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On disjointness properties of some smooth flows
by

Krzysztof Fraczek and Mariusz Lemariczyk (Torun)

Abstract. Special flows over some locally rigid automorphisms and under L? ceiling
functions satisfying a local L? Denjoy—Koksma type inequality are considered. Such flows
are proved to be disjoint (in the sense of Furstenberg) from mixing flows and (under some
stronger assumption) from weakly mixing flows for which the weak closure of the set of
all instances consists of indecomposable Markov operators. As applications we prove that

e special flows built over ergodic interval exchange transformations and under func-
tions of bounded variation are disjoint from mixing flows;

e ergodic components of flows coming from billiards on rational polygons are disjoint
from mixing flows;

e smooth ergodic flows of compact orientable smooth surfaces having only non-
degenerate saddles as isolated critical points (and having a “good” transversal) are
disjoint from mixing and from Gaussian flows.

1. Introduction. One of the most important and still open problems
in ergodic theory is whether each dynamics has a smooth model. To be
more precise, we would like to know whether for any given ergodic flow
{T}}+cr one can find a smooth compact manifold M together with a smooth
measure m on it and a smooth m-preserving flow {S;}:cr so that the two
flows are measure-theoretically isomorphic. Closely related to the smooth
realization problem is A. Katok’s program (see [8, Part III|) to describe
(up to measure-theoretic isomorphism) all possible smooth dynamics on a
given smooth compact manifold. Opening by the famous article by Anosov
and Katok ([1]), there is a series of results toward realization of this program
(see e.g. [8] and the references therein). An interesting related problem asked
in [4] is to find a smooth realization of Gaussian flows.

In the present paper we will focus on the problem of smooth realization
of Gaussian flows on smooth compact surfaces (i.e. on smooth compact man-
ifolds of dimension 2). Suppose that M is a C* compact orientable surface
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with negative Euler characteristic and m is a positive C°°-measure on M.
Consider the family of all m-invariant ergodic C'"*°-flows on M. Typically
such a flow has only non-degenerate saddles as isolated critical points and
has a transversal. It follows that the flow is measure-theoretically isomorphic
to a special flow built over an ergodic interval exchange transformation and
under a function of the form

k
f(x) = g(w) =) (bilog({z — B;}) + cilog({Bi — x})),
i=1
where g : T — R is a function of bounded variation, and b;,¢;, i = 1,...,k,

are non-negative constants such that Ele by = Zle ¢i > 0 (see [11]). The
family of all such functions will be denoted by LOGSYM, . In this paper
we deal with the special case where special flows are built over rotations
(exchanges of two intervals) or exchanges of three intervals. We prove that
for a typical such interval exchange transformation the dynamics of special
flows built under a LOGSYM, -function is totally different from those of
“probability origin” (like Gaussian flows, Poisson suspension flows and dy-
namical systems coming from stationary symmetric a-stable processes). On
the base of this result we conjecture that the above-mentioned flows have
no smooth realization on smooth compact surfaces. Our approach is in fact
via joinings. Historically, joinings were introduced by H. Furstenberg in his
paper [7] on disjointness. Recall that two systems {7} };cr on (X, B, i) and
{St}tcr on (Y,C,v) are disjoint if the only {7} X S;}icr-invariant measure
on (X x Y,B ® C) which has marginal 4 on X and v on Y is the product
measure. If a dynamical system {T}};cg is disjoint from some “known” sys-
tem {S;}+cr then the information we gain about {7} }:cg is that its dynamics
is completely different from that of {S;}:cr. In particular, the two systems
have no common factors.

One of the features distinguishing dynamics of “probability origin” is the
ELF property introduced in [5]. A flow {S:}icr has the ELF property if
the weak closure of {S; : t € R} in the set of Markov operators on the un-
derlying L?-space consists of indecomposable Markov operators. The ELF
property is satisfied by mixing flows, Gaussian flows ([12]), Poisson suspen-
sion flows and dynamical systems coming from stationary symmetric a-stable
processes ([3]).

An approach which allows us to prove disjointness from ELF flows for
special flows built over rigid automorphisms and under roof functions which
satisfy a Denjoy—Koksma type inequality was developed in [5]. The main idea
of this approach is the following. Suppose that {(77);};cr is the special low
built from T and f. We then look at instances (77);, t € R, of {(T/);}1er
as Markov operators on the underlying L?-space and study the weak closure
of the set of such operators. More precisely, it is proved that the integral
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operator {,(T)_, dP(t) belongs to this weak closure, where P is a certain
probability Borel measure which is determined by the roof function f. Fi-
nally, if P is not a Dirac measure, then T/ is disjoint from weakly mixing
ELF flows.

In this paper we extend the above approach to special flows built over
automorphisms having only some local rigidity property. Let (X, d) be a
compact metric space and let B stand for the o-algebra of Borel sets. Assume
that 7 : (X,B,u) — (X,B,u) is an ergodic automorphism, where p is a
probability measure. Assume that {{,},en is a sequence of towers for T’
such that u(C),) — a > 0, where (), stands for the union of levels of ,,, and
some iteration 79 of T transforms the bottom of &, onto the set which is
close (in the sense of d) to itself. Moreover, suppose that f € L?(X, B, ) is
a positive function and {a, },en is a sequence of positive numbers such that
the sequence {{. |£9) (2) — a|? dp(z) Y nen is bounded. One of the main
results of the present paper (see Theorem 6) states that under the above
assumptions,

(1) (T)a, — @ §(T7) 1 dP(t) + (1 - )/,
R

where P is the weak limit of the sequence of distributions of {f() — a,, :
(Cn,pu(-]Cr)) — R}pen and J is a Markov operator. We show that once (1)
is satisfied then 77/ is disjoint from all mixing flows. Whenever in (1) P is
not a Dirac measure then 77 is disjoint from weakly mixing ELF flows.

We then show that (1) holds for two classes of systems: special flows
built over ergodic interval exchange transformations and under functions of
bounded variation (see Section 5), and special flows built over some irrational
rotations on the circle and under LOGSYM, -functions. In the latter case P
is not Dirac.

As an application we deduce that special flows built over ergodic interval
exchange transformations and under functions of bounded variation, and
consequently ergodic components of billiard flows on rational polygons, are
disjoint from all mixing flows. This strengthens Katok’s classical result saying
that such flows are not mixing ([9]).

Furthermore, we prove that every special flow constructed over a circle
rotation which admits a sufficiently fast approximation by rationals and
under roof function belonging to LOGSYM, is disjoint from weakly mixing
ELF flows. This essentially strengthens Kochergin’s classical result saying
that such special flows are not mixing ([11]).

2. Joinings and ELF property. Assume that S = {S;}scr is a flow on
(X, B, u). Such a flow S = {S; }1cr determines a unitary action, still denoted
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by S, of R on L?(X, B, 1) by the formula
[ folb:.

By a flow we will always mean a measurable flow, i.e. we require that the
above representation is continuous: the map R > ¢ +— (f 0 S;,g) € C is
continuous for all f, g € L?(X, B, uu). Assume moreover that S is ergodic and
let 7 = {Ti}+cr be another ergodic flow defined on (Y,C,v). By a joining
between S and 7 we mean any {S; X T} }cr-invariant probability measure
on (X xY,B® C) whose projections on X and Y are equal to p and v
respectively. The set of joinings between S and 7 is denoted by J(S,7).
The subset of ergodic joinings is denoted by J¢(S,7) and we write J(S)
and J¢(S) instead of J(S,S) and J¢(S,S) respectively. Ergodic joinings are
exactly extremal points in the simplex J(S,7). Given g € J(S,7T) define an
operator @, : L?(X, B, ) — L?(Y,C,v) by requiring that

| f(@)g(y) do(,y) = | €,()(v)g(y) dv(y)
XXY Y

for each f € L?(X,B, ) and g € L%(Y,C,v). This operator has the following
Markov property:

(2) Dl =9,1 =1 and &,f >0 whenever f > 0.
Moreover,
(3) P,08 =T,0P, foreachteR.

In fact, there is a one-to-one correspondence between the set of Markov
operators @ : L?(X,B, ) — L*(Y,C,v) satisfying (3) and the set J(S,T),
where the joining g given by @ is determined by the formula

o(A x B) = | &(xa) dv
B

for each A € B and B € C (see e.g. [15]). Markov operators corresponding to
ergodic joinings will be called indecomposable. Notice that the product mea-
sure corresponds to the Markov operator denoted by S, where S( f) equals the
constant function §, f du. On J(S) we consider the weak operator topology.
In this topology J(S) becomes a metrizable compact semitopological semi-
group in which o, — o iff (®, f,g) — (D,f,g) for all f,g € L*(X,B,p).
For each t € R, S; can be considered as a Markov operator on L?(X, B, j1).
The corresponding self-joining is denoted by g, and it is exactly the joining
concentrated on the graph of S;.

Following [7], S and 7 are called disjoint if J(S,7) = {p ® v}. Equiv-
alently, the operator S is the only Markov operator that intertwines S; and
T; (for each t € R).
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An ergodic flow S = {S; : t € R} on a standard probability space
(X, B, i) is said to have the ELF property if S := {S;:t € R} C J¢(S)
(see [5]).

If S is mixing then S = {S; }1er U{[}, so it is an ELF flow. It is also easy
to see that all ergodic flows with discrete spectrum have the ELF property.
It was shown in [12] that Gaussian flows have the ELF property (see also
[5] for a direct proof). Moreover, Poisson suspension flows and dynamical
systems coming from stationary symmetric a-stable processes also enjoy the
ELF property (see [3]).

Suppose that 7 = {T} };cr is an ergodic flow on (X, B, ). Given a proba-
bility Borel measure P on R define the integral Markov operator {5 T dP(s)
on L?(X,B,u) by

((V1dP(s))f.9) = §(1:f.9) dP(s)
R R
for all f,g € L?(X,B, ). Analysis similar to that in Proposition 3.2 of [5]
gives the following result.

PROPOSITION 1. Suppose that T = {T;}ier is an ergodic flow on (Y,C,v)

for which there exist a sequence {t,} C R and 0 < a <1 such that
T, — o\ TudP(s) + (1 - a)J,
R

where P is a probability Borel measure on R and J € J(T). Then

(i) 7 is disjoint from all mizing flows;

(ii) 7 1s disjoint from all weakly mizing ELF flows whenever P is not a

Dirac measure.

The following two lemmas will be convenient in applications of Proposi-
tion 1.

LEMMA 2. Suppose that T : L*(X,B,u) — L*(X,B,u) is a bounded
linear operator such that (T'x a,xB) > 0 for all A, B € B.
(i) If T1=T*1 =1, then T is a Markov operator.
(ii) If T1 =0, then T = 0.

Proof. (i) Since (x4,T*xp) > 0 for all A, B € B, we have (f,T*xp) > 0
for each non-negative f € L?(X,B,u) and B € B. Hence (T'f,xg) > 0 for
each B € B and thus Tf > 0 for any f > 0.

(ii) By assumption, T'x4 > 0 for every A € B. Consequently,

TXA = T(]. — XAC) = —TXAC S 0

and therefore T'xy4 = 0 for every A € B, which implies T =0. =
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LEMMA 3. Let {T}}, J be Markov operators on L*(X, B, ). Suppose that
the sequence {T,,} converges in the weak operator topology and there exists
0 < a <1 such that

lim (T, xa,xB) > a{Jxa,xB) forall A,Be€B.

Then
T, — aJ+(1—a)J  weakly,

where J' is also a Markov operator.

Proof. Denote by T : L*(X,B,u) — L?(X,B,u) the weak limit of the
sequence {T),}. By assumption, we have

(4) (T'xa,xB) > a(Jxa,xp) forall A BeB.

CASE 1: o < 1. Let J' : L*(X,B, u) — L*(X, B, ;1) be defined by J' =
(T — oJ). From (4), we have (J'xa,xp) > 0 for all A, B € B. Since
J'1 =J"*1 =1, J is a Markov operator as well, by Lemma 2. Consequently,
T, —aJ+(1—a)t.

CASE 2: a = 1. From (4), we have ((T'— J)xa,xB) > 0 for all A, B € B.
Since (T'— J)1 =0, T = J, by Lemma 2. Consequently, T,, — J. u

3. Special flows. Let T be an ergodic automorphism of a standard
probability space (X, B, u). Denote by A\ Lebesgue measure on R. Assume
that f € LY(X, B, i) is a positive function. The special flow TS = {(T7);}ser
built from 7 and f is defined on the space X/ = {(z,t) e X xR: 0 <t <
f(z)} (considered with B/, the restriction of the product o-algebra, and uf,
the restriction of the product measure p ® A to X x R). Under the action
of the special flow each point in X/ moves vertically at unit speed, and we
identify the point (z, f(x)) with (T'z,0) (see e.g. [2, Chapter 11]). Given
m € 7 we put

f@)+ f(Tx)+ -+ f(T™ ) ifm >0,
Fm@)y =40 if m=0,
—(f(T™2) 4 -+ f(T'2)) if m <O0.

The action of T/ can be well understood when we consider the following
actions on the space (X x R,u ® A). First, let S_¢ : (X xR,p ® \) —
(X xR, u® ) denote the skew product given by

S_f(x,r) = (Tx,r — f(x)).
Notice that (S_)*(x,r) = (T*x,r — f*¥)(x)) for each k € Z. Consider the
quotient space I'/ = X x R/~, where the relation ~ is defined by (z,r) ~
(2!, ") iff (z,7) = (S_;)*(2’,7') for an integer k. Since ) (z) — +oo p-a.e.,
with no loss of generality we can assume that the set

{(z,r) e X xR:0<r < f(x)}
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intersects each equivalence class of ~ in exactly one point (and hence can
be identified with I'f). Let ¢ = {0y };cr stand for the flow on (X xR, u® \)
given by

oi(x,r) = (x,r+1).
Notice that o; commutes with S_y. Then the special flow T can be seen
as the quotient flow of the action o by the relation ~. It follows that given
(z,7) € Xf and t € R there exists a unique k € Z such that

(Tf)t(x, r) = (S,f)k ooy(x,r).
REMARK 1. For all measurable A, B C X I we have

p (T ANB) =) n@M(S—p)foANB).
keZ
REMARK 2. Suppose that A, B C X x R are measurable rectangles of
the form A = Ay x Ay, B = Bj X Bsy. Then

pONGS-HPANB) = | A(Az+ P (@) N By) du(w).
TkA1NB,

The proofs of the remarks are straightforward and can be found in [5].

Given A € B of positive measure consider the induced automorphism
Ty : A — A and the first return time map 74 : A — N to A. Given a
positive integrable function f : X — R let f4 : A — R be defined by
fa(x) = fa@)(z). Then the special flows T/ and (T4)/4 are metrically
isomorphic.

4. Special flows over automorphisms having a local rigidity
property. Let (X,d) be a compact metric space. Let B stand for the o-
algebra of all Borel sets and let © be a probability Borel measure on X.
Suppose that T : (X, B, u) — (X, B, i) is an ergodic measure-preserving au-
tomorphism and there exist an increasing sequence {g,} of natural numbers
and a sequence {C),} of Borel sets such that

w(Cp) — >0, u(CyAT'C,) —0, supd(z,T%™z)— 0.
$€C’n

Let f € L?(X, i) be a positive Borel function. Suppose that there exists
a sequence {ay} of real numbers such that the sequence {Scn | fn(2)]? dp(x)}

is bounded, where f,, := f(@) — q,, for n € N. As the distributions

{ﬁ (fulc.)+(ule,) :n € N}

are uniformly tight, by passing to a further subsequence if necessary we can
assume that
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weakly in P(R), the set of probability Borel measures on R. Let C(R) denote
the set of all continuous functions ¢ : R — R such that lim,_,_ o, ¢(x) =
limg_ 400 (). Then

(5) § o(fu(@) du(a) — o § o(t) dP(2)
Cn R
for every p € C(R).

LEMMA 4. For every ¢ € C(R), g € LY(X,B,u) and any measurable
function h : X — R we have

V @(fal@) + h(@))g(x) du(z) — a § § ot + h(x))g(x) dP(t) dp(z).
Ch XR
Proof. We first prove our claim in the case where h = 0, i.e.
(6) V(o fu)-gdu—alpdP | gdu
Chn R e

whenever ¢ € C(R) and g € L'(X, B, u1). It follows from (5) that (6) holds
for constant functions g and thus it is enough to prove that the limit is
0 when { gdu = 0. Since the coboundaries are dense in the subspace of
functions with zero mean, we can restrict ourselves to the case g = —£oT),

¢ € LY(X,B, u). Then
| Joofu)-gdu| =| T (o fu)-€du— [ (9o fu)- (€0 T) dul
C, C,

n n n

= | eUnTa)ETa) du(@) = § o(fa(@)(Tw) du(a)|

T-1Cp Ch

< | § (p(fulT2) = o fu@))E(Tx) dp(a)

Cn

+ b ellelé(T)| dp(a).
T-1C,AC,

We will now prove that

converges to 0 in measure, i.e. for every a > 0,

n({z € Cn:|f(z) = f(Tx)| = a}) — 0.

Fix € > 0 and a > 0. Then there exists a compact set B, C X such that
u(BS) < €/2 and f : B. — R is uniformly continuous. Then there exists
0 > 0 such that d(x,y) < 0 implies |f(x) — f(y)| < a for all z,y € B.. By
assumption, there exists ng € N such that for n > ng and x € C,, we have
d(z, T%x) < 6. It follows that if n > ng and = € C,, N B. N T~9 B,, then
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|f(x) — f(T%™z)| < a. Consequently,
p{z € Cp i |f(z) = f(T"z)| 2 a}) < p(Cu N (BEUT " BY)) <¢

for n > ng, and therefore xc, - (fn o T — f,) converges to 0 in measure. As
¢ is uniformly continuous, x¢,, - (po fnoT — ¢ o f,) still converges to zero
in measure and thus

| (@(fa(T2)) = o(ful@))E(T) di — 0,
Cn
because ¢ is also bounded. Since u(T-1C,, A C,) — 0, (6) follows.

Let us return to the proof of the assertion of the lemma. Since every mea-
surable function can be approximated in measure by functions taking only
finitely many values and ¢ is uniformly continuous and bounded, we can re-
strict ourselves to the case h = Zf 1h XA;, where {A; : j =1,...,k}
are pairwise disjoint and h; € R, j = 1,...,k. Then from (6) we ob-
tain

k
V o(ful@) + h(z))g >V elfal@) + ki) (g - xa,) (@) dpulz)
C,

Cn Jj=1Ch
k
—a S {olt+hy)dP(t) [ (g - xa,)(@) du(e)
J=1R X
= a | [t + h(2))g(x) dP(t) dpu(x),
XR

which completes the proof. m

LEMMA 5. For every ¢ € C(R), g,&£ € L™(X, B, 1) and any measurable
function h : X — R we have

§ o(ful@) + h(2))g(@)&(T"x) du(x)

Cn
—a | { ot + h(@))g(z)é(x) dP(t) dp(x).
XR

Proof. By the proof of Lemma 4, x¢,, - (§ — & o T%) converges to zero in
measure and since @, g, & are bounded,

‘ V o(ful@) + h(2)g(@)e(T™x) du(z) = § @ (falz) + h(z)) g(@)E(2) dp(z)

Chp Ch
< [lelloollglloe § [€(x) = E(T™2)|du(x) — 0.
Chn
The result follows directly from Lemma 4. =
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THEOREM 6. Let T : (X,B,u) — (X, B, u) be an ergodic automorphism
and f € L*(X, ) a positive function for which there exists ¢ > 0 such that
0 < c < f(x) for a.a. x € X. Suppose that {C,} is a sequence of Borel
subsets of X, {qn} is an increasing sequence of natural numbers, and {a,}
s a sequence of real numbers such that

e 1(Cp) — a>0asn— oo,
e u(Cp, AT71C,) — 0 asn — oo,
o sup,cc, d(z,T%"x) — 0 as n — oo,
o the sequence {§., |f() > du(x)} is bounded, where f, = fl4) — a,,,
i M(C (fn’Cn) (1le,) — P weakly in P(R),
o the sequence {(T7),, } converges in the weak operator topology.
Then {(T7),,} converges weakly to the operator

a\(TF) 1 dP(t) + (1 - a)J,
R

where J € J(TY).
Proof. By Lemma 3, it is easy to see that all we need to show is that
1 (T7)a, (AN (Co x R) N B) — a | 1! (T7)-,AN B) dP(t)
R

for any pair of measurable rectangles A, B C X/ of the form A = A; x Ay,
B = By x Bs such that Ay, Bo C R are bounded. By Remarks 1 and 2,

1w (T7)a, (A1 N Cy) x A2) N By X By)

=> p@AM(S—p)"(S_f)" 04, ((A1 N Cp) x Ag) N By x By)
keZ

and
1@ AN(S—)*(S- )™ 0a, ((A1 N Cp) x A2) N By x By)
= | A(Ag + an + [T (@) N By) dp(x)

Tan+k(A1NCr)NB1

= | M(Az + an = fOH T ) + fF(2)) N By) du(x)
Tantk(A1NCy)NB1

= | M(Ag — fo(z) = F®(T2)) N By) du(x).
ANC,NT—In—k By

Set s := diam(As U Bs). Let k be an integer such that |k| > s/c. Then
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p@A(S—p)M(S—5) ™04, ((A1 N Cp) x A2) N By x By)
< § A(A2 = fale) = fO(T2)) N By) du(a)
Chn
= | M(Az = falz) = fO(T"2)) N By) duz)
{w€Cn | fu(@)+f®) (Tanz)|<s}
< sp({z € C : |fula) + fB(T02)| < 5})
< su({z € Gt |fal2)] > clk| = s}) < sC/(clk| = 5)*
by Chebyshev’s inequality, where C' = sup,, {, | fn(2))? du(z). Putting by, :=
sC/(clk| — s)* whenever |k| > s/c and by, := s otherwise we obtain
(1) 1O AS_)H(S_ )" 0u, (A1 1 Ca) x Ag) N By x By) < by
for each natural n and moreover ), _, b, < oc.
On the other hand, given an integer k, for any natural n,
1@ M(S_p)*(S_ ) ™04, ((A1 N Cp) x A2) N By x By)
= § At an+ /O N@) 0By du(a)
Tan+k(A,NCpn)NB1
= | M(Az + ap— f) (T~ z)+ fER(T 0 2)) N By) dpu(x)
Tq"+k(A1ﬂCn)ﬂB1
= | M(Az + an = f@) (z) + [N (@) N By) du(x).
Tk(A1NCR)NT—n By
Since pu(T*C,, A Cp,) — 0 as n — oo,

\u DA(S_)F(S_ ;)1 0a, (AL N Cp) x Ag) N By x Bs)

T M ful@) + £ @) 0 By) du(a)
TkAlﬂCnﬂqu’ﬂBl
< w(TrC, A CLNB2) — 0
as n — oo. Furthermore, by Lemma 5, given k € Z,

| M(A2 = fal@) + fT(2)) N Bz) du(x)

TkA1NC,NT—49n By

= | M(A2 = ful@) + TP (2)) N Bo)xpra, (@) x5, (T"2) du()
Chn
—a | VM4 —t+ TP (@) N By) dP(t) du(x)
TkAlﬂBl R
as n — o0o. Consequently, given k € Z,
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@ A(S_p)*(S_f) ™04, ((A1 N Cy) x Ag) N By x By)
—a | M2 —t+ TP (@) N By) dP(t) du(x)
TkAINB R
as n — oo. By (7), it follows that
1w (T7)a, (A1 N Cy) x A2) N By X By)

—ad | | MAz—t+ (@) N By) du(x) dP(t).
k€EZR Tk A1NB;
On the other hand,

\ 1? ((T7) _4(A1 x A3) N By x By) dP(t)
R

= |3 1@ M(S-p)fo-i(A1 x A3) N By x By) dP(t)

R keZ

=13 | MA2—t+ (@) N By) du(z) dP(t)
REKEZ Tk A1NB,

=> 1 | M2 —t+ fTF (@) N By) du(z) dP(t),
kEZR Tk A1NB,

which completes the proof. =

5. Special flows over interval exchange transformations. Consider
a permutation 7 of {1,...,m}, a vector A = (\1,...,\,,) in the interior of
the unit simplex, i.e. \; >0 for i =1,...,mand ) ;"  \; = 1, and a vec-
tor ¢ = (€1,...,&m) whose coordinates are either 1 or —1. Let §y = 0 and
Bi =AM+ -+ X\ for i =1,...,m. The interval exchange transformation
Txre :[0,1] — [0, 1] is the map that is linear and Lebesgue measure preserv-
ing on every interval (5;_1, 3;), rearranges those intervals according to the
permutation 7, and preserves or reverses orientation on (f3;_1, ;) accord-
ing to the sign of ¢; (i = 1,...,m). Denote by Leb the Lebesgue measure
on [0,1].

THEOREM 7. Let Th . : ([0,1],Leb) — ([0,1],Leb) be an ergodic in-
terval exchange transformation and let f : [0,1] — R be a positive function
of bounded variation for which there exists a positive constant ¢ such that
f > c¢>0. Then the special flow T)’: xc 18 disjoint from all mizing flows.

Proof. To shorten notation, we will write 1" instead of T) .. A col-
lection = = {T"I}o<i<, of pairwise disjoint subintervals is called a tower
of intervals for T. The measure of =, i.e. the number } o, , |T 1|, will
be denoted by |=|. As shown by Katok in [9], there exist two sequences
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Sn = {T" I }o<i<pns Zp = {T"Jn}o<i<q, of towers of intervals for T such that

—
—n

(8) |I,| = 0 asn— oo,
1

Enl 2 —,
(9) |2 m+1
(10) Jn C I, and T™J, C I,,
(11) U 7nn | T.=09,

0<i<pn Pn<i<gn
1

12 In| > —— |1
(12) Tal 2 —— |11]

Put Cy, := Uy<icp, T"Jn- From (9) and (12) we obtain [Cy| > 1/(m + 1)
Moreover, from (8) we have |C,, A T~1C,,| < 2|I,| — 0 as n — co. Suppose
that x € C),, say = € Tk J,, where 0 < k < p,,. Then

TR, if 0 <i<p,—k,

Tiz € { Tk ], ifp, —k<i<gq,—k,

Titk=ang,  if g, — k <i < qy,
by (10). In particular z, T%x € T*I,, and hence sup,cc. |z — T%z| < |I,,|
— 0 as n — oo. Set

o = | f(t)dt +

7] | £(t)dt.

1
| Jn] :
Uo<i<p, T'In Upn <i<gn T*n

Then for = € T*J,, we have

1 i
e el < 2, gy Ve - sl
k<i<pn Til,
£ o § T - gl
pn<z<qn Ty
3 o A )
0<z<k T’In
< Z Varpip f+ Z Varrij, [ < Varp ) f,
0<i<pn Pn<i<gn

by (11). Consequently, |f(@)(z) — a,| < Var(g ) f for all x € C,. Hence
the sequences {C,}, {¢,} and {a,} satisfy the assumptions of Theorem 6.
Therefore by passing to a further subsequence of {a,} if necessary, we have

rf — a1/ dP(t)+ (1-a)J,
R

where 0 < a < 1, P € P(R) and J € J(T/). An application of Proposition 1
completes the proof. =
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5.1. Billiards in rational polygons. Let P be a connected polygon in R2.
The billiard low 7 = {7} };cr in P is the flow on the space P x S! of all unit
tangent vectors to R? with footpoints in P described as follows. A vector v
with footpoint p € P moves with unit speed along the straight line p + vt
until it reaches the boundary of P, then it changes its direction according
to the rule of reflection and continues its movement. Assume that P is a
rational k-gon, i.e. all angles of P have the form mm;/n;, j = 1,...,k,
where all m;,n; are natural numbers. Then the phase space P x St splits
into invariant sets M., 0 < ¢ < /N, where N is the least common multiple
of {n; : j =1,...,k} (see [10]). Moreover, for every 0 < ¢ < m/N the flow
T restricted to M. has a natural representation as the special flow built
over an interval exchange transformation I, : [0,1] — [0,1] and under a
piecewise linear function f. : [0,1] — R. Suppose that p is a Borel non-
atomic probability measure on [0, 1] invariant and ergodic with respect to
I.. By Lemma 1 in [9], I. : ([0,1], ) — ([0, 1], x) is metrically isomorphic
to an interval exchange transformation I’ : ([0,1],Leb) — ([0, 1],Leb) via
a monotone function R : [0,1] — [0, 1]. Consequently, the special flow over
I.: ([0,1],n) — (]0,1], ) and under f. is metrically isomorphic to the special
flow I'/e°F. Moreover, f.o R : [0,1] — R is of bounded variation because it is
a difference of two monotone functions. Thus, if v is an ergodic 7 -invariant
measure then (P xS!, v, T) is metrically isomorphic to either a periodic orbit
or the special flow built over an ergodic interval exchange transformation and
under a function of bounded variation. Now by Theorem 7, we obtain the
following.

THEOREM 8. Let P be a rational connected polygon. Assume that v is a
probability measure on P xS! invariant and ergodic with respect to the billiard
flow T in P. Then the flow (P x S',v,T) is disjoint from all mizing flows.

6. Flows on surfaces which are disjoint from ELF flows. Let M
be a smooth orientable surface (two-dimensional manifold) with negative
Euler characteristic. Assume that ¢ = {¢;}scr is a C3-flow for which the
only isolated critical points are non-degenerate saddles and which carries a
positive C''-measure invariant and ergodic with respect to ¢. Suppose that
¢ has a smooth closed transversal 7 whose first return map is monotone
(that is, the Poincaré map preserves orientation on 7). Then this map is
isomorphic to the rotation on the circle by an irrational number denoted by
a(¢). As shown by Kochergin in [11], the flow ¢ is metrically isomorphic to
the special flow built over the rotation by a(¢) and under a positive function
F : T — R of the form

k
F(x) = G(z) = ) _(bilog({z — B;}) + cilog({8; — z})),

=1
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where G : T — R is a function of bounded variation, and b;,¢;, 1 =1, ..., k,
are nonnegative constants such that Zle b = Zle ¢; > 0. The family of
all such functions will be denoted by LOGSYM .. Moreover, he proved that
if a = a(¢) satisfies

(13) lim inf (log gn)gn [[gnar|| < oo,

where {¢,} is the sequence of denominators of «, then the flow ¢ is not
mixing. In this section we give more information about this flow. More pre-
cisely, we show that under the assumption (13) the flow ¢ is disjoint from
all weakly mixing ELF flows. We should mention that if Zle b # Zle Ci,
G € C*(T)\ Ule{ﬂi}), G" is bounded and « satisfies a Diophantine condi-
tion, then the special flow built over the rotation by « and under F' is mixing
(see [16]).

Let o« € T be an irrational number and let T = T, stand for the rotation
by a on the circle. Assume that « satisfies (13). By passing to a subsequence
of {g,} if necessary we can assume that {(log¢,)gqn||gne||} is bounded. For
every 3 € T denote by fz : T — R the function fg(z) = l(z) + (8 — z),
where [ : T — R is given by I(z) = —log{z}. Put ¢ := g,. Consider the
function I, : T — R given by

—_

q—

ly(z) =) Uz +j/a)-

=0
We will denote by z, : T — T the function z,(x) = {qz}. Define
Ag =z (124llqel, 1 - 2qllge]).
Then |Ag| = 1 — 4q||gey].

LEMMA 9 (see Lemma 9 in [6]). There exists a positive constant c1 such
that

19D(z) —1,(x)| < e1 for all z € Ay and all q.

Set By 3 =z, ' ([0,{¢f}]) and B 5= zq " ({4B},1]). For every a € [0,1)
let 64 : [0,1) — R be defined by
x for z € [0,a/2) U [a, (14 a)/2),
do(x)=<a—=x for z € [a/2,a),
l+a—z forze[(l+a)/2,1),

and put

= log I .
Ya a/gg;?Iog ()]

Finally, denote by r, : T — R the function
rq(x) :=2q — {qf}log q —log 44, ({7 }).
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LEMMA 10. There exists a positive constant co such that
(14) llg(z) +14(B — ) — rq(x) —logq| < c2 + 27(4p)
for every x € B, g, and
(15) llg(z) +14(8 — x) —rq(2)] < ca+2m
for every x € B:],ﬁ'

Proof. First recall that

(16) 0< — Zlog(:r +k)—(—logn! —zlog(n+1)+logI'(z)) < xzlog2
k=0

for all x > 0 and n € N (see the proof of Theorem 8.19 in [14]). Moreover,
by the Stirling formula, there exists ¢’ > 0 such that

1
(17) logn™ + 5 log2mn —logn! —n| < ¢

for every natural n.

The functions I,(-) + [4(3 — -) and logdg,s ({g-}) are invariant under
the rotation by 1/q. Clearly the former function is invariant under the sym-
metry

(18) r+— 08—
By considering = so that consecutively

{gz} €10,{¢B}/2), {qz} € [{aB}/2,{aB}),
{ax} € [{gB}, (1 +1{gB})/2), {gz} € {gB},1),

also the latter function is invariant under (18). Therefore in order to show
(14) we only need to consider 0 < z < {¢f3}/2q. Notice that for such an z
we have

{z+j/¢t=x+37/q, F=0,....,¢— 1
Moreover,
{B-2+j/a}:5=0,....q—1}
={{8-afl/a—=+j/a}:j=0,...,a—1}
and
—x+(j+1{¢B})/qe[0,1) forj=0,...,q—1.
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Consequently, by (16),
|lg(z) +1g(B — ) — rq(x) —log g

|- Epeu(i ) - Su( e+ 2102

—rg(x) —logq + log(z + 1)‘

q q—1
< ' — ) log(qx +j) — > log(—qz + j + {gB})
=1 Jj=0

—logz +2logq? —ry(x) — logq’ + log 2
< |-2log(q — 1)! = (qz + 1)log ¢ — (—qz + {¢B}) logq
+log I'(gx + 1) + log I'(—qx + {qB})
—logz —rq(x) —log g + 2log ¢?| + glogz
Now

1<qr+1<1+4{¢B8}/2<2 and {¢B}/2< —qx+{qB} <1,
so by (17),

llg(x) +14(8 — x) — rq(x) — logg]
)
< |-2logq! — {¢fB}logq —logx — ry(z) + 2log ¢?| + 3 log2 + 2748

5
< |—2logq! — 2q +log g + 2log ¢?| + 510g2 + 27(4p}
)
< 2¢ +log2m + 3 log2 + 27v(4p;-

The proof of (14) is now complete.

Similarly, we only need to show (15) for {¢8}/q¢ < = < (1 + {¢8})/2q.
Applying again (16) and (17) we see that under this condition,

llg(2) +14(B — x) = rq(2)]

‘ Zlog<x+> Zlog( ﬁ%>—rq(;p)ﬂog(x+1)‘
‘—Zq:log(qw+j)—zglog(—qx+j+{qﬁ})—logx+2logqq—rq(w)

+log 2
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< [-2log(q — 1)! = (qz + 1) log g — (—qz + 1 + {qfB})logq
+log I'(gx + 1) + log I'(—qz + 1 + {¢3})
—logz —ry(z) + 2logq?| + 4log2
< |—-2logq! — {qB}logq —logx — ry(x) + 21log ¢?| + 41log 2 + 27,
< |-2logq! — 2q +logq+ 2logq?| 4+ 4log2 + 2v;
<2¢ +log2m +4log2+2v,. m
Suppose that {(log¢,)gn|lgne|} is bounded. Given 5 € T put
Ch(B) = Cp = By,,3NAq, N (B — Aq,)
= 2, (2anllgne]l, {anB} = 2anllgnel)]),
Ca(B)=Cy =B}, 5N Ag, N(B—Aqg,)
= 2gn ({408} + 2aulancll, 1 — 2aallgncill)),
ap(B) = ay, == 2¢n + (1 = {gnfB}) log gn — (2c1 + c2 + 27(4,8})»
ap(B) = a = 2q, — {gnB}10g gn — (2¢1 + c2 + 271).
LEMMA 11. Under the above notation, we have
CanCh=0, |Co] = {guB} — 4qnllancll,
Cal =1 = {ga8} — 4qnlgnal;
(20) £ (2) - al, > ~logdg,p ({gnz}) 20 forz € Cl and i =0,1;

(19)

(21) S ’féqn)(x) - a’?m‘Q dx < 8((201 +co + 27{qn3})2 + 1)7
an

(22) {175 (@) — ab[Pda < 8((2e1 + e2 + 2m1)2 + 1);
Ch

for every 2qy||gne|| <t and s > 0 we have
(23)  |{w € CY Mg (2anllgnall 1) : 15 (2) — b > s}
> min(t, e, {gnB}/2) — 2¢n||gnell;

and for every 2q,||qn|| <t and s > 0 we have

(24) [z € CLnzg (2anllgnall, 1] + {aaB}) = 157 (@) — @l > s}
2 min(t’ 678 - {QHﬂ}’ (1 - {Qnﬂ})/2) - 2anan¥H-

Proof. (19) follows immediately. In order to get (20) we apply consecu-
tively Lemmas 9 and 10 (estimating from below), and the definitions of rq,
and a!,. Applying Lemmas 9 and 10 (estimating from above) for z € C? we
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obtain

féq”)(x) —a < —log Otgnpt {anr}) +2(2¢1 + 2 + 27(4,83)-

Hence
1757 (@) — b2 do < 2(4(2e1 + 2+ 2704, )7 + | 1087 64g,) ({anar}) ).
co o

Noticing once more that d¢, 51 ({gs - }) is invariant under z +— = +1/¢, and
x — (3 — x we obtain

{9n5}/2an
S log? Otgnpy({anz}) dz < 24, S log?(q,z) dz
o 0
1/qn 1
< 2qy S log?(gn) QSlog2 rdx = 4,
0 0
and (21) is proved. In the same manner one can prove (22). To prove (23)

suppose that
z € D := 2y 1([2an ]l gnerl|, min(t, €%, {gn5}/2)).
Then
2 CON 2 (20llgnal,t]) and {gar} < min({g.B}/2.¢7%).
y (20),
f5) () = af, = —logb1g, 5y ({anr}) = ~ log{gar} > 5.
Now (23) follows from the fact that
|D| = max(0, min(£, €%, {¢n0}) — 2¢ullgnel))-
In the same manner one can prove (24); this time we define D as
2 ([2anllgner]l, min(t, e — {ga5}, (1 = {4a5})/2)) + {gn})- =

THEOREM 12. Assume that o € T is an irrational number satisfying
(13). Let F : T — R be a positive function of the form

k
F(z)=Gx)+ > ks (x
j=1

where G : T — R is of bounded variation, r; is a positive number and
Bj,wj € T for j = 1,...,k. Then the special flow TF is disjoint from all
weakly mizing ELF flows.

Proof. Given 0 < a <1 set

R a ife =0,
a =
l1—a ife=1.
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By passing to a subsequence of {g,}nen if necessary, we can assume that
{(log gn)gnl|gna||}nen is bounded and {¢,B;} — ﬁj as n — oo for all
j = 1,...,k. In the first part of the proof we give a general recipe for a
constructlon of sequences {C),},en and {ay, }neny which are necessary if we
want to apply Theorem 6. The main ingredients are: a finite sequence {¢; }le
of elements of {0, 1} and a sequence {.J,, },cn of subintervals of T. In the sec-
ond part of the proof we will give concrete ingredients which will depend on

B i=1,... .k

PART I. Suppose that {5]-};‘-“':1 is a sequence of elements of {0,1} for
which there is ¢ > 0 such that

m (8) +wi)| 2 0

for all n € N large enough. Since Cy/ (8;) + w; = 25 (17), where I} C T is
an interval for any j =1,...,k, we have

(i v ==2((15)

and \ﬂ] 1 17| = o. Moreover, ﬂ] 1 I3 is the union of at most k intervals.

Denote by A,, the family of such intervals. Next suppose that {.J,, },en is a
sequence of intervals such that J, € A, and |J,| > 7 > 0 for all n large
enough. Put

k
Cp = z;ll(Jn) and a, =gy S G(z)dx + Z Kjari (B).
T j=1

Then |C,,| > 7 for all n large enough and |C,, AT~1C,,| — 0 as n — oco. We
also have (see (19))

0 < |G (B)] = 17| = {anBi}7 — danllgnall,

SO

(25) min{{¢,0;}% : j=1,...,k} > 0/2
for all n large enough. By the Denjoy—Koksma inequality (applied to G) we
have

k
|Fn) (z) — ay| < ‘G(%)(;U) — S G(t) dt’ + Z /{j|f[[(3jn)(gj —w;) — az (85)]
T =1

k
< Var(G) + Z Iij!féj")(ﬂﬂ — wj) — azi (B5)].
j=1
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Hence by the Cauchy—Bunyakovskﬁ—Schwarz inequality,
[F)(2) = anf? < (k+ 1) ( Var?(G) + Zﬁﬂ F50) (@ = wj) = a3 (8)))

It follows that (notice that C,, C j:l(an (B;) +wj))

S ]F(q")(x) — an]2 dz
Cn
k

<k (Var(@+ 3w § I - w) - ai (3)P de)
I=L 0 (B) s
k

<D (Ve + 3ok | 1A @) - i (57) dr)

=1 i)
@)

-

< (k+1) (var2(a> +8((2¢1 + 2+ 7pp2)2 + 1)
7=1

for all n large enough, by (21), (22) and (25).

PArT II. By passing to a further subsequence of {g,}ncn if necessary,
we can assume that

1
Gl

weakly in P(R), where F, = F() — q,. We will show that for a careful
choice of {€;} and {J,} the topological support of P will be unbounded, in
particular, P will not be a Dirac measure.

(Fnlc,)«(Leblc,) — P

CASE 1. Suppose that ﬁj =0forall j =1,...,k Put g; = 1 for all
j=1,...,k. Then

k k
N7 +wp)| 2 1= (g} — thaallanal = 1/2

j=1 j=1

for all n large enough. Next let J, be the longest interval from A,. Then
|Jn| > 1/2k. Fix s > 0 which is not an atom of P. There exists 1 < jp < k
such that the left endpoint of .J,, coincides with the left endpoint of I]T-g. Then

Cr = wjy = Cp(Bjo) N 24, (2anllancrll, ta] + {anBio}),
where t,, = |J,| + 2¢n||gn||. Next notice that if
z € Cp(Bjo) N 24, (2anllanell, ta] + {anBio}) +wio
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satisfies
s + Var(G)
Ko
then z € Cp, so x —wj € CL(B;) for j =1,...,k, and by (20),

£ (@ — wy) — ab(B) >

J0

F(Qn)(aj) —a, = G(qn)(x) —qn X t)dt + Z ri(fy" (2 —wj) — j(ﬁj))

> — Var(G) + Iijo(féq”)@ —wjy) — @i (Bj,)) > s
Therefore by (24),
P({tER't>s})

(@) () — an > s}

> hmnmf ]{a: € C}L(ﬁjo) Nz, Y(2gnllgnell, ta] + {anBjo }) :
F5 (@) = ak(Bjy) > (s + Var(G)) /x|

J0
> lim inf[min(t,, e~ YD %0 —{g,850}, (1 = {gn5)6}1)/2) — 20| anell]
> min(1/2k, e~ (HVar(G)/mi0) > g,
Consequently, the support of P is unbounded.

CASE 2. Suppose thatBl >0.Puteg =0.Fore=0,1and j=1,...,k
let I7'. C T be an interval such that C7(0;) +w; = zil(I” ). Then

(26) lgne,

j=2e=0,1

in particular

j=2¢=0,1

for all n large enough and I7; N ﬂ] —2U.—0 1 I}- is the union of at most 2k

intervals. Denote by A, the family of those intervals. Since #.4,, < 2k and
(26) holds, it is easy to see that we can choose a sequence {.J,,} of intervals
such that J, € A,, |Ja| > 0 > 0 for all n large enough and the distance,
denoted by d,,, between the left endpoint of .J, and the left endpoint of I7,
tends to zero as n — oo. By passing to a subsequence of {J,,} if necessary,
we can assume that there exist e9,...,¢; € {0,1} such that

Jcﬂjsj
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Then C,, — w1 = C(31) N zc;bl([ananaH,tn] + dp), where t, = |J,| +
2¢n||gnc||- Repeating the arguments from Case 1, using (23) instead of (24)
and taking into account that d,, — 0 we obtain

P{teR:t>s})= lim 1

nso G

> liminf [{z € CL(61) N 2, ([2qnlancr]l, ta] + da) -

{z € Cp: Fl9)(z) — a,, > s}

£ (@) — aS(B1) > (s + Var(G)) k1 }]

> liminf [{z € CY(61) N 2, ([2anlgnarl], ta]) :
£ () = af(B1) > (s + Var(G)) /i }|
> lim inf[min(¢,, e_(5+var(G))/ma {an1}/2) — 2qn|qnadl|]

> min(g,e_(s+var(G))/“1,Bl/2) >0,
which proves that the support of P is unbounded. The reasoning is un-

changed if Bj > 0 for some 2 < j < k. An application of Theorem 6 and
Proposition 1 completes the proof. m

We will now argue that the family of functions which appear in The-
orem 12 coincides with LOGSYM,. Let F' : T — R be a function of the
form

k
F(z) == (bilog({z — Bi}) + c; log({Bi — x})),
i=1
where b;,c;, i = 1,...,k, are non-negative constants such that Zle b, =

Zle ¢ and B; € T, j = 1,...,k, are pairwise distinct. Define N(F') =
H{1<j<k:b;>0}+8{1 <j<k:cj>0}. Suppose that N(F) > 0. Let
bj, and c;j, be positive numbers. Assume that b;, > ¢;, (in the opposite case
the reasoning below will be the same). Then

F(z) = F(x) + lefﬁjl—ﬁjo (z— ﬁjo)a

where
k

F(z) == (bilog({z — B;}) + & log({Bi — 2}))

i=1
and

po b ii=go. o _ 0 ifj=,
i = e, G= e
bj if j # Jjo, cj ifj # jr1.

Then N(F) < N(F) and S by = Sk | &. We then apply the same rea-
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soning to F and it follows that in a finite number of steps we will find a
natural number k: elements of the circle ﬁ],wj, j=1,. k: and positive

numbers xj, 7 =1,..., k: such that

Z“Jfg — wj).

By Theorem 12, we have the followmg.

THEOREM 13. Assume that o € T is an irrational number satisfying
(13). Let F : T — R be a positive function of the form

k
F(z) = G(z) = Y _(bilog({z — B;}) + cilog({Bi — })),
i=1
where G : T — R is a function of bounded variation, b;,c;, i = 1,...,k, are

non-negative constants such that Zle b; = Zle ¢ >0and B, j=1,...,k,
are pairwise distinct. Then the special flow TL is disjoint from all weakly
mizing ELF flows.

Thus, following Kochergin [11], we obtain the following.

COROLLARY 14. Let M be a smooth orientable surface with negative Fu-
ler characteristic. Assume that ¢ = {¢;}ier is a C3-flow for which the only
isolated critical points are non-degenerate saddles and which has a positive
C'-measure v invariant and ergodic with respect to ¢. Suppose that ¢ has a
smooth closed transversal whose first return map is monotone. If o(¢) sat-
isfies (13) then the flow (M,v,¢) is disjoint from all weakly mizing ELF
flows.

7. Special flows over exchange of three intervals. In this section
we consider special flows built over three-interval exchange transformations
and under LOGSYM_ -functions. Applying Rauzy induction (see [13]) we
will represent every three-interval exchange transformation as a certain in-
tegral transformation over a rotation on the circle. This will allow us to see
every special flow over a three-interval exchange transformation and under
a LOGSYM, -function as the special flow over a rotation on the circle and
under another LOGSYM -function.

Let A := {(z,y) € (0,1) x (0,1) :  +y < 1}. Given any (a,f3) € A
we denote by T, 5 :[0,1) — [0, 1) the symmetric exchange of three intervals
[0,a), [a,a+ 3) and [a + §,1), i.e

Ta,ﬁ = T(Cl{,ﬁ,l*&*ﬁ),ﬂ,(l,l,l)?
where 7(1) = 3, 7(2) = 2 and 7(3) = 1. Next define
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l—-a ifa<l—a—270,
a(a, B) = .
a+p fa>1—a-—7,
A(a7 /3) = [07 a(a? /8))7
0, @) ifa<l—a-—3,

B =
(. ) {[Qa—i—ﬂ—l,a) ifa>1—a-—0,

and the function R : A — [0,1) by

:l_fﬂ fa<l—a-27,
-«
Rl =4 17

o fa>1—a—g0.

Given any 0 < a < 1 let M, : [0,1) — [0,a) stand for the linear scaling
M,z = az. Tt is easy to check that the induced transformation (Ty,5)A(a,3)
is isomorphic via the linear scaling M, g) to the rotation of the circle by
R(a, B3). Moreover, the first return time map 7445y equals 1+ X p(qa,3)- Con-
sequently, TO}: 5 is isomorphic to Tgf‘c‘f 5 (see the last sentence of Section 3),
where

F(Mypr) + F(Myapr+1—a) ifze Ma_(iﬂ)B(a, B),

Fop(x) =
F(Mg(a,)7) otherwise.

It is clear that if (o, 8) € A and F' € LOGSYM_, then F, g € LOGSYM,.
In view of Theorem 13, we have the following.

THEOREM 15. Let F' : T — R be a positive function of the form

k
F(z) = G(z) = Y _(bilog({z — 8i}) + cilog({B; — z})),
i=1
where G : T — R is a function of bounded variation, b;,c;, © = 1,...,k,

are non-negative constants such that Zle b = Zle ¢ >0, and §; € T,
j=1,...,k, are pairwise distinct. If R(c, 3) satisfies (13), then the special
flow T f 5 18 disjoint from all weakly mizing ELF flows.

REMARK 3. Since the set D C T of all irrational numbers satisfying
(13) has full Lebesgue measure and is G5 and dense, it is easy to check
that the set R~'D C A has full Lebesgue measure and contains a G5 and
dense subset as well. Consequently, for a typical (a, 3) € A and for every
F € LOGSYM, the special flow TOI: 518 disjoint from all weakly mixing ELF
flows.
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