
FUNDAMENTA

MATHEMATICAE

183 (2004)

On localizations of torsion abelian groups

by
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Abstract. As is well known, torsion abelian groups are not preserved by localiza-
tion functors. However, Libman proved that the cardinality of LT is bounded by |T |ℵ0

whenever T is torsion abelian and L is a localization functor. In this paper we study lo-
calizations of torsion abelian groups and investigate new examples. In particular we prove
that the structure of LT is determined by the structure of the localization of the primary
components of T in many cases. Furthermore, we completely characterize the relationship
between localizations of abelian p-groups and their basic subgroups.

1. Introduction. Localization functors have a long history and were
extensively studied in many fields of mathematics. However, during the
last decade, new applications of these functors in homotopy theory due to
Bousfield, Casacuberta, Dror Farjoun and others (see e.g. [2], [5], [11]) have
pushed several authors to investigate the effect of homotopical localization
functors on homotopy or homology groups. For instance, the effect on the
fundamental group can often be described by means of group-theoretical lo-
calization functors. Motivated by this relationship, important advances have
recently been achieved in the study of group localization functors, especially
related to their behavior on certain classes of groups, like for example finite
or nilpotent groups ([6], [19], [20]), simple groups ([16], [17], [22], [23], [26])
or perfect groups ([1], [24]). The papers by Casacuberta [6] and Libman [19]
are good starting points for non-expert readers.

Roughly speaking, a localization functor in the category Grp of all groups
is an idempotent functor L : Grp → Grp together with a natural transfor-
mation from the identity functor Id into L. We will recall in Section 2 the
basic definitions and properties of such objects.
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One of the most interesting questions about localizations of groups, as
motivated in [6], is to determine which algebraic properties are preserved.
For instance, every localization of any abelian group is again abelian. Also
the fact that a localization of a finite nilpotent group of class three or less is
again nilpotent of class three or less has been proved by Aschbacher (preprint
in preparation). For higher nilpotency classes the problem is still open. On
the other hand, examples showing that finite, perfect, or simple groups are
not preserved under localizations have recently been discovered.

Only little is known about localizations of abelian groups, apart from
classical localizations or completions at a set of primes (see e.g. [6], [8]
and [20]). For example, regarding the size of groups and their localizations
it was shown in [25], [8] that any E-ring can appear as a localization of the
group of integers, hence localizations of Z can be arbitrarily large by [13].
Therefore, one cannot expect to control a priori all possible localizations of
a given torsion-free abelian group. However, recently Dugas [12] has studied
localizations of torsion-free abelian groups successfully. On the other hand,
Libman proved in [20] that, if a : T → LT is a localization, where T is
torsion abelian, then the cardinality of LT is bounded by |T |ℵ0 .

The aim of the present paper is to study in detail the localizations of
torsion abelian groups T , find when torsion is preserved, and, if not, what
phenomena can occur. If L is a localization functor in the category of abelian
groups which preserves torsion, then one may obtain the structure of LT by
the structure of L(Tp) where the Tp’s are the p-primary components of T
(see Proposition 4.6). Studying the problem one prime at a time, we show
that LT can be described in a certain way by the effect of the localization
functor L on a few test groups, namely the Prüfer groups Z(p∞), the cyclic
groups Z(pn), and the rationals Q. We separate localization functors into
four classes. Let p be a prime.

(I)p A localization functor belongs to the class (I)p if and only if
LZ(p∞) = Z(p∞).

(II)p A localization functor belongs to the class (II)p if and only
if LZ(p∞) = 0 and there exists an integer n ≥ 1 such that
LZ(pn) 6= Z(pn).

(III)p A localization functor belongs to the class (III)p if and only if
LZ(p∞) = 0, LZ(pn) = Z(pn) for any n ≥ 1, and LQ = Q.

(IV)p A localization functor belongs to the class (IV)p if and only if
LQ = 0 and LZ(pn) = Z(pn) for any n ≥ 1.

Theorem 5.3. Let L be a localization functor and p a prime. Then:

(i) If L belongs to the class (I)p, then any abelian p-group is L-local.
(ii) If L belongs to the class (II)p, then the localization of any abelian

p-group is a bounded p-group.
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(iii) If L belongs to the class (III)p, then the localization of any abelian
p-group is so as well.

(iv) The Ext-completion functor , as well as the Q-nullification, belong
to the class (IV)p.

As a basic subgroup of a reduced p-group is dense and pure inside the
group, the localizations coming from an embedding of a basic subgroup
into an overgroup should be simpler than arbitrary ones. However, using
a construction inside the Ext-completion of a certain torsion group T , we
show the following:

Theorem 6.10. For every prime p there exists a separable non-torsion-
complete p-group T and a localization functor L (in the class (IV)p) such
that T is not L-local but any basic subgroup of T is L-local.

This suggests a way to construct possibly other new localizations. On the
other hand we completely characterize the connection between localizations
of torsion groups and localizations of their basic subgroups.

Theorem 6.8. Let T be a reduced p-group for some prime p. Then T is
torsion-complete if and only if every embedding of a basic subgroup B of T
into T is a localization.

Our notation is standard and is in accordance with that of [15].

Acknowledgements. We would like to thank Professor Warren May
for his help in proving Theorems 6.8 and 6.10.

2. Localizations of abelian groups. Let us recall from [6] or [20]
some terminology and basic properties of localization functors. Defined over
any reasonable category, they are conceived to formally invert appropriate
classes of morphisms. We concentrate here on the category of groups.

A localization functor in the category Grp of all groups is a pair (L, a),
where L : Grp → Grp is a functor and the coaugmentation a : Id → L
is a natural transformation from the identity functor Id into L such that
the homomorphisms aLG, L(aG) from LG to LLG coincide and are iso-
morphisms. The groups G for which aG : G ∼= LG are called L-local , and
the homomorphisms A→ B inducing an isomorphism LA ∼= LB are called
L-equivalences. Hence, for any group G, the coaugmentation homomorphism
a : G→ LG is an L-equivalence and furthermore LG is L-local. The classes
of L-local groups and of L-equivalences are orthogonal to each other in the
following sense: a homomorphism ϕ : A → B is an L-equivalence if and
only if it induces a bijection ϕ∗ : Hom(B,C) ∼= Hom(A,C) for any L-local
group C; also, C is L-local if and only if ϕ∗ : Hom(B,C) ∼= Hom(A,C) is a
bijection for any L-equivalence ϕ : A→ B.
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Given a group homomorphism ϕ : A → B one can always construct
a localization functor Lϕ having ϕ as a “generating” equivalence, i.e.,
the corresponding local groups are those G for which ϕ∗ : Hom(B,G)
∼= Hom(A,G) is bijective (see e.g. [6]). For instance, localization of abelian
groups at a prime p given by A → A ⊗ Z(p) is of the form A → LϕA,
where ϕ =

⊕
q 6=p ϕq with ϕq : Z → Z multiplication by q on the ring of

integers.
Observe that if a homomorphism f : A→ B satisfies f ∗ : Hom(B,B) ∼=

Hom(A,B) then B is Lf -local. Since f is obviously an Lf -equivalence, it
turns out that f : A → B is indeed a : A → LfA. For this reason, we say
that a homomorphism satisfying this property is a localization, or that B is
a localization of A (see [6, Lemma 2.1]).

As mentioned in the introduction, the localization of any abelian group
is again an abelian group. Hence, when studying localizations of abelian
groups, we may work in the category of abelian groups. We next collect
some properties and known results that we shall use in the rest of the paper.
Proofs can be found in Libman’s paper [20], as well as in the survey [6].
However, except for (4), (5) and (6) all these results were known before.
Notice that property (5) gives an estimate for the size of localizations of
torsion abelian groups. Recall that an abelian group G is reduced if it has
no divisible subgroup, and it is bounded if there exists a non-zero integer n
such that nG = 0.

Theorem 2.1. Let L be any group localization functor.

(1) If G is abelian, then L(G) is abelian.
(2) If G is an abelian group which is divisible or bounded , then the

coaugmentation map a : G→ L(G) is surjective.
(3) L(Z(p∞)) = 0 or L(Z(p∞)) = Z(p∞) and likewise LQ = 0 or

LQ = Q.
(4) The direct sum of L-local abelian divisible groups is again L-local.
(5) If G is abelian, reduced , and torsion, then L(G) is reduced and
|L(G)| ≤ |G|ℵ0.

(6) If Z(p∞) is L-local , then every abelian p-group is L-local.
(7) Any retract of an L-local group is L-local (in particular , direct sum-

mands of L-local abelian groups are L-local).
(8) Any limit of L-local groups is L-local (in particular , the kernel of a

homomorphism between L-local groups is L-local as well , and any
product of L-local groups is L-local).

(9) If a : G → L(G) is the coaugmentation map and T ⊆ L(G) is
L-local such that Im(a) ⊆ T , then T = L(G).

(10) If G is L-local and T ⊆ G, then the coaugmentation map a :
T → LT is a monomorphism.
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(11) Any direct limit of L-equivalences is an L-equivalence. In particu-
lar , there is an isomorphism L(lim−→Ai) ∼= L(lim−→LAi) for any direct
system {Ai} of groups.

3. The Ext-completion. In this section we consider the examples of
localizations of torsion abelian groups that motivated our study. Indeed,
although localizations of abelian groups are again abelian, a localization of
a (p-)torsion group need not be (p-)torsion again. First recall that an abelian
group G is called cotorsion if Ext(Q, G) = 0, whereQ is the additive group of
rational numbers. The group G is called adjusted cotorsion if it is cotorsion,
reduced and has no non-zero torsion-free direct summand. It is well known
that the so-called Ext-completion T • = Ext(Q/Z, T ) of a torsion abelian
group T is always adjusted cotorsion (see [15, Lemma 55.4]). Note that
Bousfield and Kan have studied the Ext-completion extensively in a more
general setting in [4].

Lemma 3.1. The Ext-completion functor Ext(Q/Z,−) is a localization
functor. In particular , for an abelian group G we have

(1) Ext(Q/Z, G) = 0 if and only if G is divisible.
(2) G embeds into Ext(Q/Z, G) if G is reduced.
(3) G is the torsion part of Ext(Q/Z, G) if G is reduced torsion.

Proof. Since Ext(Q/Z,−) is idempotent (see for instance [4], [15, Chap-
ter IX, Section 54, (H)]) it follows that the Ext-completion functor is a
localization functor. Now (3) follows from [15, Lemma 55.1], and (1) is a
consequence of (2), which in turn easily follows by applying the functor
Ext(−, G) to the short exact sequence 0→ Z→ Q→ Q/Z→ 0.

In fact, Harrison [18] proved that (3) yields a one-to-one correspondence
between reduced torsion abelian groups and adjusted cotorsion groups. We
obtain two immediate examples from the above lemma, which were noted
by Libman in [20] (see also [4, Example 4.2 (ii)]). Let Π denote the set of
all primes.

Example 3.2. Let P =
∏
p∈Π Z(p) and B =

⊕
p∈Π Z(p). Then it follows

from Lemma 3.1 that the natural embedding f : B → P is a localization
since B is reduced torsion. Note that

Ext(Q/Z, B) =
∏

p∈Π
Ext(Z(p∞), B) =

∏

p∈Π
Ext(Z(p∞),Z/pZ) = P.

Thus a localization of a reduced torsion group need not be torsion again.
Even a localization of a reduced p-group (p a prime) need not be torsion
again as is demonstrated by the second example.
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Example 3.3. Let B =
⊕

n∈ω Z(pn) for some prime p. Then the natural
embedding of B into its Ext-completion B• is a localization but B• is not
torsion. This follows from Lemma 3.1 and the fact that Ext(Q/Z, B) =
Ext(Z(p∞), B) is not torsion. It actually fits into a short exact sequence

∏
Jp ↪→ B• →

∏

n≥1

Z(pn),

where Jp is the group of p-adic integers.

Furthermore, Lemma 3.1 shows that L(Z(pn)) = Z(pn) for L =
Ext(Q/Z,−), hence Z(pn) is L-local for all n ∈ ω but B =

⊕
n∈ω Z(pn)

is not L-local. Hence this is a particular example of the well known fact that
a direct sum of local objects need not be local again. Similarly, Lemma 3.1
demonstrates once more that a direct limit of local objects is not always
local. This shows that the structure of a torsion group is not well preserved
under localizations.

4. Localizations of torsion abelian groups. In general, if T is a
torsion group, then T decomposes as a direct sum of its p-primary compo-
nents Tp (where p ranges over the set of primes). We shall first show that
it is enough to consider the part of T which is reduced and has non-trivial
p-components only for those primes p for which L(Z(p∞)) = 0. Afterwards
we show in Proposition 4.6 that for many localization functors we may deal
with p-groups only, which we focus on in the next section.

Lemma 4.1. Let L be a localization functor and QL = {p ∈ Π :
L(Z(p∞)) = Z(p∞)}. Then any QL-torsion group is L-local.

Proof. The proof is essentially contained in that of [20, Theorem 2.4] but
for the sake of completeness we outline it briefly. Let T be aQL-torsion group
and E its divisible hull. Then E is a direct sum of copies of groups Z(p∞)
with p ∈ QL, and so is E/T . Thus E and E/T are L-local by Theorem 2.1(4),
and hence T is L-local as well by Theorem 2.1(8).

Thus, given a localization functor L and a torsion group T we may
split T into T = T1 ⊕ T2, where T1 =

⊕
p∈QL Tp and T2 =

⊕
p∈PL Tp with

PL = {p ∈ Π : L(Z(p∞)) = 0}. We obtain LT = L(T1)⊕L(T2) = T1⊕L(T2)
and therefore it is sufficient to determine L(T2) in order to find the struc-
ture of LT . Moreover T2 splits as the direct sum of a reduced torsion group
R and a divisible one D. Recall that a group H is called (L-)acyclic if
L(H) = 0.

Lemma 4.2. If L is a localization functor and LZ(p∞) = 0 for a prime p,
then LT = 0 whenever T is a divisible p-group. In particular D is acyclic.
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Proof. Let T be a divisible p-group. By Theorem 2.1(2) the coaugmen-
tation map a : T → LT is surjective and hence LT is a divisible p-group.
As any direct summand of a local group must be local, LT must be zero.
The group D is a direct sum of acyclic Prüfer groups. It must be acyclic by
Theorem 2.1(11).

From the above discussion we see that we may restrict ourselves to the
study of reduced PL-torsion groups.

Proposition 4.3. Let L be a localization functor and T a torsion group.
If T1 denotes the QL-torsion part of T and R the reduced PL-torsion part ,
then LT = T1 ⊕ LR.

The next lemma tells us furthermore that no new torsion can be created
in a localization.

Lemma 4.4. Let T be a reduced torsion group and L a localization func-
tor. If T has no p-torsion elements, then neither has LT . Moreover , if
t(LT ) denotes the torsion part of LT , then LT/t(LT ) is divisible. In fact ,
if a : T → LT is the coaugmentation map, then LT/Im(a) is divisible.

Proof. Since T is a reduced torsion group, if Tp = 0 for some prime p,
then multiplication by p is an automorphism of T and hence also an auto-
morphism of LT . Thus t(LT )p = 0. Moreover, Libman has shown in [20]
that LT/Im(a) is divisible, hence also LT/t(LT ) must be divisible since
Im(a) ⊆ t(LT ).

Corollary 4.5. If L is a localization functor and T a p-group, then
the torsion part t(LT ) of LT is p-torsion.

If we also know that L preserves torsion groups, i.e. LT is torsion when-
ever T is torsion, then we may even restrict ourselves to the study of p-groups
(for p ∈ PL).

Proposition 4.6. If L is a localization functor that preserves torsion
groups, then LT ∼=

⊕
p∈Π L(Tp) for every torsion group T .

Proof. Let us fix a prime p. On the one hand we know by assumption
that LT is torsion, hence

LT =
⊕

q∈Π
L(T )q = L(T )p ⊕

⊕

q 6=p
L(T )q.

On the other hand T = Tp ⊕
⊕

q 6=p Tq, so that

LT = L(Tp)⊕ L
(⊕

q 6=p
Tq

)
.

Now L(Tp) is p-torsion by Corollary 4.5. Therefore L(Tp) is contained in
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L(T )p, which is L-local. Thus L(Tp) = L(T )p by Theorem 2.1(9) and hence
LT =

⊕
p∈Π L(Tp).

Note that, in general, a localization functor does not commute with the
direct decomposition into primary components as Example 3.2 shows.

5. Localizations of p-torsion abelian groups. Let p be a fixed prime.
In this section we explain how to divide the class of localization functors
into four (disjoint) subclasses, each of which has different behavior on p-
torsion groups. The idea is that one has a rather good understanding of a
localization functor if one knows its effect on a few “test groups”: the Prüfer
group Z(p∞), the cyclic groups Z(pn), and the rationals Q. Let us define
these classes.

(I)p A localization functor L belongs to the class (I)p if and only if
LZ(p∞) = Z(p∞).

(II)p A localization functor L belongs to the class (II)p if and only
if LZ(p∞) = 0 and there exists an integer n ≥ 1 such that
LZ(pn) 6= Z(pn).

(III)p A localization functor L belongs to the class (III)p if and only if
LZ(p∞) = 0, LZ(pn) = Z(pn) for any n ≥ 1, and LQ = Q.

(IV)p A localization functor L belongs to the class (IV)p if and only if
LQ = 0 and LZ(pn) = Z(pn) for any n ≥ 1.

In view of Theorem 2.1(6), if the Prüfer group Z(p∞) is local, then so
is every abelian p-group. Therefore any localization functor in (I)p satisfies
LP = P for any abelian p-group P . It thus remains to consider localization
functors L satisfying L(Z(p∞)) = 0.

We now deal with the second class, and show that it consists of localiza-
tion functors which all preserve p-torsion groups.

Proposition 5.1. Let L be a localization functor for which Z(p∞) is
acyclic. If there exists a natural integer n such that Z(pn) is not local , then
L preserves p-groups. In fact , if H is a p-group, then LH is a bounded
p-group.

Proof. Suppose L(Z(pn)) 6= Z(pn) for some integer n. Then L(Z(pn)) =
Z(pr) for some r < n and hence L(Z(pm)) = Z(pr) for all m ≥ n (see [19]).
Consider now a p-torsion group H and write H as the direct limit of its
finite subgroups Hi. Each Hi is a finite direct sum of cyclic p-groups and
by assumption L(Hi) is pr-bounded for all i. Thus L(H) = L(lim−→L(Hi)) is
pr-bounded since lim−→L(Hi) is pr-bounded by Theorem 2.1(2).

Our third class preserves torsion groups as well.
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Proposition 5.2. Let L be a localization functor such that L(Q) = Q.
Then L preserves torsion groups.

Proof. Let T be a torsion group. Without loss of generality we can
assume it is reduced (see Proposition 4.3). By Lemma 4.4 we know that
LT/t(LT ) is divisible and torsion-free, hence a direct sum of copies of Q.
Thus we have a short exact sequence

0→ t(LT )→ LT → LT/t(LT )→ 0,

where LT and LT/t(LT ) are L-local by 2.1(4) and therefore t(LT ) must be
L-local by 2.1(8). Thus t(LT ) = LT by 2.1(9).

Examples of localization functors satisfying L(Q) = Q are for instance
localizations at a prime p but there are more interesting and complicated
ones as we shall prove in Theorem 6.8.

Our last class has Q acyclic (by Theorem 2.1(3), Q must be either local
or acyclic). It is easy to see that if L(Q) = 0 then also LZ(p∞) = 0 (for all
primes p). Therefore our classification of localization functors is complete.
The class (IV)p is the one containing the “wildest” localizations, such as the
Ext-completion functor, which does not preserve p-torsion. Let us remark
however that the converse of the above proposition is false. In other words
there are examples of localization functors in the class (IV)p which also
preserve torsion groups. In fact, reduction by the divisible part of a group
(i.e.Q-nullification) is a localization functor sendingQ to zero but preserving
torsion groups. Let us sum up the results of this section.

Theorem 5.3. Let L be a localization functor and p a prime. Then:

(i) If L belongs to the class (I)p, then any abelian p-group is local.
(ii) If L belongs to the class (II)p, then the localization of any abelian

p-group is a bounded p-group.
(iii) If L belongs to the class (III)p, then the localization of any abelian

p-group is an abelian p-group as well.
(vi) The Ext-completion functor and the Q-nullification belong to the

class (IV)p.

We would like to pose an open question at this point which concerns
localizations of direct sums of local groups. Note that Bastardas et al . proved
in [7] that a direct sum of local slender groups is again local. An affirmative
answer would help us understand the class (IV)p.

Question 5.4. If B =
⊕

n∈ω Z(pn) is local , does it imply that Bκ is
local for every cardinal κ?

6. Localizations of p-groups and their basic subgroups. The first
two classes introduced above are perfectly well understood. As for the other
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two, we need to refine the techniques we used to get a better understanding.
A first reduction is to consider only localizations coming from an embedding,
i.e. when T ↪→ LT is injective. The general problem is now the following:

Problem 6.1. Give a characterization of those localization functors
which come from an embedding and preserve torsion groups.

We solve the problem completely in the particular case when T is the
basic subgroup of the torsion group LT . More generally we consider the
connection between localizations of abelian p-groups and localizations of
their basic subgroups. Indeed, the classical theorem of Kulikov asserts that
every torsion group has a basic subgroup, hence any torsion group is an
extension of a direct sum of cyclic groups by a divisible group. As divisible
torsion groups are acyclic in the interesting examples, it is natural to ask
what is the relationship between the localizations of torsion groups and their
basic subgroups. Recall first the definition of a basic subgroup for p-groups,
p a prime.

Definition 6.2. Let H be an abelian group and p a prime. A direct
sum B ⊆ H of cyclic groups of order a power of p or of infinite order is a
p-basic subgroup of H if B is pure and dense in H, i.e. pnH ∩ B = pnB for
all integers n (purity) and the quotient H/B is p-divisible (density). If H is
a p-group then we call B a basic subgroup of H for short.

Let us first state some properties of basic subgroups (see [15]).

Lemma 6.3. Let H be an abelian p-group. Then:

(1) All basic subgroups of H are isomorphic.
(2) All basic subgroups of H are epimorphic images of H.
(3) Every direct sum B ⊆ H of cyclic groups which is pure in H can be

extended to a basic subgroup of H.

Let A and C be abelian groups. A short exact sequence

0→ A→ G→ C → 0

is called pure exact if the image of A in G is pure in G. We denote by
Pext(C,A) the class of all equivalence classes of pure exact sequences as
above. Recall that

Pext(C,A) =
⋂

n∈ω
nExt(C,A)

(see [15, Vol. I, p. 228]) and that a reduced p-group T is called torsion-
complete if Pext(P, T ) = 0 for all p-groups P (see [15, p. 18]). This is
equivalent to saying that T is a direct summand in every p-group in which
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T is contained purely. In fact, torsion-complete groups have to be separable

and if B is a basic subgroup of T , then T = B, the torsion part t(B̂) of the

p-adic completion B̂ of B. Recall that a group T is separable if it contains
no elements of infinite height, i.e. the first Ulm subgroup pωT =

⋂
n∈N p

nT
is trivial.

Lemma 6.4. If T is a torsion-complete p-group and B a basic sub-
group of T , then any embedding B → T is a localization (belonging to
the class (III)p).

Proof. We consider the short exact sequence

0→ B → T → T/B → 0

and apply the Hom-functor. This yields by [15, Theorem 53.7] the short
exact sequence

0→ Hom(T/B, T )→ Hom(T, T )→ Hom(B,T )→ Pext(T/B, T )

→ Pext(T, T )→ Pext(B,T )→ 0.

The first Hom-group is trivial since T is reduced, and Pext(T/B, T ) = 0
as T is torsion-complete. It follows that the natural morphism Hom(T, T )→
Hom(B,T ) is a bijection. Clearly Q is local because there are morphisms
into it neither from B nor from T .

Example 6.5. Let B =
⊕

n∈ω Z(pn) for some prime p and consider
the corresponding product B ⊆ P =

∏
n∈ω Z(pn). The torsion completion

T = t(B̂) of B is nothing else but the set of all elements (c1, c2, . . .) in P
which are bounded, i.e. for which there is an integer m such that pmcn = 0
for all n ≥ 1 (see [15, Vol. II, p. 15]). The above lemma tells us that
B → T is a localization, as is the inclusion of any basic subgroup of T
in T .

Corollary 6.6. A basic subgroup of a local p-group need not be local.

Proof. Let T be a torsion-complete p-group and B a basic subgroup
different from T . Then the embedding of B into T is a localization, hence
T is local with respect to this localization but B is not.

That the embedding of a basic subgroup into a p-group is not always a
localization is shown by the next example.

Example 6.7. Let T =
⊕

n∈ω Z(pn) and B be a basic subgroup of T
different from T (it exists by [15, Lemma 35.1]; in fact if T =

⊕
n∈ω〈an〉

with ord(an) = pn, then bn = an− pan+1 (n ∈ ω) form a basis of such a B).
Then the natural embedding B → T cannot be a localization since B is
isomorphic to T .
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In fact we can prove that the torsion-complete groups are the only groups
such that all embeddings of basic subgroups give rise to a localization.

Theorem 6.8. Let T be a reduced p-group. Then T is torsion-complete
if and only if every embedding of a basic subgroup B of T into T is a
localization.

Proof. One implication follows from Lemma 6.4. We assume thus that
T is a reduced p-group such that every embedding of a basic subgroup B
into T is a localization, i.e. for every basic subgroup B of T we have a
natural bijection Hom(B,T ) ∼= End(T ). Let B1 and B2 be two basic sub-
groups of T and ψ : B1 → B2 be an isomorphism. We claim that ψ ex-
tends to an automorphism of T . By assumption there exist ϕi ∈ End(T )
for i = 1, 2 such that ϕ1�B1

= ψ and ϕ2�B2
= ψ−1. Thus ϕ1ϕ2 extends

the identity on B1 and by uniqueness it follows that ϕ1ϕ2 = idT . Sim-
ilarly we also have ϕ2ϕ1 = idT . Thus ψ extends (even uniquely) to an
automorphism ϕ1 of T . By [15, Theorem 69.2] it follows that T must be
torsion-complete.

On the other hand there exist localization functors L and p-groups T
such that T is not L-local but any basic subgroup of T is L-local. In the
proof we shall need the definition of small homomorphisms, which is the
following (see also [15, Chapter VIII, p. 195]). For an abelian torsion group
A, the exponent of an element a ∈ A is denoted by e(a). Note that if the
order of a is pn, then the exponent of a is n.

Definition 6.9. Let A,C be torsion abelian groups and ϕ : A → C a
homomorphism. Then ϕ is called small if for every k ≥ 0 there exists an
integer nϕ(k) such that

e(a) ≥ nϕ(k) implies e(ϕ(a)) ≤ e(a)− k
for every element a ∈ A.

We denote by Small(T ) the set of all small endomorphisms of T . We will
also need the pn-socle T [pn] of T , which consists of all elements of order
dividing pn.

Theorem 6.10. There exists a separable non-torsion-complete p-group
T and a localization functor L (in the class (IV)p) such that T is not L-local
but any basic subgroup of T is L-local.

Proof. We shall construct a group G with torsion subgroup T , where T
is p-torsion and G/T is divisible, such that the natural embedding T → G
induces a bijection Hom(T,G) ∼= End(G). Hence G is the localization of T
under the natural embedding of T into G. Moreover, we shall prove that
the inclusion of every basic subgroup B ↪→ T also induces a bijection
Hom(T,B) ∼= Hom(G,B), i.e. B is local.
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Let Q∗p be the ring of p-adic integers. By [10] we may choose an un-
bounded separable p-group T of arbitrary cardinality such that End(T ) =
Q∗p⊕Small(T ). Note that every p-group is obviously also a Q∗p-module, hence
Q∗p ⊆ End(T ) if T is unbounded. As a torsion-complete group has lots of
non-small endomorphisms (e.g. every automorphism of a basic subgroup
lifts to an automorphism of T which cannot be small), T is not torsion-
complete.

We next consider its Ext-completion T • = Ext(Q/Z, T ). If T̂ is the p-adic
completion of T , notice that

pωExt(Q/Z, T ) ∼= Hom(Q/Z, T̂ /T ),

which contains torsion-free elements (compare also [15, Theorem 56.5]).
Choose now such a torsion-free element x ∈ T • of p-height ω. We define
G to be the purification in T • of the subgroup generated by x and T , i.e.
G =

⋃
n∈ω Gn, where G0 = 〈x, T 〉 and Gn+1 ⊆ T • is obtained by adding

solutions of equations of the form pky = g ∈ Gn to Gn (see [15, Vol. 1,
Proposition 26.2]). Thus G is a pure subgroup of T • of torsion-free rank 1,
its torsion submodule is T , and G/T is divisible since T •/T is divisible and
x ∈ pωT •. Moreover, it is easily checked that if S = {xn ∈ G : n ∈ ω} and
pnxn = x for all n ∈ ω, then S and T generate G.

We claim that the natural embedding of T into G induces a bijection

Hom(T,G) ∼= End(G).

Since G/T is divisible any extension of a homomorphism ϕ : T → G to
an endomorphism of G is unique. Thus it suffices to prove that every such
homomorphism extends. Notice also that the image of ϕ is torsion and must
therefore be contained in T . We thus have to check that End(T ) ∼= End(G).

Suppose first that we are given β ∈ Small(T ). We shall prove that β can

be extended to β̃ : G→ G with β̃(G) = β(T ). Since the Ext-completion is a
localization functor, any endomorphism of T extends to an endomorphism

of T •. Let β̂ be the extension of β and β̃ = β̂�G. We construct elements

xn ∈ G, for n ≥ 1, such that pnxn = x and β̃(xn) = 0. Since β is small, there
exists an increasing sequence kn of positive integers such that if t ∈ T [pn]
and the p-height of t is ≥ kn, then β(t) = 0. Since x has p-height ω, we may
choose xn ∈ G of p-height ≥ kn such that pnxn = x. Then xn − pxn+1 ∈
T [pn] is a torsion element of p-height ≥ kn mapping to 0 under β. Thus,

pβ̃(xn+1) = β̃(xn) for all n. This linear divisibility means that β̃(xn) = 0
since we are mapping into the reduced group T •. Note that T • is reduced as

T was reduced torsion. So β may be extended to an endomorphism β̃ : G→
G such that β̃(G) = β(T ) because G is generated by T and the elements
xn for n ≥ 1. Hence any small endomorphism of T can be extended to an
endomorphism of G.
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Since also Q∗p ⊆ End(G), we get a natural bijection

End(T ) ∼= Q∗p ⊕ Small(T ) ∼= End(G).

This proves that T ↪→ G is a localization.
Let B be a basic subgroup of T . We have to show that the inclusion

B ↪→ T induces a bijection Hom(T,B) ∼= Hom(G,B). Again it is sufficient
to prove that any homomorphism α : T → B can be extended to G. If the

composite T
α−→ B ↪→ T is a small endomorphism, we have seen above that

it can be extended to a homomorphism α̃ : G→ T with α̃(G) = α(T ) ⊆ B,
i.e. α̃ ∈ Hom(G,B).

The case of non-small endomorphisms remains, but we prove next that
there are none. First we claim that any non-small homomorphism α : T → B
has unbounded image. Indeed, suppose that α ∈ End(T ) is not a small
endomorphism. Then α = pku + β, where k ≥ 0, u ∈ Q∗p is a unit, and
β ∈ Small(T ). As β is small there exists m ≥ k such that if e(t) ≥ m, then
e(β(t)) < e(t)−k. Thus e(α(t)) = e(t)−k. In other words, under a non-small
endomorphism, eventually the exponents of torsion elements drop by a fixed
amount: the image of α cannot be bounded.

Now let α ∈ Hom(T,B) and suppose ad absurdum that α is not small.
By the above, α(T ) cannot be a bounded group. As its image lies in a basic
subgroup B, it must be an unbounded direct sum of cyclic groups. Choose
next a homomorphism γ : α(T ) → T sending some elements of arbitrarily
large order to themselves and some other elements of arbitrarily large or-
der to 0. The composition γα is an endomorphism of T which cannot be
non-small because of the elements of arbitrarily large exponent going to 0.
On the other hand it cannot be small because elements of arbitrarily large
exponent have images with exponents reduced by k. This gives a contradic-
tion.

Finally, if we pass to separable torsion groups we have the following
strengthening of Theorem 6.8.

Theorem 6.11. Let T be a separable p-group. Then T is a direct sum
of cyclic groups or is torsion-complete if and only if the embedding of some
basic subgroup B into T is a localization. In fact , in the last case T = B.

Proof. As in the proof of Theorem 6.8 we find that every automorphism
of B extends to an automorphism of T and hence [15, Theorem 69.3] implies
that T = B or T is torsion-complete.

We conclude the paper with an open question.

Question 6.12. Is there a p-group which is not a direct sum of cyclics
such that the embedding of one basic subgroup is a localization but the em-
bedding of another basic subgroup is not?
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[10] A. L. S. Corner and R. Göbel, Prescribing endomorphism algebras, a unified treat-
ment , Proc. London Math. Soc. 50 (1985), 447–479.

[11] E. Dror Farjoun, Cellular Spaces, Null Spaces and Homotopy Localization, Lecture
Notes in Math. 1622, Springer, Berlin, 1996.

[12] M. Dugas, Localizations of torsion-free abelian groups, J. Algebra 278 (2004),
411–429.

[13] M. Dugas, A. Mader and C. Vinsonhaler, Large E-rings exist , ibid. 108 (1987),
88–101.

[14] P. C. Eklof and A. H. Mekler, Almost Free Modules. Set-Theoretic Methods, North-
Holland, Amsterdam, 1990.

[15] L. Fuchs, Infinite Abelian Groups, Vols. I and II , Academic Press, New York, 1970
and 1973.
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