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Elementary moves for higher dimensional knots

by

Dennis Roseman (Iowa City, IA)

Abstract. For smooth knottings of compact (not necessarily orientable) n-dimensio-
nal manifolds in Rn+2 (or Sn+2 ), we generalize the notion of knot moves to higher dimen-
sions. This reproves and generalizes the Reidemeister moves of classical knot theory. We
show that for any dimension there is a finite set of elementary isotopies, called moves, so
that any isotopy is equivalent to a finite sequence of these moves.

1. Introduction. We consider (codimension two) smooth embeddings
of a closed n-dimensional manifoldMn into Rn+2 or Sn+2. Most of our results
hold whether or not Mn is orientable. Here Rk refers to the k-dimensional
Euclidean space and Sk to the standard k-dimensional sphere, each with
the standard differentiable structure. For any k, π : Rk → Rk−1 denotes the
standard projection onto the first k − 1 coordinates.

Most commonly, one refers to a knot as an ambient isotopy class of an
embedding; however, the word “knot” is also used to refer to an embed-
ding which represents this class—or sometimes just the image of such an
embedding. We adopt the following terminology:

Definition 1.1. A smooth codimension two embedding will be called
a (smooth) knotting and the corresponding ambient isotopy class will be
called a knot .

The smooth isotopy extension theorem (see, for example, [HR]) implies
that a smooth isotopy gives rise to an ambient isotopy and we often use this
without explicit mention.

Knotted circles were first studied by drawing projections of knots and
studying changes called knot moves one could make in such projections
which would yield the same knot. These ideas were (and still are) useful in
generating examples and proving theorems (see [GR] for the early history of
knot theory). In this paper we generalize these ideas to higher dimensions
and discuss some examples.
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We show that in all dimensions two projections of codimension two knot-
tings correspond to the same knot if and only if one can change from one
projection to the other by means of a finite collection of simple isotopies
called moves.

Basic definitions from differentiable topology are found in [HR] and [NB].
Definitions and theorems on the projection of higher dimensional knots

are to be found in [RS1]. In [RS2] we describe in detail the knot moves
for two-manifolds in four-space, and consider the case of three-manifolds in
five-space. These two papers together with the current one constituted the
content of an unpublished monograph “Projections and Moves of Higher
Dimensional Knots” referred to at the end of [RS1]. The author is very
grateful to Józef Przytycki for his encouragement of these three publications.

2. Isotopies and knot moves. In Reidemeister’s book [RD], it is
shown that given a projection of a knot and an isotopy of it to another
projection, the isotopy can be expressed using a finite sequence of moves
Ω1, Ω2, Ω3, or their inverses (see Figure 1). As is traditional, Figure 1
shows only parts of the isotopy which change the double point structure
of the projection in an essential way. We generalize this result to higher
dimensional knots.

1 Ω ΩΩ 2 3

Fig. 1. The classical Reidemeister moves. Each of the above three equivalences is repre-
sented by only one possible choice of crossings.

The knot moves of Reidemeister are traditionally defined only by ref-
erence to a drawing rather than giving a formal definition of the concept
of a knot move. Of course there is little need for a formal definition which
has only three basic examples and whose nature can be easily and clearly
expressed by very simple drawings with no need for other formalism. For
higher dimensions however it is not as easy to communicate the nature of
moves entirely by graphical means. In addition, the number of move types
increases as one goes up in dimension. Thus we clearly need some more
precise terminology.

Definition 2.1. Let Y = {Yi}ki=1 be a disjoint collection of n-disks and
let F : Y × I → (B × R1)× I be a proper isotopy of Y in B × R1, where B
is an (n+ 1)-ball. Then we say F is a local move.
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For example, the Reidemeister moves Ω1, Ω2, and Ω3 are local moves
of (respectively) one, two and three proper 1-disks in B × R1, where B is a
2-disk.

An isotopy which, in the projection, moves subdisks of the embedded
manifold within a ball will be called a move. To make this more precise
we identify Rn+2 as Rn+1 × R1 and say that a rod is a subset C ⊆ Rn+2

corresponding to B × R1, where B ⊆ Rn+1 is an (n + 1)-ball. So B is the
“cross-section of the rod”.

Definition 2.2. An isotopy F : Mn × I → Rn+2 × I is a move with
respect to C if there is a rod C such that F−1(C × I) = Y × I, where Y is
a union of disjoint n-disks {Yi}ki=1 in M and F |Y × I is a local move.

Next, we discuss equivalence of isotopies. Let E(Mn,Rn+2) denote the
space of all smooth embeddings of Mn in Rn+2. A smooth isotopy of Mn

in Rn+2 corresponds to a smooth path in E(Mn,Rn+2).

Definition 2.3. Two isotopies are equivalent if the corresponding paths
in E(Mn,Rn+2) are smoothly path-homotopic.

We are interested in a finer equivalence—those isotopies whose projec-
tions look the same.

Definition 2.4. Let f and g be two knottings of M in Rn+2. We say
f and g project equivalently if there is a homeomorphism h : Rn+1 → Rn+1

such that π ◦ g = h ◦ π ◦ f .

Note that h must send the crossing set of the knotting f homeomorphi-
cally to the crossing set of the knotting g. (The notion of crossing set is
defined in [RS1] and also in Definition 4.1.)

Definition 2.5. Two isotopies ft and gt project equivalently if there is
an isotopy ht of Rn+1 such that π ◦ gt = ht ◦ π ◦ ft for all t ∈ I.

So, in particular, two isotopies project equivalently if they change the
crossing sets in the same way. If two isotopies project equivalently, they are
not necessarily equivalent, for example, we have π ◦ f0 = π ◦ g0 and there
is no requirement that f0 and g0 are isotopic. Figure 2 shows two isotopies
of a pair of circles in R3 which are equivalent isotopies but do not project
equivalently. Figure 3 shows three inequivalent isotopies which do project
equivalently.

Definition 2.6. An isotopy projects without changes if there is an iso-
topy ht of Rn+1 so that π ◦ ft = ht ◦ π ◦ f0 for all t ∈ I.

Note that in particular, the projection of this isotopy ht corresponds to
an isotopy of M∗ = f0(M) in Rn+1. Thus neither of the isotopies in Figure 2
or 3 projects without changes.
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Fig. 2. f and g are equivalent isotopies, but in projection they are not the same. Note
that for the projection of f1/2 we have two crossing points while g1/2 has four.

(a)

(c)

(b)

Fig. 3. Indicated are three isotopies whose projections are identical. Isotopies (a) and (c)
are equivalent and project equivalently. Isotopy (b) is not equivalent to (a) or (c).

Finally, let µ be a move with respect to C, where µ : Mn× I → Rn+2× I
and Y and B are as in Definitions 2.1 and 2.2.

Definition 2.7. Suppose m : Y ×I → (B×R1)×I is a given local move.
Then we say µ projects equivalently with m if µ|Y × I projects equivalently

with m and µ|(Mn − Y )× I projects without changes.

Remark 2.8. One effect of these definitions is “to ignore height rela-
tions for moves”. That is, for example, the isotopies (a) and (c) of Figure 3
correspond to the same move. The advantage of this usage is to make smaller
the number of moves.
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Proposition 2.9. For each dimension n, there is a finite set Mn of
moves such that if f0 and f1 are any two codimension two knottings Mn ⊆
Rn+2 in general position with respect to projection, and ft, where t ∈ I, is
a smooth isotopy between f0 and f1, then f is equivalent to an isotopy gt
which is a concatenation of isotopies gt = ν0 ∗ µ1 ∗ ν1 ∗ µ2 ∗ · · · ∗ µk ∗ νk,
where each µi is a move which projects equivalently with one of the elements
of Mn and each νi is an isotopy which projects without changes.

These knot moves will be described in Section 6. We define:

Definition 2.10. The set Mn is called the set of standard local knot
moves in dimension n.

Remark 2.11. When n = 1, this is just a form of the statement that
“any isotopy can be obtained by a sequence of classical knot moves.” In
[RD] two additional moves ∆π1 and ∆π2 are needed. In our terminology,
these moves project without changes and correspond to the νj .

Our proof is somewhat technical. The reader is advised, on first reading,
to consider Corollary 8.1 and Figure 4, and perhaps Corollary 8.2 for guides
to the multidimensional situation.

x*

x*

x*

(a) (c)(b)

Fig. 4. Here x∗ denotes a critical point of the crossing set of the projection of the trace
of an isotopy; (a) corresponds to Ω2, (b) to Ω1 and (c) to Ω3.

3. Outline of main theorem. Here is an outline of the proof of Propo-
sition 2.9.

1. View the isotopy ft as a map F : Mn × I → Rn+2 × I. This is a
codimension two knotting.

2. Put it in general position with respect to the projection π′ : Rn+2× I
→ Rn+1 × I, where π′ = π × IdI—these concepts are defined in Sec-
tion 4.

3. Then we consider the corresponding double point set in M × I and
arrange so that “the I coordinate of this immersion is a Morse func-
tion,” as is the I coordinate on the branch set, and the I coordinate
of crossing sets of these.



296 D. Roseman

In order to have these knot moves occur in a sequence, rather than
simultaneously, we alter our isotopy slightly so that each critical point
has a distinct critical value; such an isotopy we refer to as “arranged
for moves”—this notion is discussed in Section 5. The argument is a
standard sort of argument about finding a “generic” map.

4. We classify the various possible types of critical point situations in
Section 6 based on indices at these points.

5. The Morse Lemma says that a nondegenerate critical point after a
change of coordinates can be modeled by a quadratic function. In
Section 7 we use this to model neighborhoods of critical points to
look like unions of graphs of quadratic coordinate functions. Thus we
get geometric models near these critical points allowing a geometric
picture of the knot moves.

Our technical concerns are basically two. Firstly, our definition of
“generic” is lengthy, so we have several things to check. Secondly, we need
to be careful that when we change our map F we end up with an isotopy
and not simply a nice cobordism.

4. General position. Let f0 be a knotting of Mn in Rn+2 and suppose
ft is an isotopy of f0. Then we obtain an embedding F : M × I → Rn+2× I
defined by F (x, t) = (ft(x), t). We view F as codimension two knotting by
extending our consideration of knottings to include proper embeddings. For
an isotopy ft we may assume without loss of generality that for some ε > 0,
ft = f0 if 0 ≤ t ≤ ε and ft = f1 if 1 − ε ≤ t ≤ 1. Thus, in particular,
F is a proper embedding. We will assume without loss of generality that all
isotopies have this property.

We wish to speak of a general position with respect to a projection for an
isotopy. For this, we recall some definitions from [RS1]. Examples found in
[RS1] and [RS2] may be helpful in sorting out these definitions and notations.

Definition 4.1. Let f : Mn → Rn+2 be a smooth knotting. The projec-
tion of the knotting is the set π ◦ f(M), which we denote M ∗. In general, if
A ⊆M , then A∗ denotes π ◦ f(A).

The crossing set of the knotting is the closure in M ∗ of the set of all
x∗ ∈ M∗ such that (f ◦ π)−1(x∗) contains two or more points. We denote
this set by D∗.

The branch set of f , denoted by B, consists of all x ∈M such that π ◦ f
is not an immersion at x.

The double point set of M is (π ◦ f)−1(D∗) and is denoted by D.

The double point set may contain points of higher order than two, as
noted in Definition 4.6.
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Definition 4.2. Let f : Mn → Rn+2 be a smooth knotting with branch
set B and double point set D. We say f is in general position with respect
to the projection π if

1. B is a closed (n− 2)-dimensional submanifold of Mn.
2. D is the union of immersed closed (n− 1)-dimensional submanifolds

of Mn with normal crossings. Denote the set of points of D where
normal crossings occur as N and call this the self-crossing set of D.

3. B is a submanifold of D and for any b0 ∈ B there is a small (n− 1)-
dimensional open subdisk N with b0 ∈ N , N ⊆ D such that N − B
has two components N0 and N1, each of which is an (n−1)-disk which
is embedded by the restriction of π ◦ f but with N ∗0 = N∗1 .

4. B meets N transversely.
5. (π ◦ f)|B is an immersion of B with normal crossings.
6. The crossing set of B∗ is transverse to the crossing set of M ∗ .

The simplest example for n = 2 of a projection of a branch point is
shown in Figure 4(b). Condition 3 above says that at a neighborhood of a
branch point the projection of a neighborhood of a branch point looks like
the cartesian product of that model and Rn−2.

Note that the projection of the double point set is the crossing set. For
the knottings in general position with respect to projection we have B ⊆ D.
We also adopt similar definitions and notations for the projection π ′.

Also in [RS1] we give examples and prove the following general position
result.

Proposition 4.3 (General position for knottings). Given a knotting
F : Mn → Rn+2 we may isotope F to a map which is in general position
with respect to projection.

We can now define what it means for an isotopy F to be in general
position with respect to the projection π′. It is just the previous definition
for general position of a codimension two knotting except that B and D may
have nonempty boundary. Also the manifolds B, D as well as the double
point set of B and crossing set of D are proper submanifolds. In addition,
at points b0 ∈ ∂B, we find a neighborhood N of b0 homeomorphic to a
half-open disk (as in condition 3 of the definition of general position with
respect to projection).

Proposition 4.4. Any isotopy F : Mn × I → Rn+2 × I is equivalent to
an isotopy G which is in general position with respect to projection. Fur-
thermore, if F |Mn × {0} and F |Mn × {1} are in general position with
respect to projection, we may find such a G which is equivalent to F and
with G|Mn × {0} = F |Mn × {0} and G|Mn × {1} = F |Mn × {1}.
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Proof. The proof proceeds much like that for Theorem 3.1 of [RS1]. We
find a knotting F ′ of Mn × I close to F which is in general position with
respect to the projection π′. The fact that Mn × I, Rn+2 × I and Rn+1 × I
are manifolds with boundary is not a problem. However we must be careful
and make sure that F ′ is level preserving and thus an isotopy. This is done
by the following proposition which shows that a map of Mn × I which is
close to an isotopy is an isotopy.

Proposition 4.5. Let F : Mn×I → Rn+2×I be an isotopy. Then there
is a number ε > 0 such that if G : Mn×I → Rn+2×I is a proper embedding
with δ(F,G) < ε (where δ denotes the C ′ metric), then G is an isotopy. If
F |Mn × {0} = G|Mn × {0} and F |Mn × {1} = G|Mn × {1}, then G is
equivalent to F .

Proof. Let p : Rn+2 × I → I be projection. Consider p ◦ F . This is reg-
ular at each point of Mn × I since the partial derivative in the I direction
is never zero. So there is an ε > 0 such that for δ(F,G) < ε, G is also
regular at each point of Mn × I. Thus each set (G ◦ p)−1(t) is a manifold
diffeomorphic to Mn, giving a product structure to Mn × I (for example,
think of G ◦ p as a Morse function with no critical points and refer to
Milnor [ML]).

We now suppose that F |Mn × {0} and F |Mn × {1} were in general po-
sition with respect to projection and consider the second assertion of the
lemma. Since we may assume the isotopy is constant near 0 and near 1,
we may assume the G we obtain above agrees with F near 0 and near 1.
A relative version of Lemma 3.2 of [RS1] shows that G is path homotopic
to F in the space of embeddings of triples (Mn× I,Mn×{0},Mn×{1})→
(Rn+2× I,Rn+2×{0},Rn+2×{1}) by a path α(t). Since we may make this
path as small as we wish, we may make sure that for each t, the embedding
α(t) satisfies the conditions of Proposition 4.5. Thus αt is a one-parameter
family of isotopies from F to G.

To have an isotopy F in general position with respect to projection is
not sufficient for our purposes. We also want to make requirements on the
double point set in the I direction in Mn × I. It is easiest to describe this
using the crossing set.

We need some more terminology for certain sets (see [RS1] for more in-
formation). Roughly speaking, “D and D∗ are unions of (n−1)-dimensional
manifolds and π ◦ φ|D is basically a two-to-one map.” The following termi-
nology makes this more precise.

Definition 4.6. Let F : Mn → Rn+2 be a knotting in general position
with respect to projection π . Define T = {x ∈Mn | (π ◦ F )−1(x∗) contains
three points or more}. We call T the triple point set . Let P = D− (B∪T ).
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We call P the set of pure double points—P is the set such that π ◦ F is
exactly two-to-one.

It follows from the definition of general position that P is an open dense
(n − 1)-submanifold of D. As usual, we let P ∗ = (π ◦ F )(P ). Then the
statement, “D∗ is the union of immersed (n − 1)-dimensional manifolds,”
can be expressed as follows. There is a compact (n−1)-dimensional manifold
Γ and an immersion γ : Γ → Rn+1 such that γ(Γ ) = D∗ and γ|γ−1(P ∗) is
one-to-one. Let Γi be the components of Γ , let γi = γ|Γi and let D∗i =
γ(Γi). Similarly let ∆ be an (n − 1)-dimensional manifold with δ : ∆ → M
an immersion such that δ(∆) = D and δ|δ−1(P ) is one-to-one. Let Di =
(π ◦F )−1(D∗i ) and let ∆i denote δ−1(Di). There is a unique map α : ∆→ Γ
such that the following diagram commutes:

∆
α−→ Γyδ

yγ
D

π−→ D∗

Also note that α|∆− δ−1(B) is a two-to-one map onto Γ − γ−1(B∗).
Some examples such as Figure 7 of [RS1] might clarify the above ideas

and notations.

Definition 4.7. Let h : Rn+1 → R1 be projection on the last coor-
dinate; we refer to h as the height function. Suppose z ∈ Γ with α−1(z)

consisting of two points, x̃ and x̃′. Then we call these points points paired
by projection.

Tracing through our definitions we can verify that x = δ(x̃) and x′ =

δ(x̃′) are distinct points inM . Since F is a knotting, we must have h(F (x)) 6=
h(F (x′)).

Definition 4.8. If h(F (x)) > h(F (x′)) we say that x̃ is an over point .
Otherwise x̃ is an under point . Similarly we also say that x is an over point
and x′ is an under point .

In [RS1] the following was shown:

Proposition 4.9. If ∂Γi = ∅, then ∆i has two components ∆+
i and ∆−i ,

where ∆+
i is a set of over points and ∆−i is a set of corresponding under

points, with π ◦ F ◦ δ(∆+
i ) = π ◦ F ◦ δ(∆−i ) = D∗i .

If ∂Γi 6= ∅ then ∆i − δ−1(B) has two components ∆+
i and ∆−i , where

∆+
i is a set of over points and ∆−i is a set of corresponding under points

such that π ◦ F ◦ δ(∆+
i ) = π ◦ F ◦ δ(∆−i ) = D∗i .

In either case, we let D+
i = δ(∆+

i ) and D−i = δ(∆−i ).
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5. Arranging for moves. We may extend the definitions of Di, D
+
i ,

D−i , Bi, Γi, δ, and γ to proper knottings. In particular we have in mind the
trace of an isotopy M × I → Rn+2 × I which is in general position with
respect to projection p : Rn+2 × I → I.

Definition 5.1. Let q be a proper immersion of a manifold Q in
Rn+1 × I. We say that q(Q) is immersed Morse style if p ◦ q is a Morse
function.

Suppose F is an isotopy in general position with respect to projection.
We define Q(0) to be the crossing set of B∗, Q(1) = B∗. For k > 1, Q(k)

is the closure of the subset of D∗ such that π′ ◦ F is at least k-to-one. In
particular, Q(2) consists of D.

Also, Q(3) corresponds to:

• the triple points of M ∗;
• the intersection of B∗−(crossing set of B∗) and the crossing set of D∗;
• the intersection of the crossing set of B∗ and D− (crossing set of D∗).

In the cases where n ≤ 3, B∗ is an immersed submanifold having normal
crossings. This implies that B∗ has empty self-crossing set. When n = 3,
B∗ will be a circle or union of circles in a 3-manifold with no self-intersection.
However self-crossings of B∗ are possible if n ≤ 4. For example, suppose
n = 4; we are considering the projection into R5 of a 4-manifold M4 knot-
ted in R6. The crossing set D∗ will be a union of immersed 3-manifolds.
The self-intersection set T ∗ of the crossing set (generically triple points of
the projection) will be 2-dimensional. If we have B∗ 6= ∅ then B∗ will cor-
respond to the boundaries of components of these crossing set manifolds.
So B∗ will be an immersed 2-manifold in a 4-manifold and might have
generic points of self-intersection. In this case B∗ might intersect D∗ trans-
versely in a 1-dimensional set and might intersect T ∗ in a finite number of
points.

In any case, each Q(i) is the union of a finite number of immersed mani-

folds Q
(i)
j , where for a fixed i these manifolds may be of different dimensions.

For k ≥ 2 let Q
(k)
# = Q(k) − Q(k−1). We note that Q

(k)
# is open and dense

in Q(k).
In the definition below we make the convention that any real-valued

function defined on a zero-dimensional manifold is a Morse function; further-
more, every such point will be considered to be a critical point of index 0. In
addition, if f is a real-valued function defined on Q with ∂Q 6= 0, we say f is
Morse if f |Q− ∂Q and f |∂Q are Morse and these have no common critical
points (that is, if x ∈ ∂Q is a critical point of f |∂Q then the derivative of f
in the direction normal to ∂Q is nonzero).
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Definition 5.2. We say that F is arranged for moves if

1. F is in general position with respect to projection.

2. For all i and j, Q
(i)
j is immersed Morse style.

3. The critical values of all the Morse functions involved with condition
2 above are all distinct with none equal to zero or one.

4. For i ≥ 2, all critical points of Q(i) lie in Q
(i)
# .

Definition 5.3. We call the critical points of the Morse functions in-
volved in condition 2 of Definition 5 elementary singularities; the index of
the elementary singularity is the index of the critical point.

Being arranged for moves is not at all special—in fact it is generic:

Proposition 5.4. Given any isotopy F : Mn×I → Rn+2×I in general
position with respect to projection, we may find an equivalent isotopy G
which is arranged for moves.

Proof. It is convenient to take advantage of the natural embedding
ν : Rn+2 × I → Rn+3. Our proof will be based on the proof of existence
of Morse functions as found in [NB], namely, if P is a submanifold of Rm
and f : P → R1 a smooth function, then f + ` is a Morse function on P for
most linear functions ` : Rm → R1. Our technical problems here are that the
manifolds Q(i) have possibly nonempty boundary, and they are immersed,
not necessarily embedded.

Let Q =
⋃
iQ

(i), q∗ ∈ Q ∩ (Rn+1 × (0, 1)), and let N be a small open
ball in Rn+2 × I containing q∗. Then f(Mn × I) ∩ N looks like the union
of k sets {Wi}ki=1 so that each Wi is an (n + 1)-dimensional disk or a half-
disk, with the collection in general position. We wish to describe the set on
which singularities are allowed to occur—this excludes points at the half-
disks not on the boundary and includes all possible intersections of disks
and boundaries of half-disks. We next define {W ′i}k

′
i=1 to be the union of

{Wi}ki=1 together with all boundary n-disks of those Wi (if any) which are
half-disks. Let {Yj}sj=1 be the union of {W ′i}ki=1 and the collection of sets

obtained by intersecting two or more of the {W ′i}ki=1.
Now consider some Yj0 and suppose it is an embedded disk of dimen-

sion r. Viewing Yj0 ⊆ Rn+3 we may assume this embedding is given by
(φ1(x), . . . , φn+3(x)), where x ∈ Dr.

The map p : Rn+2 × I → I now corresponds to φn+3(x). As in [NB], for
almost all ~a ∈ Rn+3, ~a = (a1, . . . , an+3), the function

φ
(j0)
n+3(x) = φn+3(x) + a1φ1(x) + a2φ2(x) + · · ·+ an+3φn+3(x)

is Morse. It is easy to see that for almost all ~a ∈ Rn+3, φ
(j0)
n+3(x) is Morse

with all critical values distinct. Furthermore, since Q
(i)
# is open and dense
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in Q(i) we may assume that these critical points, if they are critical points

of Q(i), correspond to points of Q
(i)
# . Since there are only finitely many Yj,

it follows that for almost all ~a ∈ Rn+3 we have all φ
(j)
n+3(x) Morse functions

with all critical points having distinct critical values.
Recall our assumption that the isotopy F is constant within some ε

of 0 or 1; we wish our new isotopy G to have this property also. Let
U = Mn × (ε/2, 1 − ε/2) and U ′ = Mn × ([0, ε) ∪ (1 − ε, 1]). Consider
ν◦F : Mn×I → Rn+3; suppose ν◦F (x) = (f1(x), . . . , fn+3(x)), here fn+3(x)
corresponds to the projection p. Suppose ~a ∈ Rn+3, and let f ′n+3(x) =
fn+3(x) + a1f1(x) + · · · + an+3φn+3(x). Then by using a finite cover of
N ∪ F (Mn × I) we can see that for almost all ~a ∈ Rn+3, f ′n+3(x) will
restrict to a Morse function on Q with all critical values distinct, and with

critical points of Q(i) belonging to Q
(i)
# .

To obtain our isotopy G we proceed as follows. Choose an ~a ∈ Rn+3

close to (0, 0, . . . , 0, 1), thus f ′n+3(x) is close to fn+3(x), and the function

F ′ : Mn × I → Rn+3 defined by F ′(x) = (f1(x), . . . , fn+2(x), f ′n+3(x)) is
close to F . So F is an embedding in general position with respect to pro-

jection. Furthermore, we should choose ~a small enough so that F ′(U) ⊆
ν(Rn+2×(0, 1)). In the usual way we can define G by patching together F |U
and F |U ′ by a smooth partition of unity subordinate to the cover {U,U ′}.
By Proposition 4.4, G is an isotopy equivalent to F . By using reasonable
care in our partition of unity, we introduce no additional critical points on
Q and thus we have the desired isotopy.

Remark 5.5. We defined our notion of arranged for moves in terms
of the crossing set D∗ of the map F : Mn × I → Rn+2 × I. Let us con-
sider the corresponding double point set D. Of course p ◦ (F |D) is a Morse
function on D. In D − B it is clear that the singularities of the Morse
function are just like those on D∗ except there will be twice as many.
However on points of B, since there is a “fold” along B, we note that
if b∗ is a critical point of B∗ then it is not (by our definition) a criti-
cal point of D∗, but that b must be a critical point of D (since as we
can see from Morin’s [MR] local coordinates about b, a small curve in D
transverse to B at b must either have a local minimum or a local maxi-
mum at b).

6. Listing the knot moves. We are now ready to describe a standard
setMn of moves for each dimension. Fix a dimension n and suppose we are
given an isotopy F : Mn × I → Rn+2 × I which is arranged for moves. This
gives a sequence of elementary singularities. Each singularity will correspond
to a standard local knot move in our collectionMn.
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In the notation which follows, we consider three general types of points:

1. branch type: critical points of B∗ and self-crossing points of B∗ for
which we use the letter b;

2. crossing type: critical points of D∗ and the crossing set of D∗ which
do not belong to B∗ for which we use the letter c;

3. mixed type: critical points which are in the crossing set of D∗ and are
in B∗, a “mixed” type for which we use the letter m.

The first collection of branch type points is denoted {S(b, k, p, q)}. If
x∗ ∈ D∗ is such a singular point, where D∗ is the crossing set of F : Mn×I →
Rn+1 × I, let k denote the number of points of F−1(x∗). In our case the
branch point set of F , since it is of codimension 2 in Rn+1 × I, will be of
dimension n− 1. If in projection this branch set intersects itself generically,
the self-intersection set will have dimension n − 4. It follows that 1 ≤ k
≤ n − 2. The integer p is the index of the singularity. The integer q has
range 0 ≤ q ≤ k and might be called transverse index of this critical point.
This is defined as follows. If x ∈ B consider a curve δ in D transverse to
B (recall that B has codimension one in D) so that δ∗ is, except for the
point x, the two-to-one image of δ. In the I direction, the image of this
curve has a local maximum or a local minimum at b∗. Now suppose b∗ is a
k-fold point of B∗; then we have k such curves to consider. The number q is
the number of those curves for which we have a local maximum. Of course,
it follows that k − q of the curves have a local minimum.

Consider S(b, 1, 0, 1), for example. The symbols inside the parentheses
inform us that we have an elementary singularity x∗ with regard to the I
coordinate:

1. x∗ ∈ B∗.
2. x∗ is not in the crossing set of B∗.
3. B has a local minimum at x.
4. For a curve δ at x in D transverse to B, we have a local maximum.

Similarly for a singularity x∗ of type S(b, 2, 1, 1):

1. x∗ ∈ B∗.
2. x∗ is a crossing point (but not a triple point) of B∗.
3. B has a singularity of index 1 at x.
4. Two disks of B∗ intersect transversely at x∗; one disk has an arc δ in
D transverse to B at x with a local minimum in the I direction, and
for the other disk, a similar arc δ′ has a local maximum.

The next collection of crossing type singularities is denoted by {S(c,k,p)}.
If x∗ is such a singularity, k denotes the cardinality of F−1(x). Thus k is an
integer with 2 ≤ k ≤ n + 2. Furthermore, on the set of points where F is
k-to-one, x∗ is a critical point in the I direction, of index p.
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Finally, S(m, (i, j), p, q) denotes the mixed singularities. Such a singu-
larity x∗ has F−1(x) consisting of i+ j points, exactly i of which are in B.
Again p is the index of the singularity and q is an integer with 0 ≤ q ≤ i
which is the number of local maxima we get by looking at those i arcs
transverse to B at the points of F−1(x∗) ∩B.

We next discuss, in detail, the singularity types S(c, 2, p) and S(b, 1, p, q).
A singularity of type S(c, 2, p) corresponds to the following situation:

we have locally two (n+ 1)-disks intersecting transversely in an n-disk and
on that n-disk we have a single Morse singularity of index p. In this case,
our move yields isotopies of two disks Y1 and Y2, that is, maps Yi × I →
(B0 × R1)× I, where B0 is an (n+ 1)-ball.

However, it is more convenient to first define maps Rn×R1 → Rn+2×R1

and obtain our isotopies by restriction of domain and reparameterization of
the last coordinate. Let µnp be the standard function in n-variables giving a
Morse function with one critical point of index p and critical value zero at
the origin; specifically

µnp (t1, . . . , tn) =

p∑

i=1

−t2i +

n∑

i=p+1

t2i .

Next, define two maps f1, f2 : Rn × R1 → Rn+2 × R1 by

f1((t1, . . . , tn), s) = ((t1, . . . , tn, s, 1), µnp (t1, . . . , tn)− s),
f2((t1, . . . , tn), s) = ((t1, . . . , tn, s, 0), µnp (t1, . . . , tn)− s).

Clearly each of f1 and f2 is an embedding and the images are disjoint since
they differ in the last coordinate of Rn+2. If P : Rn×R1 → Rn+2×R1 denotes
the map obtained by projection along the last coordinate of Rn+2, then the
images of P◦f1 and P◦f2 intersect transversely in a set homeomorphic to Rn.
In fact, the intersection is the image of P ◦ fi(Rn × {0}), where i = 1 or 2.
Furthermore, if h : Rn+1 × R1 → R1 is projection onto the last factor, then

h ◦ P ◦ fi(t1, . . . , tn, 0) = µnp (t1, . . . , tn).

The maps fi : Rn×R1 → Rn+2×R1 are not level preserving (that is, do not
preserve the R1 coordinate), however, if s ∈ R1 then f−1

i (s) is diffeomorphic

to Rn. For example, f−1
1 (0) is just the graph of µnp . In general f−1

i (s) is the
graph of µnp+c for some constant c. Thus if C is an (n+1)-ball containing the

origin in Rn+1 and D1 = [−1, 1] then f−1
i ((C ×R1)×D1) is homeomorphic

to Yi ×D1, where Yi is an (n+ 1)-ball.
If we reparameterize D1 to I and denote disjoint union by ∪

◦
then the

map
φ : (Y1 × I) ∪

◦
(Y2 × I)→ Rn+2 × I

such that φ|Yi × I = fi is our standard local knot move corresponding to
the singularity S(c, 2, p).
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Next we consider a singularity of type S(b, 1, p, q); locally this singularity
corresponds to an (n+ 1)-disk with branch set which is an (n− 1)-disk, and
on that (n − 1)-disk we have a single Morse singularity of index p. In this
case, our standard local move is an isotopy of a single disk. We proceed as
with the previous case.

In this case, we define f : Rn × R1 → Rn+2 × R1 by

f((t1, . . . , tn−1, x), s) = ((t1, . . . , tn−1, t1x, x
2, x), µn−2

p (t2, . . . , tn−1)+εx2+s).

Here ε = 1 if q = 0, and ε = −1 if q = 1. It is easy to check that f is an
embedding and that P ◦ f is an image of an (n + 1)-disk with an (n − 1)-
subdisk of canonical branch points. This branch set corresponds to the points
(0, t2, . . . , tn, 0, s) and the double point set of this map is the set of points
(0, t2, . . . , tn−1, x, s). As before, we note that f−1(s) is diffeomorphic to Rn
for s ∈ R1. For example, f−1(0) is the graph of µn−2

p (t2, . . . , tn−1)+εx2 = s,
where we view s as a function of (t1, . . . , tn−1, x). We then proceed as in the
previous case to obtain a local move φ : Y1 × I → Rn+1 × I, where Y1 is an
n-disk.

Suppose we have a fixed value of n; we now describe the collection Mn

of standard local moves needed for the proof of Proposition 2.9; there is one
such local move for each singularity type as described above.

The standard local moves for the other types of singularities now proceed
using the constructions described in the previous two cases, modified to take
into account that we need to consider more than one or two disks, that we
may have mixed types, and that these disks have to be in general position.
For example, for a singularity of type S(c, 3, p), we would begin by defining
f1, f2 and f3 by

f1((t1, . . . , tn), s) = ((t1, . . . , tn, s, 1), µn−1
p (t2, . . . , tn)− s− t1),

f2((t1, . . . , tn), s) = ((t1, . . . , tn, s, 0), µn−1
p (t2, . . . , tn) + s− t1),

f3((t1, . . . , tn), s) = ((t1, . . . , tn, s, 2), µn−1
p (t2, . . . , tn) + s+ t1).

As before, by examining the last coordinate of the Rn+2 factor, we see that
the images of the fi are disjoint. The images of P ◦f1 and P ◦f2 intersect in
an n-disk which is the image of those points of the form ((t1, . . . , tn), 0). Also,
P ◦f1 and P ◦f3 intersect in an n-disk which is the image of points of the form
((t1, . . . , tn),−t). In addition, P ◦f2 and P ◦f3 intersect in an n-disk which is
the image of points of the form ((0, . . . , tn), s). The intersection of all three
is an (n− 1)-disk which is the image of points of the form ((0, t2, . . . , tn), 0),
and on that set the R1 coordinate is given by µn−1

p .

7. Local models for knot moves. The following lemma is a straight-
forward generalization of “Morse’s Lemma” (see, for example, [HR2] for
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statement of the latter). In fact, if q = 0 Proposition 7.1 is exactly the
Morse Lemma.

Proposition 7.1. View Rm as Rq × Rm−q and use coordinates
(x1, . . . , xm) for points of Rm. Suppose f : Rm → R1 is a smooth func-
tion such that f(0) = 0, f |Rq × {0} is a Morse function with a singular
critical point of index p at 0, and f |Rq × {0} is nonsingular. Then there is
an open set U in Rm with 0 ∈ U and an embedding φ : U → Rm such that

φ ◦ f(x1, . . . , xm) =

p∑

i=1

−x2
i +

q∑

i=p+1

x2
i +

m∑

i=q+1

−εixi,

where εi = ±1.

Remark 7.2. The choice of εi to be +1 or −1 can be any desired one,
since if we are given one such φ as in the lemma we may obtain another
coordinate chart with the direction of the ith coordinate reversed, and this
has the effect of changing the sign of εi (if q + 1 ≤ i ≤ m).

We are now ready to prove Proposition 2.9. Using Proposition 5.4, we
replace the given isotopy by an isotopy F : Mn× I → Rn+2× I arranged for
moves. Let x∗1, . . . , x

∗
r be the elementary singularities, where p(x∗i ) < p(x∗j ) if

i < j. Since F is in general position with respect to projection, about each x∗i
we may find a neighborhood Bi×Ii, where Bi is an (n+1)-ball in Rn+1 and
Ii = [ai, bi], such that (π′ ◦ F )−1(Bi × Ii) = Yi × Ii, where Yi is a disjoint

union of n-disks, Yi =
⋃
k Y

(k). We show below that by perhaps choosing

smaller balls Bi × Ii and {Y (k)
i } (and reparameterizing Ii to I) F |Yi × I

projects equivalently to the standard local move of Mn corresponding to
the singularity type of x∗i . It is this isotopy which is our µi. Since p(x∗i )
is the only critical value in Ii, outside Yi the isotopy will project without
changes. Thus µi is a move (with respect to ci = Bi × R1). Furthermore if
we let I ′0 = [0, a], I ′i = [ai, bi+1] and I ′r = [br, 1], then F |Mn × I ′i projects
without changes and we let νi correspond to F , where we reparameterize I ′i
to I.

Consider the case where a given singularity x∗i is of type S(c, 2, p); then
we have a map F |(Y1 ∪ Y2) × Ii into Rn+2 × I. We find local coordinates
for Yj and Rn+2 so that F is given by coordinates as described for the
corresponding standard local move. Consider the n-disk Y1. We assume that
the subscripts on Yj have been chosen so that F (Y1×Ii) lies below F (Y2×Ii)
with respect to the projection π′.

Let xj = (π′ ◦F )−1(x∗i )∩Yj. Next we note that, by changing the isotopy
F slightly, we may find a neighborhood N1 of x1 so that if q : Rn+2 × I
→ Rn+1 is projection onto the first (n + 1)-coordinates then (q ◦ F )|N1 is
an embedding. To see this, give points of Y1× Ii coordinates ((t1, . . . , tn), s)
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so that x1 = (0, . . . , 0, as). Since F is level preserving, x1 is a critical point
of p, and Y1 contains no branch points. Then q◦F embeds the n-dimensional
subspace X = ((t1, . . . , tn), as). Let ~u ∈ Rn+1 be a unit vector normal to
q ◦F (X) at x∗i . Write ~u = (u1, . . . , un). The only reason that q ◦F would fail
to be an embedding near xi is that the isotopy Fs (where Fs = F |M × {s})
might be (instantaneously) stationary at (01, . . . , 0n) for s = as, or is moving
in a direction which projects to the tangent plane of (q ◦ F )(X). This can
be remedied if necessary by adding a small linear push in the direction ~u ′ in
Rn+2 where ~u′ = (u1, . . . , un+1, 0). More specifically, we write F |Yi × Ii as
F = (F1, . . . , Fn+2, Fn+3). Define ε(s) to be a smooth function from [ai, bi]
to Rn+2 with ε(ai) = ε(bi) = 0; ε(s) = ε(x−as) on some interval containing
as, where ε is a small positive number; ε(s) is monotone otherwise. Then

F ′ = (F1 + εu1, . . . , Fn+1 + εun+1, Fn+2, Fn+3)

is an isotopy equivalent to F which still satisfies the previous hypotheses,
and q ◦ F ′ is an embedding in a neighborhood N1 of x1. We may now use
this diffeomorphism to give coordinates to a small ball Bi about x∗2 so that
the embedding F |Y1 × Ii is given by

F ((t1, . . . , tn), s) = ((t1, . . . , tn, s, h(t1, . . . , tn, s)), f(t1, . . . , tn, s)),

where h is the height function associated with the projection π′ and F
satisfies the conditions of Lemma 7.1. Without loss of generality, we may
assume that the height of the point F (x1) is zero and the height function is
the constant zero. By Proposition 7.1, in a neighborhood of x1 we may find
coordinates so that

f((t1, . . . , tn), s) = µnp (t1, . . . , tn)− (s− as)
and by reparameterization in the last coordinate we see that the disk Y1× I
is embedded equivalently to the corresponding disk in the standard local
model. This is not quite enough—we need the disk Y2 × I to be mapped
just like the other disk in the standard model. We follow basically the same
procedure. Our problem concerning q ◦F being a local embedding would be
a problem in at most one of our disks, Y1×I or Y2×I, since in the projection
they are transverse. Since F (Y1 × I) lies above F (Y2 × I), we may assume
F (x2) has height 1 and this allows us to get, in a small neighborhood,
coordinates so that the height is 1 there. Finally, an examination of the
transversality of (Y1×Ii)∗ and (Y2×Ii)∗ shows that if we choose coordinates
to express F |Y1 × Ii as above then we may use the same coordinates for
Rn+2 × I and appropriate ones for Y2 × I so that on Y2 × I, F is given by

F ((t1, . . . , tn), s) = ((t1, . . . , tn, s, 1), µnp (t1, . . . , tn) + (s− bs)),
where x2 has coordinates (0, . . . , 0, bs).
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Next we consider the case where x∗i is a singularity of type S(b, 1, p, q).
Let x = (π′ ◦ F )−1x∗i . Then we have a map F : Y1 × Ii → Rn+2 × Ii, where
Yi is an n-disk with coordinates ((t1, . . . , tn−1, x), s) chosen so that x has
coordinates ((0, . . . , 0), as). Let X denote the hyperplane ((t1, . . . , tn), as)
and consider the map q ◦ F |X into Rn+1. Since the derivative of F in the I
direction is nonzero (since F is an isotopy) it follows that q ◦ F has corank
zero or one, and using [MR] we may find coordinates for Rn+1 so that q ◦F
is given by

(t1, . . . , tn−1, x) 7→ (t1, . . . , tn−1, t1x, x
2).

Thus we may choose coordinates so that, locally, F : Yi × Ii → Rn+2 × I is
given by

((t1, . . . , tn−1, x), s) 7→ ((t1, . . . , tn−1, t1x, x
2, h), f).

Now h is the height function of the projection π′. Any height function h′

of this projection yields equivalent embedding as long as for each double
point x∗ the height of the over point corresponding to x∗ is greater than the
height of the corresponding under point. Thus by orienting our x-coordinate
in the appropriate direction, we may assume that h((t1, . . . , tn−1, x), s) = x
(recall the double point set corresponds to t1 = 0). By a previous remark,
we note that x∗ is a critical point of the double point set as well as for the
branch set so that the restriction of the map F to the subset correspond-
ing to t1 = 0, s = an is a Morse function of n − l variables with index
p + ε, where ε = ±1. Thus using Proposition 7.1 we may find coordinates
so that

f((t1, . . . , tn−1, x), s)

= ((t1, . . . , tn−1, t1x, x
2, s− as), µn−1

p (t1, . . . , tn−1) + εx2 + (s− as)).
Thus we have found coordinates as in the standard local model for a singu-
larity of this type.

The cases of singularities of other types clearly follow by straightforward
use of the techniques in the above two cases. We omit these details, thus
concluding our sketch of the proof of Proposition 2.9.

There is a further device for reducing the number of knot moves to
consider.

Definition 7.3. If F : Y × I → Rn+2 × I represents a knot move, then
the inverse of F is the isotopy F ′(y, t) = F (y, 1 − t). If F corresponds to
a singularity of type S(c, 2, p) then F ′ corresponds to a singularity of type
S(c, 2, n − p). If F corresponds to a singularity of type S(b, 1, p, q) then F ′

corresponds to a singularity of type S(b, 1, (n − 1) − p, 1 − q), etc. We say
that the knot moves of F and F ′ are of the same type.
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Thus the number of types of moves is roughly half the number of elements
ofMn. With this definition, the knot moves in low dimensions corresponding
to Proposition 2.9 are listed in Propositions 8.1 and 8.2. A more detailed
exposition of the case of knotted surfaces in R4 as well as discussion of
knotted three-dimensional manifolds in R5 may be found in [RS2].

8. Knotted circles in R3 and knotted surfaces in R4. We now wish
to briefly consider the knot moves in dimensions n = 1, 2. We first note that
Proposition 2.9 gives us the classical set of Reidemeister moves.

Proposition 8.1. If F : M1 × I → R3 × I is an isotopy of a closed
one-dimensional manifold (i.e., a classical knot or link) and if F |M × {0}
and F |M × {1} are in general position with respect to projection, then F
is equivalent to an isotopy by elementary moves, where these moves are of
three types which we list below by the corresponding singularities:

1. A local maximum or a local minimum of the crossing set D∗.
2. A point of B∗ , and either a local maximum or local minimum of D∗.
3. A point of the crossing set of D∗.

Here case 2 corresponds to Ω1, case 1 corresponds to Ω2, and case 3
corresponds to Ω3 of Reidemeister. In these dimensions we may draw pic-
tures of images of the projections of the corresponding knot moves, that is,
images of f : Y × I → R2× I for the various standard models (see Figure 4;
here the vertical direction is the I coordinate; slicing horizontally near the
critical points, labeled x∗, gives the classical knot moves).

Proposition 8.2. If F : M2×I → R4×I is an isotopy of a closed two-
dimensional manifold and if F |M2 × {0} and F |M2 × {1} are in general
position with respect to projection, then F is equivalent to an isotopy by
elementary moves, where these moves are of seven types which we list below
by the corresponding singularities:

1. Local maximum or local minimum of the crossing set D∗.
2. Saddle point of D∗.
3. Local maximum or local minimum of the branch set B∗ which is a

local maximum or local minimum (respectively) of D∗ in direction
transverse to B∗.

4. Local maximum or local minimum of B∗ which is a local mini-
mum or local maximum (respectively) of D∗ in direction transverse
to B∗.

5. Local maximum or local minimum of the crossing set of D∗.
6. A point where B∗ meets the crossing set of D∗.
7. A triple point of D∗.
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