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Classification of homotopy classes of
equivariant gradient maps

by

E. N. Dancer (Sydney), K. Geba (Gdansk) and
S. M. Rybicki (Torun)

Abstract. Let V be an orthogonal representation of a compact Lie group G and let
S(V), D(V) be the unit sphere and disc of V, respectively. If ' : V — R is a G-invariant
C'-map then the G-equivariant gradient C°-map VF : V — V is said to be admissible
provided that (VF)™'(0) N S(V) = @. We classify the homotopy classes of admissible
G-equivariant gradient maps VF : (D(V),S(V)) — (V,V \ {0}).

1. Introduction. The purpose of this paper is to understand the topo-
logical invariants associated with equivariant gradient maps.

More precisely, we assume V is a real finite-dimensional orthogonal re-
presentation of a compact Lie group G. In other words, V is a real finite-
dimensional linear space with a scalar product and there is an orthogonal
action of G on V denoted by gz for g € G, x € V. We are then interested
in the homotopy classes of G-equivariant gradient mappings from V into V,
which are non-zero on the unit sphere S(V') of V. Here a map VF : V — V
is said to be G-equivariant if VF(gx) = gV F (x) for g € G, = € V. We com-
pletely classify the homotopy classes of such maps in terms of a G-equivariant
gradient degree defined here. Our gradient degree is a natural generalization
of the classical Brouwer degree with the ring of integers replaced by a ring
U(G) determined by the orbit types of G (see [4] for the definition of U(G)).

Results of this type are of considerable interest because they show that
there are no extra invariants to be found. Note that the study of the homo-
topy classes of G-equivariant gradient maps is a natural problem as these
maps arise in many applications (see [3, 10, 11, 12] for example). The stronger
homotopy invariance properties of our degree are reflected in the possibility
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to obtain connected sets of bifurcation solutions as in [3, 10, 11, 12]. The
Conley index is not suitable for this.

The analogous problem of homotopy classification of G-equivariant map-
pings when there is no gradient structure is well known in G-equivariant
topology. In this case classifying our homotopies is equivalent to classifying
the equivariant maps of S(V') into itself. It turns out that in this case the
classical Brouwer degree, which assigns an integer to each homotopy class,
can be replaced by a more refined invariant which assigns to a homotopy
class an element of the Burnside ring A(G) of G. In most (but not all) cases,
this new invariant is determined by the Brouwer degrees of the induced maps
on fixed point subspaces of isotropy subgroups (see [4, 9] and the references
therein).

In the case G = {e}, V = R" Parusiniski proved that the classical
Brouwer degree is the only invariant (see [8]). More precisely, he showed
that two gradient maps non-vanishing on the unit sphere S"~! are homo-
topic as gradient maps if and only if they are homotopic in the ordinary
sense.

On the other hand, the first named author essentially showed in [3]
that for the group SO(2), the analogue of the Parusinski result for SO(2)-
equivariant gradient maps does not hold and he constructed an extra invari-
ant. The work was further improved in [10] for SO(2)-actions and in [6] for
general compact Lie group actions.

In the proof of the main result of [8] the following construction plays a
fundamental role: assume that F' = Vy is a gradient C°-map on R". For
r € S" ! we have F(z) = Fy(z) + f(x)x, where Fy = V(¢gn-1). Then
F is non-vanishing on S"! if and only if F;'(0) N f~(0) = (. Thus to
an admissible gradient vector field F' on R" there corresponds the gradient
pair (Fp, f) which “lives” on the (n — 1)-dimensional sphere. In this way
Parusinski reduces dimension.

In our paper, generalizing the above construction, we introduce the notion
of equivariant gradient pair. More precisely, given a smooth Riemannian
manifold M with a smooth action of a compact Lie group G we consider
pairs (X, f), where X is a G-equivariant gradient vector field on M and f
is a G-invariant function on M. There is also a natural notion of homotopy
between G-equivariant gradient pairs.

In this article we consider smooth Riemannian G-manifolds M with a
finite number of orbit types, i.e. #P(M) < oo (see Section 2), and notice
that if (M) = {(H)} then there is a bijection between the homotopy classes
of G-equivariant gradient pairs on M = M p and the homotopy classes of
gradient pairs on the quotient manifold Mz)/G. Next combining Corollary
3.1 and Corollary 6.2 we classify the homotopy classes of equivariant gradient
pairs on M.
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In Section 2 we recall some definitions of equivariant topology and give
the precise definitions used in our paper. Section 3 contains the basic tech-
nical results. The main results of this section are Theorem 3.1 and Corollary
3.1. Section 4 contains the main results of this paper. Theorem 4.1 gives
the classification of homotopy classes of G-equivariant gradient pairs on M
and Corollary 4.1 gives the classification of homotopy classes of admissible
(non-vanishing on S(V')) G-equivariant gradient maps. In Section 5 we hint
at some relation between the G-equivariant Conley index theory and the
G-equivariant gradient degree. In the Appendix we classify the homotopy
classes of gradient pairs on N, where N is a connected smooth Riemannian
manifold with dim NV > 1. We discuss Parusinski’s proof of the above men-
tioned result (see [8]). Essentially we rewrite this proof using the language
of gradient pairs. We are convinced that understanding this approach may
result in a better understanding of the technicalities of our paper.

The authors thank the referees for their helpful suggestions concerning
the presentation of this paper.

2. Equivariant gradient maps and pairs. In this section we set up
notation and terminology. Throughout this article GG stands for a compact Lie
group, and V denotes a real, finite-dimensional, orthogonal representation of
G with G-invariant scalar product (-,-) and norm |- |. Set D(V) ={v eV :
lv| <1}, B(V)={veV:|v| <1} and S(V)={v €V :|v] =1}. Since the
representation V is orthogonal, these sets are G-invariant.

Moreover, we will denote by M a Riemannian smooth G-manifold. Since
the group G is compact, without loss of generality one can assume that M
is equipped with a G-invariant metric (-, ). The action of the group G on
M x [0,1] is given by g(v,t) = (gv,t) for any (g,v,t) € G x M x [0,1].
The tangent bundle 7'(M) is considered as a G-bundle with the induced
orthogonal G-action.

We will denote by Vo : M — T(M) the gradient of a Cl-map ¢ :
M — R. The class of G-invariant C*-maps ¢ : M — R will be denoted by
CE(M,R). It is known that if ¢ € CL(M,R), then Vo : M — T(M) is a
G-equivariant continuous vector field.

The set of conjugacy classes of closed subgroups of G will be denoted by
&(G) and the conjugacy class of a closed subgroup H C G will be denoted
by (H). A subgroup H C G is subconjugate to a subgroup K C G (written
(H) < (K)) if H is conjugate to a subgroup of K. Subconjugation defines a
partial ordering on &(G).

Let G, = {g € G : gv = v} be the isotropy subgroup of v € M. For (H) €
D(G) we set Mgy = {v € M : (Gy) = (H)} and &(M) = {(H) € (G) :
Mgy # 0}. Notice that Mgy is a submanifold of M and the quotient map
7wy : Mgy — Mgy /G is smooth. Moreover, the orbit G- v is a submanifold
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of Mg, diffeomorphic to G/G,. We will denote by ¥ (M) the family of
connected components of M) /G and ¥(M) = U gyeqar) ) (M)

DEFINITION 2.1. Let F € CL(V,R). A map VF € C%(V,V) is called a
G-equivariant admissible gradient map (written VF € G(V)) if (VF)~1(0)N
S(V)=0.

DEFINITION 2.2. Let H € CL(V x[0,1],R). The map V,H : V x[0,1] —
V is called a G(V)-homotopy if (V,H)~1(0)N(S(V)x[0,1]) = 0. We say that
maps VFy, VF) € G(V) are G(V)-homotopic if there is a G(V')-homotopy
V,H :V x[0,1] = V such that V,H(-,i) = VF;(-) for i =0, 1.

Let VF € G(V). For v € S(V) we have the unique decomposition
VF(v) = (VF(v) — (VF(v),v)-v) + (VF(v),v) - v = Xvr(v) + fyr(v) - v,
where Xyr = V(Fis1)) and fyr € C&(S(V),R).

Similarly, if VH is a G(V')-homotopy then for v € S(V) we have the
decomposition

VoH(v,t) = (VyH(v,t) — (VyH(v,t),v) - v) + (V,H(v,t),v) - v
= Xvu(v,t) + fyn(v,t) - v,
where Xvp(-,t) = V(H(-,1)50v)) and fyvg € CE(S(V) x [0,1], R).

The above leads us to the following definitions.

DEFINITION 2.3. We say that (X, f) is an equivariant gradient pair on
M if
f € C&(M,R),
N_(f)={x € M : f(x) <0} is a compact subset of M,
X : M — TM and there is ¢ € C5(M,R) such that X = Vo,
X~Ho)yn f~10) = 0.

The class of equivariant gradient pairs on M will be denoted by P(M).

DEFINITION 2.4. We say that (X, f) is an equivariant gradient pair ho-
motopy on M if

e X : M x[0,1] — TM and there is p € C5(M x [0,1],R) such that
X (1) = Vap(-,t) for t € [0,1],

o feCLM x[0,1],R),

o N_(f)={x e Mx][0,1] : f(z,t) <0} is a compact subset of M x 0, 1],

e X710)n f71(0) = 0.

Equivariant gradient pair homotopies will be called P (M )-homotopies.

From now on the set of G(V')-homotopy classes will be denoted by G[V].
Moreover, the set of P(M)-homotopy classes in P(M) will be denoted by
P[M]. The principal significance of the next theorem is that it allows us to
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reduce the classification of G[V] to the classification of P[S(V)]. In fact it is
the first step in the classification of G[V].

LEMMA 2.1. The map Yy : G[V] — P[S(V)] defined by Vv ([VF]) =
[(Xvr, fyr)] is a bijection.

Lemma 2.1 is an equivariant version of Lemma 1 of [8] with the same
proof, therefore we omit it.

LEMMA 2.2. Let My, M1 be Riemannian smooth G-manifolds with G-in-
variant metrics such that there exists a G-equivariant diffeomorphism & :
My — M. Then the map ®* : P(M1) — P(My) given by &*(Vep, f) =
(V(po®), fod) induces a bijection [P*] : P[M;] — P[My].

The easy proof of this lemma is left to the reader.

DEFINITION 2.5. We denote by KC(M) the collection of pairs (U, X) such
that

e U C M is open invariant;
e there is ¢ € CL(U) such that X = V;
e X1(0) is a compact subset of U.

DEFINITION 2.6. We say that (U, X) is a K(M)-homotopy if

e U C M x [0,1] is open invariant;

e there is ¢ € C}(U) such that X = V,¢;

e X 1(0) is a compact subset of U.

Two pairs (Uy, Xo), (U1, X1) € K(M) are said to be K(M)-homotopic if
there exists a KC(M)-homotopy (U, X) such that, for i = 0,1,

Uy={zeM:(x,i) e U}, Xi(z)=X(x,1).
In this case (U, X) is called a K(M)-homotopy connecting (Up, Xo) and
(U1, X1). We denote by K[M] the set of all (M )-homotopy classes.
The following lemma will be useful in our considerations.
LEMMA 2.3. Let (U, X) € K(M). If W C U is an open invariant subset
and X~1(0) C W then

(a) (W, Xjw) € K(M);
(b) (U, X) and (W, X)) are K(M )-homotopic.

Proof. (a) Obvious.
(b) Set V=U x[0,1] \ (U\W) x {1} and Y (z,t) = X (x) for (x,t) € V.
Evidently (Y, V) is a KC(M)-homotopy connecting (U, X) and (W, Xy/). =
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Let (X, f) be any pair in P(M). The assignment

(X, f) = K(X, f) = (f 7 ((=00,0)), Xj1r)
defines a transformation KC : P(M) — K(M).
It is obvious from the definition of C that if (Xo, fo), (X1, f1) € P(M) are
homotopic in P(M), then (Xo, fo) and K(X1, f1) are homotopic in K(M).
Therefore K induces a transformation & : P[M]| — K[M].

LEMMA 2.4. The mapping 8 : P[M] — K[M] is bijective.
Proof. Surjectivity. Let (U, X) € K(M). Choose ¢ such that X = V.
Choose an open invariant set Uy C U such that Uy is compact and
X H0)cUycUycU.
Consider a smooth invariant function f : M — [—1,1] such that
—1 for z € X~ 1(0),
)= {
1 forx € M\ Up.

Choose an open invariant U; C U such that Uy C U; € Uy C U. Consider a
smooth invariant function p: M — [0,1] such that

1 for xz € Uy,
p(x) =
0 forze M\U.
Set
sy = [ PR+ (L= () for € X,
1 for v € M\ U;.
Let Y = V¢ and W = f~1((—00,0)). Since N_(f) C Uy and ¥(x) = ¢(z)
for x € Uy, (Y, f) € P(M). By the definition of K, (Y, f) = (W, X} ).
According to Lemma 2.3, (U, X) and (W, X|y) are homotopic in K(M).
This completes the proof of surjectivity.
The proof of injectivity is similar and is omitted. =

3. Normality conditions. Throughout this section, (H) stands for a
maximal element in (M ). The goal of this section is to establish a bijection

In what follows, the tangent bundle T'(M ) will be considered as a
subbundle of the restriction T'(M)|as - Since M(y) is a G-invariant, closed,

smooth submanifold of M, N = T(Mg))* is a G-invariant subbundle of
T(M)‘M(H), called the normal bundle of Mgy). We denote by m: N — Mg
the bundle projection.

By the tubular neighbourhood theorem (see Theorem 2.2 of [2]) there
exists an open invariant {2 C M and a smooth G-equivariant diffeomor-
phism A : N — {2 which maps the zero section of N onto M. From now
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on we identify {2 with N. Using this convention, for » > 0, we denote by
D,(N),B,(N),Sr(N) the corresponding bundles of closed discs, open discs
and spheres of radius r, respectively. We also put My, = M \ D;(N). Define
X, : N — T(N) by X, = Vv, where v(z) = §|z|%. Clearly X, is continuous
and G-equivariant. For € N consider the decomposition T, M =V, & H,,
where V, = Ker(Dn(z)) and H, = (V,)*.

The following result is a simple consequence of the definition of X, .
REMARK 3.1. If x € N\ My then X, (z) ¢ H,.

Let (Uo, Vo) be any pair in (M g)) and let (Uso, Vipoo) be any pair
in K(M). Define (U, X) by

U:=UyUUs, where U= 71 (Up) N B1(N),

X(a) = Vo(m(z) + X, (z) for z € Up,
Voo() for v € Uy.

Note that (D7 (z))* maps Ty (5)(Mg)) isomorphically onto H,. Since
(3.2) V(poom)(x) = (D(x))"(Veo(m(x))),

Remark 3.1 implies that if 2 € Up then X(z) = 0 if and only if z € M)
and Vyo(z) = 0. Thus (U, X) € (M) and the assignment

((U07 VSOO)v (Uo<>7 v‘Poo)) = (U7 X)

defines a transformation & : K(Mg)) X K(Ms) — K(M). Clearly £ preserves
K(M 1)) X K(Mx)-homotopy classes. Therefore it induces a transformation

We can now state a theorem which plays an important role in our con-
siderations.

THEOREM 3.1. The mapping € : K[M )| X K[Moo] — K[M] is bijective.

Before proceeding to the proof, we introduce some notation and prove
three lemmas.

LEMMA 3.1. Letp € C4(M,R). If zo € Mgy then V(o) € Ty (M)

Proof. Since (H) is a maximal element in ¢(M), My is a closed, G-
invariant, smooth submanifold of M. Let A : N(Mg)) — A(N(Mg))) be
an open, G-invariant, tubular neighbourhood of M) in M. Since A is a
G-equivariant diffeomorphism, it preserves isotropy groups and therefore
(N(M(H)))(H) = M(H) Notice that G(mo,v) C Gy, for any (zg,v) € Ty (M).

Fix 29 € M) We claim that (T, (M)) @)y C Tuo(Mgr))- In fact since
(N(M#))) @) = M), it is clear that for (z9,v) € Ny (Mp)) we have
= Gy, iff v = 0. Fix (vo,v,w) € Tpy(M) = Tpy(N(M))) =

((EQ,'U)
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Nuo (M) © Tiy(Mpy) and notice that Gy ) C G- Moreover, notice
that if G(,,4,w) = Gz, then v = 0. Summing up, we obtain
(3.3) (Teo (M) 1y = (Nag (M(11)) © Ty (M(ar))) (1)

= (Too (M(m1))) 1) C Toog(M(m))-

Fix ¢ € CL(M,R). It is clear that V¢ : M — TM is a continuous
G-equivariant map. Taking into account (3.3) we obtain

(Vo) Mgy = My = (T(M) a1y ) © T(Ma)),
which completes the proof. m

Consider a function 6 € C*(R, R) satisfying the following conditions:

e O(t)=0for T <2

e 0'(t)>0for2 <7 <3,

e §(r) =1for 7 > 3.

Define © : M — M by
o) = O(|z[)x for x € N,
x for x € M\ N.

REMARK 3.2. If [z| < 2 then O(x) = 7(x) and (DO(z))* maps T, M)
isomorphically onto H,. If |z| > 2 then DO(z) : TuM — Tg()M is an
isomorphism.

Now, consider (U, X) € K(M). Choose ¢ € CL(U,R) such that X = V.
Define @*(U, X) = (@_1(U), V(QO o @)\9_1(U))'

LEMMA 3.2. For any (U, X) € K(M) we have

(2) 6°(U, X) € K(M),

(b) ©*(U,X) and (U, X) are K(M)-homotopic.

Proof. (a) Let Y = V(0 ©). We claim that for z € ©71(U),

(3.4) Y(z)=0 & X(O(z)) =0.
To prove this we consider the following two cases.

1. € Do(N) N O YU). According to the definition of © we have
DO(z) = Dn(z). Thus DO(r) maps H, isomorphically onto T,y (M),
and DO*(z) maps T (,)(Mm)) isomorphically onto H,. Since

(3.5) V(poO)(x) = (DO(x))"(Ve(O(x)))

and, according to Lemma 3.1, Vo(O(z)) € To(y) (M), the proof of this
case is complete.

2. x € O 1U) \ Dy(N). In this case DO(z) is an isomorphism, which
implies (3.4).
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Thus Y 1(0) = ©71(X~1(0)). Clearly Y ~1(0) is a compact subset of
©~1(U) and the proof of (a) is complete.
(b) For t € [0,1] define ©; : M — M by
[t0(|z|) +1 —tjxz for x € N,
Oy(x) =
x for x € M\ N.
Set V.= {(z,t) € M x [0,1] : z € 6,1 (U)} and Z(z,t) = V(p 0 Oy)(x).
Evidently (V, Z) is a (M )-homotopy connecting (U, X) and ©*(U, X). =
Consider a function u € C*(R, R) satisfying the following conditions:
o (1) =0 for 7 <0,
o /(1) >0for0<7<2,
o (1) =1for 7> 2.
Define 11 € CL(M,R) by
- Lz|2) forz e N,
itr) = { 121
1 for x € M\ N.
Define X, : M — T(M) by X,, = Vp. Clearly X, is continuous and G-

equivariant.

Let (U, X) € K(M). Define
N(U,X) = (071(U), V(g0 O)o-1) + Xujo-1(17))-

LEMMA 3.3. For any (U, X) € K(M) we have

(a) N(U, X) € K(M),

(b) N(U,X) and (U, X) are K(M)-homotopic.

Proof. (a) Let Y = V(0 ©). We claim that for z € ©71(U),

(3.6) Y +X,)"1(0) =Y ~(0) N X, 1(0).
To prove this we consider the following two cases.
e 2 € Dy(N)NO~L(U). By (3.5), Y(z) € H,. Applying Remark 3.1 we
obtain (3.6).

e 1 € O 1(U)\ Dy(N). In this case X, (z) = 0, which implies (3.6).

Thus (Y + X,)~1(0) € Y~1(0), hence (Y + X,,)~!(0) is compact and the
proof of (a) is complete.

(b) For (z,t) € @~ Y(U) x [0,1] set Z(x,t) =Y (z) + (1 — t) X, (x). Then
(6-Y(U)x0,1], Z) is a K(M)-homotopy connecting N (U, X ) and 6*(U, X).
By Lemma 3.2(b), ©*(U, X) and (U, X) are (M )-homotopic and the proof
is complete. m

Proof of Theorem 3.1. Let (U, V) € K(M). Set Uy = U N Mg), ¢o =
DU Uso=O0"1U) N Mo, Ro(U, X)= (U, Vipo), Roo(U, X) =N (U, X) U
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According to Lemma 3.1, Ro(U, X) € K(Mg)) and by the definition of
N(U, V), Roo(U, V) € K(Ms).
Define a map R : K(M) — K(Mn)) x K(Mx) by

R(UaX) = (RO(UvX)aRoo(UaX))'

It follows directly from the definition of £ that £(R(U, X)) and N (U, X) are
K (M )-homotopic. Note that R preserves K(M )-homotopy classes. Thus R
induces a map R : K[M] — K[M )] x KL[M]. Hence Lemma 3.3 implies
that & o R is the identity map of K[M].

It remains to show that R o € equals the identity.

Let (U, Vo) € K(M1)) and (Uso, Vo) € K(Myo). Moreover, define
(Ua X) = ROO(g((U&VQDO)’ (UOCMVSOOO))) Set Uy = 9_1(U00)7 X1 = X|U17
Uy =0 (n 1 (Up) N Bi(N)) N My and X = X|,. Observe that

(a) U =U;UUy and UlﬂU2:®,
(b) (U17X1)7 (U27X2) € IC(MOO)a
(c) Xao(x) =V(pgom)(x)+ a(x)X,(x) for z € U, where a(z) > 0.

Setting W = Uz x [0,1] and Yi(x) = (1 —t) Xo(x) +t X, (z) for (x,t) € W we
obtain a (M )-homotopy (W,Y") connecting (Us, X2) and (Us, Y1). Clearly
Yi(xz) # 0 for all z € Us. Thus, in view of (a), Lemma 2.3 implies that
(U, X) is homotopic to (U1, X1) in K(My). Since (U1, X1) = N (Uso, Vo),
by a simple repetition of the arguments given in the proof of Lemma 3.3,
we see that (Uy, X1) is homotopic t0 (Use, Vipoo) in K(Ms). Thus we have
shown that R o E((Up, Vo), (Uso, Vo)) is homotopic to (Us, Vioso).
Since RooE((Uy, Vo), (Uso, Vo)) = (Up, Vo), Ro& induces the identity
on K[M )] X K[Mx]. Thus the proof of Theorem 3.1 is complete. m

We finish this section with a corollary which allows us to reduce the
classification of P[M] to the classification of P[Mg)] and P[M \ M),
where (H) € ¢(M). The corollary is a direct consequence of Lemmas 2.2,
2.4 and Theorem 3.1.

COROLLARY 3.1. Assume additionally that #®(M) < oo, i.e. (M) =
{(H1),...,(Hy)}. Then there is a bijection

Iy 2 PIM] — P[Mgy] x - x P[M,)-

It is worth pointing out that if the manifold M is compact, then #&(M)
< oo (see [2], [5])-

4. Main results. In this section we prove the main result of this article.
Throughout this section we assume additionally that #&(M) < oo. Namely,
we classify the homotopy classes P[M] (see Theorem 4.1). Moreover, as a
corollary we obtain a classification of G[V].
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We start with the definition of a group U(G,M). The degree we are
going to construct will be an element of U(G,M). Fix (H) € ¢(M). Since
My is a smooth Riemannian G-manifold, M z)/G is a smooth Riemannian
manifold and the projection 7y : M(gy — M(g)/G is a smooth G-invariant
map. Define
I((H), M)

= {W : W is a connected component of M /G withdim W > 1},
WeI((H),M) (H)ed(M)

It is understood that if I((H), M) = (), then Uy)(G, M) = {0}.

Fix [(X, f)] € P[M]. We will define an element

DEG([(X,f)],M)= > DEG (X, f)], M) € U(G,M),
(H)ed(M)

where DEG g ([(X, f)], M) € Uy (G, M).

Suppose first that #®(M) =1, i.e. (M) = {(H)}. In this situation

o M:M(H),
e U(G, M) = Uy (G, M),
 DEG([(X, /)], M) = DEGu)([(X, /)], M(1)) € U (G, Ma))-

Fix a pair (X, f) = (Ve, f) € P(M). Since (M ) {(H )} M/G is a
smooth manifold and the quotient map (g : M — M /G is smooth. Define
functions o, fo € C?(M/G,R) such that ¢(z) = (po o 7)) () and f(z) =
(foomum)(z).

Notice that if W € I((H), M), then the group G acts trivially on W.

It is clear that if W € I((H), M), then [(Vo, fo)w] € P[W]. Moreover,
it is easy to check that the map

Py :PIM] - PIM/Gl= [[ PW]
Wel((H),M)

defined by P ([(X, f)]) = ITwerm),m[(Veo, fo)w] is a bijection. On the
other hand, we have a bijection

YH) = Z YW H PW]|—-U(G,M) = @ Z,
WeI((H),M) Wel((H),M) Wel((H),M)
where the bijections vy : P[W] — Z are given by Corollary 6.2. Finally, we
define a bijection DEG (-, M) : P(M) — U(G, M) by
DEG 1) ([(X, f)], M) := (v(ary © Py ) ([(X, f)])-

Suppose now that #&(M) > 1, ie. @(M) = {(H1),...,(Hg)}, k > 1.
In this situation we define a bijection DEG(-, M) : P[M ] — U(G,M) as
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follows:
DEG([(X, )], M)
= ((DEGs,) (s M(m,)), - - -, DEG (1, (s M(zr,.))) © I )([(X )],
where I'y : P[M] — P[Mp,)] x -+ x P[M(p,)] is the bijection given by

Corollary 3.1.
Notice that we have just proved the following theorem.

THEOREM 4.1. Let G be any compact Lie group and let M be a smooth
Riemannian G-manifold such that #®(M) < oo. Then the above defined
map DEG(-, M) : P[M] — U(G, M) is a bijection.

Since S(V') C V is a compact, Riemannian G-manifold, #®(S(V)) < co.
Therefore combining Lemma 2.1 with Theorem 4.1 we obtain the following
corollary.

COROLLARY 4.1. Let V' be an orthogonal representation of a compact Lie
group G. Then the map Vg-deg : G[V] — U(G, S(V)) defined by
Vg-deg([VF], B(V)) = DEG(Yv([VF],5(V)))
s a bijection.
REMARK 4.1. It is easy to check that Vg-deg = DEG(-,S(V)) o Yy is
nothing other than the degree for G-equivariant gradient maps defined in [6].

5. Final remarks. Let Fy, Fi € C%4(V,R) be such that (VF;)~1(0) N

D(V) = {0} and det V2F;(0) # 0 for i = 0, 1. Moreover, assume that
Ve-deg([VFo], B(V)) = V-deg([VEL], B(V)).

From Corollary 4.1 it follows that there exists a family of potentials F; €
C%(V,R), t € [0,1], such that the maps VFy, VF} are joined by a G(V)-
homotopy V.7, : (D(V), S(V)) — (V,V'\ {0}), t € [0, 1]- Tet ¢ € CA(V,R)
be such that there are 0 < o, < 1 such that

o Do(V) C o~ (1),

o cl(D11(V)\ D1—<(V)) C 71(0).
Finally, define a family of potentials H; € C&(V,R), t € [0,1], as follows:

1
Hy(v) = (1= ¢(v)) - Fi(v) + 5 - d(v) - (V2Fi(0)v, v).
Notice that V,H, : V — V, t € [0,1], is a G(V)-homotopy such that
e V,H;(0) =0 for any t € [0, 1],
o (V,H;(0)"1(0)nD(V) = {0} for i = 0,1,

e V2H,(0) is a continuous family of self-adjoint G-equivariant linear
maps joining V2Fy(0) and V2Fy(0).
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Thus there is no global bifurcation of connected sets of non-trivial solutions
of the equation V,H;(v) = 0 off {0} x [0, 1]. However, there is local bifurca-
tion off {0} x [0,1] if ig(V2Fy(0),0) # ig(VZF1(0),0), i.e. the G-equivariant
Conley indices of the origin are different. This can be proved by the Con-
ley index techniques. Thus the degree for G-equivariant gradient maps is
the natural invariant to study global bifurcation of zeros for G-equivariant
gradient mappings.

It would be of interest to know if there is an example where there are no
non-trivial connected sets of non-trivial solutions intersecting {0} x [0, 1] as
in the work of Béhme [1].

We need to be careful in the interpretation of this phenomenon. For
gradient maps, it is well known that the Conley index provides stronger
invariants for homotopy classes of gradient maps. But this only applies when
not only the critical points but also the connecting orbits joining them do
not cross the boundary of the neighbourhood we are working in. We can
actually do a little better, but this does not matter for our present discussion.
In particular, suppose that VFy, VF] : V — V are gradient G-equivariant
mappings such that VFy(v) # 0 and VFi(v) # 0 if |[v| > 1.

If Vg-deg([VFyl, B(V)) = Vg-deg([VFy], B(V)) then, by Corollary 4.1,
[VFy] = [VF1], i.e. VFy, VF| are homotopic through a G-equivariant gradi-
ent homotopy VF}, t € [0, 1], such that VFi(v) # 0 if |jv]| = 1.

Now suppose that V Fy has the property that all the connecting orbits of
V Fy joining zeros of VFj lie in ||z|| < 1 and VF} has the same property. If
VFy and VF; have different G-equivariant Conley indices on the unit ball,
it follows that for any equivariant homotopy Fy, ¢t € [0, 1], joining V Fj and
VF; we have no uniform bound on the zeros of F; and connecting orbits
(otherwise the Conley indices on large balls would be the same). Hence we
see that the homotopy theory of gradient maps is quite different when we
bound only the zeros, or both the zeros and the connecting orbits.

6. Appendix. In this section we classify the homotopy classes of gradi-
ent pairs on a connected smooth Riemannian manifold N. Unless otherwise
stated, throughout this section we assume that dim N > 1. The proof is
similar in spirit to that of [8].

In the first step we reduce the classification of homotopy classes of gradi-
ent pairs on a manifold N to the classification of admissible gradient maps
on R4™ N (see Theorem 6.1).

In the second step, for the convenience of the reader, we briefly sketch
the classification of admissible gradient maps on R4¥™ ¥V due to Parusinski
[8] (see Theorem 6.4).

Finally, in Corollary 6.2 we classify the homotopy classes of gradient pairs
on a connected smooth Riemannian manifold N.
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We keep the notation of the previous sections, although in this section
G = {e}.

Let B" = {z € R": |z| < a}, D" = cl(B?) and S?~! = B". We write
B" D", S" ! instead of BY, DY, S{L*l, respectively.

The principal significance of Theorem 6.1 is that it allows us to reduce
the classification of P[N] to the classification of G[R4™ V],

In order to prove this theorem we first need two technical lemmas. We
leave their proofs to the reader.

LEMMA 6.1. Let (Vo, f) € P(N). If (U, h) is a chart on N such that
° h—l(DdimN) C U,
e cl(U)NN_(f) =0, _
e © is a Morse function on h=' (D™ N),
then (V, f) is P(N)-homotopic to a pair (Vi, f) € P(N) such that
o (V) (0)nh~H(DIN) =9,
e Vo =V on N_(f).
LEMMA 6.2. Let (V, f) € P(N). If (U, h) is a chart on N such that
h—l(DdimN) C U,
el(U) N N-(f) = D,
(V)" (0) N A= (DA™ N) =g,
¢ s a Morse function on N_(f),
then the pair (V, f) is P(N)-homotopic to a pair (Vi,g) € P(N) such
that
o N_(g) = h=!(DImN),
e ¢ is a Morse function on N_(g),
° g_l(()) — h—l(SdlmN—l)‘

The following theorem is the first step in the classification of P[N].

THEOREM 6.1. There is a bijection jy : P[N] — G[RI™N],

Proof. Fix [(Ve, f)] € P(N). It is easy to show that there is ¢ €
C?(N,R) such that

e o1 is a Morse function on N_(f)\ f~1(0),

o p1(z) = p(z) on N\ (N_(f)\ f7(0)).
It is evident that (V(t- o1+ (1 —1t)-¢), f) is a well defined P(N)-homotopy
joining (Ve, f) to (Vr, f). Let (U, h) be a chart on N such that cl(U) N
N_(f) = 0. There is no loss of generality in assuming that A= (DY™ V) c U.
It is clear that there is o € C?(N,R) such that

o 2@) = pr(2) for s € N\U,

e (o is regular on N_(f) Uh~1(DImN),
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It is easy to verify that (V(¢-p2+(1—t)-¢1), f) is a well defined P (N)-homo-
topy joining (V1, f) to (Va, f). By Lemma 6.1 the gradient pair (Va, f)
is P(N)-homotopic to a pair (Vs, f) such that

e X;H0)nA~Y(DIMNY = ¢,

e 3 is a Morse function on N_(f).

From Lemma 6.2 it follows that there is a gradient pair (V4, f1) P(IN)-ho-
motopic to the pair (Vs, f) such that

° N_<f4) — hfl(DdimN)’

o £71(0) = ht (5am N,

e ¢4 is a Morse function on N_(fy).

Let ¢ : R4™N . R be any C’.l—extension of pg o A7t . DIMN _, R We
define a map jy : P[N] — G[RI™N] by jn([(Ve, f)]) = [V¢]. Directly from
the definition it follows that jy is well defined. What is left is to show that
Jn is a bijection. .

Define a map ky : G[RY™ N — P[NT] in the following way. Let (U, h) be a
chart on NN such that h~!(D{imN) c U. Fix Vy € G(R¥™ ) and denote by
Yy, € C1(N,R) any extension of p o h: h=1(D{imY) — R. Finally, choose
any fy, € C%N,R) such that N_(fy,) = h~}(DYmY) and fg;(O) =
h=1(SAmN=1) Define ky : GIRIMN] — P[N] by kn [V = [(Vibvy, fye)]-
It is clear that ky is well defined. We check at once that kpy is the inverse
of jn, which completes the proof. m

Let ¢ € C?(N,R) be a Morse function such that V¢ (p) = 0. Then we
denote by m~(p,V¢) € NU {0} the Morse index of p. If 2 C R" is an
open and bounded subset, and moreover ¢ € C°(cl(£2),R") is such that
¢ 1(0) N 92 = () then deg(q, £2,0) € Z denotes the Brouwer degree.

LEMMA 6.3. Let (Vip, f) € P(N) be such that o € C*(N,R) is a Morse
function on N_(f). Then

deg(in ([(Ve, )]), B",0) = > (1 Vo),
PEN_(f)N(Ve)~1(0)
Proof. The easy proof is left to the reader. m

From Theorem 6.1 it follows that to classify P[N] it is enough to classify
GRIMN] In fact G[RY™ V] has been classified in [8]. Below we recall the
main steps of this proof.

Let VF € G(R"). For x € S"~! we have the unique decomposition

(6.1) VF(z)=(VF(x) — (VF(x),z) - z)+ (VF(x),z) -z
= Xvr(z) + fyor(z) - .
It is clear that (Xvr, fur) = [(V(Fign-1), fyr)] € P(S™71).
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LEMMA 6.4. The map i, : G[R"] — p[Sn—l] defined by in([VF]) =
[(Xvr, fyr)] is a bijection.

LEMMA 6.5. If F\Sn—l € C2(Sn_l,R) is a Morse function, then
deg([VF], B",0) =1 — Z (_1)m_(p7XVF).
PEN—(fyr)NXgp(0)

As a direct consequence of Theorem 6.1 and Lemmas 6.4, 6.5 we obtain
the following corollary.

COROLLARY 6.1. Fiz any n > 2. Then
(1) the map G[R™!] iy P1S™] Ism, G[R"] is a bijection,
(2) for VF € G[R" 1],
deg((jsn © ZTL-H)[VF]? B", 0) =1- deg([VF]v Bn+17 0)
From Corollary 6.1 it follows that to classify G[R"T!] it is enough to
classify P[S1].

THEOREM 6.2. There is a bijection jg1 : P[S'] — 7Z. Moreover, if
(¢, f) € P(SY) and ¢ € C*(S,R) is a Morse function then

Jsr ([, ) = Z (_1)m‘(p,<p’)'
PEN_(/)N(¥")~1(0)
Furthermore, jgi([(sinkt, coskt)]) = k.

We can also classify the gradient pairs on an open interval.

THEOREM 6.3. There is a bijection j( or) : P[(0,27)] — Z. If (¢', f) €
P((0,27)) and ¢ € C%((0,27),R) is a Morse function then

j(0,27r)([(90,7 f)}) = Z (—1)7”7(13,@/)'
PEN_ (@) ~1(0)

Moreover, joax)([(sinkt,cos kt)]) = k.
The following theorem is a direct consequence of Lemma 6.3.

THEOREM 6.4. For k > 1 the bijection
0 0 jg1 0lig 0 jg2 0430 ...0 jgu1 0i) : G[R¥] = Z
s given by
(O © g1 02 0 jg2 0z 0 ... 0 fga—1 0igy)([VF]) = deg([VF], B*,0),
where the bijection Oy : Z — 7 is defined by
50 (m) = { 1—m if kis even,

m otherwise.
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Finally, we classify the homotopy classes of gradient pairs on a connected
smooth Riemannian manifold N.

COROLLARY 6.2. Let N be a connected smooth Riemannian manifold
with dim N > 1. Then there is a bijection Y : P[N] — Z given by

In([(Ve, ) = > (—1)m Ve
PEN_(H)N(Ve)~1(0)
where ¢ € C%(N,R) is a Morse function.
Proof. We define Y : P[N| — Z as follows:

Jdim N © Jg1 0420 jg2 0430 ...0 jgdim N—1 O idim N O JN

. if dim N > 1,
N7 e if N~ S,
j(072ﬂ-) if N =~ (0, 27’(‘)

Fix [(Vo, f)] € P(N). Without loss of generality one can assume that ¢ €
C?(N,R) is a Morse function. The rest of the proof is a consequence of
Lemma 6.3 and Theorems 6.2-6.4. »
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