is covered by f likewise (see Remark 3.2). Thus By € B and AN By C G,
which contradicts the fact that By N F # (). Hence no Ly is covered by f
and the proof is finished. =

ProOPOSITION 3.5. Let f : X — Y be a continuous mapping of an ab-
solute Suslin space X onto an absolute Suslin space Y which maps F,-sets
i X to Fy-setsin'Y . Then X is covered by f, i.e., there exists an F,-subset
Xoo of X so that f(Xoo) =Y and the restriction of f to X is piecewise
closed.

Proof. We may and do suppose that X C ()A(, o) and Y C (SA/, o), where
X and Y are completions of (X, ) and (Y, p), respectively, diamg)? <1,
and diam,, Y < 1. Let

X:UﬂF(an

oc€eln=1

where {F(s)},cn<n are closed sets in X. We write A~ (respectively ZX) for
the closure of a set A C X in X (respectively in X ). Similarly we use B"

and B for BC Y. For s € N<N set

(2) X(s)={J () Flrin)

T€l(s) n=1
We want to prove that the space X is covered by f. Suppose that this
is not the case. We shall construct by induction nonempty sets Ly C X,

s € NN, that are not covered by f, points z, € L , and finite sequences
N<N, so that, for every finite sequence s € N <N of length n (including
the empty sequence s = (), we have:

(i) {LSAk : k € N} is a discrete family in X;
(ii

(iii

8/\ > k € N, are pairwise disjoint and diam, L, < 27";
f(Lsak) — {f(zs)} as k tends to infinity;

) L
)
(iv) the sets {f(zs)}, f(L sAk)Y k € N, are pairwise disjoint;
(v) o5 is of length n 4+ 1 and 05 < 05 if s < S; and
(vi) Lork C Ls N X (05).

We first find Ly, zg, op, and Ly, for k € N so that (i)—(vi) are satisfied for
them. Put Ly = X. As X = (J;cy X (j), there is a oy € N such that X (o)
is not covered by f (cf. Remark 3.2). The assumptions on the mapping f
in Lemma 3.4 are satisfied due to [9, Theorem 3.5] recalled above. Applying
it with A = X(0p) and e = 271, we obtain sets L, C A, k € N, which
are not covered by f, and a point xy € ax satisfying conditions (i)—(iv) of
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Lemma 3.4. So Ly, zp, 0y, and Ly, for k € N satisty (i)—(vi), which concludes
the first step of the inductive construction.

Let x5, 05, Leng with s € NN [(s) < n, k € N satisfying (i)-(vi) be
already constructed for an n > 1. Pick a finite sequence s of length n and
an i € N. As Lgn; C X(o5) = UjeNX(asAj) and Lgn; is not covered by f,
using Remark 3.2 we may find j € N so that Ls; N X (05" 7) is not covered
by f. Define

Oghi = asAj.
If we put A = Lgr; N X (0sr;) and € = 27771 in Lemma 3.4 (again [9,
Theorem 3.5] allows us to use it), we obtain a point zs; € A and sets
Loy, CA, k€N,

so that all the properties (i)—(iv) in Lemma 3.4 are satisfied. This finishes
the construction.

Set
=N U ¢epu U FE),
k=1 s:0<l(s)<k—1 S'I(S)*

Qo={f(zs):se N}, Q= ﬂ U 7y

k=1s:1(s)=k
P=() U T

k=1s:1(s)=k
Note that Q = QoUQ1 and that QoNQ1 = 0 by (iv). According to (iii), (iv),
and the fact that f(zsng) € f(LS/\k)Y, the countable set g is dense-in-itself.
Claims 1 and 2 below imply that Q1 = f(P) is an F,-set in Y. Using (iii)
inductively, we deduce that @ is closed in Y. As ) C Y, the set ()1 is an
F,-subset of Y. Finally, Qg is a countable dense-in-itself Gs-subset of the

complete space XA/, which is a contradiction.
It remains to prove the following two claims.

CLAIM 1. The set P is a closed subset of X.

CLamM 2. f(P)=Q1 andso Q CY.

Proof of Claim 1. First of all we show that P C X. Indeed, if 5,¢ € N<N
are given, we know from (ii) and (vi) that

IXNIS #0
if and only if either s < ¢ or t < s. Thus, for a given x € P, there exists
o € I so that ~
T € Zifm for every n > 1.
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Using (v) we find a sequence o(p) € I so that
Ooin—1 =0(0)[n, n>1
Then equality (2) and condition (vi) give

x € ﬂ ffm C m F(o(p)In) C X
n=1 n=1

and so P C X. To check that P is closed, note that a use of (i) entails that

the set R
=X —X
U .= U @ nx,
s:l(s)=n s:l(s)=n
as the union of a discrete family of closed sets in X, is closed in X. From
the equalities

P=(N U ™)nx=N Un

n=1s:l(s)=n n=1s:1(s)
it follows that P is closed in X.
Proof of Claim 2. Pick x € P. By the reasoning in Claim 1, there exists

o € I so that
N X
T E ﬂLQ
n=1

Choose =, € L,p,. Then the sequence {z,},en converges to x according
to (ii). Since f is continuous, we get

o —~
—V
S ﬂ f(Lg{k) C Ql.
k=1
Conversely, let y € Q1 be given. Due to condition (iv)

ﬂUf -UN T

n=1s:l(s)=n ocln=1

Hence there exists o € I so that
QU
ye m f(Lon)
n=1

. S . =X . .
Since X is a complete space and {L,,}nen is a decreasing sequence of
nonempty closed sets with diameters converging to zero, there exists a point

z € X with
X=X
{z} = ﬂ Loin
n=1
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Obviously z € P. Due to Claim 1, x € X, and from the continuity of f it
follows that f(x) =y, which concludes the proof. m

THEOREM 3.6. Let f: X — Y be an F,-mapping of an absolute Suslin
space X onto an absolute Suslin space Y. Then there is an Fy-set Xoo C X
such that f(Xoo) =Y and the restriction of f to X is piecewise perfect.

Proof. According to [4, Theorem 5], the mapping f is piecewise contin-
uous, i.e., X can be written as a union of closed sets Z, such that f is
continuous on every Z,. Since f preserves F,-sets, we can find closed sets
Yor CY,n k€N, with

f(Zn) =] Yo meN
k=1

Then f is a continuous F,-mapping on each closed set
Zn,k:Znﬂf_l(Ymk), n,k € N.

By Proposition 3.5, for each couple n,k € N there exists an F,-set H,,
in Z, 1 such that f(Z, ) = f(H,) and the restriction of f to H,; is a
piecewise closed mapping of H,, ; to Y. Then H = J,, , Hy 1, is an F,-subset
of X, the restriction of f to H is a piecewise closed myapping of H to' Y and
F(H) =Y.

By [7, Theorem 3] it is possible to find a sequence {Fy,} of closed sets
in H so that the restriction of f to Fj, is a perfect mapping of F},, to Y and
f(Un Fin) = f(H) =Y. Write H = {J; Hj, where every Hj is closed in X,
and set

oo
Xmj=FnnHj, mjeN, Xyo= ] Xpnj
m,j=1
Then f(Xs) =Y and the restriction of f to X, ; is a perfect mapping of
Xpm,j to Y for every m,j € N, which concludes the proof. m

4. The invariance of Borel sets and absolute Borel spaces. We
recall the definition of the Borel hierarchy in metrizable spaces. For a space
X, the sets of additive, or multiplicative, class zero are just the open, or
closed, sets in X. If 1 < a < wy, the sets of additive, or multiplicative, class
« are just the unions, or intersections, of sets each being contained in some
lower additive or multiplicative class.

Now we are ready to prove [5, Theorem 6] and [6, Theorem 2] without
the assumptions (a)—(d) of [2, Theorem 3| that were implicitly used in [5]
and in [6] as mentioned above.

THEOREM 4.1. Let f be an Fy-mapping of an absolute Suslin space X
onto an absolute Suslin space Y. Let o > 1 be a countable ordinal. If B 1is
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a subset of Y such that f~1(B) is a set of additive, or multiplicative, class
a in X, then B is of the same class in Y. Similarly, if f~1(B) is a Suslin
set in X, then B is a Suslin set in Y.

Proof. According to Theorem 3.6, there exists a sequence {X,,} of closed
sets in X such that, for every n € N, f, = f[x, is a perfect mapping of X,
toY and f(U, Xn) =Y.

Let @ > 1 and B C Y be such that f~!(B) is of additive class o in X.
Fix n € N and set Y,, = f(X,).

Then f~1(B)N X, is of additive class a in X,,. Since f, is perfect on X,
and f1(B)Nn X, = f,Y(BNY,), the assumptions of [6, Lemma 3] are
satisfied for f, : X;, —» Y, and BNY,. Thus BNY, is of additive class «
inY.

Since B = J,, (B NY,) and every Y, is closed in Y, we see that B is of
additive class v in Y as needed.

The case of a multiplicative class « follows from the previous argument
by taking the complements.

If f~4(B) is a Suslin set in X for B C Y, we can use the same consid-
erations as above and the fact that the image of an absolute Suslin space
under a closed mapping is an absolute Suslin space ([1, Theorem 3.3]). m

The next Theorem 4.2 asserts that F,,-mappings preserve absolute Borel
classes. We recall that a space X is said to be of absolute additive, or absolute
multiplicative, class o, 1 < o < w1, if X is of the same class whenever it is
embedded in a space.

Note that X is of absolute multiplicative class one, i.e., an absolute
Gs-space, if and only if X is completely metrizable.

Let a > 2 (respectively a > 1) be a countable ordinal. We note that
X is of absolute additive (respectively multiplicative) class « if X is of the
same class in some completely metrizable space. This easily follows from the
Lavrent’ev theorem (see [8, §35, II, Theorem]).

Spaces of absolute additive class one, i.e., absolute F,-spaces, were char-
acterized by Stone in [10, Theorem 2].

THEOREM 4.2. Let f: X — Y be an Fy-mapping of a space X onto an
absolute Suslin space Y. If X is of absolute additive class o, 1 < a < wy,
or of absolute multiplicative class o, 2 < a < w1, then Y is of the same
absolute class.

Proof. Since X is assumed to be a Borel set in some completely metriz-
able space and Borel sets are Suslin, X is an absolute Suslin space. By
Theorem 3.6 we can find an increasing sequence {X,} of closed sets in X
so that f is a perfect mapping on each X,,, every f(X,,) is closed in Y and
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If X is of absolute additive, or multiplicative, class o, o > 2, then X,
is an absolute Borel space of the same class. This follows from the remark
preceding the theorem. Now we can use [5, Corollary to Theorem 2] to
deduce that Y is of the same absolute class.

Since the assertion for spaces of absolute Borel class one is not proved
in the aforementioned [5, Corollary to Theorem 2|, we briefly indicate its
proof. Let us assume that X is of absolute additive class one, i.e., X is an
absolute F,-space. Let X,,, n € N, be as above. Fix n € N. It follows from
[3, Claim| that X,, = [J,(F, N Gk), where every Fj (respectively G}) is
a closed (respectively open) set in the Stone-Cech compactification of X.
According to [3, Corollary 14], X, is a countable union of intersections of
closed and open sets in every Tikhonov topological space. Consecutive use
of [3, Corollary 15 and Claim] shows that f(X,) is an absolute F,-space.
Thus Y = {J,, f(X,) is an absolute F-space as well. m
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