Large superdecomposable E(R)-algebras

by

Laszlo Fuchs (New Orleans) and Rüdiger Göbel (Essen)

In honour of Claus Michael Ringel on the occasion of his 60th birthday

Abstract. For many domains R (including all Dedekind domains of characteristic 0 that are not fields or complete discrete valuation domains) we construct arbitrarily large superdecomposable R-algebras A that are at the same time E(R)-algebras. Here "superdecomposable" means that A admits no (directly) indecomposable R-algebra summands $\neq 0$ and "E(R)-algebra" refers to the property that every R-endomorphism of the R-module A is multiplication by an element of A.

1. Introduction. Schultz [15] introduced the notion of an *E*-ring as a ring *R* such that the endomorphism ring of its additive group is isomorphic to *R* under the natural map $\eta \mapsto \eta(1)$, i.e. each endomorphism acts as multiplication by an element of *R*. *E*-rings have been investigated in several papers: see e.g. Dugas–Mader–Vinsonhaler [5], Dugas–Göbel [4], Göbel–Strüngmann [11], proving the existence of arbitrarily large *E*-rings, *E*-rings whose additive groups are \aleph_1 -free abelian groups, etc.

Göbel–Strüngmann [11] discusses E(R)-algebras, i.e. algebras A over a domain R such that every endomorphism of A as an R-module is multiplication by an element of A. The existence of large E(R)-algebras over many domains R is established. Fuchs–Lee [7] constructs E(R)-algebras over certain domains R that are superdecomposable as R-algebras in the sense that they do not admit any algebra summand that is not a direct product of two non-zero subalgebras. In Theorem 5.3 we give a common generalization of these two results by proving the existence of arbitrarily large superdecomposable E(R)-algebras that are, in addition, \aleph_1 -free in the sense that every countable subset is contained in a free R-submodule.

²⁰⁰⁰ Mathematics Subject Classification: Primary 13F99, 13C13; Secondary 03E05.

Key words and phrases: superdecomposable algebra, E(R)-algebra, \aleph_1 -free, Black Box, trap.

This work is supported by the project No. I-706-54.6/2001 of the German-Israeli Foundation for Scientific Research & Development.

Our proof is based on a version of Shelah's Black Box (see Theorem 3.1 below) which we borrow from Corner-Göbel [3]. (We emphasize that this principle is provable in ZFC.) Alternatively we could have used the "Strong Black Box" (see [13]) which has the advantage that some of the algebraic proofs are simpler, but has the drawback that the possible sizes of E(R)-algebras are more restricted. We work in an R-algebra \hat{F} that is a completion of a semigroup algebra F = R[T] where the monoid T is appropriately chosen: T is a direct product of two monoids, one of which serves to guarantee that the R-algebra A to be constructed is superdecomposable, while the other will be responsible for the E-ring property of A. Our method follows closely the pattern of Corner-Göbel [3], which allows us to skip those details of the proofs that are obvious modifications of arguments in [3].

In Theorem 5.4 we prove the abundance of arbitrarily large superdecomposable E(R)-algebras. This, along with the similar result on indecomposable E(R)-algebras (cf. Dugas–Mader–Vinsonhaler [5]), shows that—as far as merely direct decompositions are concerned—E(R)-algebras do not display any particular behavior.

2. Superdecomposable algebras. Let R denote a commutative domain that contains a countable subsemigroup $\mathbb{S} = \{s_0 = 1, s_1, \ldots, s_n, \ldots\}$ (not containing 0) such that R is Hausdorff in the S-topology (where the ideals Rq_n $(n \in \omega)$ form a base of neighborhoods of 0 in R), i.e. $\bigcap_{n \in \omega} Rq_n = 0$; here we have used the notation $q_n = s_0 s_1 \cdots s_n \in \mathbb{S}$. (Note that the Hausdorff property of the S-topology is equivalent to the fact that the localization $R_{\mathbb{S}}$ of R at \mathbb{S} is not a fractional ideal of R.) The symbol \hat{R} will denote the completion of R in its S-topology. R is then a dense subalgebra of \hat{R} .

Let μ denote an infinite cardinal; it is viewed as an initial ordinal, so we can talk about its subsets. We define a monoid T_1 whose elements are the finite subsets of μ and multiplication is defined via

$$\sigma \cdot \tau = \sigma \cup \tau$$

for all $\sigma, \tau \in T_1$. The empty set serves as the identity of T_1 . (This monoid was inspired by Corner [1].)

Let F denote the semigroup algebra of T_1 over R, i.e.

$$F = R[T_1] = \bigoplus_{\tau \in T_1} R\tau;$$

this is an *R*-algebra with identity $\{\emptyset\}$. The S-topology on *F* is Hausdorff. The S-completion \widehat{F} of *F* is an \widehat{R} -algebra containing *F* as a dense *R*-subalgebra whose elements $x \neq 0$ may be viewed as countable sums $x = \sum_{i \in \omega} r_i \tau_i$ with $r_i \in \widehat{R}, \tau_i \in T_1$, where for every $k \in \omega$ almost all (i.e. all but finitely many) coefficients r_i are divisible by q_k .

By the support [x] of x is meant the set $\{\tau_i \mid r_i \neq 0\} \subseteq T_1$; this is always a countable subset, since S was assumed to be countable.

LEMMA 2.1. Every R-algebra A that lies between the R-algebras $F = R[T_1]$ and \hat{F} constructed above for the infinite cardinal μ is superdecomposable as an R-algebra.

Proof. Consider a non-zero algebra summand C of A; $A = C \oplus C'$. The C-coordinate of the identity of A is an idempotent element $0 \neq e \in A$.

CASE 1. If there is an ordinal $\alpha \in \mu$ not contained in any set in the support [e], then $\{\alpha\} \in F$ is an idempotent which evidently satisfies $e\{\alpha\} \neq 0$. It also satisfies $e\{\alpha\} \neq e$, since for any $\tau \in [e]$ we have $\tau \cup \alpha \in [e\{\alpha\}] \setminus [e]$. The elements $e\{\alpha\}$ and $e - e\{\alpha\}$ are non-zero orthogonal idempotents in Awith sum e, establishing the decomposability of C into the direct sum of two R-subalgebras.

CASE 2. If there is no ordinal α as in Case 1, then $\mu = \aleph_0$ and $\mu = \bigcup[e]$. Write $e = \sum_{\tau \in [e]} r_{\tau} \tau$ $(r_{\tau} \in \widehat{R})$ or $e = \sum_{\tau \in T_1} r_{\tau} \tau \in \widehat{F}$ with $r_{\tau} = 0$ for all $\tau \in T_1 \setminus [e]$. Pick any $\tau_0 \in [e]$ with $r_{\tau_0} \neq 0$. If $e\{\alpha\} = e$, then

$$\sum_{\tau \in T_1} r_{\tau}(\{\alpha\} \cup \tau) = \sum_{\tau \in T_1} r_{\tau}\tau.$$

If $\alpha \notin \tau_0$, then the comparison of the coefficients of $\{\alpha\} \cup \tau_0 \in T_1$ on both sides yields

$$r_{\tau_0} + r_{\{\alpha\}\cup\tau_0} = r_{\{\alpha\}\cup\tau_0}.$$

Hence $r_{\tau_0} = 0$, contradicting the choice of τ_0 . Hence $e\{\alpha\} \neq e$ for all $\alpha \in \mu$.

Suppose, by way of contradiction, that $e\{\alpha\} = 0$ for all $\alpha \in \mu \setminus [\tau_0]$. Then $\sum_{\tau \in T_1} r_{\tau}(\{\alpha\} \cup \tau) = 0$, where the coefficient of $\{\alpha\} \cup \tau_0$ is $r_{\tau_0} + r_{\{\alpha\} \cup \tau_0} = 0$. Thus $r_{\{\alpha\} \cup \tau_0} = -r_{\tau_0}$ for all $\alpha \in \mu \setminus [\tau_0]$, which is obviously impossible. Consequently, there is always an $\alpha \in \mu$ such that $e\{\alpha\} \neq 0$ (in addition to $e\{\alpha\} \neq e$), completing the proof.

We now construct another superdecomposable R-algebra as follows; we utilize an idea due to Corner [2].

Let μ be an infinite cardinal and T_2 the monoid with elements (α, p) where $\alpha \in \mu, 0 \leq p \in \mathbb{Q}$, and multiplication is defined via

$$(\alpha, p)(\beta, q) = (\max\{\alpha, \beta\}, \max\{p, q\}) \quad ((\alpha, p), (\beta, q) \in T_2).$$

Let F denote the semigroup algebra $R[T_2]$ and \widehat{F} its S-completion. Now the element $(0,0) \in \mu \times \mathbb{Q}$ is the identity of F. We have again:

LEMMA 2.2. Every R-algebra A between the R-algebras $F = R[T_2]$ and \hat{F} just constructed for the infinite cardinal μ is a superdecomposable R-algebra.

Proof. It suffices to verify that for every non-zero idempotent $e = \sum_{i \in I} r_i(\alpha_i, p_i) \in \widehat{F}$ $(0 \neq r_i \in \widehat{R}, (\alpha_i, p_i) \in T_2)$ (*I* is some index set) we can find an idempotent $e' = (\alpha, p) \in F$ such that $0 \neq e(\alpha, p) \neq e$. If not all the p_i are equal, then choose any $p \in \mathbb{Q}$ such that $p_i for some <math>i, j \in I$. In this case, $e' = (\alpha, p)$ is as desired for any choice of $\alpha \in \mu$. On the other hand, if all the p_i $(i \in I)$ are equal and if we can choose an ordinal α with $\alpha_i < \alpha < \alpha_j$ for some $i, j \in I$, then $e' = (\alpha, p_i) \in F$ is a good choice. In the remaining case, the idempotent e must be of the form $e = (\beta, q) \in T_2$ or $e = (\beta, q) - (\beta + 1, q)$. Then we can choose $e' = (\beta, p)$ for any q . Consequently, we can always find an idempotent <math>e' that establishes superdecomposability.

It is straightforward to check:

REMARK 2.3. If we replace the monoid T_j (j = 1 or 2) by a monoid $T = T_j \times T'$, where T' is any monoid, then the preceding lemmas are still valid.

3. The Black Box. We turn our attention to the construction of a superdecomposable E(R)-algebra between F and \widehat{F} . For the construction we shall need a version of Shelah's Black Box principle. (For a general discussion of this principle, we refer to Göbel–Trlifaj [12]; for the strong black box see Eklof–Mekler [6, Chapter XIII].)

Let R, S have the same meaning as in the preceding section. Furthermore, let κ be a cardinal such that $|R| \leq \kappa$, and assume in addition that λ is a cardinal satisfying

$$\lambda^{\kappa} = \lambda$$

Then we have $\operatorname{cf} \lambda > \kappa \geq \aleph_0$; see e.g. Jech [14, p. 28].

The set $L = {}^{\omega >} \lambda$ of all finite sequences $\varrho = (\alpha_0, \ldots, \alpha_{n-1})$ (of length n) with $\alpha_i \in \lambda$ (the empty sequence is included) is a tree of length ω under the natural ordering: $\varrho_1 \leq \varrho_2$ in L if and only if ϱ_1 is an initial segment of ϱ_2 . Maximal linearly ordered subsets $\mathbf{b} = \{\varrho_0 < \varrho_1 < \cdots < \varrho_n < \cdots\}$ of L are called *branches*; here the length of ϱ_n is n. The set of branches of L will be denoted by $\operatorname{Br}(L)$. Clearly, $|\operatorname{Br}(L)| = \lambda^{\aleph_0} = \lambda$.

Let T_0 be the free commutative monoid generated by the symbols u_{ϱ} for all $\varrho \in L$. Define the monoid T as

$$T = M \times T_0,$$

where $M = T_1$ or $M = T_2$ as constructed above in Section 2 with the choice $\mu = \aleph_0$. Thus the elements of T are of the form $\theta = (\tau, u)$, where $\tau \in M$ and $u \in T_0$. The semigroup algebra $F = R[T] = \bigoplus_{\theta \in T} R\theta$, its S-completion \widehat{F} and any R-algebra A in between are superdecomposable by Remark 2.3.

We will distinguish three natural kinds of supports depending on T_0 , L and λ respectively.

Each element $0 \neq x \in \widehat{F}$ can be expressed uniquely as a sum $x = \sum_{i \in I} r_i(\tau_i, u_i)$ (where I is an indexing set with $1 \leq |I| \leq \aleph_0$) such that $0 \neq r_i \in \widehat{R}$ and $(\tau_i, u_i) \in T$ for all $i \in I$. Then $[x] = \{u_i \mid i \in I\} \subseteq T_0$ denotes the support of x. (If we want to emphasize that this is a subset of T_0 , we will say that [x] is the T_0 -support of x.) Every element $u_i \in [x]$ is the unique product of certain generators $u_{\varrho_{ij}}$ ($j \leq n_i$). The collection of all these ϱ_{ij} ($i \in I, j \leq n_i$) constitutes the L-support $[x]_L \subseteq L$ of x. Finally, by the λ -support is meant the set $[x]_\lambda \subseteq \lambda$ of all ordinals used in $[x]_L$. The norm of x is defined as $||x|| = \sup [x]_\lambda$.

These notions extend naturally to subsets. If $X \subseteq \widehat{F}$ is a set of cardinality $\leq \kappa$, then $[X] = \bigcup_{x \in X} [x]$ is the support of X and $[X]_L, [X]_\lambda$ are defined similarly. Observe that the norm of X is a well defined ordinal $||X|| = \sup [X]_\lambda \in \lambda$, because $\operatorname{cf} \lambda > \kappa$.

For a subset I of λ of size $\leq \kappa$, we define

$$P_I = \bigoplus_{\theta \in M \times I'} R\theta$$

as a canonical *R*-subalgebra, where I' denotes the submonoid of T_0 generated by the u_{ϱ} with finite sequences $\varrho = (\alpha_0, \ldots, \alpha_n) \in {}^{\omega>}I$. Evidently, P_I is a subalgebra of F with support I' (and *L*-support ${}^{\omega>}I$) that is an *R*-free summand of size $\leq \kappa$ of F with free complement. (We often write simply Prather than P_I if there is no need for specifying the index set.) There are λ canonical *R*-subalgebras of F.

We also consider order-preserving embeddings

$$f: {}^{\omega >} \kappa \to L.$$

By a *trap* is meant a triple (f, P, ϕ) , where f is such an embedding, P is a canonical R-subalgebra, and ϕ is an R-homomorphism $P \to \hat{P}$ subject to the following conditions:

- (a) $[P]_L$ is a subtree of L; thus $\varrho \in [P]_L$ implies $\sigma \in [P]_L$ for all $\sigma \leq \varrho$;
- (b) cf $||P|| = \omega$;
- (c) Im $f \subseteq [P]_L$;
- (d) $\|\mathbf{b}\| = \|P\|$ for all $\mathbf{b} \in Br(Im f)$.

In the following theorem we assume that R is a domain such that

- (i) R admits a countable semigroup S such that R is Hausdorff in the S-topology;
- (ii) R is torsion-free as an abelian group;
- (iii) R is S-cotorsion-free, where by the S-cotorsion-freeness of an Rmodule N is meant the property that $\operatorname{Hom}_R(\widehat{R}, N) = 0$ (as above \widehat{R} stands for the S-completion of R).

Observe that from property (ii) it follows that all the *R*-subalgebras of the *R*-algebra \hat{F} are torsion-free as abelian groups.

We can now state:

THEOREM 3.1 (Black Box). Let R be as stated. Given κ and λ as above, there exist a limit ordinal λ^* of cardinality λ and a sequence of traps $t_{\alpha} = (f_{\alpha}, P_{\alpha}, \phi_{\alpha}) \ (\alpha \in \lambda^*)$ such that for all $\alpha, \beta \in \lambda^*$ we have:

- (a) $\beta < \alpha$ implies $||P_{\beta}|| \leq ||P_{\alpha}||$;
- (b) $\operatorname{Br}(\operatorname{Im} f_{\alpha}) \cap \operatorname{Br}(\operatorname{Im} f_{\beta}) = \emptyset$ whenever $\alpha \neq \beta$;
- (c) if $\beta + \kappa^{\aleph_0} \leq \alpha$, then Br $(\text{Im } f_\alpha) \cap \text{Br} ([P_\beta]_L) = \emptyset$;
- (d) if X is a subset of \widehat{F} of cardinality $\leq \kappa$ and $\phi \in \text{End}(\widehat{F})$, then there is an ordinal $\alpha \in \lambda^*$ such that

$$X \subseteq \widehat{P}_{\alpha}, \quad ||X|| < ||P_{\alpha}||, \quad \phi \upharpoonright P_{\alpha} = \phi_{\alpha}.$$

Proof. See appendix in Corner–Göbel [3] or Göbel–Trlifaj [12]. ■

4. The construction. The method of constructing an E(R)-algebra A such that $F \subseteq A \subseteq_* \widehat{F}$ as the union of a continuous ascending chain of subalgebras A_{α} is described in the next theorem.

Let $\mathbf{b} \in Br(L)$ be a branch in L and F = R[T] the R-algebra as in Section 3. We associate with the branch $\mathbf{b} = (\varrho_0 < \cdots < \varrho_n < \cdots)$ the branch element

$$\widetilde{b} = \sum_{n \in \omega} q_n(1, u_{\varrho_n}) \in \widehat{F},$$

where the coefficients q_n are elements of S chosen in Section 2.

For an *R*-subalgebra $M \subseteq \widehat{F}$ and an element $x \in \widehat{F}$, the symbol M[x]will denote the *R*-subalgebra of \widehat{F} generated by M and x, while stars in subscripts designate the relatively divisible hull in \widehat{F} , i.e. $M[x]_*/M[x]$ is the torsion part of $\widehat{F}/M[x]$. For simplicity we write $A[g]_*$ for $(A[g])_*$.

THEOREM 4.1. For a sequence of traps $t_{\alpha} = (f_{\alpha}, P_{\alpha}, \phi_{\alpha}) \ (\alpha \in \lambda^*)$ as in Theorem 3.1, there exist R-subalgebras A_{α} of \widehat{F} , branches $\mathbf{a}_{\alpha} \in \operatorname{Br}(\operatorname{Im} f_{\alpha})$, and elements $g_{\alpha} \in \widehat{F}(\alpha \in \lambda^*)$ such that

- (i) for all $\beta \in \lambda^*$, $g_{\beta} = b_{\beta}\pi_{\beta} + \tilde{a}_{\beta}$ for some $b_{\beta} \in \hat{P}_{\beta}$ and $\pi_{\beta} \in \hat{R}$;
- (ii) $g_{\beta} \in \widehat{P}_{\beta}$ for each $\beta \in \lambda^*$;
- (iii) for all $\beta < \alpha < \lambda^*$, $g_\beta \phi_\beta \notin A_\beta$ implies $g_\beta \phi_\beta \notin A_\alpha$;
- (iv) $\{A_{\alpha} \mid \alpha \in \lambda^*\}$ is a continuous properly ascending chain of relatively divisible *R*-subalgebras of \widehat{F} , with $A_0 = F$;
- (v) $A_{\beta+1} = A_{\beta}[g_{\beta}]_*$ for all $\beta \in \lambda^*$.

Proof. In the proof we will make use of the following result proved in Corner–Göbel [3, p. 457, Lemma 3.6] and Dugas–Mader–Vinsonhaler [5, pp. 95–96].

PROPOSITION 4.2. Assume that, for some ordinal α , A_{α} is an R-subalgebra of \widehat{F} satisfying conditions (i)–(v) in Theorem 4.1 for all $\beta < \alpha$. Then there is a branch $\mathbf{a} \in Br(Im f_{\alpha})$ such that for any $g = c + \widetilde{a}$ with $c \in \widehat{P}_{\alpha}$ satisfying $\|c\| < \|\mathbf{a}\|$ and for any $\beta < \alpha$, $g_{\beta}\phi_{\beta} \notin A_{\beta}$ implies $g_{\beta}\phi_{\beta} \notin A_{\alpha}[g]_{*}$.

In order to verify the theorem, in view of the continuity of the chain of the A_{α} , it suffices to describe the step from α to $\alpha + 1$. Suppose that the subalgebras A_{β} for all $\beta \leq \alpha$ and the elements g_{β} for all $\beta < \alpha$ have already been constructed as required. To choose g_{α} and $A_{\alpha+1}$, we argue as follows.

Proposition 4.2 ensures that we can always find a branch $\mathbf{a}_{\alpha} \in \operatorname{Br}(\operatorname{Im} f_{\alpha})$ and elements $b_{\alpha} \in P_{\alpha}, \pi_{\alpha} \in \widehat{R}$ such that $g = b_{\alpha}\pi_{\alpha} + \widetilde{a}_{\alpha} \in \widehat{P}_{\alpha}$ satisfies the condition that (iii) holds for this α . Then we set $g_{\alpha} = g$ with the proviso that—if possible—g should definitely be selected so as to satisfy $g\phi_{\alpha} \notin A_{\alpha}[g]_{*}$ as well. Once g_{α} has been chosen, it only remains to set $A_{\alpha+1} = A_{\alpha}[g_{\alpha}]_{*}$ to complete the proof.

We also observe the following important fact about the *R*-algebras A_{α} just constructed.

LEMMA 4.3. The *R*-algebras A_{α} constructed in the preceding theorem with the aid of the Black Box are \aleph_1 -free, and thus also S-cotorsion-free. The same holds for their union $A = \bigcup_{\alpha < \lambda^*} A_{\alpha}$.

Proof. See Dugas–Mader–Vinsonhaler [5] or Göbel–Wallutis [13], where it is shown that the *R*-algebras A_{α} are S-cotorsion-free. The same argument verifies their \aleph_1 -freeness. Cf. also Göbel–Trlifaj [12]. (The \aleph_1 -freeness is due to the freeness of *F* and the linear independence of different branch elements.)

Let us point out that Göbel–Shelah–Strüngmann [10] proves the existence of \aleph_1 -free *E*-rings of cardinality \aleph_1 .

5. Proof of the main theorem. The *R*-algebras *A* constructed above need not be E(R)-algebras. In order to obtain an E(R)-algebra *A*, we have to ensure that there are no unwanted endomorphisms. To this end we have to show that we can always find an element $g_{\alpha} = g$ with the required properties that also satisfies $g\phi_{\alpha} \notin A_{\alpha}[g]_*$ provided that ϕ_{α} is not multiplication by an algebra element. This can be accomplished by the Step Lemma below.

Before stating the crucial Step Lemma, we prove a technical result.

LEMMA 5.1. Assume the hypotheses of Proposition 4.2, and write the α th branch (defined in Proposition 4.2) as $\mathbf{a}_{\alpha} = (\varrho_0 < \cdots < \varrho_n < \cdots)$. Let

k be a natural number and $0 \neq x \in A_{\alpha}$. Then there exists an element $\theta \in T$ such that for almost all $n \in \omega$ we have

$$\theta(1, u_{\varrho_n}^k) \in [x\widetilde{a}_\alpha^k].$$

Proof. Let $x = \sum_{\theta \in [x]} r_{\theta}\theta$ with $r_{\theta} \in \widehat{R}$. If $x \notin F$, then there exist an element $y \in F$ and an ordinal $\beta < \alpha$ such that $x - y \in A_{\beta}[g_{\beta}] \setminus A_{\beta}$ and $||x - y|| \leq ||P_{\beta}||$. Let the β th branch be $\mathbf{a}_{\beta} = (\sigma_0 < \cdots < \sigma_n < \cdots)$. We conclude that we can choose a $u_{\sigma_n}^j$ for some integer $j \geq 1$ and for large enough $n \in \omega$ such that $\theta = (\tau, u_{\sigma_n}^j) \in [x]$ for some $\tau \in M$. It follows that $(\tau, u_{\sigma_n}^j)(1, u_{\rho_l}^k) = (\tau, u_{\sigma_n}^j u_{\rho_l}^k) \in [x\widetilde{a}_{\alpha}^k]$ for all large enough integers l.

If $0 \neq x \in F$, then [x] is a non-empty finite subset of T. As above, we can choose $(\tau, u) \in [x]$ $(\tau \in M, u \in T_0)$ such that $(\tau, u)(1, u_{\varrho_l}^k) = (\tau, u u_{\varrho_l}^k) \in [x \tilde{a}_{\alpha}^k]$. Thus either $\theta = (\tau, u_{\sigma_n}^j)$ or $\theta = (\tau, u)$ satisfies the requirements, and the lemma follows.

LEMMA 5.2 (Step Lemma). For an $\alpha \in \lambda^*$, let the trap $t_\alpha = (f_\alpha, P_\alpha, \phi_\alpha)$ be given by the Black Box 3.1, and let $A_\alpha \subseteq \widehat{F}$ and $\mathbf{a}_\alpha \in \operatorname{Br}(\operatorname{Im} f_\alpha)$ be as in Theorem 4.1. If $\phi_\alpha : P_\alpha \to A_\alpha$ is not multiplication by an element of A_α , then there exist elements $b \in P_\alpha$ and $\pi \in \widehat{R}$ such that the following holds either for $y = \widetilde{a}_\alpha$ or for $y = \pi b + \widetilde{a}_\alpha$.

- (i) $A'_{\alpha+1} = A_{\alpha}[y]_*$ is an S-relatively divisible R-subalgebra of \widehat{F} that is \aleph_1 -free as an R-module;
- (ii) $y\phi_{\alpha} \not\in A'_{\alpha+1}$.

Proof. Before entering into the proof, we observe that $A'_{\alpha+1}$ will be S-cotorsion-free in view of (i) and the S-cotorsion-freeness of R.

(i) is an immediate consequence of Lemma 4.3.

The branch element \tilde{a}_{α} related to \mathbf{a}_{α} belongs to \hat{P}_{α} . Suppose that $y = \tilde{a}_{\alpha}$ is not a good choice, that is, $\tilde{a}_{\alpha}\phi_{\alpha} \in A_{\alpha}[\tilde{a}_{\alpha}]_{*}$. This means that there are $k, n \in \omega$ and $r_{i} \in A_{\alpha}$ $(i \leq n)$ such that

(1)
$$q_k \tilde{a}_\alpha \phi_\alpha = \sum_{i \le n} r_i \tilde{a}^i_\alpha$$

First let $n \leq 1$. Since ϕ_{α} was assumed not to be multiplication by any element of A_{α} , neither is $q_k \phi_{\alpha}$, thus $q_k \phi_{\alpha} \notin A_{\alpha}$. Consequently, we have $P_{\alpha}(q_k \phi_{\alpha} - r_1) \neq 0$, and so there exists an element b of P such that

$$0 \neq b(q_k\phi_\alpha - r_1) = q_k b\phi_\alpha - br_1 \in A_\alpha$$

From Lemma 4.3 it follows that A_{α} is S-cotorsion-free, therefore for some $\pi \in \widehat{R}$ we have

(2)
$$\pi(q_k b \phi_\alpha - b r_1) \not\in A_\alpha.$$

Suppose that $y = \tilde{a}_{\alpha} + \pi b$ also satisfies $y\phi \in A_{\alpha}[y]_*$. Then $q_k y\phi_{\alpha} = q_k \tilde{a}_{\alpha}\phi_{\alpha} + q_k \pi b\phi_{\alpha} = r_0 + r_1 y + (q_k \pi b\phi_{\alpha} - r_1 \pi b)$, whence

$$\pi(q_k b \phi_\alpha - r_1 b) \in A_\alpha[y]_*$$

There are $n' \in \omega$, $k \leq l < \omega$, and $t_i \in A_{\alpha}$ $(i \leq n')$ such that

$$q_l y \phi_\alpha = \sum_{i \le n'} t_i y^i.$$

Using (1) we obtain

$$q_l \pi b \phi_\alpha = q_l y \phi_\alpha - q_l \widetilde{a}_\alpha \phi_\alpha = \sum_{i \le n'} t_i (\widetilde{a}_\alpha + \pi b)^i - \frac{q_l}{q_k} \left(r_0 + r_1 \widetilde{a}_\alpha \right)$$

Since $[\pi b] \subseteq [b], [q_l \pi b \phi_\alpha] \subseteq [b \phi_\alpha]$ and $\{(1, u^i_{\varrho_n}) \mid n \in \omega\} \subseteq [\tilde{a}^i_\alpha]$, from Lemma 5.1 we deduce that n' = 1 and $t_1 = (q_l/q_k)r_1$. Therefore,

$$q_l \pi b \phi_\alpha = t_0 - \frac{q_l}{q_k} r_0 + \frac{q_l}{q_k} r_1 \pi b,$$

and so

$$\frac{q_l}{q_k}\pi(q_k b\phi_\alpha - r_1 b) = t_0 - \frac{q_l}{q_k}r_0 \in A_\alpha,$$

where $q_l/q_k \in \mathbb{S}$. Hence $\pi(q_k b \phi_\alpha - r_1 b) \in A_\alpha$, contradicting (2). This means that $y = \pi b + \tilde{a}_\alpha$ satisfies (i) and (ii).

Now suppose n > 1 in (1). We may assume that $r_n \neq 0$, and therefore $0 \neq nr_n \in A_\alpha$ by the torsion-freeness of A_α . There is $\pi \in \hat{R}$ satisfying

(3)
$$\pi \cdot nr_n \notin A_{\alpha}.$$

Set $y = \tilde{a}_{\alpha} + \pi$ (i.e. $b = 1 \in R \subseteq P \subseteq A_{\alpha}$), and suppose that $y\phi_{\alpha} \in A_{\alpha}[y]_{*}$. Thus $q_{l}y\phi_{\alpha} = \sum_{i \leq n'} t_{i}y^{i}$ for some $n' \in \omega$, $k \leq l < \omega$, and $t_{i} \in A_{\alpha}$ $(i \leq n')$. Using (1) we obtain

$$q_l \pi \phi_\alpha = q_l y \phi_\alpha - q_l \widetilde{a}_\alpha \phi_\alpha = \sum_{i \le n'} t_i y^i - \frac{q_l}{q_k} \sum_{i \le n} r_i \widetilde{a}_\alpha^i.$$

Comparing the supports again, we deduce n' = n, $t_n = (q_l/q_k)r_n$, $t_{n-1} + t_n\pi n = (q_l/q_k)r_{n-1}$, and so

$$\frac{q_l}{q_k}r_n\pi n = \frac{q_l}{q_k}r_{n-1} - t_{n-1} \in A_\alpha.$$

We conclude that $r_n \pi n \in A_\alpha$, in contradiction to (3). Consequently, either $y = \tilde{a}_\alpha$ or $y = \tilde{a}_\alpha + \pi$ satisfies $y\phi_\alpha \notin A_\alpha[y]_*$.

We are now ready to prove our main result:

THEOREM 5.3. Assume R is a domain satisfying conditions (i)–(iii) of Section 3, and κ, λ are cardinals such that $|R| \leq \kappa$ and $\lambda^{\kappa} = \lambda$. Then there exists a superdecomposable \aleph_1 -free E(R)-algebra A of cardinality λ . *Proof.* Define A as the union of the well-ordered ascending chain of algebras A_{α} as stated in Theorem 4.1. Then A is evidently of cardinality λ , is superdecomposable by Lemma 2.2 and Remark 2.3, and is \aleph_1 -free by Lemma 4.3. It only remains to show that A is an E(R)-algebra.

Multiplications by elements of A are evidently R-endomorphisms, so A may be viewed as a subring of its endomorphism ring. Suppose that ϕ is an R-endomorphism of A that is not multiplication by an element of A. It is clear that there must exist a canonical submodule $P \subset F$ such that $\phi \upharpoonright P : P \to \widehat{P}$ also is not multiplication by an element in A.

We appeal to the Black Box to argue that there is a trap $t_{\alpha} = (f_{\alpha}, P_{\alpha}, \phi_{\alpha})$ such that $P \subseteq P_{\alpha}$. Manifestly, $\phi \upharpoonright P_{\alpha} = \phi_{\alpha}$ cannot be multiplication by any element of A. By virtue of the Step Lemma, there exists an element $g'_{\alpha} = b'\pi' + \tilde{a}_{\alpha}$ ($b' \in P_{\alpha}, \pi' \in \hat{R}$) that satisfies $g'_{\alpha}\phi_{\alpha} \notin A_{\alpha}[g'_{\alpha}]$. Because of the existence of such a g', the proof of Theorem 4.1 indicates that g_{α} had to be chosen so as to satisfy $g_{\alpha}\phi_{\alpha} \notin A_{\alpha}[g_{\alpha}] = A_{\alpha+1}$. But then from condition (iii) in the same theorem we conclude that $g_{\alpha}\phi = g_{\alpha}\phi_{\alpha} \notin A$ as well. Thus ϕ cannot be an endomorphism of A, and as a consequence, A is indeed an E(R)-algebra.

Moreover, we can establish the existence of a fully rigid family of 2^{λ} superdecomposable \aleph_1 -free E(R)-algebras of size λ .

THEOREM 5.4. The algebra A constructed in Theorem 5.3 contains superdecomposable \aleph_1 -free E(R)-subalgebras A_X for every $X \subseteq \lambda$ such that for all $X, Y \subseteq \lambda$ we have

- (i) $X \subseteq Y$ implies $A_X \subseteq A_Y$;
- (ii) $\operatorname{Hom}_R(A_X, A_Y) = A_Y$ if $X \subseteq Y$ and 0 otherwise.

Proof. In order to find a family of E(R)-algebras satisfying conditions (i) and (ii), we change the definition of a trap and replace t_{α} in Theorem 3.1 by $t_{\alpha} = (f_{\alpha}, P_{\alpha}, \phi_{\alpha}, \xi_{\alpha})$, where $\xi_{\alpha} \in \lambda$. Condition (d) of Theorem 3.1 now reads:

(d*) If X is a subset of \widehat{F} of cardinality $\leq \kappa, \xi \in \lambda$ and $\phi \in \text{End}(\widehat{F})$, then there is an ordinal $\alpha \in \lambda^*$ such that

$$X \subseteq \widehat{P}_{\alpha}, \quad \|X\| < \|P_{\alpha}\|, \quad \phi \upharpoonright P_{\alpha} = \phi_{\alpha}, \quad \xi = \xi_{\alpha}.$$

Recall from Theorem 5.3 that $A = F[g_{\alpha} : \alpha \in \lambda^*]_*$. If $X \subseteq \lambda$, then set $X^* = \{\alpha \in \lambda^* \mid \xi_{\alpha} \in X\} \subseteq \lambda^*$, and define

$$A_X = F[g_\alpha : \alpha \in X^*]_* \subseteq A.$$

The same proof as above shows that A_X is a superdecomposable \aleph_1 -free E(R)-algebra. It is evident that $A_X \subseteq A_Y$ whenever $X \subseteq Y$. If $X, Y \subseteq \lambda$ are arbitrary subsets, then the argument in Corner–Göbel [3, p. 462, (4)]

shows that $\operatorname{Hom}_R(A_X, A_Y) \neq 0$ implies $X \subseteq Y$, and in this case, (ii) holds true. \bullet

6. Remarks. It is easy to characterize all Dedekind domains R that satisfy conditions (i)–(iii) of Section 3.

Evidently, R has to be of characteristic 0 and not a field. One can choose the monoid S generated by the (finite number of) generators of a maximal ideal of R. In order to exclude the case when R is not S-cotorsion-free, it suffices to assume that R is not a complete discrete valuation domain. Thus,

COROLLARY 6.1. There exist arbitrarily large \aleph_1 -free superdecomposable E(R)-algebras over a Dedekind domain R that is not a field or a complete discrete valuation domain, and has characteristic 0.

The choice of $R = \mathbb{Z}$ leads us to the existence of large superdecomposable \aleph_1 -free *E*-rings.

Next assume that R is a *Matlis domain* (i.e. its field of quotients, Q, as an R-module, is of projective dimension 1). If $R \neq Q$, then R contains a countable multiplicative monoid S such that R is Hausdorff in the S-topology (cf. Fuchs–Salce [8, Lemma 4.3, p. 139]). Consequently,

COROLLARY 6.2. There exist arbitrarily large superdecomposable E(R)-algebras over a Matlis domain R of characteristic 0 that is not a field and is not complete in any metrizable linear topology.

Observe that every domain S of characteristic 0 embeds in a ring R satisfying conditions (i)–(iii) mentioned above. In fact, we can choose the polynomial ring R = S[x] with an indeterminate x and $S = \{1, x, \ldots, x^n, \ldots\}$.

It is worth pointing out that if the ring R is of cardinality $\langle 2^{\aleph_0}$, then for its cotorsion-freeness it suffices to check that it is reduced (see Göbel– May [9]).

References

- A. L. S. Corner, Every countable reduced torsion-free ring is an endomorphism ring, Proc. London Math. Soc. (3) 13 (1963), 687–710.
- [2] —, On the existence of very decomposable abelian groups, in: Abelian Group Theory (Honolulu 1982/83), Lecture Notes in Math. 1006, Springer, Berlin, 1983, 354–357.
- [3] A. L. S. Corner and R. Göbel, Prescribing endomorphism algebras—a unified treatment, Proc. London Math. Soc. (3) 50 (1985), 447–479.
- M. Dugas and R. Göbel, Torsion-free nilpotent groups and E-modules, Arch. Math. (Basel) 54 (1990), 340–351.
- [5] M. Dugas, A. Mader, and C. Vinsonhaler, *Large E-rings exist*, J. Algebra 108 (1987), 88–101.
- [6] P. Eklof and A. Mekler, Almost Free Modules, Set-Theoretic Methods, rev. ed., North-Holland, Elsevier, Amsterdam, 2002.

- [7] L. Fuchs and S. B. Lee, Superdecomposable E(R)-algebras, Comm. Algebra, to appear.
- [8] L. Fuchs and L. Salce, Modules over Non-Noetherian Domains, Math. Surveys 84, Amer. Math. Soc., 2001.
- R. Göbel and W. May, Independence in completions and endomorphism algebras, Forum Math. 1 (1989), 215–226.
- [10] R. Göbel, S. Shelah and L. Strüngmann, Almost-free E-rings of cardinality ℵ₁, Canad. J. Math. 55 (2003), 750–765.
- R. Göbel and L. Strüngmann, Almost free E(R)-algebras and E(A, R)-modules, Fund. Math. 169 (2001), 175–192.
- [12] R. Göbel and J. Trlifaj, Endomorphism Algebras and Approximations of Modules, de Gruyter, Berlin, 2005, to appear.
- [13] R. Göbel and S. L. Wallutis, An algebraic version of the strong black box, Algebra Discrete Math. 1 (2003), 7–45.
- [14] T. Jech, Set Theory, Academic Press, 1978.
- [15] P. Schultz, The endomorphism ring of the additive group of a ring, J. Austral. Math. Soc. 15 (1973), 60–69.

Department of Mathematics Tulane University New Orleans, LA 70118, U.S.A. E-mail: fuchs@tulane.edu Fachbereich 6, Mathematik Universität Duisburg Essen D-45117 Essen, Germany E-mail: r.goebel@uni-essen.de

Received 18 October 2004; in revised form 24 January 2005