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Cyclic branched coverings and homology 3-spheres
with large group actions

by

Bruno P. Zimmermann (Trieste)

Abstract. We show that, if the covering involution of a 3-manifold M occurring as
the 2-fold branched covering of a knot in the 3-sphere is contained in a finite nonabelian
simple group G of diffeomorphisms of M , then M is a homology 3-sphere and G isomorphic
to the alternating or dodecahedral group A5 ∼= PSL(2, 5). An example of such a 3-manifold
is the spherical Poincaré sphere. We construct hyperbolic analogues of the Poincaré sphere.
We also give examples of hyperbolic Z2-homology 3-spheres with PSL(2, q)-actions, for
various small prime powers q. We note that the groups PSL(2, q), for odd prime powers q,
are the only candidates for being finite nonabelian simple groups which possibly admit
actions on Z2-homology 3-spheres (but the exact classification remains open).

1. Introduction. By [Z1], the only finite nonabelian simple group act-
ing on a homology 3-sphere is the alternating or dodecahedral group A5

∼=
PSL(2, 5). Up to conjugation, there are two orthogonal actions of A5 on the
3-sphere, in each case the quotient orbifold is the 3-sphere, and the singular
sets of the two actions are the graphs shown in Figures 1a and b (where
edges are labelled with their branching orders, and edges without label have
branching order two). Apart from this, the most prominent example of a ho-
mology 3-sphere with an A5-action is the Poincaré sphere; again the quotient
orbifold is the 3-sphere, and the singular set the tetrahedral graph shown in
Figure 1c. The Poincaré sphere is a spherical manifold, and the group A5

acts by isometries. The cyclic subgroups of orders two, three and five of A5,
unique up to conjugation, are the covering groups of the Poincaré sphere
as the 2-fold branched covering of the (3, 5)-torus knot, the 3-fold cyclic
branched covering of the (2, 5)-torus knot and the 5-fold cyclic branched
covering of the (2, 3)-torus knot; on the other hand, the isometry group of
the Poincaré sphere is isomorphic to the orthogonal group SO(3), and the
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three covering groups are conjugate in the isometry group of the Poincaré
sphere to subgroups of a single cyclic group of order 30, and consequently
these three knots are related by the second standard abelian construction
described in [RZ1]. We note that, in general, it is quite a rare phenomenon
that the same 3-manifold occurs as a cyclic branched covering of different
knots in S3 (see [RZ1], [RZ2]).

Our first result is the following

Theorem 1. Let M be the 2-fold branched covering of a knot in the 3-
sphere such that the covering involution is an element of a finite nonabelian
simple group G of diffeomorphisms of M . Then M is a homology 3-sphere,
and G is isomorphic to the dodecahedral group A5.

We believe that Theorem 1 also remains true for p-fold cyclic branched
coverings, for primes p > 2.

The Poincaré sphere is the only spherical homology 3-sphere (and, as
part of the 3-manifold geometrization program, conjectured to be the only
homology 3-sphere with finite fundamental group). There are no euclidean
homology 3-spheres (in fact, not a single example of a closed euclidean ho-
mology sphere seems to be known in any dimension). There are many hy-
perbolic homology 3-spheres, and the question arises if there exists one with
properties similar to the Poincaré sphere. We have the following

Theorem 2. There exists a hyperbolic homology 3-sphere M (of approx-
imate volume 32.01607) which is the 2-fold branched covering of a knot K2

in S3 and the 3-fold cyclic branched covering of a knot K3 in S3, such that
the covering groups generate a group A5 of isometries of M . The quotient
orbifold M/A5 is the 3-sphere, and its singular set is the Kuratowski graph
shown in Figure 1d (the complete bi-partite graph on six vertices).

In the language of [RZ3] this means that the hyperbolic 3-manifold M
has many hidden symmetries with respect to both the 2-fold and the 3-fold
cyclic branched coverings (i.e., symmetries which are not lifts of symme-
tries of the knots K2 resp. K3; this is again a quite exceptional situation).
The manifold M is also the 5-fold cyclic branched covering of a knot K5

in a homology 3-sphere different from S3; at present we do not have an
example of a hyperbolic homology 3-sphere with an A5-action such that all
three knots K2, K3 and K5 are knots in S3 (as in the case of the Poincaré
sphere).

We note that the covering groups of K2 and K3 in Theorem 2 can be
chosen to lie in a dihedral subgroup D3 of order six of A5, and that conse-
quently we are in the standard dihedral situation described in [RZ2] for two
knots with the same 2-fold resp. 3-fold cyclic branched covering.
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In Section 5, we describe other hyperbolic homology 3-spheres with an
isometric A5-action which occur as cyclic branched coverings of knots in the
3-sphere; one of these is a 3-fold and also a 5-fold cyclic branched covering of
knots in the 3-sphere. This seems to be the first example of two knots in the
3-sphere which have the same hyperbolic 3-manifold as a cyclic branched
covering but which are not related in a solvable way (i.e., the covering groups
cannot be chosen to generate a solvable group of isometries of the manifold;
see also [RZ1]).

Fig. 1

The best known hyperbolic 3-manifold with an isometric A5-action is
the Seifert–Weber dodecahedral manifold. The singular set of the quotient
orbifold by the A5-action is the tetrahedral graph shown in Figure 1e; the
fact that the edges of order five are disconnected implies that the Seifert–
Weber manifold is not a Z5-homology 3-sphere (i.e., with the homology
of the 3-sphere with coefficients in the integers mod five; in fact, by [Br,
Theorem 7.9] the fixed point set of a periodic transformation of order five
of a Z5-homology 3-sphere is connected). The Seifert–Weber manifold is a
5-fold cyclic branched covering of the 2-component Whitehead link (which
again implies that it is not a Z5-homology 3-sphere; in fact, its first homology
is (Z5)3); it is also the 2-fold and 3-fold cyclic branched covering of knots
K2 resp. K3 in lens spaces with fundamental group Z5.

Considering the more general class of Z2-homology 3-spheres, it is shown
in [MZ] that the only finite simple groups which possibly admit actions on
Z2-homology 3-spheres are the linear fractional groups PSL(2, q), for odd
prime powers q; however, it remains open for which odd prime powers q such
actions really occur. In Section 4, we give examples of PSL(2, q)-actions on
Z2-homology 3-spheres, for various small values of q. These examples are
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obtained as regular branched coverings of suitable 3-orbifolds, and we cal-
culate the homology of these coverings by computer using the group-theory
package GAP (we thank M. Conder for his help with these examples).
We think that all such groups PSL(2, q) admit actions on Z2-homology
3-spheres but have no method to prove this at present.

2. Proof of Theorem 1. It is well known that, for any prime power pn,
the pn-fold cyclic branched covering of a knot in S3 is a Zp-homology 3-
sphere (see e.g. [G]), so M is a Z2-homology 3-sphere. It follows from [MZ,
Theorem 1] that a finite simple group G which admits an action on a Z2-
homology 3-sphere is isomorphic to a linear fractional groups PSL(2, q), for
an odd prime power q. Alternatively, one may apply [RZ4], where it is shown
that a finite simple group G acting on a closed 3-manifold and containing
an involution h with nonempty connected fixed point set is isomorphic to a
group PSL(2, q), for an odd prime power q.

So we can assume that G = PSL(2, q), where q is an odd prime power.
In G = PSL(2, q), all involutions are conjugate, and in particular conjugate
to the covering involution h. Then the quotient of M by any involution in
G is the 3-sphere with a knot as branch set.

A Sylow 2-subgroup of G = PSL(2, q) is a dihedral group which contains
a subgroup U ∼= Z2×Z2. The quotient of M by each of the three involutions
h1, h2 and h3 in U is the 3-sphere. The group U projects to an involution h
of M/h1

∼= S3, with nonempty fixed point set. By the solution of the Smith
conjecture for involutions ([W]), the involution h of S3 is standard (conju-
gate to an orthogonal one), and hence S3/h = M/U is again the 3-sphere.
So the space of the quotient orbifold M/U is S3, and its singular set is a
θ-curve T in S3 (i.e. a graph with two vertices and three connecting edges),
with branching order two associated to the three edges (because h2 and h3

act as strong inversions on the fixed point set of h1). The three edges of
such a θ-curve define three knots and hence three 2-fold branched coverings
of S3 along these knots. In our situation, these three 2-fold branched cover-
ings are the 3-manifolds M/h1, M/h2 and M/h3, all homeomorphic to the
3-sphere. Also, M is the regular Z2 × Z2-covering of S3 branched along the
θ-curve T .

By [N1] or [N2], the first homology of the regular Z2 × Z2-covering of a
θ-curve in the 3-sphere is the product of the first homologies of the three
3-manifolds which are the 2-fold branched coverings associated to the three
constituent knots of the θ-curve. In our case, we get three times the 3-
sphere, which implies that M is an integer homology 3-sphere. By [Z1],
the only finite simple group acting on an integer homology 3-sphere is the
alternating or dodecahedral group A5

∼= PSL(2, 5).
This finishes the proof of Theorem 1.
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3. Proof of Theorem 2. We denote by K the 3-orbifold whose space
is the 3-sphere and whose singular set is the Kuratowski graph shown in
Figure 1d resp. 2a. Using the orbifold geometrization theorem ([BP], [CHK])
we will show that K is a hyperbolic orbifold (alternatively, one may try to
construct explicitly its universal covering group in hyperbolic 3-space).

Fig. 2

We consider the spherical 3-orbifold O whose space is the 3-sphere and
whose singular set is the graph shown in Figure 1b. Let p : S3 → O be
its univeral covering, with covering group A5 acting orthogonally on the
3-sphere. Note that the singular graph of the orbifold K is obtained by
adjoining the unique edge L of branching order five to the singular graph of
O (see Figures 1d and 1b). The complement of a regular neighbourhood of
the edge L in K is the pyramidal orbifold P̃ with one cusp whose singular
set is shown in Figure 2b. Now P̃ is a complete hyperbolic 3-orbifold of finite
volume; in fact, P̃ is a 2-fold (branched) covering of the Picard orbifold P
shown in Figure 2c, i.e. the quotient of hyperbolic 3-space by the Picard
group PSL(2,Z[i]) (see e.g. [F]).

Let L be the link in S3 which is the preimage of the edge L under the
covering p : S3 → O; the complement of L is hyperbolic since it is a finite
cover of the hyperbolic orbifolds P̃ and P, so L is a hyperbolic link invariant
under the A5-action on S3 (at present we do not have an explicit projection
of this “dodecahedral link” L; the volume of its complement is 36.63852,
which is 120 times the volume 0.305321 of the Picard orbifold). Let L5 be
the closed 3-orbifold with singular set L obtained by associating branching
order five to all components of the link L; by the orbifold geometrization
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theorem, and in particular [BP, Corollary 3], L5 is a hyperbolic orbifold. By
a second application of the orbifold geometrization theorem we can suppose
that the group A5 of symmetries of the link L acts by hyperbolic isometries
of the orbifold L5. The quotient of L5 by the A5-action is the orbifold K, so
also K is a hyperbolic orbifold (at the end of this section, we will compute
the volume of K).

We will calculate a presentation of the orbifold fundamental group π1K
of K. The fundamental group of the complement in S3 of the singular-
ity graph of K can be computed from its projection in Figure 2a by the
Wirtinger algorithm, in a similar way to the fundamental group of the com-
plement of a knot in S3, calculated from a projection of the knot. The funda-
mental group of the complement is generated by the meridians of all edges
of K; in Figure 2a, we have indicated some of these meridian generators.
For each vertex and each crossing of the singular set we obtain a relation
(as in the case of knots or links one of these relations is redundant). Then
a presentation of the orbifold fundamental group K := π1K is obtained by
raising all meridian generators to the powers given by the branching orders.
Using the relations to eliminate some of the meridian generators, we obtain
the following presentation of K:

〈f1, f2, f3, f4, f5 | f2
1 , f

3
2 , f

3
3 , f

2
4 , f

5
5 , (f1f2)3, f3f4f1f2,

(f4f5)2, (f1f5)2, (f4f5f2)2〉.

We define a surjection φ : K → A5 by

φ(f1) = (1, 4)(2, 3), φ(f2) = (2, 4, 3), φ(f3) = (2, 3, 4),

φ(f4) = (1, 4)(2, 3), φ(f5) = (1, 2, 3, 4, 5).

The kernel U of φ is torsionfree (the torsion elements of K are conjugate
to the meridians of the singular edges of K). Now M := H3/U is a closed
hyperbolic 3-manifold, with fundamental group isomorphic to U , and with
an induced action of A5

∼= K/U such that M/A5 = H3/K = K. Using
computational techniques, and in particular the group theory package GAP,
we find that the abelianization of U ∼= π1M is trivial, which implies that M
is an integer homology 3-sphere.

We consider the involution h = φ(f1) in A5 (note that all involutions
in A5 are conjugate). The fixed point set of h is nonempty (because K has
singular edges of order two), and by [Br, Theorem 7.9] the fixed point set
of h is connected (because M is a homology 3-sphere). Then M is a 2-fold
branched covering of the 3-manifold M2 := M/h, branched along a knot
K2 in M2. We denote by U2 the subgroup of K generated by U and the
element f1 of order two; then U is a subgroup of index two of U2, and
M2 = M/h = H3/U2. By [A], the fundamental group of M2 is obtained by
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dividing out the torsion of U2, that is, by taking the quotient of U2 by the
normal subgroup generated by f1.

GAP produces a presentation of the kernel U of φ with 10 generators
(given as words in the generators fi of K) and 16 relations. We add f1 to
these generators and obtain a generating system of the subgroup U2 of K.
GAP produces a presentation of U2 with 11 generators and 15 relations.
Then a presentation of the fundamental group of M2 is obtained by adding
the relator f1 (that is, the relation f1 = 1) to this presentation. Using Tietze
transformations, GAP simplifies this presentation to the trivial presentation,
so M2 has trivial fundamental group. The normalizer of h in A5 contains in-
volutions different from h; these project to involutions of M2 with nonempty
fixed point set. By the orbifold geometrization theorem, M2 is the 3-sphere,
so M is the 2-fold branched covering of a knot K2 in S3.

Starting the construction with the element h = φ(f2) of order three
in A5, one shows in a completely analogous way that M is also the 3-fold
cyclic branched covering of a knot K3 in S3. We note that M is also the
5-fold cyclic branched covering of a knot K5 in a homology 3-sphere M5,
which, however, has nontrivial fundamental group. At present, we do not
have projections of the knots K2 and K3.

Finally, we compute the volume of the hyperbolic homology 3-sphere M .
The orbifold K is obtained by (5, 5)-surgery on the cusp of the orbifold P̃,
and K is a 2-fold branched covering of the orbifold P(5, 10) shown in Fig-
ure 2d, obtained by (5, 10)-surgery on the cusp of the Picard orbifold P
(see [MVZ]; see also [DM] for the notion of surgery on orbifolds). The com-
plement of the Borromean rings B in S3 is a regular 24-fold covering, with
covering group S4, of the Picard orbifold (see e.g. [MVZ]). By [MVZ, The-
orem 2.1 and Remark (A)], the hyperbolic orbifold K = P(5, 10) has the
hyperbolic cone manifold B(15/2, 5/4), obtained by (15/2, 5/4)-surgery on
each component of the Borromean rings, as a regular S4-covering. The vol-
ume of such a cone manifold can be computed by Weeks’ program Snap-
Pea, and one finds the approximate volume v = 6.403214 for B(15/2, 5/4).
Then K has volume 2v/24, and the regular A5-covering M of K has volume
120v/24 = 32.01607.

This finishes the proof of Theorem 2. There remains the following

Problem. Find regular projections of the dodecahedral link L, and of
the knots K2 and K3.

4. PSL(2, q)-actions on Z2-homology 3-spheres. By [MZ, Thm. 1],
the only finite simple groups which possibly admit actions on Z2-homology
3-spheres are the linear fractional groups PSL(2, q), for odd prime powers q.
In the following, we show how to construct such actions, for various small
values of q.
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Fig. 3

We consider the orbifold O(a, b, c, d;n) whose space is the 3-sphere and
whose singular set is shown in Figure 3 (where a, b, c and d denote branching
orders and n the number of half twists between the diagonal edges). Using
the Wirtinger algorithm as in Section 2, one obtains the following presen-
tation of the orbifold fundamental group of O(a, b, c, d;n) (in the meridian
generators indicated in Figure 3):

〈f1, f2, f3, f4 | f2
1 , f

c
2 , f

b
3 , f

2
4 , (f1f2)b, f3f4f1f2, ((f4f1)nf1f2)d〉.

Let F1 denote the orbifold fundamental group of O(3, 3, 3, 2; 2). It follows
from the orbifold geometrization theorem that O(3, 3, 3, 2; 2) is hyperbolic
(by the lists in [D] it does not belong to any of the other 3-dimensional
geometries). By the Low Index Subgroup Program of GAP we compute
the subgroups up to index 30 of F1, their normal cores (the largest normal
subgroups contained in them), the abelianizations of the cores and their
quotient groups. Among other things, we find the following finite quotients
G and abelianizations of the corresponding cores (a sequence of integers
stands for the product of cyclic groups of these orders). The cores are tor-
sionfree and define hyperbolic 3-manifolds with isometric G-actions; note
that, in the cases listed below, these 3-manifolds are Z2-homology 3-spheres
(equivalently, the abelianizations of their fundamental groups are finite of
odd order).

PSL(2, 7) (order 168): [7, 7, 7] =: [73];

PSL(2, 11) (order 660): [113];

PSL(2, 13) (order 1092): [133];

PSL(2, 17) (order 2448): [316, 173];

PSL(2, 23) (order 6072): [523, 233].

Now let F2 denote the fundamental group of the tetrahedral orbifold
O(3, 5, 3, 2; 1) (its singular set is the 1-skeleton of a hyperbolic tetrahedron,
so this orbifold is also hyperbolic). By applying GAP as above we obtain
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the following quotients G and abelianizations of the corresponding cores:

PSL(2, 9) (order 360): [3, 3, 3, 3, 3, 3] = [36];

PSL(2, 19) (order 3420): [319, 193];

PSL(2, 29) (order 12180): [328, 55, 293].

Using other orbifolds of type O(a, b, c, d;n) one easily finds more examples
of PSL(2, q)-actions on Z2-homology 3-spheres. We close with the

Conjecture. (i) For all odd prime powers q, the linear fractional group
PSL(2, q) acts on some Z2-homology 3-sphere.

(ii) All finite groups of odd order act on some Z2-homology 3-sphere.

5. Other examples of hyperbolic homology 3-spheres with iso-
metric A5-actions. Considering the orbifolds O(a, b, c, d;n) in Section 4
and Figure 3, and surjections of their fundamental groups onto A5, we find
the following examples of hyperbolic homology 3-spheres with isometric A5-
actions.

5.1. Let F denote the orbifold fundamental group π1O(5, 3, 3, 2; 3) of the
hyperbolic 3-orbifold O(5, 3, 3, 2; 3) (see Section 4); then F admits a sur-
jection onto A5, and the kernel defines a hyperbolic 3-manifold M with
isometric A5-action. Using GAP as in Sections 3 and 4, we have checked
that M is a homology 3-sphere, and that M is the 3-fold and 5-fold cyclic
branched covering of knots in the 3-sphere. M is also the 2-fold branched
covering of a knot in a homology 3-sphere which seems to have nontrivial
fundamental group (we do not have a proof of this at the moment). In any
case, the covering groups of the 3-fold and 5-fold cyclic branched coverings
generate the isometric A5-action, and no conjugates of them generate a
solvable subgroup of the isometry group of M (this follows easily from the
list in [MZ] of the possible nonsolvable finite groups acting on homology
3-spheres). So this seems to be the first example of a hyperbolic 3-manifold
which is the 3-fold and 5-fold cyclic branched covering of knots in the 3-
sphere which are not related in a solvable way (see also [RZ1]).

5.2. Now let F = π1O(2, 5, 3, 3; 9). Again F admits a surjection onto A5

whose kernel is a hyperbolic homology 3-sphere M with isometric A5-action;
now M is the 2-fold and 3-fold cyclic branched covering of knots in the
3-sphere (and the 5-fold cyclic branched covering of a knot in a homology 3-
sphere), and these two knots are related by a standard dihedral construction.
We note that the manifold M is a maximally symmetric A5-manifold in the
sense of [Z2]: it admits a Heegaard splitting of genus g = 6 invariant under
the A5-action, where A5 realizes the maximal order 12(g−1) of a finite group
of orientation-preserving diffeomorphisms of a handlebody of genus 6.
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5.3. Other examples of hyperbolic homology 3-spheres with A5-ac-
tions can be obtained by the orbifolds O(2, 3, 3, 3; 5), O(2, 3, 3, 3; 21) and
O(3, 3, 3, 2; 4). Again the first two manifolds are maximally symmetric A5-
manifolds.

5.4. Let K(3, 3, 3, 2;n) denote the series of 3-orbifolds in Figure 4 para-
metrized by the number of half-twists n which simultaneously generalizes
the orbifolds O(3, 3, 3, 2;n) and the Kuratowski orbifold K of Section 3. Our
impression (checked for many small values of n) is that for all n ≥ 0 there is a
surjection of the orbifold fundamental group onto A5 whose kernel has trivial
abelianization and hence defines a homology 3-sphere with A5-action (for
n = 0 one gets a homology 3-sphere which is the A5-equivariant connected
sum of two copies of the Poincaré sphere, by identifying the boundaries of
regular neighbourhoods of the unique global fixed points of the two A5-
actions).

Fig. 4

5.5. Let p be an odd prime. Except for the ubiquitous A5 we have
not found a single example of a nonabelian simple group G acting on a
3-manifold M which is a p-fold cyclic branched covering of a knot or link in
the 3-sphere whose covering group is contained in G. The closest we found
in this direction is the following. The fundamental group of the hyperbolic
tetrahedral orbifoldO(3, 5, 3, 2; 1) admits a surjection onto the alternating or
linear fractional group A6

∼= PSL(2, 9) of order 360 such that the kernel has
abelianization (Z3)6 and hence defines a hyperbolic Z2-homology 3-sphere
M with an isometric A6-action. The Sylow 3-subgroup of A6 is isomorphic
to Z3 × Z3, and we have checked as in Section 3 (i.e. using the orbifold ge-
ometrization theorem) that the quotient M/Z3×Z3 is the 3-sphere, so M is
a regular Z3×Z3-covering of a link in the 3-sphere (note that the involution
corresponding to the lower edge of the tetrahedral orbifold O(3, 5, 3, 2; 1)
normalizes the two elements of order 3 corresponding to the two vertical
edges). It would be interesting to have an example of this kind with a cyclic
covering group but we believe that such an example does not exist if G is
different from A5.
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