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Abstract. We consider a transcendental meromorphic function f belonging to the
class B (with bounded set of singular values). We show that if the Julia set J(f) is the whole
complex plane C, and the closure of the postcritical set P (f) is contained in B(0, R)∪{∞}
and is disjoint from the set Crit(f) of critical points, then every compact and forward
invariant set is hyperbolic, provided that it is disjoint from Crit(f). It is further shown,
under general additional hypotheses, that f admits no measurable invariant line-field.

1. Introduction. The orbits of points under iteration by a meromor-
phic function fall into three categories: they may be infinite, they may be-
come periodic and hence consist of a finite number of distinct points, or
they may terminate at a pole of the function. Points in the last category are
called prepoles. For transcendental meromorphic functions with more than
one pole, it follows from Picard’s theorem that there are infinitely many
prepoles.

The Fatou set F (f) of a meromorphic function f : C → C is defined in
exactly the same manner as for rational functions: it is the set of points
z ∈ C such that all the iterates are defined and form a normal family
in a neighborhood of z. The Julia set J(f) is the complement of F (f)
in C. Thus, F (f) is open, J(f) is closed, F (f) is completely invariant,
while f−1(J(f)) = J(f) \ {∞} and f(J(f) \ {∞}) ⊂ J(f). For a descrip-
tion of the dynamics of meromorphic functions see e.g. [3]. We note, how-
ever, that a meromorphic function which is not entire either has exactly
one pole w and w 6∈ f(C) and f is a self-map of the punctured plane, i.e.
f : C \ {w} → C \ {w}, or f : C → C has at least one pole which is not an
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omitted value and then (see [1])

J(f) =
⋃

n≥0

f−n(∞).

Recall that a ∈ C is an asymptotic value of a meromorphic function f
provided that there is a curve Γ ⊂ C tending to ∞ such that f(z) → a as
z → ∞, z ∈ Γ . Such a Γ is called an asymptotic curve. The notions of a
critical point and critical value need no restatement and a singular value
will refer to either an asymptotic or a critical value.

A transcendental meromorphic function may omit some values (for ex-
ample f(z) = ez omits 0,∞, and tan(z) omits ±i). By Picard’s theorem the
number of omitted values cannot exceed 2 and by Iversen’s theorem each of
them is an asymptotic value (see [6]).

Notation. Throughout the paper we denote by Crit(f) the set of critical
points which are not multiple poles of f . By Sing(f) we denote the set of
finite singular values of f , i.e. c ∈ Sing(f) if c ∈ C and c is a critical or
asymptotic value of f . We also consider the post-singular set defined as

P (f) :=
∞⋃

n=0

fn(Sing(f)).

Here and elsewhere fn(A) is the set of points in C which have a preimage
in A under fn, for example f(∞) = ∅.

Definition 1. A set K ⊂ C is called n-regular if for every c ∈ Sing(f)
and every k ∈ N such that k ≤ n and f k(c) ∈ K, there exists an inverse
branch g of fk defined on K such that g(fk(c)) = c.

Definition 2. A set K ⊂ C is called regular if it is n-regular for every
n ∈ N.

A set K ⊂ C is called hyperbolic if there are N ∈ N and k > 1 such that
|(fN)′(x)| > k for every x ∈ K, provided that fN is defined at x.

In this paper diamK denotes the Euclidean diameter of the set K, and
mod(L) is the modulus of an annulus L.

Let S := {f : C → C : Sing(f) is finite} and B := {f : C → C :
Sing(f) is bounded}. The class B has been studied by many people. How-
ever, the dynamics of maps in the class B is richer and consequently less
understood than for S. For example in S the classification of periodic compo-
nents is the same as for rational maps, which is not the case for B (see [3], [2]
and [8]).

B(x, ε) and C(x, ε) will refer to the open Euclidean disk and circle of
center and radius given, respectively.
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Misiurewicz condition. The following will be referred to as the Misiu-
rewicz condition: P (f) ⊂ B(0, R)∪{∞} for some R > 0 and P (f)∩Crit(f)
= ∅.

The Misiurewicz condition comes from interval dynamics, where it sim-
ply says that P (f) is disjoint from Crit(f). It was later used in the study
of dynamics of rational maps and is widely viewed as the first generaliza-
tion going beyond the realm of post-critically finite maps. In the case of
meromorphic dynamics which we are dealing with here,∞ can be viewed as
a critical point of sorts with asymptotic values akin to critical values aris-
ing from it. Then our condition is tantamount to the classical Misiurewicz
condition, with one exception that falling into ∞ is allowed.

We shall prove the following.

Theorem 1. Let f : C → C be a transcendental meromorphic function
in the class B such that J(f) = C. If additionally f satisfies the Misiurewicz
condition then every compact and forward invariant set K, disjoint from the
set Crit(f) of critical points, is hyperbolic.

For rational mappings Theorem 1 is known to follow from the work of
Mañé, although it has not been stated in the literature. In the meromorphic
case, a somewhat different method has to be used.

The proof of Theorem 1 comes in the next section. In Section 3 we
will give another theorem, under some additional hypotheses, about non-
existence of invariant line-fields.

2. Proof of Theorem 1. Suppose that the hypotheses of Theorem 1
hold.

Lemma 1. For every R > 0 and every x ∈ C there is ε > 0 such that
every connected component Di of f−1(B(x, ε)) with f−1(B(x, ε)) ∩B(0, R)
6= ∅ is a topological disk containing exactly one preimage of x and f :
Di → B(x, ε) is a proper map.

Proof. We fix R > 0 and x ∈ C. If R1 > R, for ε small enough all
connected components of f−1(B(x, ε)) which intersect B(0, R) are contained
in B(0, R1), otherwise we would end up with a preimage of x on every
circle with radius between R and R1. By continuity of f , the boundary of
each such component Di is mapped into C(x, ε). Hence, f|Di is proper onto
B(x, ε), in particular it contains a preimage xi of x. So, there are only finitely
many components Di and, possibly for smaller ε, each contains exactly one
preimage of x. From the local form of an analytic function, for ε small enough
each Di is a topological disk.

Lemma 2. For every ε > 0, M > 0, and R > 0 there is δ > 0 such that
for every n ≥ 1 if U,K ⊂ C, K ⊂ U , U is a topological disk while K is
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compact and simply connected , mod(U \ K) ≥ M , diamK < δ, and g is
an analytic branch of f−n defined on U such that dist(g(K), 0) < R, then
diam g(K) < ε.

Proof. Let M,R, ε > 0 be given and suppose that the assertion does not
hold. Then choose a sequence of triples (Up,Kp, gp) with diamKp → 0 such
that gp : Up → C is an inverse branch of fnp and diam gp(Kp) ≥ ε > 0.
Also, make sure that dist(0, gp(Kp)) < R and mod(Up \ Kp) ≥ 2M for
every p. By decreasing each Up and using the Koebe distortion theorem,
we may assume without loss of generality that the distortion of gp on Up
is bounded uniformly in p, gp(Up) are quasi-disks of uniform distortion and
mod(Up \Kp) ≥M . Since the diameters of Kp go to 0, but the diameters of
gp(Kp) stay bounded away from 0, inf{|g′p(z)| : z ∈ Up} → ∞ as p→∞.

There is η > 0, depending on ε and M , such that for every p the set
gp(Up) contains a ball of radius η which intersects B(0, R). By taking an
accumulation point of the centers of such balls for various p, we find a ball
of radius η/2 which is contained in gp(Up) for infinitely many p, without
loss of generality for all p. On this ball, we get a sequence of iterates fnp

with derivatives tending uniformly toward 0. This means that np tends to∞
with p. Then, however, we get a contradiction with the density of repelling
periodic orbits in the Julia set, which in our case is the whole plane.

The proof of Lemma 2 is one of few places where the hypothesis that the
Julia set is the whole sphere gets used. One might expect by analogy with
the rational case that an assumption of that type is superfluous. Lemma 2,
however, obviously fails even in the rational case if the Fatou set contains
attracting or parabolic basins, so we have to leave that issue open for now.

Lemma 3. For every R, η > 0 there is δ > 0 such that for every x, y ∈
B(0, R) if x = f(y) and dist(y,Crit(f)) ≥ η, then there is an inverse branch
g of f defined on B(x, δ) such that g(x) = y.

Proof. Define

K := B(0, R) \ f({z : dist(z,Crit(f)) < η}).
Since f is an open mapping, K is compact. Using Lemma 1, for every

y ∈ K we can find ε(y) > 0 such that the connected components of
f−1(B(y, ε(y))) which intersect B(0, R) are topological disks of diameter
less than η/2. The balls B(y, ε(y)), y ∈ K, form an open covering of K; let
δ > 0 be its Lebesgue number. That is, every ball of radius δ and center in
K is contained in one element of the covering. Then, if x = f(y) satisfies
the hypothesis of Lemma 3, there is z ∈ K such that B(x, δ) ⊂ B(z, ε(z)).
In particular, y belongs to a connected component of f−1(B(z, ε(z))) which
is disjoint from Crit(f). Then the inverse branch is defined on B(z, ε(z)).
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Lemma 4. Let U be a topological disk in the plane, and K ⊂ U be
compact and simply connected such that mod(U \K) ≥M . Suppose that Ki,
i = 0, . . . ,m, are simply connected sets which satisfy K0 = K, f(Ki) = Ki−1
for i = 1, . . . ,m. Analogously , define Ui to be the connected component of
f−i(U) which contains Ki. Assume also Km ∩ P (f) 6= ∅ and that there is
an inverse branch γ : U → Um−1 of fm−1 for which γ(K) = Km−1.

For every M > 0 there is ε > 0 such that if diamU < ε and W is a
topological disk with K ⊂W ⊂W ⊂ U and mod(U \W ) ≥M/2, then there
is an inverse branch g : W → Um of fm such that g(K) = Km.

Proof. By Lemma 2 for every δ > 0 we can find ε > 0 such that
diam γ(W ) < δ. Now, the connected component of γ(W ) which contains
Km−1 also intersects P (f), hence we can use Lemma 3 and the Misiurewicz
condition to choose δ in such a way that f has an inverse branch defined on
γ(W ) which maps Km−1 to Km.

Lemma 5. Let U be a topological disk in the complex plane, and K ⊂ U
be compact and simply connected. Let (Pi)Ni=1 be a finite collection of open
connected sets with union U \ K. Consider another topological disk K ⊂
W ⊂ U and assume that there is an inverse branch g : W → C of f .
Suppose also that Pi ∩ W is connected for all i. Let Si be the connected
component of f−1(Pi) which contains g(Pi). Then the following holds:

• If f : Si → Pi is univalent for each i = 1, . . . , N , then g has an
analytic continuation defined on U .
• If f : Si → Pi is not univalent and Pi is n-regular for some n (see

Definition 1), then Si does not contain any point of the form fk(c), where
c ∈ Sing(f) and k < n.

Proof. We will rely on the following criterion of univalence. If C,D ⊂ C
are open and D is simply connected, then f : C → D is univalent if and
only if f is proper and its derivative does not vanish on C.

To prove the first claim consider C = g(W )∪⋃N
i=1 Si. From the hypoth-

esis, the derivative does not vanish on C. To check that the map is proper,
we can represent any compact set relatively compact in U as the union of
sets, each relatively compact in some Pi or in W . Then we use the fact that
the preimage of any of these sets is compact in C.

To see the second claim, proceed by contradiction and assume that
fk(c) ∈ Si for some c ∈ Sing(f) and k < n. The regularity of Pi means
that there is an inverse branch γ of f k+1 whose domain is Pi and whose
image contains c. Then f ◦ (f k ◦ γ) is the identity. Thus, f is injective and
onto as a map from fk(γ(Pi)) 3 fk(c) onto Pi. Since the first of these sets
intersects Si, we get fk(γ(Pi)) = Si and f is univalent, contrary to the
hypothesis.
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Proposition 1. Let 0 < r < R and z0 ∈ C. Suppose that an inverse
branch g of fn, for some n ≥ 1, is defined on a neighborhood of B(z0, r), and
that g(B(z0, r))∩P (f) 6= ∅. Suppose also that the annulus B(z0, R)\B(z0, r)
is the union of finitely many n-regular sets Pi, i = 1, . . . , N , each of which
is a “rectangle” bounded by arcs of C(z0, r), C(z0, R), and two radii of
B(z0, R).

For every η > 1 and N there are δ > 0 and ε > 0, independent of n, such
that whenever R/r ≥ 1 + η and R < ε, then g has an analytic continuation
to B(z0, (1 + δ)r).

Proof. In the setting of Proposition 1, we will refer to a set Pi as post-
singular provided that for some k ≤ n there is no inverse branch of f k which
sends Pi into the connected component of f−k(B(z0, R)) which contains
fn−k(g(B(z0, r))). Let M denote the number of post-singular sets among Pi,
i = 1, . . . , N .

We apply induction on M . For M = 0, one immediately constructs the
extension of g.

Suppose now that M > 0 and let m be the maximal integer in {1, . . . , n}
such that fm−1 has an inverse branch F defined on B(z0, R) which continues
fn−m+1 ◦ g. Then we are in the situation of Lemma 4. It implies that when
ε is suitably small, then the appropriate inverse branch of fm can still be
defined on B(z0,

√
rR).

Invoking Lemma 5, we see that either f is not proper or it has a criti-
cal point on a set Si0 . Here Si0 is the connected component of f−1(F (Pi0))
which contains the image of Pi0 ∩ B(z0,

√
rR) under the inverse branch

of fm constructed in the previous paragraph. Observe here that the sets
F (Pi) are n −m + 1-regular. But then the second claim of Lemma 5 says
that Si0 does not contain any point f k(c) with c ∈ Sing(f) and k <
n−m+ 1.

Now replace B(z0, R) with B(z0,
√
Rr) in the statement of Proposition 1

and consider the “trimmed” sets P ′i := Pi ∩B(z0,
√
Rr). Let M ′ denote the

number of post-singular sets among the P ′i . Clearly, if P ′i is post-singular
in this new setting, it was also post-singular before, thus M ′ ≤ M with
equality possible only if all Pi which were post-singular also give rise to
post-singular P ′i .

However, we will now show that P ′i0 is not post-singular. Checking the
condition in the definition of the post-singular set, we see that it cannot
be satisfied with any k ≤ m, since for such k an inverse branch is defined
globally on B(z0,

√
rR). But such an inverse branch has its image inside Si0 ,

and by the second claim of Lemma 5, Si0 does not contain any point f j(c)
with c ∈ Sing(f) and j < n −m. Hence, all inverse branches of fn−m are
well defined on Si0 , which means that P ′i0 is not post-singular, as claimed.
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Thus, M ′ < M , and Proposition 1 follows by induction.

Proposition 2. There is ε > 0 such that for each z0 ∈ C, the ball
B(z0, ε) is regular.

Proof. Regularity means that B(z0, ε) is n-regular for every n, z0. Of
course, we have to be careful to choose ε independently of n or z0.

0-regularity is a tautology. So assume that the statement holds for some
n ≥ 0. Pick a ball B(z0, ε). We can choose R > ε, fixed, in such a way
that the annulus B(z0, R) \ B(z0, ε) can be covered by a fixed number N
of “rectangles” of the type described in Proposition 1, with each rectangle
contained in a ball of radius ε. By elementary geometry R = 3/2ε and N =
100 will do. Suppose that x ∈ B(z0, ε) and x = fn+1(c) for some c ∈ Sing(f).
To show that B(z0, ε) is n+1-regular, we only need to find an inverse branch
of fn+1 defined on B(z0, ε) which sends x to c. On B(z0, ε(1 + δ)) with some
fixed δ > 0 we can find an inverse branch of fn which maps x to f(c). This
follows from Proposition 1 and requires ε to be sufficiently small depending
on N , but not n. Since these parameters can be fixed at 3/2 and 100, without
loss of generality we can choose ε as required by Proposition 1 and δ is fixed
as well.

But now we can use Lemma 4 choosing U = B(x0, ε(1 + δ)) and W =
B(x0, ε

√
1 + δ) to deduce that again if ε is sufficiently small depending on δ,

then fn+1 has the appropriate inverse branch defined on W ⊃ B(z0, ε).
Proposition 2 now follows by induction.

Hyperbolicity

Lemma 6. Consider an inverse orbit (x−n)∞n=0, x−n = f(x−n−1), and
assume that the set {x−n : n = 0, 1, . . .} is bounded in a disk B(0, R) and its
distance from Crit(f) is η > 0. For every R, η there is ε > 0 such that for
every n there is an inverse branch of fn defined on B(x0, ε) which sends x0
to x−n.

Proof. First use Proposition 2 to choose ε small enough so that
B(x0, 2ε) \ B(x0, ε) can be covered by “rectangles” in the sense of the hy-
pothesis of Proposition 1 and those rectangles are all regular.

Next, invoke Lemma 3 to find δ > 0, depending on R, η, such that for
every n there is an inverse branch of f defined on B(x−n, δ) which sends
x−n to x−n−1.

Now proceed by induction. Suppose that an inverse branch gn of fn

has been defined on B(x0, ε) and gn(x0) = x−n. Use Proposition 1 with
r := ε to conclude that gn can be continued to B(z0, r) with r/ε > 1 and
depending only the number of regular rectangles used to cover the annulus
B(x0, 2ε) \B(x0, ε). Using Lemma 2 we see that if ε is chosen small enough
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depending on R, hence independently of n, then diam gn(B(x0, ε)) < δ. Now
we can invert f from gn(B(x0, ε)) and so construct gn+1.

Proposition 3. Let K be a forward invariant compact set which does
not intersect Crit(f). Then K is hyperbolic.

Proof. We consider a backward orbit (xn)−∞n=0 in K. By Lemma 6 all
inverse branches which follow this orbit are defined on the ball B(x0, ε),
with ε depending only on K and not a particular orbit.

We will show that for every ζ > 0 there is n ∈ N such that for every
inverse orbit (xn)−∞n=0 in K, if gn is a branch of f−n satisfying gn(x0) = x−n
then diam gn(B(x0, ε/2)) < ζ.

To the contrary, suppose there are ζ > 0 and a sequence of orbits (xpn)
and branches gpnk , nk →∞, of the inverse maps f−nk such that

diam gpnk(B(xp0, ε/2)) ≥ ζ.
By Koebe’s Lemma, the distortion of gpnk is bounded on B(xp, ε/2) uniformly
in p, hence each of those sets contains B(xpnk , ζ1) for ζ1 > 0. Since the sets
gpnk(B(xp0, ε/2)) intersect a compact set K, there is a point z such that
B(z, ζ1/2) is contained in infinitely many of them. Then all the derivatives
(fnk)′ are uniformly bounded on some neighborhood of z, which contradicts
the density of repelling periodic orbits in the Julia set.

If we choose ζ sufficiently small compared with ε, then the derivative of
gn at x0 is less than 1/2 by Koebe’s Quarter Theorem. Since n, ζ and ε are
uniform for all inverse orbits, we have |(fn)′| > 2 uniformly on K.

Expansion to the large scale. As a final consequence, we deduce that un-
der some extra hypotheses almost every point has a basis of neighborhoods
each of which is mapped onto a ball of fixed radius by some iterate of f ,
and these balls do not escape to ∞.

Proposition 4. Suppose that f is a meromorphic map whose Julia set
is the whole plane, which satisfies the Misiurewicz condition and additionally
∞ 6∈ P (f). Also assume that the set of points whose orbits converge to ∞
has zero Lebesgue measure.

Then, for all z ∈ C except a set of zero Lebesgue measure, there exist
ε > 0 and a sequence nk →∞ and a compact set K ⊂ C such that , for every
k, fnk(z) ⊂ K and there is a neighborhood of z which is mapped univalently
by fnk onto B(fnk(z), ε).

Proof. Before proving the proposition, observe that the derivatives
(fnk)′(z) must diverge to∞, because the repelling periodic points are dense
in C.

By Proposition 3, the set P (f) is hyperbolic. Hence, for every z ∈ P (f),
the sequence nk = k satisfies the claim of Proposition 4. Moreover, ε > 0
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is fixed for such points. If the orbit of some point z eventually enters P (f)
and z is not pre-critical, then Proposition 4 holds for such a point as well.

Taking now an arbitrary z ∈ C whose orbit does not converge to ∞ or
ever enter P (f), we take a compact set K which is visited infinitely often
by the orbit and look for an accumulation point w of the orbit, choosing a
subsequence so that fnk(z)→ w. If w 6∈ P (f), then for all k large enough a
ball of fixed radius centered at fnk(z) is disjoint from P (f), and so can be
univalently pulled back to z with bounded distortion.

It remains to consider the case when w ∈ P (f). Let γk be a point of P (f)
which minimizes the distance to fnk(z). From the hyperbolicity of P (f), we
can find mk such that a neighborhood of γk is mapped univalently onto
B(fmk(γk), ε) and

αε

|fnk(z)− γk|
< |(fmk)′(γk)| <

16ε
|fnk(z)− γk|

,

where α, ε > 0 do not depend on z or k. This will guarantee that the
preimage of B(fmk(γk), ε/2) will contain B(γk, 2|γk−fnk(z)|). By the lower
estimate on the derivative (fmk)′(γk) and bounded distortion, fmk will map
B(fnk(z), |fnk(z)−γk|) univalently onto a ball of radius comparable with ε.
On the other hand, B(fnk(z), |fnk(z)−γk|) is disjoint from P (f), and hence
can be pulled back by fnk . So, in this case, the sequence nk + mk has the
desired property.

This concludes the proof of Proposition 4.

3. Invariant line-fields. Recall that if M is a Riemann surface, then
a differential given locally by exp(iθ(z))dz/dz, where θ : M → R is measur-
able, is called a line-field . Since we are working in the measurable category,
two line-fields will always be considered equal if they are equal Lebesgue
almost everywhere. A non-constant holomorphic function f from N into M
has a naturally defined pull-back action of line-fields:

f∗
(
α(w)

dw

dw

)
= α(f(z))

f ′(z)
f ′(z)

dz

dz
.

Univalently omitted values. To state the main result about non-existence
of invariant line-fields, we first need a technical condition.

Definition 3. Let f be a meromorphic function on the complex plane.
Then z ∈ C will be called a univalently omitted value for f if every preimage
of z is either a critical point of f or belongs to P (f). We will say that z is
inherently univalently omitted if z is univalently omitted together with all
its forward images.

Obviously, omitted values are univalently omitted as well.
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Theorem 2. Suppose that f is a meromorphic function whose Julia set
is the whole plane, f satisfies the Misiurewicz condition and ∞ 6∈ P (f).
Suppose that the set of points whose forward orbits converge to ∞ has mea-
sure 0. In addition, assume that f has no more than 2 inherently univa-
lently omitted values in the sphere, and if one such value is ∞, then the
other one is not a pole. Then there is no line-field on the plane invariant
under f∗.

Following the pattern set by [7], our proof will be given in two steps.
First, we will show that a potential invariant line-field is analytic on some
open set, and then we will prove that a holomorphic line-field cannot exist.
More precisely:

Definition 4. A line-field ν is holomorphic at z0 if there is a holomor-
phic non-constant function h from a neighborhood of z0 into C such that
ν = h∗(dw/dw) a.e. on this neighborhood. If h′(z0) 6= 0, then ν is univalent .

Proposition 5. Suppose that f is a meromorphic function whose Julia
set is the whole plane and satisfies the Misiurewicz condition, ∞ 6∈ P (f)
and ν is a line-field on the plane invariant under f ∗. If the orbit of almost
every point does not converge to ∞, then there is an open non-empty subset
U ⊂ C such that ν is univalent on U .

Notice that the hypothesis of Proposition 5 does not contain any re-
strictions on univalently omitted values. That some additional assumptions
in Theorem 2 are necessary is shown by rational examples of Lattés (see
[5, p. 30]).

The proof of Proposition 5 is standard. Take a point z which is a Lebesgue
point of ν and which also has a sequence nk of passages to the large scale
as specified in the claim of Proposition 4. Assume that fnk(z) → w and
consider U := B(w, ε/2), where ε comes from Proposition 4. Define univalent
mappings gk(u) = Ak(f−nk(u)−z)+z, where Ak are positive numbers chosen
so that |g′k(w)| = 1 for all k. Then gk converge uniformly on U to a univalent
function G with G(w) = z and |G′(w)| = 1. Consider a constant line-field
ν0 := ν(z)du/du and νk(u) = ν(z + A−1

k (u − z)). Since z is a Lebesgue
point, νk(u) converge to the constant ν(z) in L1(G(U)). For every k we
have ν = (g−1

k )∗(νkdu/du). But clearly the coefficient of the line-field on the
right-hand side converges to the coefficient of (G−1)∗(ν0) in L1, and so ν is
univalent as claimed.

3.1. Restrictions on analytic line-fields. In this section we will prove
Theorem 2. The proof will be based on two lemmas concerning analytic
line-fields. If ν = h∗(dw/dw) on some open set and h is holomorphic, we
will refer to h as a local linearizing coordinate.
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Lemma 7. Suppose that g is holomorphic in a neighborhood of a repelling
fixed point z0. Assume also that there is a line-field ν, holomorphic and
invariant in a punctured neighborhood of z0. Then there is a function h
meromorphic in a neighborhood of z0 such that

ν(z) = (
√
h(z))∗

dz

dz
on that neighborhood.

Proof. First, without loss of generality we can assume that z0 = 0 and
g(z) = λz, where λ = g′(z0). Indeed, consider the Koenig coordinate φ such
that λφ(z) = φ(g(z)). Then once the mapping h postulated in the lemma
can be found for the linear map, we can consider h ◦ φ for the original g.

If h1 and h2 are two local linearizing coordinates of ν with overlapping
domains, then h′1/h

′
2 must be real, hence constant on every connected com-

ponent of the intersection. It follows that h′′1/h
′
1 = (log h′1)′ and h′′2/h

′
2 are

equal on the intersection of their domains. This allows us to define a func-
tion N to be h′′/h′ whenever h is a local linearizing coordinate. Then N
is meromorphic in W , with poles wherever h′ vanishes. If we can define a
function H on W and H ′′/H ′ = N on W , then (αH)∗(dz/dz) = ν for a
suitably chosen constant α.

Invariance of ν under the action of g means that N(g(z))(g′(z)) =
g′′(z)/g(z) + N(z). Since g is linear, this becomes N(λz)λ = N(z). If we
consider the function M(z) := zN(z), we get M(λz) = M(z). It follows
directly that M is holomorphic in an (unpunctured) neighborhood of 0, and
then that it is constant. So N(z) = C/z. If we integrate N along a closed
curve surrounding 0, we should get the difference of the logarithms of the
derivatives of two linearizing coordinates of ν. This difference is π times an
integer (not necessarily an even one, because the derivatives could have op-
posite signs). Hence, 2C is an integer. Then if we set H(z) = zC+1, we get
N = h′′/h′ and hence by the remark of the preceding paragraph, h = αH
will have the postulated property.

3.2. Propagation of an analytic line-field

Lemma 8. Suppose that f is a meromorphic function on the complex
plane, f satisfies the Misiurewicz condition, ∞ 6∈ P (f), and the Julia set of
f is the whole plane. Assume that f fixes a line-field µ on the plane, which
is holomorphic in some open set U . Then µ is holomorphic at every point of
the Riemann sphere except for the inherently univalently omitted values of f .

Proof. It clearly suffices to prove that µ is holomorphic at every value
which is not univalently omitted. Then, if a has a forward image which is not
univalently omitted, the field can be pulled back by f from a neighborhood
of that point.
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So suppose that a is not univalently omitted. Then it has a preimage b,
other than itself , which is not a critical point of f and not in P (f). The only
thing needed to be proved in addition to what follows from Definition 3 is
that b 6= a. If a ∈ P (f), that follows automatically. If a 6∈ P (f), then none of
its preimages is a critical point or an element of P (f), so the only problem
occurs if a is omitted or a is its only preimage. In both cases, a is asymptotic
by Iversen’s theorem, and so a ∈ P (f), resulting in a contradiction.

Since b 6∈ P (f), its preimages are neither critical points nor in P (f).
There must be a preimage other than a, b. Indeed, it could only be a, since
f(b) = a, but again if b has at most one preimage it would be asymptotic.
By the same method, we choose d which is different from a, b, c and f(d) = c.
Since we have three distinct points b, c, d, at least one of them is attained
by some iterate of f on U . Since all these points are outside Sing(f), this
iterate has a local inverse allowing one pull back µ from U and thus establish
its univalence at this point. But then we can map forward to a by at most
three iterates of f which are also locally univalent. Hence, µ is univalent at
a as needed, and in the light of the opening remark, Lemma 8 follows.

Proof of Theorem 2. By Lemma 8, ν is holomorphic except at the inher-
ently univalently omitted values of f . Moreover, since a holomorphic field
can always be pulled back by f , the only possible points of non-holomorphy
for f are even more restricted, to those inherently univalently omitted values
which are either at ∞ or mapped into another inherently univalently omit-
ted value. So, if E denotes the set of points in C where ν is not holomorphic,
then f(E) ⊂ E. This in particular follows from the fact that∞ 6∈ f(E) even
if ∞ is univalently omitted, by the hypothesis of Theorem 2 for the case
when ∞ is univalently omitted. So, E consists of periodic orbits of f , which
must be repelling by Proposition 3. Using Lemma 7, we can determine the
kind of singularities of the field at those points. Consider the Riemann sur-
face M̃ incorporating all local linearizing coordinates of ν. This M̃ is the
covering of either C with one point removed, or the sphere C with two points
removed. Those singularities are in fact branching points of degree 2, and
if M denotes M̃ completed by adding those branching points, then there is
a meromorphic function H : M → C such that π∗(µ) = H∗(dz/dz). Here
π is the natural projection from a Riemann surface of a function. In fact,
(M,π) is then isomorphic to the branched covering of either the sphere or
the plane by the quadratic root, in particular M is either the sphere or the
plane.

We claim that f lifts to a function F : M \π−1(∞)→M . We will discuss
in detail only the more complicated case of two branching points. One needs
to check the standard lifting condition for the map f ◦ π from M̃ \ π−1(∞)
into C\E to the unbranched covering (M̃, π). The image of the fundamental
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group of M̃ \ π−1(∞) is the set of loops in C whose indices with respect to
the two points in E differ by an even number. By the argument principle,
their images under f will have the same property, but that means they are
in π∗(π1(M̃)).

The function F preserves the holomorphic line-field H∗(dz/dz). This
means that the map H ◦ F ◦ H−1 is locally affine. Since F and H are,
however, globally defined, that means H ◦F = A◦H for some affine map A.
To finish the proof, note that because the covering by M is only two-sheeted,
each point periodic under f contains in its fiber a point which is periodic
for F , perhaps with the period doubled. Considering a repelling periodic
point q1 of period p1, we see that Ap1(H(q1)) = H(q1). But the same will
apply to any other periodic point q2 with period p2, which would lead to
the conclusion that Ap1p2 is the identity, which contradicts the fact these
periodic points can be chosen from the Julia set and hence repelling.

This contradiction concludes the proof of Proposition 5 and hence of
Theorem 2.
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