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Real C* Koebe principle
by

Weixiao Shen (Hefei) and Michael Todd (Surrey)

Abstract. We prove a C* version of the real Koebe principle for interval (or circle)
maps with non-flat critical points.

1. Introduction. The real Koebe principle, providing estimates of the
first derivative of iterates of a smooth interval map, plays a very important
role in recent research of one-dimensional dynamics. See [MS]. Considering
its complex counterpart, the (complex) Koebe distortion theorem, it is nat-
ural to look for a C*, k > 2, version of this principle. This is the goal of this
paper.

More precisely, let f be a C* endomorphism of the compact interval
I =10,1] (or the circle R/Z). We assume that f has only non-flat critical
points, that is, for each critical point ¢, there exists a > 1 such that near c,

(1) f=vQ9,

where ¢ (resp. 1) is a C* diffeomorphism from a neighbourhood of ¢ (resp.
f(c)) onto a neighbourhood of 0, and |Q(z)| = |z|*. We use NF¥ to denote
the class of such maps.

As usual, we say that an interval T is a x-scaled neighbourhood of an
interval J if J is compactly contained in T, and both components of T'\ J
have length at least x|J|.

THEOREM 1. Let f be in the class NF", n > 2. Let T be an interval
such that f*: T — f*(T) is a diffeomorphism. For each S,k > 0 and each
1 <k <n there exist § = 0(S,k, f) > 0 and Ky = Ki(k) > 0 satisfying the
following. If E;;é |fI(T)| < S and J is a subinterval of T such that

o [5(T) is a k-scaled neighbourhood of f*(J);

o ) <6 for0<j<s,
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then, letting o : J — I and s : f5(J) — I be affine diffeomorphisms, for
each x € I, we have

|D* (s fo5 ) ()] < K.

Furthermore, K1 — 1 as Kk — oo and for each k > 1, K — 0 as k — 0.

The well known real Koebe principle claims the existence of Ki. Our
proof will show that K}, (k) is of order x~* when x — 0, and of order (=1
when k — oo, for each 2 < k < n.

1.1. Proof of Theorem 1. To prove this theorem, we shall approximate
the map 1, f*1) ! by maps in the Epstein class, and then apply the (complex)
Koebe distortion theorem. The main step is to prove the following theorem.

THEOREM 2. Let f be a map in the class NF* n = 2,3,.... Let T
be an interval such that f* : T — f*(T) is a diffeomorphism. For any
S, k,e > 0, there exists § = 6(S, k,e) > 0 satisfying the following. Suppose
that E;;é |fI(T)| < S and J is a subinterval of T such that

o f°(T) is a k-scaled neighbourhood of f*(J);
o |[fI(J)] <d for0<j<s.

Then, letting 1o : J — I and s : f*(J) — I be affine diffeomorphisms,
there exists a map G : I — I in the Epstein class € o such that

s fo0gt — Gllon < e.

Here, we say that a diffeomorphism G : I — [ is in the Epstein class
& if G™1 extends to a (holomorphic) univalent map from Cipi+p) =
C\ ((—o0, =Bl U [l + B,00)) into C.

This result, for n = 2, appears as part of the proof of the Yoccoz Lemma
in [T].

Proof of Theorem 1 assuming Theorem 2. By the complex Koebe distor-
tion theorem, the fact that G € &, /, implies that the C™ distance between
G|[0, 1] and the identity map is bounded by a constant £(x), and e(k) — 0
as k — o00. Taking ¢ = (k) in Theorem 2, we see that the C" distance
between 15 f515 ][0, 1] and the identity map is at most 2(x). m

Outline of proof of Theorem 2. By rescaling the map f : fi(J) —
fi+L(J), we obtain a diffeomorphism fj I — I. For each j, one can find a
map g;j : I — I in the Epstein class such that the C" distance between f;
and g; is of order o(|f7(J)|). Using the classical real Koebe principle (the
C' version of Theorem 1), we shall prove that G = gs_1--- go is in the Ep-
stein class &, /5 (Proposition 6). Finally, using a proposition concerning the
composition operator (Proposition 8), we show that fs_q--- f1 is C™ close
to the map G.
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It should be mentioned that similar ideas have appeared in the proofs
of Theorem A.6 of [FM] and Lemma 3 of [AMM], but our result applies in
more general situations.

REMARK 3. For maps in the class NF?3, the C'! version of Theorem 1 still
holds if we replace the assumption Zj;(l) |f3(T)| < S by “f5(T) is contained
in a small neighbourhood of critical points which are not in the basin of
periodic attractors”. See [K, SV]. It would be interesting to know if the C'*
versions of Theorems 1 and 2 remain true under this alternative assumption.
See also the recent work [KS].

REMARK 4. In fact, the whole argument applies to more general maps.
It is sufficient to assume that the function @ appearing in (1) is in the
Epstein class on each side of 0.

2. Proof of Theorem 2. By means of a C™ coordinate change, we
may assume that for each critical point ¢;, there is a neighbourhood U; of
¢; such that |f(x) — f(c)| = |z — ¢|* for € U;. Let us also fix an open
interval U! > ¢; such that U/ C U;. Define U := |J; U; and U’ := |J, U}. Let
n = d(0U,0U’). Then any interval of length less than 7 is either contained
in U or disjoint from U’.

We fix T, J, k, S as in Theorem 2. Let Jo = J and J; = f*(J). For every
0 <i < s we have a diffeomorphism £~ : f{(T) — f5(T), where f*(T) is a
r-scaled neighbourhood of f*(.J).

We will rescale our maps as follows. Let v; : J; — I be the affine homeo-
morphisms such that each f; = ;1 f1; !is increasing. Then the following
diagram commutes:

f f f

o 1= 0 Loy, Ly

W I | [ |

fo fi fs—2

[07 1] - [07 1]
We then approximate f; as follows. For 0 <i <s—1, let

‘ (7w if J; ;
gz‘(l’):{fl() et

L 2p
= §)D fio (1—¢&/2)x+ (&/2)x? otherwise.

We use C™(I) to denote the Banach space of C™ maps ¢ : I — R with
the C™-norm
Al = max{|D*¢(z)|: 0 < k < n,z € I}.

Let C™(I;I) denote the closed subset of C™(I) consisting of all maps such
that ¢(I) C 1. Let Diff"} (I) denote the set of all orientation-preserving C"
automorphisms of 1.



64 W. X. Shen and M. Todd

LEMMA 5. There exists a continuous increasing function w : (0,00) —
(0,00) (depending on f) such that limy_o+ w(t) = 0 and such that for all
0<1<s—1,

lgi = filln < w((JiDIJil.

Proof. Assume J; is not in U, otherwise g; = f;. We will first estimate

|D2g;(z) — D2 f;(z)| for x € [0,1]. Observe that

1 12
D) = & = | D0 1, D) = (2 D20 )
0 7
There is some zo € [0,1] such that S(l) D2fi(t)dt = D?fi(xg), so D?g;(z) =
D?f;(xg) and
|D?gi(x) — D*fi()| = |D? fi(wo) — D*fi(x)|
Ji|? _ _
— DR )~ D @)
| Ji?
~ il
where wy(e) = sup|,_y . [D*f(x) — D*f(y)| is the modulus of continuity of
D?*f, and C = sup,gp |Df(z)| 1.
Note that there exists some z1 € [0, 1] such that Df;(x1) = Dg;(z1). So
for x € [0, 1],

wy(|Ji]) < ClJiwi(]Ji)),

|Dgi(x) — Dfi(w)| < | [D*gi(t) = D*fi(t)| dt < C|J;|wi (|-

Similarly,

lgi(x) — fi(x)| < \[Dgi(t) — Dfi(t)| dt < C|J;|wi(|Ji])-

O e R

For any 2 < k < n, D*g; = 0. Hence, for = € I,

|k
|D*(g; — fi)(x)| = |D*fi(z)| = ’J.z’
’Jz+1’

Setting w(t) = C' max(w;(t),t) completes the proof. m

[DRf (e (2))] < CJ[*

The map gs_1 - - - go is our candidate for GG. Let us first apply the classical
real Koebe principle to prove that G is in the Epstein class.

PROPOSITION 6. Assume that supj’f;(lJ |f7(J)| is sufficiently small. Then
for each 0 < j < s—1, gs_1---g; belongs to the Epstein class £z, where

B =kK/2.
Proof. Let 1/2 < A1 < A2 < 1 be arbitrarily chosen constants. Let
T’ be the open interval with J € 77 C T such that both components of
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F5(T)\ f5(J) have length kXa| f5(J)]|. Let fj’ =;(f5(T")) forall 0 < j <s.
Clearly f; extends to a diffeomorphism from fj’ onto 7/:]’ 41- By the classical
real Koebe principle, for all x,y € T', we have |Df*(z)|/|Df*(y)| < C,
where C' = C(S,k) > 1 is a constant. Therefore, for each 0 < j < s — 1,
fs—1-+- fj is a well defined diffeomorphism from T} onto T with derivative
between 1/C and C. Clearly, for v = A\ykC, we have JA’j’ C [-7,1+ 7] for
all j.
Note that for each 0 < j < s — 1, gj_1 extends to a univalent map from
into Cz,. Moreover, for a given v, arguing as in the previous lemma,

.
weseethatfora110<3<s—1

sup | f5(y) — g;(y)| = o(|J;]).

yETJf
CLAIM. There exists 6 > 0 such that if sup‘(”f1 \f3(J)| < 6 then for any

fo(/) and any 0 <r <s—1,ifgj- g ()€T+1f07"all0<j<r—1
then

|fr—1-+ fo(x) — gr—1-"- go(z)] <min(w,<)\l—%>n>.

To prove this claim, let A, = B_1 =id and for all 0 <7 <7 —1 let
A;=fr_1---fi and B; = g; - - - go. Then

[fr1- () gr-1---go(x)| = | Ao B- (fE)-ABr 1(2)]

<5 4B - AnBile |—Z|Az+1fz =1(8) = ArgBina )
r—1 —

<> sup A (=) sup |fily) - 9:(w)| < C Z DI,
i=0 2€T{ veT; =0

which is arbitrarily small provided that supjf;é | f7(J)] is small enough. This
proves the claim.
Now let T} be the subinterval of T{j such that

For1 - fo(TY) = [~ A1k, 1+ A\1r).
Then for any x € f(’)’ and 0 <r < s—1 we have

d(fr1+ folx).0T7) > (Ao = A1)/ C.
Together with the claim, this implies (by induction on r) that for all 0 < r <
—1, gr—1---go is well defined on T” and maps Té’ dlffeomorphlcally onto
a submterval of T!. Moreover, the claim also gives us G(T Y) o [-8,1+ 0]
for § = k/2. This proves that for any 0 < j < s—1, gj 93-1 extends to
a univalent map from C(_g 1,3, 80 gs—1---g; is in the Epstein class £3. =
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Together with the complex Koebe distortion theorem, this implies the
following.

COROLLARY 7. There exists a constant C = C(k) > 0 such that for any
0<j<s—1, we have

|llog D(gs—1---gj)|ln < C.

The proof of Theorem 2 is then completed by the following proposition
and lemma.

PROPOSITION 8. Let n € NU {0}, and let g; € Diff " (I) and f; €
Diff"t (I) for 0 < j < s—1. For any C > 1 there exists E = E(C,n) > 0
such that if the following hold:

(1) for each 0 < j <'s, [llog D(gs—1---g;)|ln < C;

(2) if n>1, |[log Dgj —log D fjlln—1 < C for all0 < j <s—1;

(3) XiZollgs = filla < C.

then
s—1

||gsfl o go — fsfl T fOHn < EZ ||f] - gj”n-
§=0
The proof of this proposition will be given in the next section.

LEMMA 9. Forany C > 1 and k € N, there exists C" = C'(C., k) > 1 with
the following property. Let ¢, ¢ be maps in C*(I) such that ||p||x, ||6|lx < C.
Then

(1) el < O ] i

(2) &rllo = dllk < lle? = e?llx < Cll¢ — ol

Proof. Let 1) = e® and J _3 By induction it is easy to compute that
for all £ > 1, there exist polynomials P, and Q)j such that

o D¥(e?) = e’ - Pi(¢, D¢, ..., D*¢);
o D¥(¢) = Qu(v, Do, D*) /",
From these the lemma follows easily. =

Proof of Theorem 2 assuming Proposition 8. It suffices to check that
the conditions in Proposition 8 are satisfied. The first condition was verified
in Corollary 7. By Lemma 5, ||f; — gjlln < |Jj|lw(|J;]). Furthermore, from
the proof of that lemma, we can show that ||log D f;||n—1, ||log Dgj||n—1 are
bounded above. Hence by Lemma 9, provided that supj;(l) |f7(J)| is small
enough, the second condition is verified. For the third one, we use the as-
sumption Y 5—g [f7(J)| < Y2520 [fU(T)| < S and the fact that w(|J]) is

small when |J;| is small. m



Real C* Koebe principle 67

3. Proof of Proposition 8. The goal of this section is to prove Propo-
sition 8. Let us begin with a small lemma.

LEMMA 10. For any k € NU{0} and C > 0 there exists K = K(C, k)
with the following property. Let u,v, B € C*(I;I), and let A € CF+1(I).
Assume that ||Al|k+1 < C and ||Bllx < C. Then

|AuB — AvB||x < K||u — v||g.
Proof. This lemma is a straightforward consequence of the chain rule. »

Proof of Proposition 8. We first introduce some notation for our calcu-
lations. Let A; = B_; =id and for 0 < j <s—1,let A; = gs—1---gj and
Bj = fj te fo. Then

gs—1-""90 — fsfl o 'fO = AoB,1 - AsBsfl

s—1 s—1
= (A4Bj1 — AjBy) = ) (Ajn195Bj1 — Ajr1fiBj ).
=0 =0
Writing S; := A;Bj 1 = Aj119;Bj-1=gs—1---95fj—1- -+ fo, we have
s—1
gs—1°+90 — fs—1-- fo= Z(Sj —Sjt1).
=0

The proof of the proposition will proceed by induction on n. First, by Lem-
mas 9 and 10, HSJ - Sj+1||0 < K(C, O)”f] - ngD- Thus,
s—1
lgs—1 90— fsmr -+ follo < Y IIf5 = gillo-
i=0
This proves the lemma for the case n = 0.
Now let m > 1 and assume that the proposition holds for n = m — 1.
Let us prove it for n = m.
First, for each 0 < r < s — 1, applying the induction hypothesis to the
mappings fj, gj, 0 < j <r, we have
j—1
(2) I fo— g gollm—1 < Ev Y |1fi = gillm—1,
i=0
where F is a constant (depending only on C' and m). Also, it is easy to show
that the first assumption of the proposition implies ||log D(g, - - - go)||» < 2C.
Therefore, by the first part of Lemma 9 we have || D(g; - - - go)|ln < C’. Hence,

1gr -+~ gollm = max(1, | D(gr- -~ go)[lm-1) < C".
Applying this to (2), we have
(3) ||Ber—1 S Cl-
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To complete the induction it suffices to prove that there exists a constant
FE5 such that
(4) 1D™(S5 = Sj+1)llo < B2l f5 = gjllm-
To this end let us first prove the following.
CLAIM. There exists a constant Cy depending only on C such that for
all0 < j <s—1, |log DS; —log DSji1llm-1 < Collfj — gjllm-
In fact, for each 0 < j < s — 1, by the chain rule,
log DSJ' - log DSJ'+1
= [log(DAj19;Bj-1) +log(Dg;Bj-1) + log DB 1]
— [log(DAj1fjBj-1) +log(Df;Bj-1) + log DB;_1]
= [log(DAjy19;Bj-1) — log(DAj1f;Bj-1)]
+ [log(Dg;Bj-1) —log(Df;Bj-1)]
=: Pj + Qj-

From the assumption || log DAt/ < C and from (3), by Lemma 10, we
obtain

| Pj[lm—1 < K(C1,m — D) f; = gjllm—1,
and
1Qjllm—1 < K(C1,m —1)[|log Dg; — log D f;l|m—1.

Since [|log Dg;|lm—1 and ||log D f;||m—1 are bounded from above, the second
statement of Lemma 9 implies the claim.

Finally, let us deduce (4) from the claim. By the second part of Lemma 9,
it suffices to show that ||log DS;||m—1 is bounded from above by a constant.
Since ||log DSol|m—1 = ||log DAg|lm-1 < C, this follows from the third as-
sumption by applying the claim. This completes the proof. m
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