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Polynomial invariants of links in the projective space

by

Maciej Mroczkowski (Uppsala)

Abstract. The Homflypt and Kauffman skein modules of the projective space are
computed. Both are free and generated by some infinite set of links. This set may be
chosen to be {Ln : n ∈ N ∪ {0}}, where Ln is an arbitrary link consisting of n projective
lines for n > 0, and L0 is an affine unknot.

1. INTRODUCTION

The celebrated Jones polynomial [6] was generalized shortly after its
discovery to the Homfly [3] and Kauffman [7] polynomials, for links in R3.
The Jones polynomial was extended from the case of links in R3 to RP 3 by
Drobotukhina [2] and to all lens spaces by Hoste–Przytycki [5].

In this paper, the Homfly and Kauffman polynomials are extended to
links in RP 3. The technique we use is similar to the technique of Lickorish
and Millett [8]. They used heavily the notion of descending diagram for
links in R3. Here, we use the notion of descending diagram for links in RP 3,
introduced by the author [9].

I wish to thank Oleg Viro for his help.

1.1. Background: R3 case. The Homfly and Kauffman polynomials
of framed links in R3 are defined by skein relations.

For Homfly polynomial, the skein relations are:

(HI) x−1 − x = (s− s−1)

(HII) = (xv−1)

In these relations, links are represented by their fragments which con-
tain differences from other links under consideration. Moreover, the Homfly
polynomial of a link is written simply as the link itself.
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Relations (HI) and (HII) together with the assumption that the poly-

nomial is equal to 1 on the unknot determine the polynomial for any

framed oriented link in R3, and this polynomial is invariant under isotopy
of such links.

Similarly, for Kauffman polynomial the skein relations are:

(KI) + = z
(

+
)

(KII) = a

Relations (KI) and (KII) together with the assumption that the poly-

nomial is equal to 1 on the unknot determine the polynomial for any

framed unoriented link in R3, and this polynomial is invariant under isotopy
of such links.

1.2. Homflypt and Kauffman skein modules. Homfly and Kauff-
man polynomials can be extended to links in any oriented 3-manifold
through the notion of skein modules, introduced independently by Przy-
tycki [10] and Turaev [11].

For an oriented 3-manifold M , the Homflypt skein module of M is the
module over the ring Z[x±1, s±1, (s− s−1)−1, v±1], generated by the isotopy
classes of the framed oriented links in M , with relations (HI) and (HII). The
Kauffman skein module of M is the module over Z[a±1, z±1], generated by
the isotopy classes of the framed unoriented links in M , with relations (KI)
and (KII).

There is another version of the Homflypt skein module of M with un-
framed oriented links. However, there is essentially no difference between
the two versions if M has no non-separating 2-spheres: this follows from the
fact that in such M there are infinitely many non-isotopic framed knots that
correspond to any unframed knot (announced in [4] and proved in [1]). As
in our paper the case of RP 3 is considered, it is sufficient to consider only
the framed version.

Note that if M is R3, the Homflypt and Kauffman skein modules are
free cyclic modules generated by the unknot. The Homfly polynomial (resp.
Kauffman polynomial) of a framed oriented link (resp. framed unoriented
link) is obtained by expressing the link by means of the unknot: in the
corresponding skein module the link equals the corresponding polynomial
multiplied with the unknot.

1.3. Unknotting links in RP 3. For n > 0, the standard oriented un-
link in RP 3 with n non-contractible components, denoted by Ln, is presented
in Figure 1 (RP 3 is represented as a ball D3 with antipodal points of the
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bounding sphere identified). L0 is the unknot . The (line) framing for

each Ln is the blackboard framing (note that for projective lines this gives
Möbius bands).

The standard unoriented unlink in RP 3 with n non-contractible compo-
nents, again denoted by Ln, is the link of Figure 1 with the orientations

being disregarded. L0 is the unknot . The framing for each Ln is again

the blackboard framing.

n components    

Fig. 1. Standard oriented unlink in RP 3 with n components

In [9] a notion of descending diagram for links in RP 3 was introduced.
It was shown that any diagram of an unoriented link can be transformed,
by crossing changes alone, into a descending diagram (for a precise defini-
tion of diagrams of links in RP 3, see Section 2.1 below). Such a descending
diagram is a diagram of a link consisting of the disjoint union of Ln (for
some n) and some unknots L0. Now, using induction on the number of
crossings in a diagram, it follows that any unoriented projective link can be
expressed as a linear combination of the Ln’s in the Kauffman skein module
of RP 3.

A difficulty arises in the case of oriented links. Indeed, it was shown in
[9] that it is not always possible to transform an arbitrary diagram into
a diagram of the disjoint union of Ln (for some n) and some unknots L0,
by crossing changes alone. However, it is possible to express any oriented
projective link as a linear combination of some special links in the Homflypt
skein module of RP 3. These special links, as unoriented links, are equal to
the unoriented Ln’s. Now, using induction on the number of crossings in
a diagram, one shows that any special link can be expressed as a linear
combination of the oriented Ln’s in the Homflypt skein module of RP 3.
Thus, any projective link can be expressed as a linear combination of the
oriented Ln’s in the Homflypt skein module of RP 3. We have shown:

Remark 1. The Homflypt skein module (resp. Kauffman skein module)
of RP 3 is generated by the standard oriented (resp. unoriented) unlinks Ln,
n ∈ N ∪ {0}.
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In the rest of this paper, we establish that the two skein modules of RP 3

are freely generated by the Ln’s.

1.4. Main theorems

Theorem 1. The Homflypt skein module of RP 3 is freely generated by
the standard unlinks Ln, n ∈ N ∪ {0}.

By Remark 1, this theorem is a consequence of the following:

Theorem 2. To each framed oriented link L ⊂ RP 3 one can associate
a unique element H(L) ∈ Z[x±1, s±1, (s − s−1)−1, v±1, z] so that H(L) de-
pends only on the isotopy class of L, H(Ln) = zn for n > 0, H(L0) =
(v−1 − v)/(s− s−1), and relations (HI) and (HII) hold for H.

Theorem 3. The Kauffman skein module of RP 3 is freely generated by
the standard unlinks Ln, n ∈ N ∪ {0}.

By Remark 1, this theorem is a consequence of the following:

Theorem 4. To each framed unoriented link L ⊂ RP 3 one can associate
a unique element K(L) ∈ Z[a±1, z±1, y] so that K(L) depends only on the
isotopy class of L, K(Ln) = yn for n > 0, K(L0) = (a + a−1)z−1 − 1, and
relations (KI) and (KII) hold for K.

The choices for H(L0) and K(L0) are convenient for constructions of H
and K. Also, with these choices, H and K are multiplicative under disjoint
union. Note that in the case of projective links, the disjoint union is well
defined on couples consisting of one affine link and one projective link.

In what follows, we will define the Homfly polynomial H for framed
oriented links in RP 3 and the Kauffman polynomialK for framed unoriented
links in RP 3. For technical reasons, the general notion of descending diagram
(see Definition 3 in [9]) will not be used here, as it involves many choices.
For our purpose, it is often easier to unknot only some part of the diagram
of a link in order to obtain a simpler diagram. This approach will be used
to define H and K by induction on the number of crossings in a diagram.

2. DIAGRAMS AND BASIC DEFINITIONS

2.1. Diagrams of links in the projective space and nets. A dia-
gram of a link in RP 3 is a disk with a collection of immersed arcs. An arc is
a compact connected 1-manifold with or without boundary. The endpoints
of arcs with boundary are on the boundary of the disk, divided into pairs
of antipodal points and, with this restriction, the arcs are immersed gener-
ically. Each double point of the immersions or crossing of the diagram is
endowed with information on over- and undercrossing.
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A net is the projective plane RP 2 together with a distinguished (projec-
tive) line, called the line at infinity, and a collection of generically immersed
circles endowed with over- and undercrossing information for each double
point. We can map any diagram D of a link to its net, obtained from D by
identifying the antipodal points of the boundary circle of D, with the line
at infinity being the image of this boundary circle.

If D is a diagram of a link L, and Lb is a connected component of L,
then the projection of L onto D maps Lb onto a collection of arcs. Denote
this collection by b. We will call b a component of D (though it may con-
sist of several arcs). As H1(RP 3) = Z2 there are two types of connected
components in a link: 0-homologous and non-0-homologous one. The corre-
sponding components of a diagram of the link are said to be 0-homologous
(their images in the net are contractible) and 1-homologous (their images in
the net are not contractible).

If D is a diagram of an oriented link L, then D gets naturally oriented :
each of its arcs is oriented. If b is a component ofD coming from a component
Lb of L, then the orientation of L gives rise to a cyclic ordering of the arcs
of b (when one travels on Lb according to the orientation, one meets the arcs
of b in this order under the projection of L onto D).

2.2. Arc distance, diagrams descending from P to Q. Let D be
a diagram of an oriented link and b a component of D. Let P and Q be two
points in the interior of some arcs of b. Then the arc distance from P to Q is
defined to be the number of times the line at infinity is crossed in the net of
D if one travels from the image of P to the image of Q in the net, according
to the orientation of the image of b in the net.

Suppose that X is a crossing of D such that at least one of its branches
is in b. Then the first pass of X from P is, by definition, the branch
of X whose image in the net of D is passed first if one travels from the
image of P in the net, according to the orientation of the image of b in the
net.

Suppose that P and Q are distinct. Then D is said to be descending
from P to Q if, for every crossing X encountered when traveling from P to
Q in the net according to the orientation, the first pass of X from P is an
overpass (resp. underpass) whenever the arc distance from P to this first
pass is even (resp. odd). One says that D is descending from P to P if it is
descending from P to Q, where Q is a point on the same arc as P and such
that one can travel on this arc from Q to P according to the orientation
without passing any crossing (i.e. Q is just before P ).

If D is descending from P to Q, then, traveling on the net from P to Q,
the encountered arcs are alternatively descending and ascending in the usual
sense for diagrams of links in R3.
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3. INDUCTIVE DEFINITION OF THE HOMFLY POLYNOMIAL H

In this section the Homfly polynomial H is constructed on diagrams
with a given number of crossings, using the definition of H on diagrams
with strictly fewer crossings. We will assume that H is constructed on di-
agrams with fewer than n crossings and that it has some good properties
(see Section 3.1 below). The construction of H on diagrams with n crossings
requires endowing these diagrams with some extra structure: a basepoint or
a couple of basepoints. The construction also depends, in some cases, on
an ordering of a set of crossings of a diagram with n crossings. In the next
section we will show that H does not depend on the choice of the extra
structure or the choice of ordering, and that it has some good properties on
diagrams with n crossings or fewer.

A standard diagram of the standard oriented unlink Ln is presented in
Figure 1. Let µ = (v−1 − v)/(s− s−1).

3.1. Inductive hypothesis IH(n − 1). There is a function H de-
fined on the set of diagrams with at most n − 1 crossings, taking values
in Z[x±1, s±1, (s− s−1)−1, v±1, z], such that:

(1) H is invariant under those Reidemeister moves that do not increase
the number of crossings beyond n− 1.

(2) H satisfies relations (HI) and (HII).
(3) If D is the standard diagram of the standard oriented unlink Lm,

m > 0, with at most n− 1 crossings (i.e. m(m− 1)/2 ≤ n− 1), then

H(D) = zm. Also, H( ) = µ.

3.2. Diagrams with no crossings. As the definition of H uses in-
duction on the number of crossings, H is first defined for diagrams with 0
crossings.

Let D be a diagram with 0 crossings. Let p be the number of its 0-
homologous components and m the number of its 1-homologous components
(m is 0 or 1). Then, by definition,

(H1) H(D) = µpzm.

Note that H satisfies IH(0).

3.3. Diagrams with n ≥ 1 crossings. We assume that the inductive
hypothesis IH(n− 1) holds true.

The construction of H for diagrams with n crossings is divided into
several cases treated in the subsequent subsections. In each case a diagram
D with n crossings is endowed with some extra structure (a basepoint or

a couple of basepoints). D together with this structure is denoted by Ḋ.
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A diagram α(Ḋ) is then defined: it is obtained from Ḋ by a series of crossing
changes.

The diagram α(Ḋ) has the following property: if X is one of the crossings

of Ḋ that have to be switched to obtain α(Ḋ), and Ḋ′ is the diagram obtained

from Ḋ by switching X, then α(Ḋ) = α(Ḋ′).
In the following subsections H is defined on α(Ḋ) for each case (see (H3)

to (H6)).

Suppose that H is already defined on all α(Ḋ). For a based diagram Ḋ,

denote by S(Ḋ) the set of crossings of Ḋ where Ḋ and α(Ḋ) differ. Let k be

the number of elements in S(Ḋ) and ω a (linear) ordering of S(Ḋ). Denote

by S(Ḋ, ω) the set S(Ḋ) equipped with the ordering ω.

We define H(Ḋ, ω) by induction on k. The definition depends on ω. If

k = 0 then H is already defined. Otherwise let Ḋ′ be the based diagram
obtained from Ḋ by switching the first crossing in S(Ḋ, ω), and D′′ be the
diagram obtained by smoothing the same crossing. Let ω′ be the ordering
of all crossings of S(Ḋ′) induced by ω. Note that there are k − 1 elements

in S(Ḋ′). H(Ḋ′, ω′) is defined by induction on k and H(D′′) is defined by

IH(n− 1). Now H(Ḋ, ω) is defined using relation (HI) for the first crossing

in S(Ḋ, ω) with the help of H(Ḋ′, ω′) and H(D′′). Namely, if ε is the sign
of this first crossing, then, by definition,

(H2) H(Ḋ, ω) = x2εH(Ḋ′, ω′) + εxε(s− s−1)H(D′′).

3.4. Simple diagrams. A diagram is said to be simple if it has at
least one 1-homologous component and any of its crossings involves two
different 1-homologous components. Thus, a simple diagram has no crossings
involving 0-homologous components and no self-crossings of 1-homologous
components.

A based simple diagram Ḋ (the dot indicates that the diagram is based)
is a simple diagram D equipped with a couple of basepoints. The basepoints
are antipodal points that lie on the boundary circle of the diagram and are
endpoints of some arc(s) of a 1-homologous component. They are indicated
by black dots.

The antipodal basepoints are also called primary basepoints. They give
rise to an ordering of 1-homologous components and a couple of antipodal
basepoints, called secondary, on each of them (except the component that
has the primary basepoints), in the following way: if one travels on the
boundary of the disk from the primary basepoints in the counterclockwise
direction, one encounters, for each 1-homologous component, a couple of
endpoints belonging to it. For each such component, the couple encountered
for the first time is by definition the couple of secondary basepoints. It is
indicated by white dots. The 1-homologous components are ordered starting
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with the component with the primary basepoints, then the component whose
secondary basepoints are encountered first and so on, until the component
whose secondary basepoints are encountered last. An example of a based
simple diagram with a couple of primary basepoints and two couples of
secondary basepoints is shown in Figure 2.

Fig. 2. Simple based diagram with 3 components

Denote by Ḋk,l the based diagram shown in Figure 3. It is called a stan-

dard based diagram. A based simple diagram Ḋ is said to be almost standard
if it can be transformed into some Ḋk,l by removing all 0-homologous com-
ponents and performing a (possibly empty) series of crossing changes.

k arcs

l arcs

Fig. 3. Standard based diagram Ḋk,l

For any almost standard diagram Ḋ, let α(Ḋ) be the based diagram

obtained from Ḋ by switching all the crossings with sign −1. Thus α(Ḋ)

has +1 sign at each crossing. Note that α(Ḋ) is a diagram of the disjoint
union of Lm (for some m) and some L0’s.

Let p be the number of 0-homologous components of Ḋ and m the num-
ber of its 1-homologous components. Then, by definition,

(H3) H(α(Ḋ)) = µpzm.

An oriented arc with two endpoints has an initial endpoint and a final
one. Notice that in an oriented diagram, any couple of antipodal endpoints
consists of one initial and one final endpoint.

Let Ḋ be a simple based diagram. Consider the endpoint in the couple
of primary basepoints of Ḋ which is initial. Now travel on the boundary of
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the disk in the counterclockwise direction from this endpoint and consider
each encountered endpoint in the couples of secondary basepoints. It can
be either initial or final. One says that a component is good if the endpoint
is initial, and bad if it is final. The component with the primary basepoints
is always good. Note that Ḋk,l has k good components followed by l bad
ones.

One says that an arc b follows an arc a if the endpoint of b that is initial,
is antipodal to an endpoint of a (which has to be final). An arc is above
(resp. below) a component if, at each crossing involving the arc and the
component, the upper (resp. lower) branch belongs to the arc.

A simple based diagram Ḋ is said to be descending if, for any 1-homo-
logous component b, the arc of b that contains the basepoint of b which
is initial, is above the components coming after b according to the order
given by the primary basepoints; the arc that follows it is below the same
components; and so on alternatingly, for all arcs of b.

For any simple based diagram Ḋ that is not almost standard, let α(Ḋ)

be the based diagram obtained from Ḋ by crossing changes that make it
descending.

Consider the crossings of Ḋk,l with sign −1. Each of them is a crossing
between the ith good and jth bad component so it may be indexed by (i, j).
Let ωk,l be the lexicographical order of the set of all crossings with sign −1,
indexed in this way.

Let Ḋ be a simple based diagram that is not almost standard. Let p be
the number of 0-homologous components of Ḋ, k the number of its good
components and l the number of bad ones. Then, by definition,

(H4) H(α(Ḋ)) = µpH(Ḋk,l, ωk,l).

Note that in the case of an almost standard diagram Ḋ, α(Ḋ) is not

descending unless there are only good components in Ḋ. In what follows, it
is more convenient to have Ḋk,l descending rather than α(Ḋk,l).

3.5. Non-simple diagrams. Another notion of based diagram, differ-
ent from the one used for simple diagrams, is needed in order to construct
H for non-simple diagrams. Let D be a non-simple diagram. A basepoint
can be of two different kinds:

(1) A point on a 0-homologous component in the interior of some arc
and distinct from any crossing if this component is involved in some
crossings (see Figure 4(a)).

(2) A self-crossing of a 1-homologous component (see Figure 4(b)).

As before, a diagram D equipped with a basepoint is denoted by Ḋ.
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(a) 0-homologous (b) 1-homologous

P Q

Fig. 4. Non-simple based diagrams

First, we consider Ḋ for which the basepoint is on a 0-homologous com-
ponent. Ḋ is said to be descending if it is descending from the basepoint to
the basepoint (see Subsection 2.2). If Ḋ has a basepoint on a 0-homologous

component, then α(Ḋ) is the based diagram obtained from Ḋ by the crossing
changes that are necessary to make it descending.

Let D′ be obtained from Ḋ by removing the component with the base-
point (if D′ is empty then H(D′) is replaced by 1 in (H5) below). Let w be
the sum of all signs at all self-crossings of the component with basepoint in
α(Ḋ). Then, by definition

(H5) H(α(Ḋ)) = µ(xv−1)wH(D′).

Finally, we define H in the case when the basepoint of Ḋ is a self-crossing
of a 1-homologous component.

Let X be a self-crossing of a 1-homologous component, say b. A smooth-
ing at X according to any orientation of b gives rise to two components: one
0-homologous, the other 1-homologous. The dashed part determined by X is
the part of D corresponding to the 0-homologous component.

Let P and Q be two points on b such that, with respect to the orientation,
P is just before X, Q is just after X, and P and Q are not in the dashed
part determined by X (see Figure 4(b)). Then Ḋ is said to be descending if

it is descending from P to Q (i.e. the dashed part is descending). If Ḋ has a

basepoint which is a self-crossing of a 1-homologous component, then α(Ḋ)

is the based diagram obtained from Ḋ by the crossing changes which are
necessary to make it descending.

Let D′ be obtained from Ḋ by removing the dashed part determined
by the basepoint. Let w be the sum of the signs at all self-crossings of the
dashed part determined by the basepoint of α(Ḋ), including the basepoint
(which is a self-crossing). Then, by definition,

(H6) H(α(Ḋ)) = (xv−1)wH(D′).
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4. INDEPENDENCE FROM CHOICES FOR H,

INVARIANCE UNDER REIDEMEISTER MOVES

In this section, we show that the definition ofH on diagrams with n cross-
ings does not depend on the choices involved (of basepoint and ordering of
some crossings). We also prove that relations (HI) and (HII) are satisfied for
diagrams with n crossings and that H is invariant under those Reidemeis-
ter moves which do not increase the number of crossings beyond n. Thus,
assuming that H satisfies the inductive hypothesis IH(n − 1), it is proven
that it satisfies IH(n).

4.1. Relations (HI) and (HII)

Lemma 1 (independence from ordering). Let Ḋ be a based diagram with

n crossings. Let ω and ω′ be two orderings of the set of crossings of Ḋ that
are different in Ḋ and α(Ḋ). Then H(Ḋ, ω) = H(Ḋ, ω′).

Proof. By induction on the number of crossing differences between Ḋ
and α(Ḋ) it is sufficient to prove that H does not change if one switches
the first two crossings according to ω, say C1 and C2 with respective signs
ε1 and ε2.

Denote by σ1Ḋ (resp. σ2Ḋ) the diagram obtained from Ḋ by switching

C1 (resp. C2). Also, denote by η1Ḋ (resp. η2Ḋ) the diagram obtained from

Ḋ by smoothing at C1 (resp. C2). First consider the sequence in which C1

is switched before C2:

H(Ḋ, ω) = x2ε1H(σ1Ḋ) + ε1x
ε1(s− s−1)H(η1Ḋ)

= x2ε1x2ε2H(σ2σ1Ḋ) + x2ε1ε2x
ε2(s− s−1)H(η2σ1Ḋ)

+ ε1x
ε1(s− s−1)H(η1Ḋ).

And switching C2 before C1 yields

H(Ḋ, ω′) = x2ε2x2ε1H(σ1σ2Ḋ) + x2ε2ε1x
ε1(s− s−1)H(η1σ2Ḋ)

+ ε2x
ε2(s− s−1)H(η2Ḋ).

The first terms are equal. By the inductive hypothesis,

H(η1Ḋ) = x2ε2H(σ2η1Ḋ) + ε2x
ε2(s− s−1)H(η2η1Ḋ),

H(η2Ḋ) = x2ε1H(σ1η2Ḋ) + ε1x
ε1(s− s−1)H(η1η2Ḋ).

Substituting these expressions above, one sees that H(Ḋ, ω)=H(Ḋ, ω′).

Lemma 2. Let D be a diagram with at most n−1 crossings. Suppose that
there is a self-crossing X of a component a of D such that the arc distance
from the upper branch to the lower branch of X is even and D is descending
from the upper branch to the lower branch of X. Let a′ be the part of a
that is covered if one travels in the net from the upper branch to the lower
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branch of X. Let D′ be obtained from D by erasing a′. Let w be the sum of
the signs of the crossings at which both branches belong to a′ (including X).
Then H(D) = (xv−1)wH(D′).

Proof. If a is 1-homologous then by IH(n − 1) one can calculate H(D)
by letting a basepoint be the self-crossing X. The conclusion then follows
from (H6).

Suppose now that a is 0-homologous. The lemma is proven by induction.
Let k be the number of crossings in D. For k = 1 (there has to be at least
one crossing in D) the lemma is true by (H5). Suppose that the lemma is
true for k < l ≤ n − 1 and that D has k = l crossings. The orientation
of D induces orientations on the branches of X. To compute H(D), put
a basepoint on the upper branch of X, just before the crossing. Then D′,
obtained from D by removing a′, inherits the basepoint from D.

Now, when computing H(D) and H(D′) one can use relation (HI) only
for the crossings that appear both in D and D′ since a′ is already descend-
ing with respect to the basepoint in D. Let Y be a crossing in D and D′

that needs to be changed in order to make the components with basepoints
descending. Let σ be the operation of switching Y , and η the operation of
smoothing Y with respect to the orientation. For simplicity, assume that
the sign of Y is +1. Then, by (HI),

x−1H(D)− xH(σD) = (s− s−1)H(ηD),

x−1H(D′)− xH(σD′) = (s− s−1)H(ηD′).

By induction, as ηD has k − 1 crossings, H(ηD) = (xv−1)wH(ηD′).
Also H(σD) = (xv−1)wH(σD′), which is proven easily by induction on the
number of crossings that need to be changed in order to make D and D′

with basepoints descending.
Thus H(D) = (xv−1)wH(D′).

Proposition 1 (Homfly relations). Relation (HII) holds for H when
the diagram on the left has n crossings. Relation (HI) holds for H when the
two based diagrams on the left have n crossings and the same basepoint(s).

Proof. For relation (HII), using the definition of H and IH(n − 1), the
statement can be easily verified by considering separately two cases:

• the kink appearing in (HII) is either in a dashed part determined by the
basepoint, or in the 0-homologous component to which the basepoint
belongs,
• the kink is not as in the first case.

The proof for (HI) is more difficult. Suppose that Ḋ is a based diagram

with n crossings. Let C be a crossing of Ḋ. Let σḊ be obtained from Ḋ by
switching C, and ηḊ be obtained from Ḋ by smoothing C. Without loss of
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generality one may suppose that the sign of C is +1 (otherwise the roles of

Ḋ and σḊ are switched). We want to show that

x−1H(Ḋ)− xH(σḊ) = (s− s−1)H(ηḊ).

First, suppose that Ḋ is simple, or that C is in the dashed part deter-
mined by the basepoint, or that C is in the 0-homologous component con-
taining the basepoint. In these cases, in the definition of H(Ḋ) or H(σḊ)
relation (HI) is used at the crossing C. By Lemma 1 it can be used at the
beginning. Thus (HI) holds for H in these cases.

Consider now the remaining possibility for the crossing C: suppose that
C is such that none of its branches is in the 0-homologous component with
basepoint of Ḋ, or in the dashed part determined by the basepoint.

If Ḋ is descending, let D′ be obtained from Ḋ by erasing the 0-homolo-
gous component on which the basepoint lies, or the dashed part determined
by the basepoint. Note that C can be naturally viewed as a crossing in D′.
As D′ has at most n−1 crossings, (HI) holds by IH(n−1) for H(D′), H(σD′)
and H(ηD′).

But H(Ḋ), H(σḊ) and H(ηḊ) are expressed respectively in terms of
H(D′), H(σD′) and H(ηD′) in the same way. This follows from the def-

inition of H, except for H(ηḊ) when the basepoint is a self-crossing of a
1-homologous component and C is in the same component. But in this case,
Lemma 2 is used to express H(ηḊ) by means of H(ηD′). Thus (HI) holds

for H(Ḋ), H(σḊ) and H(ηḊ).

Now, if Ḋ is not descending, then (HI) for H(Ḋ), H(σḊ) and H(ηḊ) is
proved by induction on the number of crossings that have to be changed in
order to make it descending. At a crossing that has to be changed, relation
(HI) allows one to express H(Ḋ), H(σḊ) and H(ηḊ) by means of diagrams
with fewer crossings to be changed, for which (HI) holds by induction, and
diagrams with at most n− 1 crossings for which (HI) holds by IH(n− 1).

The following lemma is a consequence of relation (HI):

Lemma 3 (basepoints and crossing changes). Let Ḋ1 and Ḋ2 be two
based diagrams with n crossings that differ only in the position of the base-
point(s). Let Ḋ′1 be obtained from Ḋ1 by a crossing change, and Ḋ′2 be ob-

tained from Ḋ2 by the same crossing change. Suppose that H(Ḋ1) = H(Ḋ2).

Then H(Ḋ′1) = H(Ḋ′2).

Proof. (HI) allows expressing H(Ḋ1) in terms of H(Ḋ′1) and H of a third

diagram with n−1 crossings. Similarly, it allows expressing H(Ḋ2) in terms

of H(Ḋ′2) and H of the same diagram with n − 1 crossings. By induction,
for the diagram with n − 1 crossings, H does not depend on the choice of
basepoint(s). Thus, as H(Ḋ1) = H(Ḋ2), also H(Ḋ′1) = H(Ḋ′2).
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4.2. Basepoints for 0-homologous components

Lemma 4 (moving the basepoint). Suppose that P is a basepoint ly-

ing on a 0-homologous component of a based diagram Ḋ with n crossings.
Let c be the arc on which P lies. Then H does not change if P is moved
on c.

Proof. Denote by a the 0-homologous component containing P . It is suf-
ficient to prove that H does not change when the basepoint passes through
a crossing as in Figure 5.

P
P’

D D’
a
1
a

a
1
b

b b

. .

Fig. 5

Using Lemma 3, one may suppose that the diagram Ḋ on the left of Fig-
ure 5 is descending. Starting from P and traveling on the net of Ḋ according
to the orientation, denote the successive arcs encountered by a1, . . . , al. Fur-
thermore denote the part of a1 that comes after P by aa1 and the remaining

part by ab1. As Ḋ is descending, one has

a2 ≤ a4 ≤ a6 ≤ · · · ≤ ab1 ≤ · · · ≤ a5 ≤ a3 ≤ aa1,
where ai ≤ aj means that at each crossing involving ai and aj the branch
in ai is under the branch in aj , and ≤ is transitive.

Now Ḋ′ may be descending or not. If it is descending thenH(Ḋ) = H(Ḋ′)
by (H5).

Suppose now that Ḋ′ is not descending. This is the case if and only if
the branch b (see Figure 5) is a part of aa1, ab1 or ak with k odd. Ḋ′ becomes
descending if one switches the crossing in Figure 5.

Let σḊ′ be the based diagram obtained from Ḋ′ by this switching, and
ηḊ′ obtained from Ḋ′ by smoothing the same crossing. Note that in ηḊ′,
a becomes a link with two 0-homologous components a1 and a2, where a1

contains P ′ and a2 contains P (P and P ′ can be naturally viewed in ηḊ′).
Notice that ηḊ′ with basepoint P ′ is descending.

Denote by Da the diagram obtained from Ḋ′ by removing a. Notice that
Da can be obtained from ηḊ′ by removing a1 and a2. Denote by Da1 the
diagram obtained from ηḊ′ by removing a1. Notice that Da1 with basepoint
P is descending. Let ε = ±1 be the sign of the crossing in Figure 5.

For a 0-homologous component c denote by w(c) the sum of the signs at
all crossings for which both branches are in c. Now:
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H(Ḋ) = µ(xv−1)w(a)H(Da),

H(ηḊ) = µ(xv−1)w(a1)H(Da1) = µ2(xv−1)w(a1)+w(a2)H(Da),

H(Ḋ′) = x2εH(σḊ′) + εxε(s− s−1)H(ηḊ)

= x2εµ(xv−1)w(a)−2εH(Da)+εxε(s−s−1)µ2(xv−1)w(a1)+w(a2)H(Da).

As µ = (v−1 − v)/(s− s−1), we have

H(Ḋ′) = (xw(a)µv−w(a)+2ε + εxεµ(v−1 − v)(xv−1)w(a1)+w(a2))H(Da).

As w(a1) + w(a2) = w(a)− ε, we have

H(Ḋ′) = µxw(a)v−w(a)(v2ε + εvε−1 − εvε+1)H(Da) = µ(xv−1)w(a)H(Da).

Since ε = 1 or −1, one checks easily that

v2ε + εvε−1 − εvε+1 = 1.

Thus H(Ḋ) = H(Ḋ′).

4.3. Good Reidemeister moves. The Reidemeister moves presented
in Figure 6 are called bad. They involve basepoint(s). For the bad moves,
the usual notation is used, with one or more primes being added (e.g. Ω ′′5 ).
All other moves are called good.

The moves Ω′4, Ω′5 and Ω′′5 involve simple based diagrams. In an Ω′4
move, for some component, the secondary basepoints are changed. An Ω ′5
move involves two couples of secondary basepoints and an Ω ′′5 move involves
the primary and some secondary basepoints.

In this section, it is shown thatH does not change under good Reidemeis-
ter moves that do not involve diagrams with more than n crossings. It will
be proved in later sections that H does not change under bad Reidemeister
moves.

Using relation (HI) and induction hypothesis IH(n − 1) one easily gets
the following:

Remark 2 (crossing changes outside Reidemeister moves). Consider a

Reidemeister move from a based diagram Ḋ1 to Ḋ2. If H does not change un-
der this move, then it does not change under the same move from Ḋ′1 to Ḋ′2,

where Ḋ′1 is obtained from Ḋ1 by switching some crossings not involved in

the move, and Ḋ′2 is obtained from Ḋ2 by switching the same crossings.

Lemma 5 (crossing changes inside Reidemeister moves). Consider a Rei-

demeister move that is not an Ω4 move, from a based diagram Ḋ1 to Ḋ2.
Let b1 and b2 be two branches involved in the move. Suppose that they are
not the lowest and uppermost branch in an Ω3 move. If H does not change
under this move, then it does not change under any other move obtained
from the first one by switching the crossing(s) between b1 and b2.
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Ω’

Ω’

4

5

Ω’’5

Ω’3

Ω’2

Ω’’4

Ω’’’5

Fig. 6. Bad Reidemeister moves

Proof. For an Ω2 move, an easy calculation using (HI) and (HII) shows
that H is unchanged if one switches the two crossings that disappear under
the move.

For an Ω3 move, let Ḋ′1 (resp. Ḋ′2) be obtained from Ḋ1 (resp. Ḋ2) by
switching two adjacent branches (for example the lowest and the middle

ones). Let D′′1 (resp. D′′2) be obtained from Ḋ1 (resp. Ḋ2) by smoothing the

crossing that is switched to obtain Ḋ′1 (resp. Ḋ′2). By assumption H(Ḋ1) =

H(Ḋ2). Now, H(D′′1) = H(D′′2) because either the two diagrams are equal,
or one can pass from one to the other by two Ω2 moves that do not increase
the number of crossings beyond n−1 and one may use IH(n−1). From (HI)

it follows that H(Ḋ′1) = H(Ḋ′2).
The case of an Ω5 move is treated similarly to an Ω3 move. One uses

two Ω4 moves between diagrams with n− 1 crossings and IH(n− 1) as well
as (HI).
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Lemma 6 (invariance under good Reidemeister moves). H does not
change under good Reidemeister moves that involve diagrams with at most
n crossings.

Proof. By IH(n − 1) it is sufficient to consider the case when at least
one of the diagrams involved in the move has n crossings. If the basepoint
of the diagram with n crossings lies on a 0-homologous component, then by
Lemma 4 it can be pushed out of the fragment of the diagram where the
move takes place without changing H.

One may suppose that the diagram before the move has n crossings
and that it is descending, by Remark 2 and Lemma 5. It is easily checked
that after the move the diagram is again descending except in a special
case considered at the end of the proof. Now, from the definition of H and
IH(n− 1) it follows easily that H is unchanged under the move.

The special case is the following: the basepoint lies on a 0-homolo-
gous component and, after an Ω2 move, this component is not involved
in any crossing. But again, in this case H does not change by definition and
IH(n− 1).

4.4. Basepoints of simple diagrams. In this section it is shown that
H does not depend on the choice of antipodal basepoints for simple dia-
grams.

We say that an arc in a diagram D separates a couple P,Q of antipodal
points lying on the boundary S of the disk of D if the endpoints of this arc
are in different connected components of S − (P ∪Q).

The following lemma is a reformulation of Lemma 1 of [9]:

Lemma 7 (non-separating arcs for components with at least three arcs).
Let D be a simple diagram. Let b be a 1-homologous component. Let P,Q
be a couple of antipodal points on the boundary circle of D, neither of them
in b. Suppose that b has at least three arcs. Then at least two of the arcs of
b do not separate P , Q.

Lemma 8 (non-separating arcs for components with at least five arcs).
Let D be a simple diagram and b a 1-homologous component of D. Suppose
that b has at least five arcs. Consider two couples of antipodal endpoints of
some arcs of b such that moving from one couple to another in the counter-
clockwise direction, no other endpoints of b are encountered. Then there is
at least one arc with no endpoint in these two couples and which does not
separate any of the two couples.

Proof. In Figure 7 four cases are presented. P 1, Q1 and P 2, Q2 are
couples of antipodal endpoints. Suppose that there are no endpoints of b
between P 1 and P 2 (thus no endpoints between Q1 and Q2).
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Case 1 Case 2

Case 3

QQ2 1

P P1 2

Case 4

P P1 2

QQ2 1

P P1 2 P P1 2P

QQ2 1QQQ2 1

Fig. 7

Case 1: P 1 and P 2 are endpoints of the same arc. The Ω4 move which
deletes this arc, gives rise to a simple diagram in which b has at least three
arcs. This move changes only the three arcs shown in Figure 7, Case 1. By
Lemma 7, at least two arcs of b do not separate the antipodal endpoints
P 1 and Q1 (and also P 2 and Q2). One of these may coincide with the arc
obtained from the three arcs appearing in Case 1. But there is an extra arc
not separating the couples of endpoints.

Case 2: P 1 andQ2 are joined by an arc. Then the required arc obviously
exists (the thick one).

Case 3: The arcs starting at P 1 and Q1 do not separate the couple
P 2, Q2. Then one again finds a suitable arc (the thick one).

Case 4: The only remaininig possibility is that some arcs with endpoints
P 1 or Q1 separate the couple P 2, Q2 or vice versa. Suppose, for instance,
that the arc which has P 2 as endpoint separates the couple P 1, Q1. Then
the arc with endpoint P 1 cannot separate P 2, Q2 (the diagram is simple).
Since we may assume we are not in the situation of Case 3, the arc with
endpoint Q1 has to separate P 2, Q2. And this finally means that the arc
with endpoint Q2 does not separate P 1, Q1.

Denote by P,Q a couple of antipodal points on the boundary circle of
the diagram that are not endpoints such that P is between P 1 and P 2 and
Q is between Q1 and Q2.

Now we have two arcs which do not separate the couple P , Q (namely,
the arcs with endpoints P 1 and Q2) and two arcs separating this couple
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(the arcs with endpoints P 2 and Q1). Note that the two arcs that do not
separate P,Q are on the left side of the diagram.

To find a suitable arc in this case, let us prove first that the number of
arcs of b not separating P,Q on the left side is the same as on the right
side. This can be checked by induction on the number of arcs of b: if b has
a unique arc this number is 0 on both sides. Otherwise, if one uses an Ω4

move to remove an arc of b that does not separate P , Q (which exists by
Lemma 7), the number of arcs not separating this couple on the left and on
the right decreases by one, or remains the same.

Thus there are at least two arcs of b on the right side of the diagram that
do not separate P,Q and thus do not separate P1, Q1 and P2, Q2 either.

A subarc is a compact connected submanifold of an arc.
Let a be a subarc going from a crossing to itself and having no other

self-crossings. Let P be a point on the arc of which a is a subarc, just
outside a. Then a is called a 1-gon if, in the net, it does not separate P and
the line at infinity.

Let (a1, a2) be a couple of subarcs both going from one crossing to an-
other, having no extra crossings between them, and neither of them having
self-crossings. Let P1 be a point on an arc of which a1 or a2 is a subarc,
just outside a1 and a2, and close to the first crossing between a1 and a2. Let
P2 be a point with the same properties as P1 except that it is close to the
second crossing between a1 and a2. Then (a1, a2) is called a 2-gon if, in the
net, it does not separate P1 and the line at infinity, and it does not separate
P2 and the line at infinity.

1-gons and 2-gons are presented in Figure 8.

1-gon

2-gon

not 1-gons

not a 2-gon

P

P
1

P
2

Fig. 8

By definition, a subarc a is below a subarc b if at each crossing involving
a and b the branch in a is under the branch in b.

Lemma 9 (moving subarcs). Let D be a (possibly based) diagram with
at most n crossings. Let B be a disk in D such that there is no basepoint
in B, and B does not intersect the boundary circle of the diagram. Suppose
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that B∩D is the union of a subarc a strictly included in ∂B and some other
subarcs a1, . . . , al properly embedded in B. Suppose that ai is below aj for
any i < j and there is k such that a is above ai for i ≤ k and below ai for
i > k. Suppose that each ai crosses a in one point and no pair of ai’s has
more than one common crossing. Let b be the closure of ∂B − a and let D′

be the result of substituting b for a in D, where b is above ai if a is, and
below otherwise. Then H(D) = H(D′).

Proof. It is easily seen that it is possible to transform D into D′ by
a series of good Ω3 moves.

Lemma 10 (removing 2-gons). Suppose that B and D are as in Lemma 9
except that one subarc ai crosses a in two points, and each aj , j 6= i, crosses
ai in one point. If , as before, D′ is the result of substituting b for a in D,
then H(D) = H(D′).

Proof. Applying Lemma 9, move all crossings in the interior of the 2-gon
formed by a and ai out of this 2-gon. Transform the resulting diagram into
D′ by a series of good Ω3 moves and one good Ω2 move at the end.

Lemma 11 (removing 1-gons). Let D be a (possibly based) diagram with
at most n crossings. Let a be a 1-gon bounding a disk B. Suppose that there
are no 1-gons and no basepoint in B (except possibly the self-crossing of a
which can be a basepoint). Suppose that B ∩D is the union of a and some
other subarcs a1, . . . , al properly embedded in B. Suppose that ai is below aj
for any i < j and there is k such that a is above ai for i ≤ k and a is below
ai for i > k. Let ε be the sign of the self-crossing of a and D′ the diagram
obtained from D by removing the 1-gon a. Then H(D) = (xv−1)εH(D′).

Proof. First, remove all 2-gons that are inside B using Lemma 10, start-
ing with the most nested ones. Then decrease the number of crossings inside
B using Lemma 10 for couples of subarcs in which one subarc is part of a.
In this way, the number of crossings inside B is reduced to 0. Finally, use
relation (HII) which holds for diagrams with at most n crossings (Proposi-
tion 1).

Lemma 12 (special case of invariance under Ω ′5 moves). Suppose that an

Ω′5 move is applied to a simple based diagram Ḋ with n crossings. Suppose
that each of the two 1-homologous components involved in this move consists
of a unique arc. Let Ḋ′ be the diagram after the move. Then H(Ḋ) = H(Ḋ′).

Proof. By Remark 2 and Lemma 5 one may suppose that Ḋ is descend-
ing. If the two components involved in the move have at least three common
crossings, then, using Lemma 10, remove two crossings that are not involved
in the move without changing H and, using IH(n− 1), get H(Ḋ) = H(Ḋ′).
Otherwise, if the two components have a unique common crossing, then Ḋ′
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is also descending, and both H(Ḋ) and H(Ḋ′) are equal to the same H(Ḋk,l)
for some k and l.

In the figures that follow, a sign of equality between two diagrams means
that H is the same for both. For simplicity, until the end of this subsection
we will assume that the simple diagrams under consideration have no 0-
homologous components. This is possible as, by definition of H, each such
component contributes to µ in the case of simple diagrams.

Proposition 2 (special case of independence from basepoints for simple

diagrams). Let Ḋ1 and Ḋ2 be two simple based diagrams with n crossings.

Suppose that all 1-homologous components in Ḋ1 and Ḋ2 consist of unique
arcs. Suppose that Ḋ1 and Ḋ2 differ only in the position of the basepoints.
Then H(Ḋ1) = H(Ḋ2).

Proof. It is sufficient to prove that H(Ḋ1) = H(Ḋ2) if the basepoints of

Ḋ2 are next to the basepoints of Ḋ1 in the counterclockwise direction.
By Lemma 3, one may suppose that Ḋ1 is descending. If there is a

couple of components which have at least three crossings between them,
then H(Ḋ1) = H(Ḋ2): indeed, one may reduce the number of crossings

in Ḋ1 and Ḋ2 using Lemma 10 (because Ḋ1 is descending), and then use
IH(n − 1). Suppose now that any two components have a unique common
crossing.

In changing the position of a couple of antipodal basepoints from Ḋ1

to Ḋ2, the following two cases can occur:

Case 1: Traveling from the basepoint of Ḋ1 that is initial, in the counter-
clockwise direction, the first secondary basepoint encountered is also initial
(see Figure 9).

One may suppose that Ḋ1 is in fact some Ḋk,l. Indeed, if not, apply sev-
eral times Lemma 9 and Ω′5 moves to components with secondary basepoints

(Lemma 12). Then, using Lemma 3, one may suppose that Ḋ1 is equal to

α(Ḋk,l), i.e. it is almost standard and the sign at every crossing is equal
to +1.

By (H3), H(Ḋ1) = zk+l. As shown in Figure 9, H(Ḋ1) = H(Ḋ2).

For Case 2, we need to have invariance of H under some special Ω ′′5
move. Suppose that Ḋ is a simple based diagram with n crossings such that
each of its 1-homologous components consists of a unique arc. Suppose that
one applies to Ḋ an Ω5 move involving primary and secondary basepoints
(Ω′′5 move), and the vanishing triangle has two vertices that are both either
initial basepoints or final endpoints. Suppose also that the two components
involved in the move have a unique common crossing (it is the crossing that
appears in the move).
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Lemma 9

k arcs

l arcsH zk+l

D1
.

D2
.

H

Fig. 9

Then H does not change under such move. Indeed, using Remark 2
and Lemma 5, suppose that Ḋ is descending. Before the move H(Ḋ) =

H(Ḋk,l) for some k and l. After the move, change the basepoints in clockwise
direction: as just proven above, H does not change. The resulting based
diagram is again descending and H of this diagram is again equal to H(Ḋk,l).

Case 2: Traveling from the basepoint of Ḋ1 that is initial, in the coun-
terclockwise direction, the first secondary basepoint encountered is final (see
Figure 10).

H

H

H(D   )l,k

:k good components
:l bad components

Ω’moves
5

Lemma 9 

Ω’’move
5

H(D   )k,l

D1
.

D2
.

. .

Fig. 10
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k arcs

l arcs
H(D   )k,l

Ω’’ and Ω’ moves
5
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H

H
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Fig. 11

Suppose that Ḋ1 is as on the top left of Figure 10. One may always
reduce Case 2 to the situation presented in this figure, using Lemmas 3, 9
and 12.

In this case, H(Ḋ1) = H(Ḋk,l), whereas H(Ḋ2) = H(Ḋl,k) (see Figure 10
where an Ω′′5 move that does not change H is applied). But, as shown in

Figure 11,H(Ḋk,l) = H(Ḋl,k). In this figure, Ω′′5 moves that do not changeH
are applied. Also, Case 1 is used to change the position of primary basepoints
without changing H.

Lemma 13 (special case of invariance under Ω ′′5 moves). Suppose that

Ḋ is a simple based diagram with n crossings, and all 1-homologous com-
ponents of Ḋ consist of unique arcs. Let Ḋ′ be obtained from Ḋ by an Ω′′5
move. Then H(Ḋ) = H(Ḋ′).

Proof. Using Remark 2 and Lemma 5, assume that Ḋ is descending.
First, suppose that the two components involved in the move have at

least three common crossings. Then H(Ḋ) = H(Ḋ′), because one can remove
two crossings by Lemma 10 and use IH(n − 1). We may therefore assume
that the two components involved have a unique common crossing.

If, in applying Ω′′5 , the vanishing triangle has two vertices that are both

initial basepoints, or both final basepoints, then H(Ḋ) = H(Ḋ′) as already
seen in the proof of Proposition 2.

Suppose now that the vanishing triangle has one vertex that is an initial
basepoint and another one that is a final basepoint. As Ḋ is descending,
H(Ḋ) = H(Ḋk,l) for some k and l. By moving the basepoints of Ḋ′ in
the clockwise direction, one gets a descending diagram with l good and k
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bad components. Thus H(Ḋ′) = H(Ḋl,k). But it was seen in the proof of

Proposition 2 that H(Ḋk,l) = H(Ḋl,k).

Proposition 3 (independence from basepoints for simple diagrams).

Let Ḋ1 and Ḋ2 be two simple based diagrams with n crossings. Suppose that
Ḋ1 and Ḋ2 differ only in the position of the basepoints. Then H(Ḋ1) =

H(Ḋ2).

Proof. It is sufficient to prove that H(Ḋ1) = H(Ḋ2) if the basepoints

of Ḋ2 (say (P2, Q2)) are next to the basepoints of Ḋ1 (say (P1, Q1)) in the

counterclockwise direction. By Lemma 3, we may assume that Ḋ1 is de-
scending. Let a be the component to which (P1, Q1) belongs. Then (P2, Q2)
may belong to the same component a or to a different one, say b.

Case 1: (P2, Q2) belongs to a. Note that the secondary basepoints of

Ḋ2 coincide with the secondary basepoints of Ḋ1. Thus, the ordering of
components of Ḋ1 arising from the primary basepoints is the same for Ḋ2.
Consider, for this ordering, the last component (if any) that has more than
one arc. In Figure 12, this component is dashed.

a-arcs

a-arcs

a-arcs

a-arcs

good Ω moves

1D
.

2D
.

Fig. 12

One can reduce the number of arcs of this component without changing
H for both Ḋ1 and Ḋ2. By Lemma 7, the component has an arc, say c, that
does not separate its secondary couple of endpoints. Consider an arc that
is most nested in c. This arc cannot have an endpoint that is a secondary
basepoint. Using Lemmas 9, 10 and good Ω5 and Ω4 moves (good in Ḋ1 and

in Ḋ2), we remove this arc without changing H. The diagram obtained in
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this way from Ḋ1 is still descending. In the same manner, all arcs nested in
c are removed. Finally, c is removed.

In this way, without changing H, Ḋ1 is transformed into a descending
based diagram (still denoted by Ḋ1) in which all components, except a, have

unique arcs. Ḋ2 is transformed similarly. Now by Lemma 8 the number of
arcs of a is reduced to three by eliminating the arcs that do not separate
the couples (P1,Q1) and (P2,Q2), and that have no endpoints among P1,

Q1, P2, Q2. During the elimination, H is unchanged for Ḋ1 and Ḋ2, and
Ḋ1 stays descending. One arrives at the situation presented in Figure 13. In
this figure the arcs of a (the thickest ones) are marked with high if they are
above everything else, or low if they are below everything else.

high

low

high high

high

low

high low

1D
.

2D
.

Fig. 13

At the bottom of the figure, the equality holds because one may turn
around the component a by moving some subarcs (Lemma 9) and by ap-
plication of several Ω′′5 moves in the situation where all components have
unique arcs. It follows from Lemma 13 that H does not change.

Case 2: (P2, Q2) belongs to a component b different from a. A first
possibility is that a has a unique arc. In that case, as in Case 1, one can
reduce the number of arcs without changing H, and get diagrams for which
all components have unique arcs. Then it follows from Proposition 2 that H
is unchanged.

Otherwise a has several arcs. The method of Case 1 can be repeated for
components that have secondary basepoints after the secondary basepoints
of a in Ḋ2. For each of these components the number of arcs is reduced
to one. Also, the number of arcs of a is reduced to three with the help of
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Lemma 8. Now, one has to compare the diagrams at the top of Figure 14.
In this figure, the arcs of a (thickest) are again marked with high or low.
Note that in the bottom rightmost diagram of the figure, the unique arc of
a is divided into two parts: one high and the other low.

high
low

high high

high
low

b-arc b-arc

high

high

low

Ω’

high

5a has 1 arc

1D
.

2D
.

:a component

Fig. 14

In the bottom rightmost diagram of Figure 14, one applies several Ω ′5
moves involving a, which has a unique arc, and another component with
a unique arc. By Lemma 12,H does not change under such moves. In general,
one also applies good Ω5 moves involving a and some components that have
secondary basepoints before the secondary basepoints of a in Ḋ2. One may
also have to eliminate some arcs of these components using Lemma 9 and
good Ω5 and Ω4 moves.

Finally, H is the same on the left and right side of Figure 14.

4.5. Ω′4, Ω
′
5 and Ω′′5 moves

Proposition 4 (invariance under Ω′4, Ω
′
5 and Ω′′5 moves). H does not

change under Ω′4, Ω′5 and Ω′′5 moves, involving diagrams with n crossings.

Proof. Recall that an Ω′4 move is an Ω4 move under which the secondary
basepoints of some component are changed. Consider the component in-
volved in an Ω′4 move and its secondary basepoints in the diagram with
fewer arcs (i.e. the diagram before the move if we assume that Ω ′4 goes from
a diagram with fewer arcs to a diagram with more arcs). By changing the
position of the basepoints (this leaves H unchanged according to Propo-
sition 3) make these basepoints primary in both diagrams involved in the
move. Then Ω′4 is transformed into a good Ω4 move, so H is unchanged.
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An Ω′5 move involving two components which have unique arcs leaves H
unchanged according to Lemma 12. Now, if a component involved in an Ω ′5
move has at least three arcs then, by changing the position of the basepoints,
the move can be transformed into a good Ω5 move. Thus any Ω′5 move leaves
H unchanged.

If all components have unique arcs then an Ω ′′5 move leaves H unchanged
according to Lemma 13. Now if there is a component with at least three arcs,
one can transform the Ω′′5 move into an Ω5 or Ω′5 move, by changing the po-
sition of the basepoints. It follows that any Ω ′′5 move leaves H unchanged.

4.6. Ω′2 and Ω′3 moves. In this section, the invariance of H under the
moves Ω′2 and Ω′3 is established as a consequence of Proposition 5 below.

Lemma 14 (removing 1-gons, stronger version). Let D be a diagram with
at most n crossings. Let a be a 1-gon bounding a disk B. Suppose that there
is no basepoint in B (except possibly the self-crossing of a which can be a
basepoint), and B ∩ D is the union of a and some other subarcs a1, . . . , al
properly immersed in B. Suppose that there is k such that a is above ai for
i ≤ k, and below ai for i > k. Suppose also that if i ≤ k and j > k then ai
is below aj . Let ε be the sign of the self-crossing of a and D′ the diagram
obtained from D by removing the 1-gon a. Then H(D) = (xv−1)εH(D′).

Proof. The proof is by induction on the number of crossings in the inte-
rior of B, say m. If m = 0 then one may apply Lemma 11.

If there are no 1-gons in the interior of B, use relation (HI) for both D
and D′ to order the subarcs a1, . . . , al so that ai is below aj if i < j. Using
(HI) gives rise to smoothings for which one applies induction on m. Now for
the diagrams in which a1, . . . , al are ordered, one applies Lemma 11.

If there are some 1-gons in the interior of a, consider one of them that
is most nested (i.e. there are no 1-gons in its interior). It can be eliminated
as in the preceding paragraph and one applies induction on m.

Lemma 15 (removing triangles). Suppose that in a diagram D with at
most n−1 crossings, one has the situation presented on the left of Figure 15.
At the bottom of D two subarcs a and b (the thick ones), together with a part
of the boundary circle of D, form a triangle. Inside the triangle, there are
properly embedded subarcs a1, . . . , al, all intersecting a and b in a unique
crossing. Suppose that no pair of ai’s has more than one crossing. Suppose
that ai is below aj if i < j and that there are k and k′ such that a is above ai
for i ≤ k and below ai for i > k, and b is above ai for i ≤ k′ and below ai for
i > k′. Suppose that a is below b if k ≤ k′ and above b otherwise. Then H is
the same for the diagrams on the left and on the right of Figure 15, where
a, b and the ai’s are above or below each other on the right in the same way
as they are on the left.
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a b

b a

Fig. 15

Proof. The proof is similar to that of Lemma 9. The diagram on the
left of Figure 15 is transformed into the diagram on the right by several Ω3

moves and one Ω5 move. This transformation is sketched in Figure 16.

Fig. 16

Proposition 5 (shortening of diagrams). Let D be a diagram with k
crossings. A part of D is shown on the left of Figure 17. Suppose that the arc
distance from P to Q is even and D is descending from P to Q. The part
of D from P to Q is dashed. D′ is obtained from D by removing this dashed
part , and joining P and Q with a segment (a part of D′ is shown on the right
of Figure 17). Let w be the sum of the signs at all crossings for which both
branches are in the dashed part. If k ≤ n− 1 then H(D) = (xv−1)wH(D′).

descending

D D’

P Q P Q(xv )
-1 w

Fig. 17

Proof. The proof is by induction on k, the number of crossings in D. If
k = 0 then H(D) = H(D′) by definition of H.

Suppose the assertion is true for k < l, where l ≤ n − 1. Suppose now
that k = l. We will use induction on the arc distance from P to Q. The
case when this distance is equal to 0 (the dashed part consists of a unique
subarc) will be considered at the end of the proof.

Suppose now that the arc distance from P to Q is at least two. This
means that there are several arcs that are dashed or partially dashed. The
arc that one encounters first when traveling in the net from P and crossing
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the line at infinity once is below all other arcs. It may have 1-gons if there
is a crossing with both branches in this lowest arc, or not.

1-gons
D D’’

(xv )-1
L L

ε

Fig. 18

Case 1: There are 1-gons in the lowest arc (see Figure 18). Consider D′′

obtained from D by eliminating some 1-gon in the lowest arc. Let ε be the
sign at the self-crossing of this 1-gon. Notice that H(D′′) = (xv−1)w−εH(D′)
by induction on k (D′′ has strictly fewer crossings than D).

To see that H(D) = (xv−1)εH(D′′), one considers the part L of D that
is inside the 1-gon (and the corresponding part of D′′). In L, there may
be subarcs below the 1-gon (they can only be parts of the lowest arc). All
other subarcs are above the 1-gon, and they are above the subarcs that are
below the 1-gon. Lemma 14 can be applied, so H(D) = (xv−1)εH(D′′). Thus
H(D) = (xv−1)wH(D′).

Case 2: There are no 1-gons in the lowest arc. The lowest arc divides
D in two parts, with P and Q in one of them. Consider the other part, the
good part.

There may be 1-gons that are entirely inside the good part. If some of
them are dashed, one gets H(D) = (xv−1)wH(D′) using Lemma 14 as in
Case 1 (here it is essential that P and Q are not inside such 1-gons).

If inside the good part there are only 1-gons that are not dashed, then,
using for D and D′ relation (HI) for crossings that have both branches not
in the dashed part, one gets again to a situation where an application of
Lemma 14 is possible, whereas for the smoothings that appear in (HI), one
uses induction on k.

Suppose now that there are no 1-gons in the good part of the lowest
arc. Consider a most nested dashed arc inside this part. Two situations can
occur: the most nested arc has a good part which either contains a couple
of antipodal points on the boundary circle of the diagram (more difficult
case), or does not contain such a couple (simpler case). These two cases are
shown in Figure 19.

In the simpler case H(D) and H(D′) are computed using relation (HI),
by ordering one above the other the non-dashed subarcs inside the good part
of the most nested dashed arc. Again, for smoothings one has equality for
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in the good part of this arc
there are two arcs nested

more difficult case

simpler case

P Q

Fig. 19

H (up to (xv−1)w) by induction on k. For the diagrams where the subarcs
are ordered, one gets equality for H (up to (xv−1)w) using either Lemma 10
and induction on k, or Lemma 9, Ω5 and Ω4 moves to make the dashed arc
disappear and induction on the arc distance from P to Q.

In the more difficult case the situation is presented in Figure 20.

most nested arc

it crosses the most nested arc

P Q

Fig. 20

Consider an arc which has an endpoint antipodal to an endpoint of the
most nested dashed arc. Such an arc has to intersect this most nested arc:
otherwise it would be nested in it.

Consider the dashed triangle in Figure 20. Order all subarcs inside the
triangle with the (HI) relation (for the smoothings use induction on k to
get equality for H up to (xv−1)w). If there are 2-gons inside the triangle
(including 2-gons formed by a part of a side of the triangle and another
subarc), eliminate them without changing H (Lemma 10) and decrease the
number of crossings. Then use induction on k.

Now, suppose that there are no 2-gons inside the triangle. First, eliminate
all subarcs inside the triangle with both endpoints in the boundary circle of
the diagram (i.e. all arcs inside the triangle) using Lemma 9 and Ω5 and Ω4

moves.
If the side of the triangle which is part of the boundary circle of the

diagram contains no endpoints of arcs except the two vertices of the triangle,
then, by Lemma 15, the triangle can be removed without changing H and
one gets to the simpler case.



Polynomial invariants of links 253

If the side of the triangle which is part of the boundary circle of the
diagram contains endpoints of arcs that are not vertices of the triangle, con-
sider a smaller triangle inside the original one, which has one side in the
boundary circle of the diagram and for which the assumptions of Lemma
15 are satisfied. It is easily seen that such a triangle can always be found.
The smaller triangle is eliminated without changing H. After the elimina-
tion the number of crossings inside the original triangle or the number of
endpoints of arcs in the original triangle decreases. Repeating this proce-
dure several times, one gets to a situation where there are no endpoints of
arcs in the original triangle. Using Lemma 15, one then gets to the simpler
case.

Induction basis: Suppose that the arc distance from P to Q is equal
to zero. This means that there is only one arc partially dashed from P to Q.

If there is a crossing with both branches dashed, consider the first such
crossing, say X, encountered when traveling from P according to the ori-
entation. Let a be the part of D that is covered while traveling in the net
from the upper branch to the lower branch of X. Let D′′ be obtained from
D by erasing a. Let w′ be the sum of the signs of the crossings at which
both branches belong to a (including X). Then, as D is descending from

the upper to the lower branch of X, H(D) = (xv−1)w
′
H(D′′) by Lemma 2.

And, by induction on k, H(D′′) = (xv−1)w−w
′
H(D′).

Now, if there are no crossings with both branches dashed, the situation
is as in one of the two cases shown in Figure 21.

P Q P Q

L

L

Fig. 21

In these cases the dashed part is above everything else. Again, it is
possible to order all non-dashed subarcs inside the dashed part L. If there
are 1-gons inside L they are eliminated as before. Otherwise, subarcs are
removed from L by using Lemma 10. One gets finally to a situation where
there are no non-dashed subarcs inside L, except the two subarcs containing
P andQ in the second case of Figure 21. Then one checks easily thatH(D) =
H(D′).

Proposition 6 (invariance under Ω′2 moves). H does not change under
Ω′2 moves involving diagrams with n and n− 2 crossings.
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Proof. By Remark 2 and Lemma 5, we may suppose that the based dia-
gram involved in an Ω′2 move is descending (except possibly at the crossing
involved in the move that is not the basepoint). In the following figures, w
stands for the sum of the signs of some self-crossings that are removed.

(xv )
-1 w

(xv )
-1 w

(xv )
-1 w+1

shortening

Fig. 22

2
+x(s-s )

-1

(xv )
-1

+x(s-s )(xv )   (v -v)/(s-s )
-1 -1

(xv )
-1 w

(xv )
-1

(xv )(xv ) (xv )
-1 -1-1 -1 w

x

2
x

w-2 -1 -1w-1
(xv )

-1 w

shortening

Fig. 23
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There are two cases to consider. In the first case one branch is oriented
downwards and the other is oriented upwards. Then H is unchanged as
shown in Figure 22.

In the second case both branches involved in the move are oriented down-
wards, and H is unchanged as shown in Figure 23.

Proposition 7 (invariance under Ω′3 moves). H does not change under
Ω′3 moves involving diagrams with n crossings.

(xv )
-1 w

(xv )
-1 w

(xv )
-1 w

(xv )
-1 w

Fig. 24

Fig. 25
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1

(xv )
-1 w

w=w +w
1 2

w
2

w
1

w
2

(xv )
-1 w

-1

-1

Fig. 26

Fig. 27

Proof. By Remark 2, one may suppose that the diagrams involved in the
move are descending except possibly at the crossings appearing in the move.
Furthermore, using Lemma 5, one may assume that the diagram before the
move is descending.

In Figures 24–27, the calculations for H under Ω ′3 moves are shown. One
also has to calculate H under Ω′3 moves obtained from the moves presented
in these figures by performing reflections with respect to vertical lines pass-
ing through the basepoints, but the calculations are similar. This gives all
possible Ω′3 moves.

In Figures 25 and 26 one supposes that the arc distance from the base-
point to the lowest branch is even, whereas in Figure 27 it is odd; w, w1 and
w2 stand for the sums of the signs of some self-crossings that are removed.
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4.7. Ω′′4 and Ω′′′5 moves. A diagram D is said to be ascending from
P to Q if D′ is descending from P to Q, where D′ is obtained from D by
switching every crossing.

For a non-simple diagram Ḋ, denote by w(Ḋ) the sum of the signs at
the self-crossings of the 0-homologous component with basepoint; or the
sum of the signs at the self-crossings of the dashed part determined by the
basepoint.

Lemma 16 (shortening of some based diagrams). Consider based dia-

grams Ḋ1 and Ḋ2 with at most n crossings, presented in Figure 28. Suppose
that Ḋ1 is ascending from P to Q. Let D′1 be obtained from Ḋ1 by removing
the 0-homologous component with basepoint. Then

H(Ḋ1) = µ(xv−1)w(Ḋ1)H(D′1).

Suppose that the dashed part determined by the basepoint of Ḋ2 is ascending ,
i.e. Ḋ2 is ascending from P to Q. Let D′2 be obtained from Ḋ2 by removing
the dashed part determined by the basepoint. Then

H(Ḋ2) = (xv−1)w(Ḋ2)H(D′2).

.
D1

.
D2P Q

P
Q

Fig. 28

Proof. The proof is similar to that of Proposition 5. It is by induction
on the number of crossings in Ḋ1 and Ḋ2. If this number is 0 in the case of
Ḋ1 or 1 in the case of Ḋ2 then the lemma follows from the definition of H.

Assuming that the assertion is true for diagrams with fewer than k cross-
ings, it is proven for diagrams with k crossings by induction on l, the arc
distance from P to Q.

It is clear from Figure 28 that l is at least 2. If there are some 1-gons, one
uses (HI), induction on k and Lemma 14 to eliminate them (see the proof
of Proposition 5, Case 1). Any 1-gon can be eliminated in this way, because
P and Q are not inside any 1-gon. If there are no 1-gons, one reduces the
arc distance from P to Q in the same way as in the proof of Proposition 5,
Case 2, by eliminating the highest arc (the one encountered when traveling
in the net from P and crossing the line at infinity once), while keeping the
part of the diagram near P and Q unchanged.

Finally, if l = 2 and there are no 1-gons, one reduces the arc distance from
P to Q to 0. Then, using Lemma 9, one reduces the number of crossings
involving the component with basepoint to 0 in the case of Ḋ1; or one
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reduces the number of crossings involving the dashed part determined by
the basepoint to 1 in the case of Ḋ2. The conclusion of the lemma follows
from the definition of H.

Proposition 8 (invariance underΩ′′4 andΩ′′′5 moves).H does not change
under Ω′′4 and Ω′′′5 moves involving diagrams with n crossings.

Proof. Consider first an Ω′′4 move. Notice that it can be obtained with
the crossing of the line at infinity in the net by the basepoint followed
by a good Ω4 move. It follows from Lemmas 3 and 16 that H does not
change when the basepoint crosses the line at infinity in the net (before this
crossing the component with basepoint may be assumed descending, and it
becomes ascending after the crossing). Also H does not change under good
Reidemeister moves. Thus H does not change under an Ω ′′4 move.

Notice that Lemma 16 is also true if in the diagram Ḋ2 presented in
Figure 28, the vertical branch of the basepoint points downwards instead of
upwards.

Fig. 29

Consider now an Ω′′′5 move. It can be obtained with a good Ω4 move
and the crossing by the basepoint of the line at infinity, presented in Figure
29 (or a similar crossing for which the vertical branch of the basepoint on
the left of Figure 29 points downwards instead of upwards). It follows from
Lemmas 3 and 16 that H does not change when the basepoint crosses the
line at infinity in the net (before this crossing the dashed part determined by
the basepoint may be assumed descending, and it becomes ascending after
the crossing). Also H does not change under good moves. Thus H does not
change under an Ω′′′5 move.

We have established that H does not change under any Reidemeister
move that does not increase the number of crossings beyond n.

4.8. Basepoints of non-simple diagrams

Proposition 9 (independence from basepoints for non-simple diagrams).

Let Ḋ1 and Ḋ2 be two non-simple based diagrams with n crossings. Suppose
that Ḋ1 and Ḋ2 differ only in the position of the basepoint. Then H(Ḋ1) =

H(Ḋ2).

Proof. First, suppose that there are some 2-gons or 1-gons in Ḋ1. No-
tice that as H does not change under any Reidemeister move that does not
increase the number of crossings beyond n, Lemmas 9–11 can be extended
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to the situation where there are no restrictions on the position of the base-
point. Using Lemma 3 and the extended versions of Lemmas 10 and 11 one
may reduce the number of crossings in Ḋ1 and Ḋ2. Thus H(Ḋ1) = H(Ḋ2)
by IH(n− 1).

It can be easily seen that, if there are no 1-gons and no 2-gons in Ḋ1,
then there has to be an arc with endpoints on the boundary circle of the
diagram that are not antipodal. Let n be the number of such arcs in Ḋ1.

The proof is by induction on n. If n = 0 then there are some 2-gons or
1-gons in Ḋ1. If there are n arcs in Ḋ1 and Ḋ2, then one arc can be removed
by using Lemma 3, the extended version of Lemma 9 and Ω5 and Ω4 moves.
Thus, by induction on n, H(Ḋ1) = H(Ḋ2).

This was the final step in the proof of the induction hypothesis IH(n).
Theorem 2 follows.

5. INDUCTIVE DEFINITION OF THE KAUFFMAN POLYNOMIAL K

The proof of Theorem 4 is similar to that of Theorem 2 above. The
differences in the proofs are as in the case of links in R3. The parts of the
proofs that are specific to the RP 3 situation are almost identical for Homfly
and Kauffman polynomials.

K is defined in a similar way to H (see Section 3). The definition is in fact
simpler because in the unoriented case there is a good notion of descending
diagram (see [9]).

The standard diagram of a standard unoriented unlink Ln is the diagram
in Figure 1 with the orientations being disregarded. Let d = (a+a−1)z−1−1.

5.1. Inductive hypothesis IH(n − 1). There is a function K de-
fined on the set of diagrams with at most n − 1 crossings, taking values
in Z[a±1, z±1, y], such that:

(1) K is invariant under those Reidemeister moves that do not increase
the number of crossings beyond n− 1.

(2) K satisfies relations (KI) and (KII).
(3) If D is the standard diagram of the standard unoriented unlink Lm,

m > 0, with at most n− 1 crossings (i.e. m(m− 1)/2 ≤ n− 1), then

K(D) = ym. Also, K( ) = d.

5.2. Diagrams with no crossings. Let D be a diagram with 0 cross-
ings. Let p be the number of its 0-homologous components andm the number
of its 1-homologous components (m is 0 or 1). Then, by definition,

(K1) K(D) = dpym.

Note that K satisfies IH(0).
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5.3. Diagrams with n ≥ 1 crossings. We assume that the inductive
hypothesis IH(n− 1) holds true.

As in the case of the polynomial H, the construction of K for diagrams
with n crossings is divided into several cases treated in the subsequent sub-
sections. In each case a diagram D with n crossings is endowed with some
extra structure (a directed basepoint or a couple of basepoints). D together

with this structure is denoted by Ḋ. A diagram α(Ḋ) is then defined; it is

obtained from Ḋ by a series of crossing changes.
The diagram α(Ḋ) has the following property: if X is one of the crossings

of Ḋ that have to be switched to obtain α(Ḋ), and Ḋ′ is obtained from Ḋ

by switching X, then α(Ḋ) = α(Ḋ′).
In the following subsections K is defined on α(Ḋ) for each case (see (K3)

to (K5)).

Suppose that K is already defined on all α(Ḋ). For a based diagram Ḋ,

denote by S(Ḋ) the set of crossings of Ḋ where Ḋ and α(Ḋ) differ. Let k be

the number of elements in S(Ḋ) and ω a (linear) ordering of S(Ḋ). Denote

by S(Ḋ, ω) the set S(Ḋ) equipped with the ordering ω.

We define K(Ḋ, ω) by induction on k. The definition depends on ω. If

k = 0 then K is already defined. Otherwise let Ḋ′ be the based diagram
obtained from Ḋ by switching the first crossing in S(Ḋ, ω); let D′′1 and D′′2
be the diagrams obtained by smoothing the same crossing in two possible
ways. Let ω′ be the ordering of all crossings of S(Ḋ′) induced by ω. Note

that there are k − 1 elements in S(Ḋ′). K(Ḋ′, ω′) is defined by induction

on k, and K(D′′1) and K(D′′2) are defined by IH(n − 1). Now K(Ḋ, ω) is

defined using relation (KI) for the first crossing in S(Ḋ, ω) with the help of

K(Ḋ′, ω′), K(D′′1) and K(D′′2). By definition,

(K2) K(Ḋ, ω) = −K(Ḋ′, ω′) + z(K(D′′1) +K(D′′2)).

5.4. Simple diagrams. The definition of a simple diagram is the same
in the oriented and unoriented cases (see Subsection 3.4). The same is true
for the definitions of based simple diagram and primary and secondary base-
points.

In the case of unoriented links, a based simple diagram Ḋ is said to be
descending if, whenever it is oriented in any way, it is descending (see end
of Section 3.4). It can be easily seen that this definition does not depend

on the orientation. For a based simple diagram Ḋ, let α(Ḋ) be the based

diagram obtained from Ḋ by the crossing changes that make it descending.
Let p be the number of 0-homologous components and m the number of

1-homologous components of Ḋ. By definition,

(K3) K(α(Ḋ)) = dpym.
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5.5. Non-simple diagrams. In the case of non-simple diagrams, a
basepoint for an unoriented link is defined as a basepoint for an oriented
link (see Section 3.5); moreover, it is endowed with an arrow giving a local
orientation at the basepoint. In the case of a basepoint which is a self-
crossing of a 1-homologous component the local orientation is given to one
of its branches. A basepoint together with an arrow is called a directed
basepoint.

The notion of a non-simple descending diagram in the oriented case
depends only on the orientation of the component with basepoint (see Sec-

tion 3.5). In the unoriented case, a non-simple based diagram Ḋ is descending
if, whenever we endow the component on which the directed basepoint lies
with the orientation given by the arrow of this basepoint, it is descending in
the oriented sense. The diagram α(Ḋ) is the based diagram obtained from

Ḋ by the crossing changes which are necessary to make it descending.
Let Ḋ be a based diagram for which the directed basepoint is on a

0-homologous component. Let D′ be obtained from Ḋ by removing this
component (if D′ is empty then K(D′) is replaced by 1 in (K4) below).
Let w be the sum of all signs at all self-crossings of the component with
basepoint in α(Ḋ), where this component is oriented arbitrarily. Then, by
definition,

(K4) K(α(Ḋ)) = dawK(D′).

Let Ḋ be a based diagram for which the directed basepoint is a self-
crossing of a 1-homologous component. Let D′ be obtained from Ḋ by re-
moving the dashed part determined by the basepoint. Endowing the com-
ponent with basepoint with an arbitrary orientation, let w be the sum of all
signs at all self-crossings of the dashed part determined by the basepoint of
α(Ḋ), including the basepoint (which is a self-crossing). Then, by definition,

(K5) K(α(Ḋ)) = awK(D′).

6. INDEPENDENCE FROM CHOICES FOR K,

INVARIANCE UNDER REIDEMEISTER MOVES

6.1. Relations (KI) and (KII)

Lemma 17 (independence from ordering). Let Ḋ be a based diagram with

n crossings. Let ω and ω′ be two orderings of the set of crossings of Ḋ that
are different in Ḋ and α(Ḋ). Then K(Ḋ, ω) = K(Ḋ, ω′).

Proof. By induction on the number of crossing differences between Ḋ
and α(Ḋ) it is sufficient to prove that K does not change if one switches the
first two crossings according to ω, say C1 and C2.
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Denote by σiḊ the diagram obtained from Ḋ by switching Ci (i = 1, 2).

Denote by µiḊ and νiḊ the diagrams obtained from Ḋ by smoothing Ci
(i = 1, 2) in two different ways. Here it does not matter which smoothing is

µiḊ and which is νiḊ. First consider the sequence in which C1 is switched
before C2:

K(Ḋ, ω) = −K(σ1Ḋ) + zK(µ1Ḋ) + zK(ν1Ḋ)

= K(σ2σ1Ḋ)− zK(µ2σ1Ḋ)− zK(ν2σ1Ḋ) + zK(µ1Ḋ) + zK(ν1Ḋ).

Switching C2 before C1 yields

K(Ḋ, ω′) = −K(σ2Ḋ) + zK(µ2Ḋ) + zK(ν2Ḋ)

= K(σ1σ2Ḋ)− zK(µ1σ2Ḋ)− zK(ν1σ2Ḋ) + zK(µ2Ḋ) + zK(ν2Ḋ).

Now,

K(Ḋ, ω)−K(Ḋ, ω′) = z(−K(µ2σ1Ḋ)−K(µ2Ḋ)−K(ν2σ1Ḋ)−K(ν2Ḋ)

+K(µ1Ḋ) +K(µ1σ2Ḋ) +K(ν1Ḋ) +K(ν1σ2Ḋ)).

By IH(n− 1), one can use (KI) for diagrams with n− 1 crossings, so

K(Ḋ, ω)−K(Ḋ, ω′)

= z2(−K(µ2µ1Ḋ)−K(µ2ν1Ḋ)−K(ν2µ1Ḋ)−K(ν2ν1Ḋ)

+K(µ1µ2Ḋ) +K(µ1ν2Ḋ) +K(ν1µ2Ḋ) +K(ν1ν2Ḋ)) = 0.

Lemma 2 can be easily modified to the case of K:

Lemma 18. Let D be a diagram with at most n − 1 crossings and let
X be a self-crossing of a component b of D. Suppose that for some fixed
orientation of b, the arc distance from the upper to the lower branch of X
is even and D is descending from the upper to the lower branch of X. Let b′

be the part of b that is covered if one travels in the net from the upper to the
lower branch of X, according to the fixed orientation of b. Let D′ be obtained
from D by erasing b′. Let w be the sum of the signs of the self-crossings of
b′ (including X). Then K(D) = awK(D′).

In the same way as for H, from the preceding lemma and Lemma 17
follows:

Proposition 10 (Kauffman relations). Relation (KII) holds for K
whenever the diagram on the left has n crossings. Relation (KI) holds for K
whenever the two based diagrams on the left have n crossings and have the
same basepoint(s).

6.2. Basepoints for 0-homologous components. Proposition 5 for
H is a consequence of the inductive hypothesis IH(n − 1) only. It can be
easily modified to the case of K:
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Proposition 11 (shortening of diagrams). Let D be a diagram with k
crossings. A part of D is shown on the left of Figure 30. Suppose that , if
the component of D which contains P and Q is oriented in such a way that
one can travel in the net from P to Q while covering the dashed part on
the left of Figure 30, then the arc distance from P to Q is even and D is
descending from P to Q. Let D′ be obtained from D by removing the dashed
part and joining P and Q with a segment (a part of D′ is shown on the right
of Figure 30). Let w be the sum of the signs at all crossings for which both
branches are in the dashed part. If k ≤ n− 1 then K(D) = awK(D′).

descending

D D’

P Q P Qa
w

Fig. 30

Lemma 19 (moving the basepoint). Suppose that P is a directed base-
point lying on a 0-homologous component b of a based diagram D with n
crossings and P is on an arc c. Then K does not change if P moves on c.

Proof. It is sufficient to prove that K is unchanged if the basepoint
passes through a crossing as in Figure 31.

P
P’

D D’
. .

b
1
b

b
1
a

g g

Fig. 31

Notice that, as relation (KI) holds for diagrams with n crossings, if K
does not change for some D when moving the basepoint, then it does not
change for any diagram obtained from D by some crossing changes (by

IH(n− 1)). We may therefore suppose that the based diagram Ḋ on the left
of Figure 31 is descending. Starting from P and traveling on the net of D
according to the orientation given by the arrow of the basepoint, denote the
successive arcs encountered by b1, . . . , bl. Furthermore denote the part of b1

that comes after P by ba1 and the remaining part by bb1. Just as in the proof
of Lemma 4 one has

b2 ≤ b4 ≤ b6 ≤ · · · ≤ bb1 ≤ · · · ≤ b5 ≤ b3 ≤ ba1,
where bi ≤ bj means that bi is below bj .
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Now Ḋ′ may be descending or not. If it is descending then K(Ḋ) =

K(Ḋ′). It is not descending if and only if the branch g (see Figure 31) is a
part of ba1, bb1 or bk with k odd.

Suppose that Ḋ′ is not descending. Notice that it becomes descending if
one switches the crossing in Figure 31. Let σḊ′, ηḊ′ and η2Ḋ

′ be the dia-
grams obtained from Ḋ′ by doing respectively the switching at this crossing,
the smoothing at this crossing respecting any orientation of b, and the other
possible smoothing at the crossing. Note that in ηḊ′, b becomes a link with
two 0-homologous components b1 and b2, where b1 contains P ′ and b2 con-
tains P (P and P ′ can naturally be viewed in ηḊ′). Notice that ηḊ′ is
descending with respect to P ′.

Denote by Db the diagram obtained from Ḋ′ by removing b, which is the
same as the diagram obtained from ηḊ′ by removing b1 and b2. Let ε be the
sign of the crossing in Figure 31 and w the sum of the signs of the crossings
for which both branches are in b.

Denote by Db1 the diagram obtained from ηḊ′ by removing b1. As Db1

is descending with respect to P , one has K(ηḊ′) = d2aw−εK(Db).

In η2Ḋ
′, there is a single 0-homologous component coming from b. It is

not descending, as part of it is descending and the other part is ascend-
ing. One uses Proposition 11 (η2Ḋ

′ has n − 1 crossings) to eliminate the
descending part. K of the remaining ascending part can be computed by
changing the direction of the directed basepoint P so that this part be-
comes descending (by IH(n − 1), K does not depend on the choice of the

directed basepoint). One gets K(η2Ḋ
′) = daw−εK(Db).

Then

K(Ḋ) = dawH(Db),

K(Ḋ′) = −K(σḊ′) + z(K(ηḊ′) +K(η2Ḋ
′))

= −daw−2εK(Db) + z(d2aw−εK(Db) + daw−εK(Db))

= −daw−2εK(Db) + zd(daw−ε + aw−ε)K(Db)

= d(−aw−2ε + z(aw−ε(a+ a−1)z−1 − aw−ε + aw−ε))K(Db)

= dawK(Db)

as d = (a+ a−1)z−1 − 1.

Thus K(Ḋ) = K(Ḋ′).

6.3. Invariance of K under good and bad Reidemeister moves.
Independence from basepoints. The invariance of K under good Rei-
demeister moves is proved similarly to the invariance of H. The calculations
that have to be done are the same as in the case of the Kauffman polyno-
mial for classical links [7]. From this it follows, as in the case of H, that
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Fig. 32

K is independent of basepoints for simple diagrams (this is Proposition 3
modified to K).

K is also unchanged under bad Reidemeister moves. An example of cal-
culation is shown in Figure 32. In this figure the arc distance from the
basepoint to the middle branch involved in the move is even.

For K, the independence from directed basepoints for non-simple dia-
grams is proven exactly as for H in Proposition 9.

We have established:

Proposition 12 (invariance under Reidemeister moves, independence
from basepoints). K does not change under any Reidemeister move that
involves diagrams with at most n crossings. For diagrams with n crossings,
K does not depend on basepoints.

Thus, assuming that K satisfies IH(n−1), we have shown that it satisfies
IH(n). Theorem 4 follows.

7. AN APPLICATION: DISTANCE FROM AFFINITY

The distance from affinity of a link in RP 3 is, by definition, the minimum
over all its diagrams of the number of times the line at infinity is intersected
in the net. For example, a link is affine if and only if its distance from affinity
is equal to 0.
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The Homfly and Kauffman polynomials can be used to get a lower bound
for the distance from affinity of a link:

Proposition 13. Let L be a framed oriented link and suppose that H(L)
has degree n in z. Then the distance from affinity of L is at least n. Let L
be a framed unoriented link and suppose that K(L) has degree n in y. Then
the distance from affinity of L is at least n.

Proof. The proof is the same for H and K. Suppose that L is a framed
oriented link and that H(L) has degree n in z. Suppose that there is a
diagram of L in which the line at infinity is intersected in the net less than
n times. Then, computing H of this diagram does not give rise to terms
with degree in z greater than or equal to n, by definition of H. But in that
case H(L) cannot have degree n in z.

The proposition above can be used to show that, for any n ∈ N ∪ {0},
there exist knots with distance from affinity equal to n. An example for
n = 5 is shown in Figure 33. By definition, the distance from affinity of this
knot is at most 5. To see that it is at least 5, use the Homfly skein relation
(HI) successively on the 4 crossings marked with a point in this figure, and
get H(L5) with a factor x4(s − s−1)4 from the smoothings. For the links
coming from crossing changes that appear when using (HI), it can be easily
seen that their distance from affinity is at most 3 so, in H, they do not
contribute to the term of degree 5 in z.

1

2

3

4

Fig. 33. A knot with distance from affinity equal to 5

An interesting question is whether H or K can detect exactly the dis-
tance from affinity of any link.
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