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Abelian profinite groups
by

Krzysztof Krupinski (Wroclaw)

Abstract. We investigate abelian profinite groups as profinite structures in the sense
of Newelski. We show that each abelian profinite group of finite exponent, which is the
inverse limit of a system indexed by w and considered with the standard structural group,
is small, m-normal and m-stable. We also obtain similar results for abelian profinite groups
with some non-standard structural groups.

0. Introduction. We start from the general definition of profinite struc-
ture. A profinite space is an inverse limit of finite discrete spaces (so the
topology is induced from the product of finite spaces of the inverse system).
We assume that all inverse systems are countable.

DEFINITION 0.1. A profinite structure is a pair (X, Aut*(X)) consist-
ing of a profinite topological space X and a distinguished structural group
Aut*(X) which is a closed subgroup of the group of all homeomorphisms
of X respecting the inverse system defining X. Two profinite structures
(X, Aut™(X)) and (Y, Aut*(Y")) are isomorphic if there is a homeomorphism
f: X — Y such that the pullback function f* maps Aut*(Y) onto Aut*(X).

A profinite group in this context is an inverse limit of finite groups with a
structural group preserving the group action. We say that a structural group
of a profinite structure [group|] X is standard if it is the group of all hom-
eomorphisms [topological automorphisms| of X respecting the appropriate
inverse system. When it is clear what the structural group is we just write
X instead of (X, Aut™(X)).

Without loss of generality we can and do assume that all connecting
maps of the inverse system defining X are surjections.

The simplest examples of profinite groups are products of countably many
finite groups. Let X = [],. X; be such a product. We consider it as the
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inverse limit of finite groups X [n = [],_,, Xi, n > 0, with the natural projec-
tions. The standard structural group consists here of those automorphisms
of X which induce automorphisms of each X [n for n > 0. Any closed sub-
group of the standard structural group can be chosen as another structural

group of X.
We say that X is small if for every natural number n > 0, on the set
X" = X x ... x X there are countably many orbits under the action of

Aut*(X). Profinite structures and groups in this sense have been introduced
in [N1] and [N2]. Small profinite groups occur naturally in model theory as
profinite groups interpretable in small theories [N1]. Newelski has developed
the model theory of small profinite structures. Many results from stable
model theory have been proven in this context. m-normality and m-stability
play a prominent role in all these considerations.

The only known explicit examples of small profinite groups are products
of finite groups [K1]. More precisely, if X is a product of finitely many finite
groups and countably many finite abelian groups of bounded exponent with
the standard structural group, then X is small. In [K1] examples of small
products of finite groups with some non-standard structural groups are also
given.

The goal of this paper is to find new classes of examples of small profi-
nite groups. We generalize most of the results obtained for products of finite
groups in [K1] to the case of abelian profinite groups. The main result is
Theorem 1.9, which says that each abelian profinite group X of finite ex-
ponent, which is the inverse limit of a system indexed by w and considered
with the standard structural group, is small, m-normal and m-stable. Just
as for products of finite groups in [K1], to prove this result, first we find a
description of orbits in X under the action of the standard structural group.
However, we obtain such a description by means of model theory of abelian
structures, which is a different approach from that in [K1].

Here is a good place to recall that each torsion abelian profinite group
is isomorphic to a direct product of finite abelian groups (see [RZ, Corol-
lary 4.3.9]) and to explain why this result does not reduce the case of abelian
profinite groups (regarded as profinite structures) to the case of products of
finite groups considered in [K1]. The point is that the above result yields only
an isomorphism of topological groups and not of profinite structures. More
precisely, we are going to consider an abelian profinite group X of finite ex-
ponent as a profinite structure with the standard structural group Aut*(X)
induced from the inverse system defining X. Corollary 4.3.9 from [RZ] tells
us that X = G = [[,,, G: for some finite abelian groups G; but, of course,
the inverse system defining X need not be isomorphic to the system of all
initial subproducts Gn = [[,.,, Gi, n > 0, with the natural projections.

So there is no reason for (X, Aut*(X)) to be isomorphic to (G, Aut*(G)),
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where Aut*(G) is the standard structural group of G (i.e. it is induced by
the inverse system G[n, n > 0).

Now we present all necessary definitions and basic facts on profinite struc-
tures and groups in the sense of Newelski. For the proofs and more details
see [N1], [N2] and [Wal].

Let X be a profinite structure, e.g. a profinite group. Let A C X be finite.
By Aut*(X/A) we denote the set of elements of Aut*(X) fixing A pointwise.
We say that V' C X is A-invariant if f[V] =V for every f € Aut*(X/A).
If V is additionally closed, then we say that V is A-definable. For a € X"
and A C X we define o(a/A) = {f(a) : f € Aut*(X/A)} (the orbit of a
over A). Let O,(A) = {o(a/A) : a € X"}. From now on A, B, ... usually
denote finite subsets of X and a,b,... denote elements or finite tuples of
elements of X.

DEFINITION 0.2. We say that a profinite structure X is small if |O,,(0)]
< w for every natural number n > 0. Equivalently O;(A) is countable for
every finite set A C X.

Every profinite structure can be enlarged to X°? by adding so-called
imaginary elements, i.e. elements of the form a/E, where a € X™ and F is a
(-definable equivalence relation on X™. If X is small, then, for every such E,
X"/E is still a profinite structure, where the structural group is induced by
Aut*(X) acting on X/E. For more details see [N2].

We say that a profinite structure X is interpretable in a profinite structure
Y if there is a continuous 1-1 mapping f of X onto a set f(X) definable in
Y®4 over a finite set A such that the pullback function maps Aut*(Y/A) onto
a closed subgroup of Aut*(X). It is easy to see that any profinite structure
interpretable in a small one is also small.

For a finite A C X, we denote by acl(A) (or acl®d(A)) the algebraic clo-
sure of A, i.e. the set of those elements of XY which have finitely many con-
jugates under Aut*(X/A). When A is infinite, we define acl(A) = [J{acl(A') :
A" C A is finite}.

DEFINITION 0.3. The rank M is the function from the collection of orbits
over finite sets to the ordinals together with co satisfying

M(a/A) > a+1 iff thereis a finite B O A with o(a/B) nowhere dense
in o(a/A) and M(a/B) > a.

DEFINITION 0.4. A profinite structure X is m-stable if every orbit has
an ordinal M-rank. Equivalently there is no infinite sequence A1 C A C - - -
of finite subsets of X and a € X such that o(a/A;+1) is nowhere dense in
o(a/A;) for every i.
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DEFINITION 0.5. A profinite structure X is m-normal if for every finite
a, A C X, there is a clopen U > a such that U No(a/A) has finitely many
conjugates under Aut*(X/a).

In the above definition we can choose as U a canonical open neighbour-
hood of a, where by a canonical open set in

X =lmX; c [[X:

we mean a set of elements of X with the ith coordinate fixed (i is arbitrary).
A canonical open set in X" is a product of canonical open sets in X.

It is worth noticing that in [N1] and [N2], m-normality and m-stability
have been investigated only under the assumption of smallness. This is be-
cause of good model-theoretic properties of these notions under that assump-
tion.

Finally, I would like to thank the anonymous referee for some interesting
comments and suggestions.

1. Description of orbits and the main result. This section is orga-
nized as follows: first we recall the notion of abelian structure; then, using it,
we obtain a description of orbits in abelian profinite groups under the action
of the standard structural group; as a conclusion we obtain the main result,
Theorem 1.9.

DEFINITION 1.1. An abelian structure A = (A,+, P;);er is an abelian
group (A, +) expanded by predicates P;, i € I, defining subgroups of A™ for
n; € w.

If we add to the language function symbols defining homomorphisms from
some cartesian powers of A into A, then the arising structure can also be
regarded as an abelian structure. Namely, each homomorphism f: A" — A
can be identified with its graph Gy = {(a, f(a)) : a € A"}, a subgroup
of Antl,

Now we list several examples of abelian structures.

1. A pure abelian group A = (A, +).

2. A pure R-module A = (A, +,r),¢cg for an arbitrary ring R.

3. An R-module A = (A, +, 7, P;)rcR,ic1, where each P; is a unary pred-

icate defining a subgroup of (A4, +).

(i) Let X = [];c, Xi be a product of countably many finite abelian
groups, and let predicates P,, n € w, be defined in the following
way:

P.,(n) & nin=(0,...,0),
where n[n denotes the first n coordinates of n € X. Then X :=
(X, +,7, Py)rez, new is an abelian structure with the property that
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f € Aut"(X) & f € Aut(X), where Aut*(X) is the standard
structural group of X. The same is also true when X is a product
of finitely many groups.
(ii) Let X be the inverse limit of an inverse system of finite abelian
groups X;, ¢ € w. Let f; : X — X; be the natural projection and
P, = f71(0) < X. Then X := (X, +,7, Pi)rez.ico is an abelian
structure such that f € Aut*(X) < f € Aut(X), where Aut*(X)
is the standard structural group of X. The same is true if X is the
inverse limit of a finite system.
Let A= (A,+, P, fj)ic1, jes be an abelian structure (i.e. P;’s are predicates
defining subgroups of cartesian powers of A and f;’s are homomorphisms
from cartesian powers of A into A).

DEFINITION 1.2. A formula ¢(Z) (in the language of A) is a p.p. formula
if it is equivalent modulo Th(.A) to a formula of the form

i<k
where 7,7 are finite tuples of variables, k € w, n; € TU{=} (F P=(a) &
a=0) and ;(y,7),...,t; (Y, 7) are terms in the language {+, f;}jeJ-

A particular case is when A = (A, +,7),cr is a pure module over R.
Then ¢(x1,...,2,) is a p.p. formula if it is equivalent modulo Th(.A) to a
formula of the form

Jy1, ., Yk /\(Zam y]+2bw x]—O)
i<k g=1

where a;;- and b;;- are the scalar multlphcatlon by elements of R. The fol-
lowing fact is known as the Baur-Garavaglia—Monk theorem.

Fact 1.3. In any pure module, each formula ¢(T) is equivalent to a
Boolean combination of p.p. formulas.

The proof of the Baur—Garavaglia—Monk theorem ([Bal, [Z]) is by in-
duction on the structure of the formula ¢(Z). It uses B. H. Neumann’s
lemma on covering a group by a set of cosets and some basic combinato-
rial tricks. One can check that to prove this theorem it is enough to have it
for atomic formulas and to use the following properties of p.p. formulas (it
is not important what p.p. formulas look like, we use only their properties).
Let A= (A,+,...) be a model in which we formulate the theorem ((A,+)
is an abelian group).

(i) P.p. formulas are closed under existential quantification and con-
junction.

(ii) Each p.p. formula ¢(z1,...,2y) defines a subgroup of A™.
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(iii) If p(z,y) is a p.p. formula, then so is ¢(0,y).
(iv) If p(z,y) is a p.p. formula and a is a tuple from A of the same length
as y, then (A, a) =0 or p(A,a) is a coset of (A, 0).

We easily see that in any abelian structure p.p. formulas have all these
properties, so as a conclusion we obtain the Baur—Garavaglia—Monk theorem
for abelian structures.

We should mention that abelian structures were introduced and origi-
nally studied by E. Fisher ([F]). The p.p. elimination for abelian structures
is mentioned in [We|. In modern model theory abelian stuctures are basic
examples of stable structures, more precisely they are 1-based groups ([Bu]).

We start our consideration of abelian profinite groups from the following
easy remark.

REMARK 1.4. If an abelian profinite group is small, then it has a finite
exponent.

Proof. Let G be a small abelian profinite group. By Proposition 2.4
of [N1] we know that G is locally finite. Hence it is a torsion abelian profinite
group. Lemma 4.3.7 of [RZ] tells us that G has a finite exponent. m

From now on we deal with abelian profinite groups which are inverse
limits of inverse systems
Xoe— Xq — -+

(indexed by w) of finite abelian groups. We will consider such a group X
with the standard structural group Aut*(X).

For an element n € X, n(n) € X,, denotes the nth coordinate of 1 and for
n=(m,...,m) € X¥, we denote by n(n) the tuple (71(n),...,nx(n)) € XF.
Let a = (aq,...,ap,) € X™ and A be a finite submodule (over Z) of X.

LEMMA 1.5 (Description of orbits). o(a/A) = U, where U consists of the
elements 3 € X™ such that for all k > 1, natural numbers n; < --- < ng,
(aij)i<ij<k € Mipxi(Z), (bij)ick, j<m € Mixm(Z) and (1, ...,m) € AF we
have

k k m
(Jy € Xk) /\ (Z aijyi(ni) + Zbijaj(ni) + ni(n;) = 0)
i=1 =1 j=1
k
& (Jge X’f /\ (Za”yﬂ n; —i—ZbUﬁ] n;) + ni(n;) = 0)

=1 j=1 j=1

Proof. (C) is obvious.

(2) First, in Step 1, we will show this inclusion for the variant of the
lemma with X being the inverse limit of a finite system Xy « --- «— X, of
finite abelian groups considered with the standard structural group Aut*(X)
(that is, after an obvious identification, X = X, and Aut*(X) = Aut*(X,,) is
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the standard structural group of X,,, which may be smaller than Aut(X,,)).
Then, in Step 2, we will conclude that the desired inclusion holds in general.

STEP 1. Assume that X is the inverse limit of a finite system Xg «

- «— X, of finite abelian groups considered with the standard structural
group Aut*(X).

By example 3(ii) from our list of examples of abelian structures we can

replace X by a suitable finite abelian structure X. Since X is finite, we get

tp(a/A) = tp(8/A) iff (3f € Aut(X/A))(f(a) = p5).

So to finish the proof we have to show that the type tp(«/A) in variables
Z1,-...,Tm is determined by the set of those formulas of the form

k k m
(FyeXH N\ Pm(z aiy; + Y bij + 77z'>7
i=1 j=1 j=1

where ny < - < ng < n, (aij)i<ij<k € Mixk(Z), (bij)i<k, j<m € Mpxm(Z)
and (ny,...,m,) € A*, which are satisfied by «. This is a consequence of the
following statement:

Every formula ¢(x1, . .., zy) is equivalent modulo Th(X') to a Boolean
combination of formulas of the form

k k m
3y € X*) /\ P, (Z aijy; + Z bij$j>7
j=1 j=1

i=1
which is exactly the Baur—Garavaglia—Monk theorem applied to X.

STEP 2. Now consider the general situation from the lemma.

Assume § € U. We want to find an f € Aut*(X/A) mapping 5 to a.
For each n, (3 satisfies the set of conditions guaranteeing (in view of Step 1)
existence of a g, € Aut*(X,) mapping 5(n) to a(n) and fixing the set
A(n) = {n(n) : n € A} pointwise.

Since Aut*(X,) is the standard structural group of X,, regarded as the
inverse limit of the system Xy «— --- «— X,,, each g, determines a sequence
of automorphisms g, ,, € Aut*(Xy), k < n.

Now we define recursively sequences f, € Aut*(X,) and I, C w \ n,
n € w, such that

1. Ip D I; O --- are all infinite,
2. for k € I,,, we have f, = gj .

The construction is straightforward, using the pigeon-hole principle.
We see that the sequence f,, n € w, is an automorphism of the system
converging to an f € Aut*(X/A) such that f(8) = a. =
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The above lemma is too weak to show Theorem 1.9 below. We need a
deeper insight in the structure of orbits (as in Lemma 3.1.1 in [K1]).

Assume that X has a finite exponent e. For n € w, we denote by "X the
inverse limit of the system

Xnp — Xpy1 < -+

and we consider it with the standard structural group Aut, (X) (of course
"X is naturally homeomorphic to X, so these spaces can be identified). o™ (+)
denotes an orbit in ("X, Aut; (X)).

Let o = (a1,...,apn) € X™ and A be a finite submodule (over Z, :=
Z]eZ) of X. For k,l1,...,ly € Ze and a € A we define

max{n € w: k| (3", Lioi(n) —a(n))}
Nk la = when such a maximal n exists,

-1 otherwise.

Let Noa = max{ng,: (k,l,a) € Ze X Z* x A} 4+ 1. Take n > N, 4.

LEMMA 1.6. o™ (a/Aa(n))=U, where U consists of the elements € X™
such that (n) = a(n) and for all a € A, k € Ze, l1,...,lm € Z. we have

k’ (iliai—a) N k:’ (iliﬁi—a>.
=1 i=1

Proof. (C) is obvious.
(D) Take a € U. Let k > 1, n < ng < -+ < ng, (aij)i<ij<k €

Mk (Ze), (bij)i<k, j<m € Mixm(Ze) and 5= (n1,...,n;) € AF.

We define the Z-linear combinations ¢;(7,7,z), ¢ = 1,...k, of variables
T=(r1,-.,%Tm), y= (Y1,--.,yx) and Z = (21, ..., z¢) in the following way:

k m
ti(y,,2) = Z aijy; + Z bijx; + 2.
j=1 j=1

We need the following fact, which can be found for example in [A]. Its
proof uses the Fuclidean property of Z.

FAacT 1. For every matric H € M, «,(7Z) there exist invertible matrices
L,R € Myxn(Z) such that the matric LHR is diagonal.

Using Fact 1 we find Z-linear combinations t/(7,%), i = 1,...,k, and
elements ki,...,kr € Ze such that in each Z.-module M, for any tuples
5= (81,...,5m) € M™ and r = (ry,...,r;) € M*, we have

k k
ME3g Nt@sr) =0 & ME )\ kt(sr).
=1 =1
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By Lemma 1.5, to finish the proof we need to show that

Gyex’f)(/k\ti@(m a(mi),n(n:)) = 0)

=1

& (Fe xh) (/k\ n(ni))zo).
=1

(=) Assume that A", t;((n:), a(n;), n(n;)) = 0 for some 5 € X*. As
n<ng <---<mnyg, it follows that

k
A i@ (n), a(n),n(n)) = 0.
=1

By the definition of t/(7,z), i = 1,...,k, we get /\f:1 ki | ti(a(n),n(n)),
and the choice of n yields /\f:1 ki |ti(a,m). Since f € U we see that
AE_| ki |t5(B,m). Once again by the definition of #/(%, Z), we infer that there
is a7 € X* such that

k

(

in particular /\Z 1 ti(T ( i), ) n(n;)) =
(<) Assume that /\ "~ ti(@(ng), B(ng), n(nz)) = 0 for some 7 € X*. Hence

Nizi (G (n), B(n), n(n)) = 0; but a(n) = B(n), so iy t:(5(n), a(n), n(n))
= 0. As in the proof of (=) we get

k
i=1

By definition of (%, Z), we conclude that there is a 3’ € X* such that

k
N t@,a,m) =0,
i=1
in particular /\/f:1 ti(¥'(n;), a(ni),n(n;)) =0. m
Now we will prove a general remark.
REMARK 1.7. Let X be an arbitrary profinite structure, o be a finite
tuple from X, A C X (or even A C X°) and a € acl®d(A). Then
(i) o(a/A) is a union of finitely many orbits over Aa.
(ii)) o(a/Aa) is an open subset of o(a/A).
Proof. (i) Since o(a/A) is finite, it splits over A« into finitely many orbits.
That is, there are finitely many ao,...,a, € o(a/A) such that
o(a/A) = o(a1/Aa)U---Uo(a,/Ac).
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For each i < n choose «; € o(a/A) with o(ac;/A) = o(a;a/A). Then for
every § € o(a/A) there is an i < n such that o(af/A) = o(a;a/A) =
o(aa;/A), hence o(3/Aa) = o(a;/Aa). We see that

o(a/A) = o(ap/Aa) U ---Uo(an/Aa).
(ii) We have

ola/A)=|J flole/aa)= |  olf(a)/Af(a).
feAut*(X/A) feAut* (X/A)
So by (i), the last union has only finitely many distinct summands and one
of them must be open in o(a/A). Hence o(a/Aa) is open in o(a/A). m

Now we come back to our profinite group X. Let n € w, o € X and A
be a subset of X (or even of X°9).

COROLLARY 1.8. (i) 0"(aw/Aa(n)) is a union of finitely many orbits in
X over Aa(n).

(ii) o(a/Aa(n)) is open in o™ (a/Aa(n)).

(iii) o(«/A) is open in o™ (a/A).

Proof. Of course (i) and (iii) follow from (ii), so it is enough to prove (ii).
First we see that

o"(a/AX,) =o(a/AX,) Co(a/Aa(n)) C o"(a/Aa(n))

o"™(
and o(a/Aa(n)) is either open or nowhere dense in 0" (a/Aa(n)). Hence it
is enough to show that o™ («a/AX,,) is open in o™ (a/Aa(n)).

Since X, can be identified with an element of acl®d(()), we use Remark 1.7
to complete the proof. m

THEOREM 1.9. Assume that X is the inverse limit of a system indezxed
by w of finite abelian groups and X has a finite exponent e. Let Aut*(X) be
the standard structural group of X. Then (X, Aut*(X)) is small, m-normal
and m-stable.

Proof. (1) Smaliness. Suppose for contradiction that |O1(A)| > w for
some finite subset A of X, so |O1(A)| = 2*. We can assume that A is a finite
Ze-submodule of X.

For a € X, let n, be the number N, 4 defined just before Lemma 1.6.
There is a natural number n and 2% elements o € X from distinct orbits over
A for which n, = n. Hence there are o € X and o; € X, i € 2¥, such that

(a) a;(n) = a(n) and ny, = ne =n for all i € 2,

(b) a; & o(cj/A) for all i # j.

Let
S={feX:p(n)=an) Ang=n}.
We see that S is invariant under Aut®(X/Aa(n)) and Aut;,(X/Aa(n)).
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By Lemma 1.6 and Corollary 1.8(i) we obtain respectively:

(i) there are only finitely many orbits on S under the action of
Aut},(X/Aa(n)),

(ii) for each € S, the orbit o™(3/Aa(n)) is a union of finitely many
orbits in X over Aa(n).

By (i) and (ii) we conclude that there are only finitely many orbits on S under
the action of Aut*(X/Aa(n)). This is a contradiction with (a) and (b).

(2) m-normality. Suppose for contradiction that X is not m-normal and
the lack of m-normality is witnessed by an o € X" and a finite submodule
A of X, i.e. for each open neighbourhood U of «, the set U No(«a/A) has
infinitely many conjugates under Aut*(X/a). Let n € w.

Cram. ("X, Aut} (X)) is not m-normal and this is also witnessed by o
and A.

Proof. Tt is enough to show that for an arbitrarily small canonical open
neighbourhood U of «, the set U N o"(«/A) has infinitely many conjugates
under Aut) (X/«).

By Corollary 1.8(iii) the orbit o(a/A) is open in 0™(a/A). Let U be an
arbitrary canonical open neighbourhood of a such that

Uno"(a/A)=Uno(a/A).
Since Aut*(X/a) C Auty (X/a), the proof is complete. m

Now we choose an n for & and A as before Lemma 1.6. By the claim there
are f € Aut) (X/a) and 8 € 0" (a/Aa(n)) such that f(5) ¢ 0" (a/Aa(n)).

Showing that f(5) € o™ (a/Aa(n)) we will get a contradiction. By Lem-
ma 1.6 it is enough to prove that for all a € A, k € Z¢, l1,...,lm € Z. we

have . .
k:’ (Zliai —a) = k‘ (Zlif(ﬂi) —a).
=1 1=1

Assume k | (37", Licy—a). Then k| (3% Lici — f(a)), so k| (a— f(a)). Now
B € o"(a/Aa(n)), so k| (3", i3 — a) by Lemma 1.6. Hence

b (315 - £(@)
=1

and finally k| (3" Lif(5i) —a). =

(3) m-stability. Suppose for contradiction that there is an infinite se-
quence A; C Ag C - - of finite subsets of X and o € X such that o(a/A;+1)
is nowhere dense in o(«/A;) for every i. We can assume that each A; is a
submodule of X.
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Let C; = {(k,1) € Z% : (3a € A;)(k|(la — a))}. Let n; be the number
Ng, 4, defined before Lemma 1.6, so n; <ng < ---.

We know that o(a/A;+1c(n;+1)) is nowhere dense in o(a/A;a(n;y1)). By
Corollary 1.8(ii) we conclude that 0™+ (a/A;+1c(ni+1)) is nowhere dense in
0"+ (a/Aija(nit1)).

Using Lemma 1.6 one can conclude that C; C C;41 for every i. So we get

=

an infinite increasing sequence C; C Cy C --- C Z2, a contradiction. m

Finally, we mention that the description of orbits in products of finite
abelian groups, given in [K1, Lemma 3.1.1], can also be obtained by means
of model theory of abelian structures. Namely, we can apply Lemma 1.5 (in
fact, we use here the Baur—Garavaglia—Monk theorem for abelian structures
from example 3(i)) and Fact 1 formulated in the proof of Lemma 1.6 (for the
details see [K3, proof of Lemma 2.1.6]). In [K1] we proved this description
using a group-theoretic result ([K1, Lemma 2.1]).

For the reader’s convenience, we recall here both the group-theoretic
result mentioned above and the description of orbits in products of finite
abelian groups.

FacT 1.10. Let X = Xox XX --x Xy, be a finite product of finite abelian
groups, e be the exponent of X and n < w. If we have finite submodules A
and B of X, an isomorphism [ between them and o € X, B, € X[n such
that

(Va € A)(Vk € Ze)(Vm < w4+ 1)(k|alm < k| f(a)[m)
and
(Va € A)(Vk,l € Ze)(Vm < n)
(k| (latm —alm) < k[ (I6nIm — f(a)Im)),
then there exists a Bn4+1 € X [n+ 1 extending (3, such that
(Va € A)(VEk,l € Ze)(k|(laln+1—aln+1) < k| (Ifn+1 — fla)[n+1)).

For n = 0 there is no Gy and then Fact 1.10 says that there exists a
01 € X satisfying the last condition.

Let X = [];c, Xi, where all X;’s are finite abelian groups, and let the
exponent e of X be finite. So X is a module over Z.. Let o = (a1, ..., au)
be a tuple from X and A be a finite submodule of X.

FacT 1.11 (Description of orbits). o(a/A) = U, where U consists of the
elements B € X™ such that for all a € A, k € Ze, 11, ..., Ly, € Ze and n > 1

we have . .
k‘(Zliai[n—a[n) o k‘(Zliﬂi[n—a[n).
=1 =1
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2. Modifications of the structural groups. In this section we will
prove several results, similar to Theorem 1.9, for abelian profinite groups
with some non-standard structural groups. To do this we need a description
of orbits more general than in Lemma 1.6. We will obtain such a description
by means of model theory of many-sorted abelian structures. Such structures
were introduced by E. Fisher ([F]). The following definition can be found for
example in [PRZ].

DEFINITION 2.1. A many-sorted abelian structure A= ((As, +)ses, Pi)icr
is a disjoint union of abelian groups (As, +) (these are sorts of A) expanded
by predicates P;, i € I, defining subgroups of cartesian products of finitely
many sorts.

Just as for one-sorted abelian structures, if we add to the language func-
tion symbols defining homomorphisms from cartesian products of finitely
many sorts into sorts, then the arising many-sorted structure can also be
regarded as a many-sorted abelian structure.

Now we continue our list of examples of abelian structures, this time
many-sorted ones.

4. A one-sorted abelian structure.

5. A structure A = ((Ai, +,7)reR, icws fij)i,jew, Whose sorts are pure
R-modules (A;,+,7)rcr, © € w, and each f;; : A; — A; is a homo-
morphism of R-modules.

(i) Let {X;}ic. be a family of finite abelian groups. Let X = [];c,, Xi
and A, = X|n for n > 1. For n > m we define f,,, : A, — An
to be the restriction. Then A := ((An,+,7)rez, new, fam)n>m 18
a many-sorted abelian structure. Let Aut*(X) be the standard
structural group of X. Then each f € Aut(A) induces an au-
tomorphism f € Aut*(X). On the other hand, all the restric-
tions to A,’s of an arbitrary f € Aut*(X) form an automor-
phism of A. The same is also true if there are only finitely many
groups X;.

(ii) Let X be the inverse limit of an inverse system (X;, fij)j<icw
of finite abelian groups. Then A := ((X;,+,7)rez, icw, fij)i>; 18
a many-sorted abelian structure. As always we assume that all
fij’s are surjections. As above we have the natural correspon-
dence between Aut(.A) and the standard structural group Aut*(X)
of X.

Let A = ((As, +)ses, Pi, fj)ic1, jes be a many-sorted abelian structure.
In the many-sorted language of A we consider formulas and we define p.p.
formulas in the same way as in Definition 2.1, remembering that each variable
ranges over a specified sort.
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As for one-sorted abelian structures, it is easy to check that in each
many-sorted abelian structure atomic formulas are p.p. formulas and that
p.p. formulas have properties (i), (iii), (iv) (see comments following Fact 1.3)
and

(ii)" Each p.p. formula ¢(x1,...,z,,) defines a subgroup of a product of
appropriate sorts Ag, x --- x Ag

So the Baur—Garavaglia—Monk theorem holds for many-sorted abelian struc-
tures.

We recall that we deal with abelian profinite groups which are inverse
limits of inverse systems

(indexed by w) of finite abelian groups, and we consider such a group X with
the standard structural group Aut*(X).

For natural numbers m < n and an element n € X,, n(m) € X,
denotes the image of 7 under the connecting map f,,, : X, — X,, (for
m > n, n(m) means nothing and is skipped in any expression below). Let
a=(a1,...,0m) € Xy X+ x X, for some my,...,my € wU{w}, where
X, =X.Let AC U,cuu (v} X,,. We will consider orbits over A so without
loss of generality we can assume that A is closed under connecting maps and
under projections from X onto each X, n € w, and for each n € w U {w},
AN X, is a submodule of X,,.

LEMMA 2.2 (Generalized description of orbits). o(a/A) = U, where U
consists of the elements 8 € Xy, X - - X X, such that for all k > 1, natural
numbers ny < -+ < ng, (aij)i<ij<k € Mixk(Z), (bij)i<k,j<m € Mixm(Z)
and (m,...,m) € A* we have

k

k m
(E@ S Xk) /\ (Zaijyj(ni) + Zbijaj(ni) + nz(nz) = 0)
i=1  j=1 j=1
k k m
& (Fye XH) N\ (Z aijyj(ni) + Y bijBi(ni) +mi(ni) = 0)-
i=1  j=1 j=1
Proof. The proof is similar to the proof of Lemma 1.5. This time we
use the Baur—Garavaglia—Monk theorem for many sorted abelian structures
from example 5(ii) on our list of examples of abelian structures. m

Assume now that X has a finite exponent e. Let a = (o, ..., ay,) € X™
and A be a finite submodule (over Z) of X. Moreover, let Ay C (J,,c.,i, (w} X,
be closed under connecting maps and projections from X onto each X,
n € w, and assume that for each n € wU{w}, A9N X, is a submodule of X,.
For n € w, we define A7" = Ag N (X U Uisn Xi)-
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For k,l1,...,l;, € Z, and a € A we define
N 1o = MaX {n Ew:(ImeAdnX,) (k: ‘ (iliai(n) —a(n) — n))}
=1

when such a maximal n exists, and —1 otherwise.
Let No,a,4, = max{nyq : (k,l,a) € Ze X Z]' x A} +1. Take n > Ny 4, A, -

LEMMA 2.3. o”(a/AAgna(n)) = U, where U consists of the elements
Be€X™ such that B(n) = a(n) and for all n' > n, a € A, n € Ag N Xy,
k € Ze, l1,...,ly € Ze we have

k‘ (iliai(n') —a(n’) — 17) = k‘ (ilzﬁi(n') —a(n’) — 77).
i=1 =1

Proof. (C) is obvious.

(2) The proof is an elaboration of the proof of Lemma 1.6. Take a 3 € U.
Let £ > 1, n < ng < -+ < ng, (@ij)1<ij<k € Mpxk(Ze), (bij)i<k,j<m €
Myxm(Ze), a = (a1, ...,ar) € A¥ and n = (1,...,mk) € (Ag N Xy, ) X -+ X
(AO N Xnk) )

We define the Z.-linear combinations ¢;(y,7,t,2), i = 1,...,k, of vari-
ables T = (z1,...,Zm), = (Y1,---,Yk), t = (t1,...,tx) and Z = (21, ..., 2x)
by setting

67, 7,1, 2 Zazjy]+2b,]x]+t + 2.

Now we choose t}(Z,1,z), i = 1, ..., k,as in the proof of Lemma 1.6.
By Lemma 2. 2 to finish the proof we need to show that

(37 € X*) (/\ t:(@(na), a(ng), a(ng), ) = o)

i=1
k
& (@7 € X ( A\ @), Bn), a(ni),n) = 0).
i=1
(=) Assume that for some § € X* we have
(A) /\ t(m(ns), a(ng), a(ng),n) = 0.

As in the proof of Lemma 1.6 we get
i=1

By the choice of n one can easily check that there is an 7' € (4¢ N X, )*
such that

k
/\ k; ‘ t;<a<nk)a a(nk)7 n/(nk))
=1
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From the assumption that § € U we see that
k
N\ Fi [ £:(B(nk), alny), ' (n4).
=1
The last two statementls imply that we can choose 7/,7” € X* so that

k
(%) N\ 6@ (ni), a(n), a(na), ' (ni)) = 0,
=1

k
() I\ i@ (), B(ni), a(ni), ' (ns)) = 0.
i=1

By () and (A) we infer that for ¥ — 7 = (y1 — ¥},....yx — y}) and 6 =
(m —n'(n1),...,m —n'(nx)) we have

k
N (@ —7)(n:),0,0,6) = 0.
i=1
Combining this with (x*) shows that for 7" = 7" + 7 — 7 we have

k
N (7" (n2), B(ns), a(ng),m) = 0.
=1

The proof of (<) is similar. =

In the next corollary, n is at least the maximum of the two numbers N, 4
and Ny, 4,4, defined before Lemmas 1.6 and 2.3, for o, A and Ag as above.

COROLLARY 2.4. If we additionally assume that for each i > n, the
set Ag N X; 1is contained in the kernel of the connecting map f;;—1, then

o"(a/AAT"a(n)) = o™(a/Aa(n)).
Proof. (C) is obvious.
(D) Take a B € 0"(a/Aa(n)). Suppose for contradiction that 3 ¢

o"(« /AgnAa(n)). Lemma 2.3 shows that there are ag € Ay (more precisely
ag € X,y for some n’ >n), a € A and k,ly,...,l, € Z, such that

k ‘ (zm:liai(n') —a(n’) — ao) and kf (f: L;Bi(n) —a(n’) — ao).
=1 =1

Since ag(n) = 0, it follows that k| (D", li;(n) —a(n)). Hence, by the choice
of n we get k| (D", lic; — a). Consequently, k| (> %, lia;(n') — a(n’)), so
klaoand k| (3 i~ LiBi(n')—a(n')). Finally, k| (3°", Lifi(n') —a(n’) —agp). =

PROPOSITION 2.5. Assume that X is the inverse limit of a system in-
dexed by w of finite abelian groups and X has a finite exponent e. Let
Aut*(X) be the standard structural group of X and Ag be an arbitrary subset
of XUU,cp Xn- Then (X, Aut™(X/Ag)) is m-normal and m-stable.
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Proof. Use Lemma 2.3 and proceed as in the proofs of Theorem 1.9 and
Propositon 3.2.8 in [K1]. =

PROPOSITION 2.6. Under the assumptions of Proposition 2.5, assume
additionally that Ay C U,c, Xn and for each i > 1, the set Ao N X; is

contained in the kernel of the connecting map fi;—1. Then (X, Aut*(X/Ap))
is small, m-normal and m-stable.

Proof. By Proposition 2.5 only smallness requires a proof. For two orbits
o1 and 09, 01 C, 09 will mean that oy is open in o0s.

It is enough to show that for each o € X and finite set A C X we have
o(a/AAy) C, o(a/A). We can assume that for each i € w, 49N X, is a
submodule of X;.

Take an n as in Corollary 2.4. Then

o"(a/Aa(n)) = o™(a/AAT a(n)).
Since o(a/Aa(n)) C o™(a/Aa(n)), we get

o(a/Aa(n)) C o"(a/AAT"a(n)).
On the other hand, by Remark 1.7 and Corollary 1.8 we see that

o(a/Adpa(n)) C, o(a/AAT a(n)) C, o™ (a/AAT " a(n)).
Hence
o(a/AApa(n)) S, o(a/Aa(n)).
Since we also have
o(a/AApa(n)) Co(a/AAy) and o(a/Aa(n)) C, o(a/A),
we get o(a/AAp) Co o(a/A). u
Now we will make some final comments. First of all, Theorem 1.9 and

Proposition 2.6 yield new classes of examples of small profinite groups. Next,
recall the following question, which appears in [N1] and [N2]:

(¥*)  Does there exist a small profinite group (structure) which is not m-
normal?

Theorem 1.9 and Proposition 2.5 together with Remark 1.4 show that an
example (if any) cannot be an abelian profinite group X which is the inverse
limit of a system (X;);e,, indexed by w, with the standard structural group
or with the structural group being the pointwise stabilizer of a subset of
X UUpew Xn-

The next natural step in our investigations is to consider the profinite
groups which are inverse limits of arbitrary countable systems (not neces-
sarily indexed by w) of finite abelian groups of bounded exponent with the
standard structural group. We could try to describe when such groups are
small and to show that if such a group is small, then it is also m-normal
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(as in [K1, Theorem 4.2 and Proposition 4.3|). I think that the techniques
of this paper together with some combinatorics should work here.

The situation is much more complicated when we consider abelian profi-
nite groups (or even products of finite abelian groups) with arbitrary struc-
tural groups. Propositions 2.5 and 2.6 are partial results describing this sit-
uation. It seems to be very difficult to classify small abelian profinite groups
with arbitrary structural groups. There is still a chance that there exists an
abelian profinite group (or even a product of finite abelian groups) with some
(rather complicated) structural group which is small, but not m-normal.

As at the end of Section 1, we mention that using many-sorted abelian
structures we can give a new proof of the generalized description of orbits in
products of finite abelian groups formulated in [K1, Lemma 3.1.2]. Namely,
we can apply Lemma 2.2 (in fact, we use here the Baur—Garavaglia—Monk
theorem for many-sorted abelian structures from example 5(i)) and some
linear algebra (for the proof see [K3, Lemma 2.1.6]).

To end the paper I would like to explain that from some point of view,
considering only abelian profinite groups is not a major restriction. We have
to remember that our aim is to find examples of small profinite groups and
that for such examples m-normality and m-stability are also considered.

In the case of a product X =[], X; of finite groups, Remark 4.3 from
[N1] shows that while searching for small products of finite groups, we can
assume that almost all X;’s are abelian. Then arguing as in the proof of
Corollary 3.2.2 in [K1] we can assume that all X;’s are abelian.

In the case of arbitrary profinite groups we have the following fact proved
by Wagner [Wal.

FacT 2.7. Fach small m-stable profinite group contains an open abelian
subgroup.

So searching for small and m-stable profinite groups, we can consider
only profinite groups with an open abelian subgroup. When we have such a
group X, then it is easy to see that X is interpretable in its abelian canonical
open subgroups and its smallness is equivalent to smallness of an arbitrary
abelian canonical open subgroup (with some structural group). Assuming
smallness and arguing as in the proof of Corollary 3.2.2 in [K1], we find that
m-normality and m-stability of X are also equivalent to m-normality and
m-stability of an arbitrary abelian canonical open subgroup of X (with the
same structural group as above). So from the point of view of small and
m-stable profinite groups (with arbitrary structural groups) we can consider
only abelian profinite groups.

Without m-stability we do not have Wagner’s theorem. Instead we have
the open question whether each small profinite group contains an open
abelian subgroup. It seems that considering non-abelian profinite groups
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(even with the standard structural group) is much more complicated and
the techniques used in the description of orbits in abelian profinite groups
do not work.

On the other hand, Newelski proved (see [N1] and [N3]) that any small
m-normal profinite group has an open abelian subgroup. Hence, if we were
able to find an example of a small profinite group without an open abelian
subgroup (so also not m-stable), then we would get a positive answer to
question (k).
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