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Inscribing compact non-σ-porous sets
into analytic non-σ-porous sets

by

Miroslav Zelený and Luděk Zaj́ıček (Praha)

Abstract. The main aim of this paper is to give a simpler proof of the following
assertion. Let A be an analytic non-σ-porous subset of a locally compact metric space E.
Then there exists a compact non-σ-porous subset of A. Moreover, we prove the above
assertion also for σ-P-porous sets, where P is a porosity-like relation on E satisfying
some additional conditions. Our result covers σ-〈g〉-porous sets, σ-porous sets, and σ-
symmetrically porous sets.

1. Introduction. There are many papers in real analysis and Banach
space theory dealing with different kinds of porosity and σ-porosity. We
refer to survey papers [Za2] and [Za5] for definitions and applications of
these notions. This paper is a continuation of [ZP], [ZZ1], and [ZZ2], where
structural properties of σ-porosity are studied. Namely, we consider, for
several types of porosity, the following question:

(Q) Let A be an analytic non-σ-porous subset of a metric space E. Does
there exist a closed non-σ-porous set K ⊂ A?

For ordinary (Denjoy–Dolzhenko) porosity this natural question was
mentioned in [Za2] and an affirmative answer was given independently
by J. Pelant (in the case of a topologically complete metric space E) and
by M. Zelený (in the case of a compact metric space E) in an unpub-
lished manuscript [Ze]. In the present article, we prove the same result for
〈g〉-porosity (in a locally compact metric space E), for symmetrical porosity
(in R), and also for several other types of porosity. Especially the notion
of σ-symmetrical porosity has found interesting applications (see [Za2] and
[Za5] for references).

Pelant’s proof giving an explicit construction of a closed non-σ-porous set
was rather complicated; its modification can be found in [ZP]. The method
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of construction of non-σ-porous sets from [ZP] works in general complete
metric spaces and is applicable to a number of problems but it is more com-
plicated than the method of the present article and it uses some special
properties of the ordinary (Denjoy–Dolzhenko) porosity. One can proba-
bly use that approach also for some other types of porosity (the case of
σ-〈g〉-porosity is promising) but then the construction would become ex-
traordinarily technical.

The proof in [Ze] is non-constructive; it uses a version of the well known
“overspill method” (see [K, p. 290]). No explicit construction of a compact
non-σ-porous set is given; instead, a coanalytic rank is defined for certain
systems of compact sets and “very complicated” compact σ-porous subsets
of A are constructed by transfinite induction to show that the rank is un-
bounded. Then the existence of the desired non-σ-porous set is deduced by
applying a theorem of descriptive set theory.

The present paper is based on the idea of [Ze]. In fact, this idea was
already used in [ZZ1] and the present article uses a number of concepts and
results of [ZZ1]. In particular, we do not use a version of the overspill method
here but it is used in [ZZ1] in the proof of the basic lemma to which we refer
(Lemma 2.24 below). However, the transfinite construction presented here
is more complicated than that of [ZZ1] and requires new ideas.

In [ZZ1], we proved that the set of all compact σ-porous subsets of
an arbitrary separable locally compact metric space E is a coanalytic
non-Borel subset of the “hyperspace” of all compact subsets of E. To
prove this result not only for ordinary porosity but also for a number
of other types of porosity, we introduced some new concepts concerning
point-set relations (recalled in Section 2). This abstract setting enables us
to prove a general theorem, which easily implies an affirmative answer to
Question (Q) not only for ordinary porosity, but also for 〈g〉-porosity (in
a locally compact metric space E), symmetrical porosity in R, and sev-
eral other types of porosity (see Remark 5.5). On the other hand (in con-
trast to the “complexity problem” in [ZZ1]) our methods do not work for
strong porosity (see e.g. [ZZ1] for the definition), for which (Q) remains
open.

Our abstract setting has also another important advantage. It enables
us to prove the affirmative answer to Question (Q) in a transparent way in
two steps: In Section 3, we prove it (for some types of “abstract porosities”)
in the case of a Gδ set A ⊂ E, and in Section 4 we show that the general
case is a relatively easy consequence of this special case, if we apply it to a
suitable “abstract porosity” in E×C, where C is the Cantor set. This proof
is not standard even for ordinary porosity since we have to apply the Gδ

case in E × C not to the ordinary porosity but to another suitably defined
porosity on E × C.
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Section 5 is devoted to applications of the abstract result to 〈g〉-porosity,
ordinary porosity, and symmetrical porosity.

Further, note that Question (Q) has an affirmative answer for “σ-lower
porosity” (i.e., for σ-very porous sets in the terminology of [Za1]) and for
similar types of porosity. In these cases, the proof is significantly easier
(see [ZZ2]).

2. Notation and definitions. Let (X, %) be a metric space. The open
ball with center x ∈ X and radius r > 0 is denoted by B(x, r). Let
A ⊂ X, A 6= ∅, and ε > 0. Then the symbol B(A, ε) stands for the set
{y ∈ X; %(y,A) < ε}.

We say that R is a point-set relation on X if it is a relation between
points of X and subsets of X. Thus a point-set relation R is a subset
of X × 2X . The symbol R(x,A), where x ∈ X and A ⊂ X, means that
(x,A) ∈ R, i.e. R holds for the pair (x,A).

We consider the following properties of a point-set relation R on X.

(A1) If A ⊂ B ⊂ X, x ∈ X, and R(x,B), then R(x,A).
(A2) R(x,A) if and only if there is r > 0 such that R(x,A ∩B(x, r)).
(A3) R(x,A) if and only if R(x,A).

We say that a point-set relation P on X is a porosity-like relation if P
satisfies the “axioms” (A1)–(A3). Note that virtually all types of porosity
satisfy (A1)–(A3).

Let P be a porosity-like relation on X. We say that A ⊂ X is

• P-porous at x ∈ X if P(x,A),
• P-porous if P(x,A) for every x ∈ A,
• σ-P-porous if A is a countable union of P-porous sets.

Notation 2.1. Let (X, %) be a metric space and R be a point-set rela-

tion on X. If A ⊂ X and B ⊂ X, then R(A,B)
def⇐⇒∀a ∈ A : R(a,B). Let

moreover I be a nonempty index set and Rι, ι ∈ I, be point-set relations
on X. Then the point-set relations ¬R,

⋃
ι∈I Rι,

⋂
ι∈I Rι on X are defined

in the natural way; namely (¬R)(x,A)
def⇐⇒¬(R(x,A)), (

⋃
ι∈I Rι)(x,A)

def⇐⇒
∃ι ∈ I : Rι(x,A) and (

⋂
ι∈I Rι)(x,A)

def⇐⇒∀ι ∈ I : Rι(x,A).

Lemma 2.2. Let Ξ be a nonempty countable set , and Q be a porosity-
like relation on a metric space X such that Q =

⋃
ξ∈Ξ Uξ, where Uξ’s

satisfy (A1). If A ⊂ X is a σ-Q-porous set , then A can be written as
A =

⋃∞
n=1Bn, where each Bn satisfies Uξ(Bn, Bn) for some ξ ∈ Ξ.

Proof. We can write A =
⋃∞
n=1An, where each An is Q-porous, and each

An can be written as An =
⋃
ξ∈Ξ C

ξ
n, where Cξn = {x ∈ An; Uξ(x,An)}.

Using property (A1) of Uξ we have Uξ(Cξn, C
ξ
n) and we are done.
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Let X be a metric space. The symbol Cb(X) denotes the space of all
nonempty bounded closed subsets of X with the Hausdorff metric

h(F,C) = max{sup{%(x, F ); x ∈ C}, sup{%(y, C); y ∈ F}},
andK∗(X) is its subspace of all nonempty compact subsets ofX. The symbol
K(X) denotes the space of all compact subsets of X. The space K(X) is also
equipped with the Hausdorff metric; the empty set is considered to be an
isolated point of K(X). (To have a fixed metric on K(X), we choose a ∈ X,
and the distance of ∅ to a nonempty compact subset K ⊂ X is defined as
h(∅,K) := dist(a,K) + diam(K) + 1.)

The next lemma is easy to prove and therefore the proof will be omitted.

Lemma 2.3. Let X be a compact metric space.

(i) Let Ki ∈ K(X), i ∈ N, and K1 ⊂ K2 ⊂ · · · . Then Ki →
⋃∞
j=1Kj

in K(X).
(ii) Let K ∈ K(X), Ki ∈ K(X), i ∈ N, and Ki → K in K(X). Then

K ∪⋃∞i=1Ki ∈ K(X).
(iii) If G ⊂ X is a Gδ set , then {K ∈ K(X); K ⊂ G} is a Gδ set

in K(X).
(iv) Let L ∈ K(X) be clopen. Then K 7→ K∩L is a continuous mapping

of K(X) to itself.
(v) Let f be a continuous mapping of X to a metric space Y . Then

K 7→ f(K) is a continuous mapping of K(X) to K(Y ).

Definition 2.4. Let X be a metric space. Let R be a point-set relation
on X and P be a porosity-like relation on X.

• If A ⊂ X, then we define

N(R, A) = {x ∈ A; (¬R)(x,A)}.
• If the set

{(x,K) ∈ X × Cb(X); R(x,K)}
is open, then we say that R is stable.
• If A ⊂ X, then we define

kerP(A) = A \
⋃
{O; O ⊂ X is open, A ∩O is σ-P-porous}.

The next property was introduced in [ZZ1], where it is called (D2). It
is a technical notion which is necessary for the proof of the basic lemma of
[ZZ1] (see Lemma 2.24 below). Although virtually no porosity-like relation
is stable, many of them are obtained from stable relations using countable
unions and countable intersections. Stability of a relation is an important
notion in proofs that some point-set relations have (D).
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Definition 2.5. Let X be a metric space. Let R be a point-set relation
on X. We say that R satisfies the condition (D) if the set

{(L,K) ∈ K∗(X)×K∗(X); ∃O ⊂ X open : L∩O 6= ∅, (¬R)(L∩O,K ∩G)}
is analytic for every G ⊂ X open.

Lemma 2.6. Let P be a porosity-like relation on a metric space X and
A ⊂ X. Then

(i) kerP(A) is closed in A.
(ii) If A is not σ-P-porous, then kerP(A) is nonempty and kerP(A)∩G

is non-σ-P-porous for every open G ⊂ X intersecting kerP(A).
(iii) kerP(kerP(A)) = kerP(A).
(iv) If kerP(A) = A, then kerP(A ∩ G) = A ∩ G whenever G ⊂ X is

open.

Proof. Assertions (i) and (iv) follow immediately from the definition
of ker. Assertion (ii) follows easily from the fact (see [Za4, Lemma 3]) that
a set M ⊂ X is σ-P-porous if and only if for each y ∈M there exists r > 0
such that B(y, r) ∩M is σ-P-porous. Having (ii) it is easy to infer (iii).

Lemma 2.7. Let X be a metric space, and R be a stable point-set relation
on X with (A3). Let A ⊂ X be bounded. Then N(R, A) is closed in A.

Proof. Since R is stable, the set {x ∈ X; R(x,A)} is open. Using also
property (A3) of P we conclude that N(R, A) = A \ {x ∈ X; R(x,A)} =
A \ {x ∈ X; R(x,A)} is closed in A.

Lemma 2.8 ([ZZ1, Lemma 3.7]). Let E be a separable complete met-
ric space. Let Rk, k ∈ N, be stable point-set relations on E with (A1)
and (A3). Then the relations V1 :=

⋂∞
k=1 Rk and V2 :=

⋂∞
n=1

⋃∞
k=n Rk

have the properties (A1), (A3), and (D).

For technical reasons and only for the purposes of this paper we define
the following notions.

Definition 2.9. Let ε > 0, n ∈ N, E be a locally compact metric space,
and (R1

k), (R2
k) (k ∈ N) be two sequences of point-set relations on E. We

say that the condition C(ε, (R1
k), (R

2
k), n) is satisfied if, for every H ⊂ E,

k ∈ N, k ≥ n, and every compact set K ⊂ E with (¬R2
k)(K,H), there exists

a finite system S of open sets in E such that

(i) each element of S intersects H,
(ii)

⋃S ⊂ B(K, ε),
(iii) if J ⊂ E intersects each element of S, then (¬R1

k)(K,J).

Perhaps a few words about this definition are in order. Suppose that
(¬R2

k)(K,H) for k ≥ n. Roughly speaking, it would be helpful in fur-
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ther constructions if we could replace H by a suitable set J ⊂ H so that
(¬R2

k)(K,J) for k ≥ n. In the applications of interest, this is not possi-
ble in general. But if we know that C(ε, (R1

k), (R
2
k), n) holds, then we get

(¬R1
k)(K,J) (for k ≥ n and any suitable J) and it makes the desired con-

structions still possible.

Definition 2.10. Let I be a σ-ideal of subsets of a locally compact
metric space E. We say that I is good if there exists a porosity-like relation
P on E such that I is the σ-ideal of all σ-P-porous sets and there exist a

nonempty countable set Ξ and point-set relations Rξ
n on E, ξ ∈ Ξ, n ∈ N,

such that

(G1) P =
⋃
ξ∈Ξ Vξ, where Vξ =

⋂∞
n=1

⋃∞
k=n Rξ

k,

(G2) Rξ
n satisfies (A1), (A3), and is stable for every ξ ∈ Ξ, n ∈ N,

(G3) for every ε > 0 and every ξ1 ∈ Ξ there exist ξ2 ∈ Ξ and n ∈ N
such that C(ε, (Rξ1

k ), (Rξ2
k ), n) holds.

The upper limit of Rξ
k’s in (G1) is motivated by the fact that

〈g〉-porosity, symmetrical porosity, and some other types of porosity can
be naturally expressed in this form (see Section 5). Condition (G3) is a
type of condition which naturally appears in constructions of non-porous
(or even non-σ-porous sets). Simpler conditions of this type are e.g. (A5)
from [ZZ1] and that of [ZZ2, Definition 2.2].

Our aim is to prove that Question (Q) has an affirmative answer for
σ-P-porosity if the σ-P-porous sets form a good σ-ideal. Since we have to
prove several lemmas before the proof of the main result, we fix the meaning

of the symbols E, %, P, Ξ, Vξ, Rξ
n, and ξk in the rest of this section and in

the next section.

Setting 2.11. Let (E, %) be a fixed compact metric space, P be a fixed
porosity-like relation on E, Ξ be a nonempty countable set, Vξ, ξ ∈ Ξ, be

fixed point-set relations on E, and Rξ
n, ξ ∈ Ξ, n ∈ N, be fixed point-set

relations on E such that (G1)–(G3) are satisfied. Let {ξk}∞k=1 be a fixed
sequence containing each element of Ξ infinitely many times.

Let ε > 0, ξ1, ξ2 ∈ Ξ, n ∈ N. We employ the symbol C(ε, ξ1, ξ2, n) to

denote that the condition C(ε, (Rξ1
k ), (Rξ2

k ), n) holds.

Lemma 2.12. Let A ⊂ E. Suppose C(ε, ξ1, ξ2, n), and let B be a sub-
set of E. Let x ∈ E be such that B(x, ε) ⊂ B and (¬Vξ2)(x,A). Then

(¬Vξ1)(x,A ∩B).

Proof. There exists m ∈ N such that m ≥ n and (¬Rξ2
j )(x,A) for every

j ≥ m. Fix j ≥ m. According to (G3) there exists a finite system S of open
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sets such that

• each element of S intersects A,
• ⋃S ⊂ B(x, ε),

• if J ⊂ E intersects each element of S, then (¬Rξ1
j )(x, J).

Since A ∩ B intersects each element of S, we have (¬Rξ1
j )(x,A ∩ B). Thus

(¬Rξ1
j )(x,A ∩B) for every j ≥ m and, consequently, (¬Vξ1)(x,A ∩B).

Note that Vξ need not be a porosity-like relation. However, the following
lemma holds.

Lemma 2.13. The relations Vξ satisfy (A1), (A3), (D), and P is nec-
essarily a porosity-like relation.

Proof. Lemma 2.8, (G1), and (G2) imply that Vξ’s satisfy (A1), (A3),
(D), and P satisfies (A1) and (A3). We check (A2) for P. Let ε > 0,
x ∈ E, and A ⊂ E be such that P(x,A∩B(x, ε)). Then for some ξ1 ∈ Ξ we
have Vξ1(x,A ∩B(x, ε)). Find ξ2 ∈ Ξ and n ∈ N with C(ε, ξ1, ξ2, n). Using
Lemma 2.12 we obtain Vξ2(x,A).

Definition 2.14. Let µ ∈ NN, k ∈ N, and s = (s(1), . . . , s(k)) be a
finite sequence of elements of N. Then we define

µ(k) = kth member of µ,

µ|k = (µ(1), . . . , µ(k)),

s � µ = (s(1), . . . , s(k), µ(k + 1), µ(k + 2), . . . ).

Let us note that the next definition uses the sequence {ξn}, which has
already been fixed in Setting 2.11.

Definition 2.15. Let m,n, l ∈ N, A ⊂ E, µ ∈ NN, and s = (s(1), . . .
. . . , s(m)) be a finite sequence of natural numbers. Then we define

gnl (A) = kerP

( ∞⋂

j=l

N(Rξn

j , A)
)
, fs(A) = gms(m) ◦ · · · ◦ g1

s(1)(A).

Let A ⊂ E, B ⊂ E. Then the symbol B
µ
↪→A stands for B ⊂ ⋂∞k=1 fµ|k(A).

Observe that gnl (A) ⊂ A by the definition of ker and N(R, A) (Defini-
tion 2.4).

Definition 2.16. Let µ, ν ∈ NN. Then the symbol µ ≤ ν means that
µ(k) ≤ ν(k) for every k ∈ N.

The next observations are easy to prove.
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Observation 2.17. (i) Let s be a finite sequence of natural numbers,

τ ∈ NN, and A, B be subsets of E such that A
τ
↪→ fs(B). Then

A
s�τ
↪→B.

(ii) Let τ ∈ NN and A, B be subsets of E such that A
τ
↪→B. If ν ∈ NN

and τ ≤ ν, then A
ν
↪→B.

Definition 2.18. We will define systems Cα, α ≤ ω1, of nonempty
compact subsets of E inductively. We put C0 = K∗(E). The system Cα,
0 < α ≤ ω1, is defined by

K ∈ Cα def⇐⇒ (K ∈ K∗(E) & (∀β < α ∀ξ ∈ Ξ
∀B ⊂ E open,K ∩B 6= ∅ ∃L ∈ Cβ : L ⊂ K ∩B, (¬Vξ)(L,K ∩B))).

The last definition enables us to define a rank needed for an application
of the overspill method (via Lemma 2.24). Note that we do not know whether
it is a coanalytic rank. However, we will not need this information.

Definition 2.19. Let K ∈ K∗(E). Then rk(K) = sup{α; K ∈ Cα}.
Remark 2.20. It is not difficult to see that rk(K) ≥ α if and only if

K ∈ Cα and thus rk(K) = max{α; K ∈ Cα}.
The next lemma follows directly from the above definition.

Lemma 2.21. Let α < ω1. Let K ⊂ K∗(E), K 6= ∅ and rk(K) ≥ α for

each K ∈ K. Then rk(
⋃K) ≥ α.

Lemma 2.22. (i) Let K ∈ K∗(E), rk(K) ≥ α. If G is an open set
intersecting K, then there exists F ∈ K∗(E) with F ⊂ K ∩ G and
rk(F ) ≥ α.

(ii) Let {αi}∞i=1 be a nondecreasing sequence of countable ordinals

and lim(αi + 1) = α. Let Ki ∈ K∗(E), i ∈ N, be such that rk(Ki)

≥ αi, (¬Vξi)(Ki,Ki+1), and Ki ⊂ Ki+1 for every i ∈ N. Then

rk(
⋃∞
i=1Ki) ≥ α.

Proof. (i) Find an open set H intersecting K with H ⊂ G. Put F =

K ∩H. We have F ⊂ K ∩G .
Let β < α, ξ ∈ Ξ, and B ⊂ E be an open set intersecting F . Then

K ∩ H ∩ B 6= ∅ and, consequently, there exists L ∈ Cβ such that L ⊂
K ∩H ∩B ⊂ F ∩B and (¬Vξ)(L,K ∩H ∩B). Since Vξ satisfies (A1) by
Lemma 2.13, we have (¬Vξ)(L,F ∩B). Thus rk(F ) ≥ α.

(ii) Define K =
⋃∞
i=1Ki. Let β < α, ξ1 ∈ Ξ, and B be an open set

intersecting K. We find i ∈ N such that Ki ∩ B 6= ∅ and rk(Ki) ≥ β.
According to (i) there exists L ∈ K∗(E) such that rk(L) ≥ β and L ⊂ Ki∩B.
Find ε > 0 with dist(L,E \ B) > ε. There exist ξ2 ∈ Ξ and n ∈ N with
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C(ε, ξ1, ξ2, n). For some j ≥ i we have (¬Vξ2)(Kj ,Kj+1). We also have

L ⊂ Ki ⊂ Kj ⊂ Kj+1 ⊂ K. Now (A1) for Vξ’s implies (¬Vξ2)(L,K), and

so Lemma 2.12 gives (¬Vξ1)(L,K ∩B). This shows that rk(K) ≥ α.

Lemma 2.23. Let G be an analytic subset of K∗(E) with

sup{rk(K); K ∈ G} = ω1.

Then G contains a non-σ-P-porous set.

The previous lemma follows immediately from Lemma 2.13 and from the
next basic lemma of [ZZ1].

Lemma 2.24 ([ZZ1, Lemma 5.2]). Let X be a separable locally compact
metric space and Ξ be a nonempty countable set. Let Q =

⋃
ξ∈Ξ Wξ be a

porosity-like relation on X, where each Wξ satisfies (A1), (A3), and (D).
Let rk be the rank corresponding to the relations Wξ, i.e., the one we obtain
by replacing Vξ by Wξ in Definitions 2.18 and 2.19. Let G be an analytic
subset of K∗(X) with sup{rk(K); K ∈ G} = ω1. Then G contains a non-σ-
Q-porous set.

3. Inscribing into a Gδ set

Lemma 3.1. Let G ⊂ E be a Gδ set with kerP(G) = G 6= ∅. Then there

exist µ ∈ NN and x ∈ G such that {x} µ
↪→G.

Proof. First observe that if A ⊂ E is not σ-P-porous, then for every
n ∈ N there exists m ∈ N such that gnm(A) is not σ-P-porous. Indeed, the
set

T := A \
∞⋃

p=1

∞⋂

j=p

N(Rξn

j , A)

is P-porous, since Vξn(T, T ). Thus
⋃∞
p=1

⋂∞
j=p N(Rξn

j , A) is non-σ-P-porous.

Hence we can find m ∈ N such that
⋂∞
j=m N(Rξn

j , A) is non-σ-P-porous.

Now Lemma 2.6(ii) shows that gnm(A) is non-σ-P-porous.
Let τ be a complete metric on G equivalent to % on G. We will find a

sequence {kn}∞n=1 of natural numbers and a sequence {Hn}∞n=0 of closed sets
in (G, τ) such that H0 = G and for every n ∈ N we have

• diamτ Hn < 1/n,
• Hn ⊂ gnkn(Hn−1),
• Hn is non-σ-P-porous.

Suppose that we have defined Hn and kn. Then there exists kn+1 ∈ N
such that gn+1

kn+1
(Hn) is non-σ-P-porous. The set gn+1

kn+1
(Hn) is closed in Hn by

Lemmas 2.6(i) and 2.7. Therefore gn+1
kn+1

(Hn) is closed also in (G, τ). Take an
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open ball B in (G, τ) with diamτ B < 1/(n+ 1) intersecting gn+1
kn+1

(Hn) and

put Hn+1 = gn+1
kn+1

(Hn) ∩B(G,τ). Using Lemma 2.6(ii) we deduce that Hn+1

is non-σ-P-porous. This finishes the construction of the desired sequences.

We have
⋂∞
n=1Hn = {x}. Putting µ = {kn}∞n=1 we obtain {x} µ

↪→G.

Roughly speaking, our aim is to show that inside a Gδ non-σ-P-porous
set one can find a compact set with arbitrarily large countable rank. Having
this we can apply Lemma 2.23. We use transfinite induction on the rank.
The precise assertion is formulated in the next lemma. The previous lemma
in fact verifies the first step of the induction, and Lemmas 3.3 and 3.4 help
us to prove the general induction step.

Lemma 3.2. Let α be an ordinal number with α < ω1. Let G ⊂ E be a
Gδ set with kerP(G) = G 6= ∅. Then there exist K ∈ K∗(E) and µ ∈ NN
such that K

µ
↪→G and rk(K) ≥ α.

Lemma 3.3. Assume that the assertion of Lemma 3.2 holds for an ordi-
nal number α < ω1. Let

• ε > 0,
• n, k ∈ N, n < k,
• µ ∈ NN, m ∈ N and ξ ∈ Ξ be such that µ(k) ≤ m and C(ε, ξ, ξk,m),
• F ⊂ {j ∈ N; j ≥ m} be a finite set ,
• G ⊂ E be a Gδ set with kerP(G) = G 6= ∅,
• K ∈ K∗(E) and K

µ
↪→G.

Then there exist L ∈ K∗(E) and ν ∈ NN such that

(a) µ|n = ν|n,

(b) K ∪ L ν
↪→G,

(c) for every p ∈ F we have (¬Rξ
p)(K,L),

(d) rk(L) ≥ α,
(e) h(L,K) < ε.

Proof. Since K
µ
↪→G and k > n, we have K ⊂ fµ|k(G) ⊂ gkµ(k)(fµ|n(G)).

Thus (¬Rξk
p )(K, fµ|n(G)) for every p ∈ N with p ≥ µ(k). Using the condition

C(ε, ξ, ξk,m) we find for every p ∈ F a finite system Sp of open sets such
that

(i) each element of Sp intersects fµ|n(G),
(ii)

⋃Sp ⊂ B(K, ε),

(iii) if J ⊂ E intersects each element of Sp, then (¬Rξ
p)(K,J).

Adding finitely many appropriate open sets to the system Sp, if necessary,
we may suppose that Sp also satisfies
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(iv) if J ⊂ B(K, ε) is a compact set intersecting each element of Sp, then
h(J,K) < ε.

Indeed, it is sufficient to add to Sp the sets of a finite system Z of open
balls with radii less than ε/2 such that each ball from Z intersects K and
K ⊂ ⋃Z.

Put S =
⋃
p∈F Sp. We know that fµ|n(G) is a Gδ set (according to Lem-

mas 2.6(i) and 2.7) with kerP(fµ|n(G)) = fµ|n(G) 6= ∅ (Lemma 2.6(iii)).

Thus kerP(fµ|n(G)∩S) = fµ|n(G)∩S 6= ∅ for every S ∈ S (Lemma 2.6(iv)).

Since we assume that the assertion of Lemma 3.2 holds for α, we can find
for every S ∈ S a nonempty compact set KS and νS ∈ NN such that

KS
νS
↪→ fµ|n(G) ∩ S and rk(KS) ≥ α. According to Observation 2.17(i) we

have KS
µ|n�νS
↪→ G for every S ∈ S. We choose ν ∈ NN so that µ|n = ν|n,

µ ≤ ν, and µ|n � νS ≤ ν for every S ∈ S. The desired L is defined by

L :=
⋃{KS ; S ∈ S}.

Properties (a) and (e) are obviously satisfied. Property (b) follows from
the definition of ν and Observation 2.17(ii), (c) follows from (iii), and (d) is
a consequence of Lemma 2.21.

Lemma 3.4. Assume that the assertion of Lemma 3.2 holds for an ordi-
nal number α < ω1. Let

• ε > 0,
• n ∈ N,
• µ ∈ NN, ξ ∈ Ξ,
• G ⊂ E be a Gδ set with kerP(G) = G 6= ∅,
• K ∈ K∗(E) and K

µ
↪→G.

Then there exist L ∈ K∗(E) and ν ∈ NN such that

(a) µ|n = ν|n,

(b) L
ν
↪→G,

(c) (¬Vξ)(K,L),
(d) rk(L) ≥ α,
(e) K ⊂ L ⊂ B(K, ε).

Proof. Using (G3) and the definition of the sequence {ξk}∞k=1 we find
sequences {ki}∞i=1, {ni}∞i=1 of natural numbers such that

• C(ε/i, ξ, ξki , ni),
• ki > n+ i,
• µ(ki) ≤ ni,
• {ni}∞i=1 is an increasing sequence.

Put Fi = {j ∈ N; ni ≤ j < ni+1}, i ∈ N.
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Using Lemma 3.3 we find for every i ∈ N a set Li ∈ K∗(E) and νi ∈ NN
such that

(1) µ|(n+ i) = νi|(n+ i),

(2) K ∪ Li
νi
↪→G,

(3) for every p ∈ Fi we have (¬Rξ
p)(K,Li),

(4) rk(Li) ≥ α,
(5) h(Li,K) < ε/i.

Put L := K ∪ ⋃∞i=1 Li. Since limi→∞ ε/i = 0, we see that L is a compact

set (Lemma 2.3(ii)). Because of (1) we can find ν ∈ NN such that µ|n = ν|n
and νi ≤ ν for every i ∈ N. Thus condition (a) clearly holds. We now verify
(b)–(e).

(b) follows from (2), Observation 2.17(ii), and the definition of ν.

(c) If p ≥ n1, then there is i ∈ N with p ∈ Fi and (¬Rξ
p)(K,Li). Thus

(¬Rξ
p)(K,L). This implies (¬Vξ)(K,L).

(d) follows from Lemma 2.21 since L =
⋃{Li; i ∈ N} according to (5),

and (e) clearly follows from the definition of L and (5).

Proof of Lemma 3.2. We proceed by transfinite induction over countable
ordinals.

Case α = 0. According to Lemma 3.1 there exist µ ∈ NN and x ∈ E
with {x} µ

↪→G. We put K = {x} and we are done.

Case α > 0. Suppose that the assertion holds for every β < α. Find
a nondecreasing sequence {αq}∞q=1 of ordinal numbers such that αq < α,
q ∈ N, and lim(αq + 1) = α.

Now we will construct a sequence {µq}∞q=1 of elements of NN and a se-
quence {Kq}∞q=1 of elements of K∗(E) such that for every q ∈ N we have

(1) µq+1|q = µq|q,
(2) Kq

µq
↪→G,

(3) (¬Vξq)(Kq,Kq+1),
(4) rk(Kq) ≥ αq,
(5) there is a complete metric hq on K(fµq|q(G)) equivalent to the Haus-

dorff metric such that hq(Kj ,Kj+1) ≤ 2−j for every j ∈ N, j ≥ q,
(6) Kq ⊂ Kq+1.

By the induction hypothesis there exist K1 and µ1 satisfying (2) and (4)
for q = 1. Since fµ1|1(G) is a Gδ subset of E, K(fµ1|1(G)) is a Gδ subset
of K(E) (Lemma 2.3(iii)). We find a complete metric h1 on K(fµ1|1(G))
equivalent to the Hausdorff metric. Now assume that we have constructed
K1, . . . ,Km, µ1, . . . , µm, and metrics h1, . . . , hm.
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We have fµm|m(G) ⊂ fµm−1|m−1(G) ⊂ · · · ⊂ fµ1|1(G). Thus Km ⊂
fµi|i(G) for every i ≤ m. We find ε > 0 so small that if a compact C ⊂
fµm|m(G) satisfies C ⊂ B(Km, ε), then hi(Km,Km ∪ C) ≤ 2−m for every
i ≤ m.

Using Lemma 3.4 for this ε and α := αm+1, n := m, µ := µm, ξ := ξm,
G := G, K := Km we obtain Km+1 ∈ K∗(E) and µm+1 ∈ NN such that

• µm+1|m = µm|m,

• Km+1
µm+1
↪→ G,

• (¬Vξm)(Km,Km+1),
• rk(Km+1) ≥ αm+1,
• Km ⊂ Km+1 ⊂ B(Km, ε).

We finish the construction of the desired sequences by choosing a com-
plete metric hm+1 on K(fµm+1|m+1(G)) which is equivalent to the Hausdorff
metric on K(fµm+1|m+1(G)). The desired K and µ are defined by

K =

∞⋃

q=1

Kq, µ(m) = µm(m), m ∈ N.

Let q ∈ N. Using (5) we infer that {Kp}∞p=q is a Cauchy sequence
in (K(fµ|q(G)), hq). Thus {Kp}∞p=q converges to some K? in (K(fµ|q(G)), hq).

Since the Hausdorff metric on K(fµ|q(G)) is equivalent to hq, it follows that

{Kp}∞p=q converges toK? with respect to the Hausdorff metric. Lemma 2.3(i)
shows that K? = K. Thus K ⊂ fµ|q(G) for every q ∈ N and therefore

K
µ
↪→G.
Finally, we have rk(K) ≥ α by Lemma 2.22(ii).

Lemma 3.5. Let G ⊂ E be a Gδ non-σ-P-porous set. Then there exists
a non-σ-P-porous compact subset of G.

Proof. Put H = kerP(G). Then H is a nonempty Gδ set with kerP(H)
= H (Lemma 2.6(i)–(iii)). According to Lemma 3.2 we have

sup{rk(K); K ∈ K?(H)} = ω1.

The set K?(H) is a Gδ subset of K∗(E) and so Lemma 2.23 implies that H
contains a non-σ-P-porous compact set.

4. Inscribing into an analytic set. Let (E, %), P, Ξ, Rξ
n, Vξ, and ξk

be as in Setting 2.11. Let C = 2N be the Cantor set and let %0 be a metric
on C giving the product topology on C.

Let On, n ∈ N, be finite systems of pairwise disjoint clopen sets in C
such that for every n ∈ N we have
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• ⋃On = C,
• ∀I ∈ On : diam I < 1/n,
• ∀I ∈ On+1 ∃Z ∈ On : I ⊂ Z.

Let π be the projection of E×C onto E. We will work with the maximum
metric %? on E × C, i.e.

%?((x1, c1), (x2, c2)) = max{%(x1, x2), %0(c1, c2)}.
Thus (E × C, %?) is a compact metric space. Let I be the σ-ideal of all
σ-P-porous subsets of E. We define a σ-ideal I? of subsets of E × C by

A ∈ I? ⇔ π(A) ∈ I.
We put Ξ? = Ξ ×N and for ξ? = (ξ, q) ∈ Ξ? and n ∈ N we define point-set
relations on E × C by

R̃ξ?

n (x,A) ⇔ ∃I ∈ Oq : x ∈ E × I & Rξ
n(π(x), π(A ∩ (E × I))),

Ṽξ? =

∞⋂

n=1

∞⋃

k=n

R̃ξ?

k , P? =
⋃

ξ?∈Ξ?
Ṽξ? .

Let ε > 0, ξ?1 , ξ
?
2 ∈ Ξ?, n ∈ N. The symbol C?(ε, ξ?1, ξ

?
2 , n) means that

the condition C(ε, (R̃
ξ?1
k ), (R̃

ξ?2
k ), n) holds (cf. Definition 2.9).

Our goal is to prove the next lemma.

Lemma 4.1. The σ-ideal I? is good.

To this end we need the following lemmas.

Lemma 4.2. Let ξ? = (ξ, q) ∈Ξ?, n ∈ N. Then R̃ξ?
n satisfies (A1), (A3),

and is stable.

Proof. (A1) is obviously satisfied for R̃ξ?
n .

(A3) Suppose that x ∈ E × C, A ⊂ E × C, and R̃ξ?
n (x,A). This im-

plies x ∈ E × I and Rξ
n(π(x), π(A ∩ (E × I)) for some I ∈ Oq. Since Rξ

n

satisfies (A3), we have

Rξ
n(π(x), π(A ∩ (E × I)).

Since E × I is clopen and π is continuous, we have

π(A ∩ (E × I)) = π(A ∩ (E × I)) ⊂ π(A ∩ (E × I)).

This implies Rξ
n(π(x), π(A ∩ (E × I)) and, consequently, R̃ξ?

n (x,A).

To prove stability of R̃ξ?
n we define

A = {(x,K) ∈ (E × C)×K∗(E × C); R̃ξ?

n (x,K)},
J = {(z, L) ∈ E ×K(E); Rξ

n(z, L)},
fI : K(E × C)→ K(E), fI(K) = π(K ∩ (E × I)), I ∈ Oq.
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The mapping K 7→ K ∩ (E × I) is continuous, since E × I is clopen
(Lemma 2.3(iv)) and K 7→ π(K) is a continuous mapping of K(E × C)
to K(E) (Lemma 2.3(v)). Thus fI is continuous. It is easy to see that

A =
⋃

I∈Oq
((π × fI)−1(J ) ∩ ((E × I)×K∗(E × C))).

The set J is open since Rξ
n is stable. Thus A is open and we are done.

Lemma 4.3. Let C(ε, ξ1, ξ2, n) and q ∈ N. Then there exists p ∈ N such
that the condition C?(ε, (ξ1, q), (ξ2, p), n) is satisfied.

Proof. Choose p ∈ N such that p ≥ q and 1/p < ε. Set ξ?1 = (ξ1, q) and
ξ?2 = (ξ2, p). Let H? ⊂ E × C, k ∈ N, k ≥ n, and let K? ⊂ E × C be a

compact set with (¬R̃
ξ?2
k )(K?,H?). Fix I ∈ Op. Put KI = π(K? ∩ (E × I))

and HI = π(H? ∩ (E × I)). We have (¬Rξ2
k )(KI ,HI) and therefore there

exists a finite system SI of open sets in E such that

(i) each element of SI intersects HI ,
(ii)

⋃SI ⊂ B(KI , ε),

(iii) if J ⊂ E intersects each element of SI , then (¬Rξ1
k )(KI , J).

We put

S?I = {S × I; S ∈ SI}, S? =
⋃
{S?I ; I ∈ Op}.

The system S? witnesses that the condition C?(ε, (ξ1, q), (ξ2, p), n) holds:

(1) Each element of S? clearly intersects H?.
(2) Since diam% I < ε for each I ∈ Op, (ii) implies

⋃S? ⊂ B(K?, ε).
(3) Suppose that J? ⊂ E×C intersects each element of S?. Take x ∈ K?.

There exists I ∈ Op with x ∈ E×I. Then (¬Rξ1
k )(π(x), π(J?)) since

π(J?) intersects each element of SI . This gives (¬R̃
ξ?1
k )(x, J?).

Proof of Lemma 4.1. First we show that P?, Ṽξ?, and R̃ξ?
n have the

properties (G1)–(G3).
(G1) is satisfied for P? by the definition of P?.

(G2) holds for R̃ξ?
n by Lemma 4.2.

(G3) Take ε > 0 and ξ?1 = (ξ1, q) ∈ Ξ?. There exist ξ2 ∈ Ξ and
n ∈ N such that C(ε, ξ1, ξ2, n). Using Lemma 4.3 we find p ∈ N such that
C?(ε, (ξ1, q), (ξ2, p), n) is satisfied. Put ξ?2 = (ξ2, q) and we are done.

Using Lemma 2.13 we infer that P? is a porosity-like relation. It remains
to show that I? is the σ-ideal of all σ-P?-porous sets.

Take A ⊂ E × C with Ṽξ?(A,A) for some ξ? = (ξ, q) ∈ Ξ?. For every
I ∈ Oq, every x ∈ A∩(E×I) and every n ∈ N there exists k ∈ N, k ≥ n, such

that Rξ
k(π(x), π(A∩ (E × I))). Thus π(A∩ (E × I)) is P-porous. Therefore
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π(A) ∈ I and A ∈ I?. Using Lemma 2.2 we conclude that each σ-P?-porous
set is in I?.

If B ⊂E satisfies Vξ(B,B) for some ξ ∈Ξ, then obviously V(ξ,p)(B×C,
B×C) for every p ∈ N and so B×C is P?-porous. Further, if A ∈ I?, then
π(A) ∈ I and π(A) =

⋃∞
n=1Bn, where each Bn satisfies Vξ(Bn, Bn) for

some ξ ∈ Ξ (Lemma 2.2). Thus A is covered by countably many P?-porous
sets, since A ⊂ ⋃∞n=1(Bn × C). We conclude that A is σ-P?-porous.

Lemma 4.4. Let A be an analytic set with A /∈ I. Then there exists a
compact set K ⊂ A with K /∈ I.

Proof. We find a Gδ set G? ⊂ E × C with π(G?) = A. Since A /∈ I
we have G? /∈ I?. By Lemma 4.1 the σ-ideal I? is good. Thus there exists
a compact set K? ⊂ G? not in I? (Lemma 3.5). Then K := π(K?) is as
desired.

Theorem 4.5. Let X be a locally compact metric space, J be a good
σ-ideal of subsets of X, and A ⊂ X be an analytic subset with A /∈ J . Then
there exists a compact set K ⊂ A with K /∈ J .

Proof. According to Lemma 2.6(ii) there exists an open set G ⊂ X such

that A∩G /∈ I and G is compact. Let P, Vξ, Rξ
n be relations witnessing that

J is good. Let P, Vξ, Rξ
n denote the restrictions of P, Vξ, Rξ

n, respectively,
to the set G, i.e.

P(x,D) if and only if x ∈ G, D ⊂ G, P(x,D),

and similarly for the other relations. Let J be the set of all σ-P-porous
sets. We have A∩G /∈ J . Having Lemma 4.4 and since A∩G is an analytic
subset of G it is sufficient to show that J is good (cf. Setting 2.11). We

show that the relations P, Vξ and Rξ
n satisfy (G1)–(G3) of Definition 2.10.

Conditions (G1) and (G2) are clearly satisfied.
(G3) Let ε > 0 and ξ1 ∈ Ξ. Then there exist ξ2 ∈ Ξ and n ∈ N such

that C(ε, ξ1, ξ2, n) is satisfied for the original relations on X. Let H ⊂ G,

k ∈ N, k ≥ n, and K ⊂ G be a compact set with (¬Rξ2
k )(K,H). Then

(¬Rξ2
k )(K,H) and there exists a finite system S of open sets in X such that

(i) each element of S intersects H,
(ii)

⋃S ⊂ B(K, ε),

(iii) if J ⊂ X intersects each element of S, then (¬Rξ1
k )(K,J).

Using the system S = {W ∩ G; W ∈ S} one can easily finish the proof of
the validity of (G3) for our modified relations.

Remark 4.6. Theorem 4.5 can be easily strengthened by replacing
analyticity of A by the assumption that A is Suslin. Indeed, if A is Suslin
then A ∩G in the above proof is analytic.
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5. Applications to concrete porosities. Now we will apply our ab-
stract Theorem 4.5 to 〈g〉-porosity, ordinary porosity, and symmetrical po-
rosity.

5.1. Definitions. First of all we recall the definitions of the above-mentio-
ned porosities. We set

G := {g : [0,∞)→ [0,∞); g(0) = 0, g(x) > x for every x > 0,

g is nondecreasing and continuous}.
The symbol gα, α ∈ R, will stand for the function x 7→ αx, x ∈ [0,∞).

Let X be a metric space, A ⊂ X, x ∈ X, and g ∈ G. We say that

• A is 〈g〉-porous at x if there exists a sequence {B(xn, rn)}∞n=1 of balls
such that x ∈ B(xn, g(rn)), limxn = x, B(xn, rn) ∩ A = ∅,
• A is (ordinary, i.e. “upper”) porous at x if A is 〈gα〉-porous at x for

some α > 1.

The point-set relations which correspond to 〈g〉-porosity and ordinary
porosity are denoted by Pg and Por, respectively.

Let A ⊂ R, x ∈ R, and c > 0. We say that

• A is symmetrically porous at x if there exists c > 0 and a sequence
{B(xn, rn)}∞n=1 of balls in R such that limxn = x, x ∈ B(xn, crn) and
(B(xn, rn) ∪B(x+ (x− xn), rn)) ∩A = ∅.

The point-set relation which corresponds to symmetrical porosity is denoted
by Psy.

It is easy to see that Pg, Por, and Psy are porosity-like relations.

5.2. The case of 〈g〉-porosity and ordinary porosity. For g ∈ G and
k ∈ N, define point-set relations Rg

k on E by

Rg
k(x,A)

def⇐⇒ ∃y ∈ E ∃r > 0 :

1/(k + 2) < %(x, y) < 1/k, %(x, y) < g(r), B(y, r) ∩ A = ∅.
Clearly Pg =

⋂∞
n=1

⋃∞
k=n Rg

k. We will need the following lemma.

Lemma 5.1. Let h, h∗ ∈ G and let E be a compact metric space. Then
the following assertions hold.

(a) For every k ∈ N, the relation Rh
k satisfies (A1), (A3), and is stable.

(b) Let h < h∗, H ⊂ E, k ∈ N, K ⊂ E be a compact set , and suppose
(¬Rh∗

k )(K,H) holds. Then there exists a finite system S of open sets
in E such that

(i) each element of S intersects H,
(ii)

⋃S ⊂ B(K, 2/k),
(iii) if J ⊂ E intersects each element of S, then (¬Rh

k)(K,J).
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Proof. (a) Let k ∈ N. It is obvious that Rh
k satisfies (A1) and (A3).

Since h is continuous, we easily see that Rh
k(x,A) if and only if

(1) ∃y ∈ E ∃r > 0 : 1/(k + 2) < %(x, y) < 1/k,

%(x, y) < h(r), dist(B(y, r), A) > 0.

It is easy to see that for each y ∈ E and r > 0 the set

{(x, F ) ∈ E × Cb(E); 1/(k + 2) < %(x, y) < 1/k,

%(x, y) < h(r), dist(B(y, r), F ) > 0}
is open in E × Cb(E). Consequently, (1) implies that Rh

k is stable.
(b) Choose δ > 0 such that h(δ) < 1/(k + 2). Clearly δ < 1/k. Since

min{h∗(t)−h(t); t ∈ [δ, 1/k]} > 0, by uniform continuity of h∗ on [δ/2, 1/k]
we can find 0 < η < δ/2 such that

(2) h∗(s− 2η) > h(s) for each s ∈ [δ, 1/k].

Now find a finite set Z ⊂ H ∩B(K, 2/k) such that H ∩B(K, 2/k) ⊂ B(Z, η)
and put S := {B(z, η)∩B(K, 2/k); z ∈ Z}. Clearly (i) and (ii) are satisfied.

To prove (iii), suppose to the contrary that J ⊂ E intersects each
element of S, but (¬Rh

k)(K,J) does not hold. Consequently, there exist
x ∈ K, y ∈ E, and r > 0 such that 1/(k + 2) < %(x, y) < 1/k, %(x, y) <
h(r), and B(y, r) ∩ J = ∅. Put s := min{1/k, r}. Since h(r) > %(x, y)
> 1/(k + 2) and h(δ) < 1/(k + 2), we have r > δ and thus s ∈
[δ, 1/k]. Since h(1/k) > 1/k > %(x, y), we have %(x, y) < h(s) and (2)
implies h∗(s − 2η) > %(x, y). Therefore (¬Rh∗

k )(K,H) yields a point w ∈
B(y, s − 2η) ∩ H. Since clearly w ∈ B(K, 2/k), there exists z ∈ Z with
%(z, w) < η. Since J intersects B(z, η), we obtain J ∩ B(y, s) 6= ∅, which
contradicts B(y, r) ∩ J = ∅.

Theorem 5.2. Let E be a locally compact metric space, g ∈ G, and
A ⊂ E be an analytic set which is not σ-〈g〉-porous. Then there exists a
compact set K ⊂ A which is not σ-〈g〉-porous.

Proof. First suppose that E is a compact space. By Lemma 4.5 it is
sufficient to prove that the σ-ideal I of all σ-〈g〉-porous subsets of E is a
good σ-ideal. For n ∈ N, put g(n) := g ◦ · · · ◦ g (n-fold composition).

Let Ξ := N and for ξ ∈ Ξ put Vξ := Pg(ξ) , Rξ
k := Rg(ξ)

k ; further put

P :=
⋃
ξ∈Ξ Vξ.

We will show that the σ-ideal I∗ of all σ-P-porous sets is good and then
we will observe that I = I∗.

Condition (G1) from Definition 2.10 is clearly satisfied and (G2) holds
by Lemma 5.1(a). To prove (G3), let ε > 0 and ξ1 ∈ Ξ = N. Put ξ2 := ξ1+1

and choose n ∈ N for which 2/n < ε. Since g(ξ1)(t) < g(ξ2)(t) for t > 0,
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Lemma 5.1(b) immediately implies C(ε, (Rξ1
k ), (Rξ2

k ), n); consequently, (G3)
holds. Thus I∗ is a good σ-ideal.

The equality I = I∗ is an easy consequence of the fact (see [Za1, Propo-

sition 4.1]) that, for each n ∈ N, a set M ⊂ E is σ-〈g(n)〉-porous if and only
if it is σ-〈g〉-porous. Indeed, suppose that A ⊂ E is P-porous. For ξ ∈ Ξ,
put Aξ := {x ∈ A; Vξ(x,A)}. Then clearly A =

⋃
ξ∈Ξ Aξ and each Aξ is

Vξ-porous (i.e., 〈g(ξ)〉-porous). By the above mentioned result of [Za1] each
Aξ is σ-〈g〉-porous and therefore A ∈ I. Thus we have proved I∗ ⊂ I. Since
I ⊂ I∗ is obvious, the first part of the proof is complete.

Now suppose that E is an arbitrary locally compact metric space. Then
we can choose x ∈ kerPg(A) and r > 0 such that B(x, r) is relatively com-
pact. The set A∗ := A ∩ B(x, r) is clearly non-σ-〈g〉-porous in the compact

space E∗ := B(x, r). By the first part of the proof we can find a compact
set K ⊂ A∗ ⊂ A which is not σ-〈g〉-porous in E∗. Since clearly K is not
σ-〈g〉-porous in E, the proof is complete.

Corollary 5.3. Let E be a locally compact metric space and A ⊂ E
be an analytic set which is not σ-porous. Then there exists a compact set
K ⊂ A which is not σ-porous.

Proof. This is a special case of Theorem 5.2 for g(x) := 3x. Indeed, in
this case A ⊂ E is σ-porous if and only if it is σ-〈g〉-porous; this follows
easily from [Za3, Section 4].

5.3. The case of symmetrical porosity

Theorem 5.4. Let A ⊂ R be an analytic set which is not σ-symmetri-
cally porous. Then there exists a compact set K ⊂ A which is not σ-
symmetrically porous.

Proof. By Theorem 4.5 it is sufficient to prove that the σ-ideal I of all
σ-symmetrically porous subsets of R is good.

To prove this, define for α > 1 and k ∈ N a point-set relation Rα
k on

R by

(3) Rα
k (x,A)

def⇐⇒ ∃y ∈ R ∃r > 0 : 1/(k + 2) < |x− y| < 1/k,

|x− y| < αr, ((y − r, y + r) ∪ (2x− y − r, 2x− y + r)) ∩ A = ∅.
Put Ξ = N \ {1} and

Vξ :=
∞⋂

n=1

∞⋃

k=n

Rξ
k

for ξ ∈ Ξ. Clearly

Psy =
⋃

ξ∈Ξ
Vξ.
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Each Rξ
k clearly satisfies (A1) and (A3) and it is easy to prove that the

relations Rξ
k are stable. Indeed, this follows (cf. the proof above that Rh

k

are stable) almost immediately from the obvious fact that Rξ
k(x,A) if and

only if

∃y ∈ R ∃r > 0 : 1/(k + 2) < |x− y| < 1/k, |x− y| < αr,

dist((y − r, y + r) ∪ (2x− y − r, 2x− y + r), A) > 0.

Thus conditions (G1) and (G2) from Definition 2.10 are satisfied. To

prove (G3), let ε > 0 and ξ1 ∈ Ξ = N \ {1}. Then C(ε, (Rξ1
k ), (Rξ2

k ), n)
holds for ξ2 := ξ1 + 1 and any n ∈ N such that n > 3 and 2/n < ε.

To prove this, we can proceed quite similarly to Subsection 5.2. Suppose

that H ⊂ R, k ∈ N, k ≥ n and a compact set K ⊂ R with (¬Rξ2
k )(K,H)

are given. Choose δ > 0 such that ξ1δ < 1/(k + 2) and 0 < η < δ/2 so
small that ξ1s < ξ2(s − 2η) for each s ∈ [δ, 1/k]. Then find a finite set
Z ⊂ H ∩ B(K, 2/k) such that H ∩ B(K, 2/k) ⊂ B(Z, η). Now it is easy to
verify that the choice S := {B(z, η)∩B(K, 2/k); z ∈ Z} works. Thus I is a
good σ-ideal and the proof is complete.

Remark 5.5. Proceeding similarly, we can easily prove that Question
(Q) also has an affirmative answer for several other types of porosity. First let
us mention right (or left) porosity on R, which is defined in the obvious way
(see [Za2, p. 316]). (We can also deal with 〈g〉-right porosity or with several
generalizations of right porosity in Rn.) In 5.3, we could work with shell
porosity in Rn (see [V] for the definition) as well, which is a generalization
of symmetrical porosity.

Finally, let us mention another application concerning symmetrical
porosity, which can be useful. Let z > 1, A ⊂ R, and x ∈ R. We
will say that Pz

sy(x,A) holds if there exist c ∈ (1, z) and a sequence
(B(xn, rn)) of open balls in R such that limxn = x, x ∈ B(xn, crn)
and (B(xn, rn) ∪ B(x + (x − xn), rn)) ∩ A = ∅. The system Iz of all σ-
Pz

sy-porous sets is strictly smaller than the system of all σ-symmetrically
porous sets. (This follows from [EH1].) However, Iz is a good σ-ideal. To
prove this, define Rα

k as in (3) and put Ξ = Q ∩ (1, z). Then clearly

Pz
sy =

⋃
ξ∈Ξ Vξ, where Vξ =

⋂∞
n=1

⋃∞
k=n Rξ

k. We have proved that all

Rξ
k satisfy (A1), (A3) and are stable; (G3) can be proved by a sim-

ple modification of the proof of Theorem 5.4. Note that the σ-ideal I =⋂
z>1 Iz naturally appears in several papers (e.g., [EH2] and [Za6]). Since

each Iz is a good σ-ideal, we easily obtain the following interesting re-
sult:

If A ⊂ R is analytic and A /∈ I, then there exists a compact K ⊂ A such
that K /∈ I.
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350–359.
[Za2] —, Porosity and σ-porosity , Real Anal. Exchange 13 (1987–88), 314–350.
[Za3] —, Products of non-σ-porous sets and Foran systems, Atti Sem. Mat. Fis. Univ.

Modena 44 (1996), 497–505.
[Za4] —, Smallness of sets of nondifferentiability of convex functions in nonseparable

Banach spaces, Czechoslovak Math. J. 41 (1991), 288–296.
[Za5] —, On σ-porous sets in abstract spaces (a partial survey), Abstract Appl. Anal.,

to appear; http://www.karlin.mff.cuni.cz/kma-preprints/.
[Za6] —, Ordinary derivatives via symmetric derivatives and a Lipschitz condition via

a symmetric Lipschitz condition, Real Anal. Exchange 23 (1997/98), 653–669.
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