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Anosov theorem for coincidences on nilmanifolds

by

Seung Won Kim and Jong Bum Lee (Seoul)

Abstract. Suppose that L, L′ are simply connected nilpotent Lie groups such that
the groups γi(L) and γi(L

′) in their lower central series have the same dimension. We
show that the Nielsen and Lefschetz coincidence numbers of maps f, g : Γ\L → Γ ′\L′

between nilmanifolds Γ\L and Γ ′\L′ can be computed algebraically as follows:

L(f, g) = det(G∗ − F∗), N(f, g) = |L(f, g)|,

where F∗, G∗ are the matrices, with respect to any preferred bases on the uniform lattices
Γ and Γ ′, of the homomorphisms between the Lie algebras L, L′ of L, L′ induced by f, g.

1. Introduction. Let M and N be closed manifolds, and f, g : M → N
continuous maps. Then we define

Coin(f, g) = {x ∈M | f(x) = g(x)},
the coincidence set of f and g. Coincidence theory for pairs f, g is a natural
extension of fixed point theory for a self-map f : M → M . There are well
known invariants in coincidence theory which are the Lefschetz coincidence
number L(f, g) and Nielsen coincidence number N(f, g).

Suppose that M,N are closed orientable manifolds of the same dimen-
sion n. Then L(f, g) is defined and L(f, g) 6= 0 implies the existence of a
coincidence for any maps f ′, g′ which are homotopic to f, g, respectively.
The definition of L(f, g) is in [13, Chap. 7]. The Nielsen coincidence number
N(f, g) is a non-negative integer with the property that any two maps f ′, g′

which are homotopic to f, g, respectively, have at least N(f, g) coincidences.
In [12], Schirmer shows that if n ≥ 3, then there are two maps f ′, g′, homo-
topic to f, g respectively, such that they have exactly N(f, g) coincidences.
Therefore, if n ≥ 3 and N(f, g) = 0, then there are coincidence free maps in
the homotopy classes of f, g. Thus the Nielsen coincidence number is much
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more powerful than the Lefschetz coincidence number but computing it is
very hard.

In [2], Brooks, Brown, Pak and Taylor show that for a self-map f :M→M
on a torus, the Nielsen number N(f) and Lefschetz number L(f) are equal
up to sign, i.e.,

N(f) = |L(f)| = |det(I − f∗)|,
where f∗ : π1(M) → π1(M) is the homomorphism on π1(M) induced by
f . In [1] and [4], this result is extended to compact nilmanifolds. Let L
be a connected, simply connected nilpotent Lie group, Γ a uniform lattice
of it, and M = Γ\L a nilmanifold. Any f : M → M is homotopic to a
map obtained from an endomorphism F : L → L for which F (Γ ) ⊂ Γ .
Let F∗ be the corresponding endomorphism of the Lie algebra of L. Then
N(f) = |L(f)| = |det(I − F∗)|. In [10], McCord generalized this result
to coincidences on nilmanifolds (see also [3], [5], [8] and [14]). If M1,M2

are nilmanifolds of the same dimension, then N(f, g) = |L(f, g)| for any
f, g : M1 →M2.

The purpose of this work is to offer an algebraic computation formula
for the Nielsen and Lefschetz coincidence numbers of any pair of continuous
maps between nilmanifolds Γ\L and Γ ′\L′. Suppose that L,L′ are simply
connected nilpotent Lie groups such that the groups γi(L), γi(L

′) in the
lower central series have the same dimension. Any continuous maps f, g :
Γ\L→ Γ ′\L′ induce homomorphisms Φ∗, Ψ∗ between the Lie algebras L,L′.
The uniform lattices Γ and Γ ′ give rise to preferred bases for L and L

′. Let
F∗, G∗ be the matrices of the homomorphisms Φ∗, Ψ∗ with respect to any
preferred bases of Γ, Γ ′. Then we show that

L(f, g) = det(G∗ − F∗), N(f, g) = |L(f, g)|.
Since every infra-nilmanifold admits a finite covering by a closed nilmanifold,
the averaging formula for Nielsen coincidence numbers on infra-nilmanifolds
in [9] will become a practical computation formula.

2. Anosov theorem for coincidences on nilmanifolds. Let f, g :
Γ\L → Γ ′\L′ be continuous maps between nilmanifolds Γ\L and Γ ′\L′ of

the same dimension. In what follows, we shall fix liftings f̃ , g̃ : L → L′ of

f, g. Then these liftings define homomorphisms ϕ, ψ : Γ → Γ ′ as follows:

f̃γ = ϕ(γ)f̃ , g̃γ = ψ(γ)g̃.

By [6], the homomorphisms ϕ, ψ : Γ → Γ ′ extend uniquely to Lie group ho-
momorphisms Φ, Ψ : L→ L′. Then they induce Lie algebra homomorphisms
Φ∗, Ψ∗ : L → L

′. Since Φ(Γ ) ⊂ Γ ′ and Ψ(Γ ) ⊂ Γ ′, the endomorphisms Φ, Ψ
induce maps ϕ#, ψ# : Γ\L→ Γ ′\L′. Furthermore, ϕ# and f induce exactly
the same homomorphism ϕ : Γ → Γ ′, and ψ# and g induce exactly the same
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homomorphism ψ : Γ → Γ ′. Since Γ\L and Γ ′\L′ are K(π, 1)-manifolds,
ϕ# and f are homotopic and ψ# and g are homotopic. Since the Nielsen
and Lefschetz coincidence numbers are homotopy invariants, we may assume
in what follows that f, g are induced by homomorphisms Φ, Ψ between the
universal covering nilpotent Lie groups L and L′.

The homomorphisms ϕ, ψ : Γ → Γ ′ define the Reidemeister action of Γ
on Γ ′ as follows:

Γ × Γ ′ → Γ ′, (γ, γ′) 7→ ψ(γ)γ′ϕ(γ)−1.

Denote the set of Reidemeister classes of Γ ′ determined by f, g by R[f, g].
Then the coincidence set Coin(f, g) splits into a disjoint union of coincidence
classes

Coin(f, g) =
∐

[γ′]∈R[f,g]

p(Coin(γ′Φ, Ψ)).

Let Γ be a uniform lattice of a connected, simply connected nilpotent Lie
group L. Then Γ is a finitely generated torsion-free nilpotent group. Recall
that the lower central series of Γ is defined inductively via γ1(Γ ) = Γ and
γi+1(Γ ) = [γi(Γ ), Γ ]. Suppose that Γ is c-step nilpotent , i.e., γc(Γ ) 6= 1, but

γc+1(Γ ) = 1. The isolator of a subgroup H of Γ , denoted by Γ
√
H, is the

set {x ∈ Γ | xk ∈ H for some k}. It is well known ([11, p. 473]) that the
sequence

Γ = Γ1 = Γ
√
γ1(Γ ) ⊃ Γ2 = Γ

√
γ2(Γ ) ⊃ · · · ⊃ Γc = Γ

√
γc(Γ ) ⊃ Γc+1 = 1

forms a central series with Γi/Γi+1
∼= Z

ki . Since Γ
√
γi(Γ ) = Γ ∩ γi(L),

Γ
√
γi(Γ ) is a uniform lattice of γi(L) and hence the nilmanifolds

Γ
√
γi(Γ )\γi(L) are naturally sitting inside the nilmanifold Γ\L. Now we

fix the orientations of all manifolds arising in the natural embeddings
Γ
√
γi(Γ )\γi(L) →֒ Γ\L. This means that the fixed orientation of Γ\L in-

duces the fixed orientations of all the submanifolds Γ
√
γi(Γ )\γi(L). We can

choose a generating set

a = {a1, . . . ,ac}
in such a way that Γi is the group generated by ai = {ai1, . . . , aini

} and

Γi+1, and {ai, . . . ,ac} determines the fixed orientation of Γ
√
γi(Γ )\γi(L) for

each i = 1, . . . , c. We refer to a = {a1, . . . ,ac} as a preferred basis of Γ .
We use L to indicate the Lie algebra of L. This Lie algebra L has the same

dimension and nilpotency class as L. Moreover, in the case of connected,
simply connected nilpotent Lie groups it is known that the exponential map
exp : L → L is a diffeomorphism, We denote its inverse by log. If L′ is
another connected, simply connected nilpotent Lie group, with Lie algebra
L
′, then we have the following properties:
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• For any homomorphism φ : L→ L′ of Lie groups, there exists a unique
homomorphism dφ : L → L

′ (differential of φ) of Lie algebras, making
the following diagram commuting:

L
φ−−−−→ L′

log

y
xexp log

y
xexp

L
dφ−−−−→ L

′

• Conversely, for any homomorphism dφ : L → L
′ of Lie algebras, there

exists a unique homomorphism φ : L → L′ of Lie groups, making the
above diagram commuting.

If a is a preferred basis of Γ , then log a = {log a1, . . . , log ac} ⊂ L can
be regarded as a basis for the vector space L. We also call it preferred. In
particular, if Γ is a uniform lattice of R

d then every preferred basis a of Γ
becomes a preferred basis log a = a for the vector space R

d.

Lemma 2.1. Let M = Γ\L be a nilmanifold of dimension d and T =
Γ ′\R

d be a torus. Then for any continuous maps f, g : M → T , we have

L(f, g) = det(G∗ − F∗), N(f, g) = |L(f, g)|,
where F∗, G∗ are the d×d matrices, with respect to any preferred bases log a

and log a′ of Γ and Γ ′, of the homomorphisms from L to R
d induced by

f, g : M → T .

Proof. If we assume that M is also a torus then the result is known.
Otherwise, the homomorphism Ψ − Φ : L → R

d from the non-abelian
Lie group L into the abelian Lie group R

d must be singular. In this case,
L(f, g) = N(f, g) = det(G∗ − F∗) = 0.

Remark 2.2. Our original proof was longer, and this one was suggested
by the referee.

Notation. For the commuting diagram

L
Φ−−−−→ L′

y
y

Γ\L f−−−−→ Γ ′\L′

we shall use the following notations.

• F∗ is the matrix of the homomorphism Φ∗ : L → L
′ with respect to any

preferred bases log a, log a′ of the uniform lattices Γ, Γ ′ respectively.
That is,

F∗ = [Φ∗]
log a

′

log a
.
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• If L = L′, then f∗ is the matrix of the homomorphism Φ∗ : L → L

with respect to an arbitrarily chosen basis b for L. That is,

f∗ = [Φ∗]
b

b.

Example 2.3. For any c ∈ R − {0}, consider f, g : Z\R → cZ\R. Then
we have a commuting diagram

R
Φ−−−−→
Ψ

Rxinc

xinc

Z
ϕ−−−−→
ψ

cZ

Here for some a, b ∈ Z, Φ(x) = a(cx) and Ψ(x) = b(cx) (x ∈ R). A preferred
basis of Z is a = {1} and a preferred basis of cZ is a′ = {c}. Thus F∗ =

[Φ∗]
a
′

a = [a], G∗ = [Ψ∗]
a
′

a = [b], f∗ = [Φ∗]
a
a = [Φ∗]

a
′

a′ = [ac], g∗ = [bc] and

L(f, g) = det(G∗ − F∗) = b− a, N(f, g) = |b− a|.

The following is our main result.

Theorem 2.4. Let M = Γ\L and M ′ = Γ ′\L′ be nilmanifolds. Suppose

that the groups γi(L) and γi(L
′) in the lower central series of L and L′ have

the same dimension. Then for any continuous maps f, g : M →M ′, we have

L(f, g) = det(G∗ − F∗), N(f, g) = |L(f, g)|.
Proof. Suppose that L is a simply connected c-step nilpotent Lie group.

Then γc(L) 6= 1 but γc+1(L) = 1. Let Lc = γc(L), Γc = Γ ∩ Lc, L′
c = γc(L

′)

and Γ ′
c = Γ ′ ∩L′

c. Note that Γc = Γ ∩ γc(L) = Γ
√
γc(Γ ) and Γ ′

c = Γ ′
√
γc(Γ ′).

Now we obtain principal fiber bundles T → M → B and T ′ → M ′ → B′,
where T = Γc\Lc and T ′ = Γ ′

c\L′
c are tori of the same dimension, and

B = (Γ/Γc)\(L/Lc) and B′ = (Γ ′/Γ ′
c)\(L′/L′

c) are nilmanifolds of the same
dimension.

We may assume that the diagram

L
Φ−−−−→
Ψ

L′

y
y

Γ\L f−−−−→
g

Γ ′\L′

is commuting. The restrictions of Φ, Ψ : L → L′ induce endomorphisms

Φ̂, Ψ̂ : Lc → L′
c and hence, in turn, endomorphisms Φ, Ψ : L/Lc → L′/L′

c so
that the following diagrams are commuting:
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1 −−−−→ Lc −−−−→ L −−−−→ L/Lc −−−−→ 1

Φ̂

yΨ̂ Φ

yΨ Φ

yΨ

1 −−−−→ L′
c −−−−→ L′ −−−−→ L′/L′

c −−−−→ 1

1 −−−−→ Lc −−−−→ L −−−−→ L/Lc −−−−→ 1

Φ̂∗

yΨ̂∗
Φ∗

yΨ∗ Φ∗

yΨ∗

1 −−−−→ L
′
c −−−−→ L

′ −−−−→ L
′/L′

c −−−−→ 1

where Lc is the Lie algebra of Lc and so on. We choose any preferred basis
log a = {log â, log a} of L so that log â is a preferred basis for Lc and the
image of log a in L/Lc is a preferred basis for L/Lc. Similarly we choose any
preferred basis log a′ = {log â′, log a′} of L′.

Then Φ∗ and Ψ∗ have matrices of the form

F∗ =

[
F̂∗ ∗
0 F ∗

]
, G∗ =

[
Ĝ∗ ∗
0 G∗

]
,

where F̂∗, Ĝ∗, F ∗ and G∗ are the matrices with respect to the preferred
bases log â, log â′, the image of log a and the image of log a′.

Thus det(G∗−F∗) = det(Ĝ∗− F̂∗) ·det(G∗−F ∗). Furthermore, Φ̂, Ψ̂ map

Γc into Γ ′
c, and Φ, Ψ map Γ/Γc into Γ ′/Γ ′

c. Thus they induce maps f̂ , ĝ :
T → T ′ and f, g : B → B′ so that the following diagram is commutative:

T −−−−→ M −−−−→ B

f̂

yĝ f

yg f

yg

T ′ −−−−→ M ′ −−−−→ B′

Now we prove the theorem using induction on the nilpotency of L. On
the tori, by Lemma 2.1 we have

L(f̂ , ĝ) = det(Ĝ∗ − F̂∗), N(f̂ , ĝ) = |L(f̂ , ĝ)|,
where F̂∗ and Ĝ∗ are the matrices with respect to the preferred bases log â

and log â′ of the vector spaces Lc and L
′
c corresponding to any preferred bases

â and â′ of the uniform lattices Γc and Γ ′
c, respectively. By the induction

hypothesis, we have

L(f, g) = det(G∗ − F ∗), N(f, g) = |L(f, g)|,
where F ∗ and G∗ are the matrices with respect to the preferred bases log a

and log a′ of the vector spaces L/Lc and L
′/L′

c corresponding to any pre-
ferred bases a and a′ of the uniform lattices Γ/Γc and Γ ′/Γ ′

c, respectively.
(Here we abuse notation: a ⊂ Γ and the image of a in Γ/Γc is the preferred
basis a.)
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If L(f, g) = 0, then N(f, g) = 0 by the induction hypothesis, and hence
(f, g) is homotopic to a coincidence free pair. This fact follows from the
Wecken type theorem if dimB = dimB′ ≥ 3 (see [12]). If dimB = dimB′

< 3, then they are T 1 or T 2 and hence this fact is easily deduced. Next,
this homotopy may be lifted to give rise to a deformation of (f, g) to a
coincidence free pair. Thus N(f, g) = L(f, g) = 0.

Now assume that L(f, g) 6= 0. Then the assumptions of [8, Theorem 6.5]
are satisfied, because the second fundamental group of any nilmanifold van-
ishes and Coin(Φ, Ψ) = {0} by [10, Lemma 2.5]. Thus the product formula

N(f, g) = N(f̂ , ĝ) · N(f, g) holds. Since the fibration T ′ → M ′ → B′ is

orientable, the formula L(f, g) = L(f̂ , ĝ) · L(f, g) also holds. Hence

|L(f, g)| = |L(f̂ , ĝ) · L(f, g)| = N(f̂ , ĝ) ·N(f, g) = N(f, g),

and

L(f, g) = L(f̂ , ĝ) · L(f, g) = det(Ĝ∗ − F̂∗) · det(G∗ − F ∗) = det(G∗ − F∗).

Finally, suppose that logb = {log b̂, logb} and logb′ = {log b̂′, logb′}
are other preferred bases of L and L

′, respectively. We notice that the tran-
sition matrices from one preferred basis to another one (both corresponding
to the same uniform lattice) have determinant +1 since both preferred bases

determine the same orientation. Namely, the transition matrices [id]logb

log a
and

[id]log a
′

logb′ have determinant +1. Since

[Φ∗]
log a

′

log a
= [id]log a

′

log b′ · [Φ∗]
logb

′

logb
· [id]log b

log a
,

[Ψ∗]
log a

′

log a
= [id]log a

′

log b′ · [Ψ∗]log b
′

log b
· [id]log b

log a
,

it follows that det(G∗ − F∗) does not depend on the choice of the pairs of
preferred bases a,a′ and b,b′ of Γ, Γ ′. This finishes the proof.

3. Example. For x = {x1, . . . , xp} ⊂ Γ , X = {X1, . . . , Xp} ⊂ L, and a
p× p integral matrix N = (nij), we use the following notations:

xN = {xn11

1 xn12

2 · · ·xn1p
p , . . . , x

np1

1 x
np2

2 · · ·xnpp
p },

NX = {n11X1 + · · · + n1pXp, . . . , np1X1 + · · · + nppXp}.
Recall that for a uniform lattice Γ of a simply connected nilpotent Lie

group L, we let Γi = Γ
√
γi(Γ ); then a generating set

a = {a1, . . . ,ac}
is a preferred basis of Γ if and only if Γi is the group generated by ai and
Γi+1 for each i = 1, . . . , c.

Lemma 3.1. Let Γ and Λ be uniform lattices of a simply connected nilpo-

tent Lie group L. Let a = {a1, . . . ,ac} be a preferred basis of Γ . If Λ ⊂ Γ ,
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then there exists an upper triangular block integral matrix

N =




N11 N12 . . . N1c

0 N22 . . . N2c

...
...

. . .
...

0 0 . . . Ncc




such that the diagonal blocks have positive determinant , [Γ : Λ] = det(N)
and Λ has a preferred basis

aN = {aN11

1 aN12

2 · · ·aN1c
c ;aN22

2 aN23

3 · · ·aN2c
c ; . . . ;aNcc

c }.
If b is any preferred basis of Λ, then there exists an upper triangular block

integral matrix N whose diagonal blocks have positive determinant , [Γ : Λ] =
det(N) and b = aN .

Proof. Let Λi = Λ ∩ Γi = Λ ∩ Γ
√
γi(Γ ) for i = 1, . . . , c. Then

Λ = Λ1 ⊃ · · · ⊃ Λc ⊃ Λc+1 = 1

is a central series of Λ with Λi/Λi+1
∼= Z

ki for each i = 1, . . . , c. In fact,
there is a natural injection Λi/Λi+1 → Γi/Γi+1.

Since Λc ⊂ Γc = 〈ac〉 ∼= Z
kc , there is an integral matrix Ncc with

positive determinant such that aNcc
c is a generating set of Λc. Obviously

[Γc : Λc] = det(Ncc). Next we consider the following commuting diagram of
homomorphisms:

1 −−−−→ Γc −−−−→ Γc−1 −−−−→ Γc−1/Γc ∼= Z
kc−1 −−−−→ 1

xinc

xinc

xnatural injection

1 −−−−→ Λc −−−−→ Λc−1 −−−−→ Λc−1/Λc ∼= Z
kc−1 −−−−→ 1

Since ac−1Γc is a generating set of Γc−1/Γc, we can take a′
c−1 ⊂ Λc−1 so that

a′
c−1Λc is a generating set of Λc−1/Λc. Then {a′

c−1,a
Ncc
c } is a generating set

of Λc−1 and a′
c−1 = a

Nc−1,c−1

c−1 a
Nc−1,c
c , where Nc−1,c−1 and Nc−1,c are integral

matrices so that det(Nc−1,c−1) = [Γc−1/Γc : Λc−1/Λc]. Moreover, [Γc−1 :
Λc−1] = [Γc−1/Γc : Λc−1/Λc] · [Γc : Λc] = det(Nc−1,c−1) det(Ncc). Proceed-
ing inductively, we obtain integral matrices N11, N12, . . . , N1c;N22, N23, . . . ,
N2c; . . . ; Ncc such that det(Nii) are positive, [Γ : Λ] = det(N11) det(N22) · · ·
· · ·det(Ncc) and Λ has a preferred basis

aN = {aN11

1 a
N12

2 · · ·aN1c
c ;aN22

2 a
N23

3 · · ·aN2c
c ; . . . ;aNcc

c }.
This proves the lemma.

Let Λ ⊂ Γ be uniform lattices of a simply connected nilpotent Lie
group L. Let q : Λ\L → Γ\L be the covering projection. Then we have
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the commuting diagrams

L
id−−−−→ L

xinc

xinc

Λ
inc−−−−→ Γ

L
id−−−−→ L

y
y

Λ\L q−−−−→ Γ\L
Let Γ have a preferred basis a = {a1, . . . ,ac}. By Lemma 3.1, Λ has a
preferred basis b = aN for some upper triangular block integral matrix N
with [Γ : Λ] = det(N).

To compare logb with log a, we recall the famous Baker–Campbell–
Hausdorff formula:

log(a · b) = log a ∗ log b for all a, b ∈ L,

where

A ∗B = A+B +
1

2
[A,B] +

∞∑

m=3

Cm(A,B).

Here Cm(A,B) stands for a rational combination of m-fold Lie brackets in
A and B. Since our Lie algebra is nilpotent, the sum involved in A ∗ B is
always finite.

Since ai ⊂ γi(L), we have log ai ⊂ log γi(L) = γi(L). So, [log ai, log ai+1]
⊂ γi+2(L). This implies that [log ai, log ai+1] is a rational matrix linear com-
bination of log aj where j > i+ 1. Thus

log(aNi

i a
Ni+1

i+1 · · ·aNc
c ) = Ni log ai

+ a rational matrix linear combination of log ai+1, . . . , log ac.

Therefore,

det([q∗]
log a

logb
) = det([id]log a

log b
) = det




N11 ∗ . . . ∗
0 N22 . . . ∗
...

...
. . .

...

0 0 . . . Ncc




= [Γ : Λ].

We single this fact out as a lemma.

Lemma 3.2. Let Λ ⊂ Γ be uniform lattices of a simply connected nilpo-

tent Lie group L. Let q : Λ\L → Γ\L be the covering projection. For any

preferred bases a and b = aN of Γ and Λ, respectively , we have

det([q∗]
log a

logb
) = det([id]log a

log b
) = [Γ : Λ].

The following is practically useful in computing the Nielsen and Lefschetz
coincidence numbers on some nilmanifolds.
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Corollary 3.3. Let Γ\L and Γ ′\L be nilmanifolds, i.e., Γ and Γ ′ are

uniform lattices of the connected simply connected nilpotent Lie group L.

Suppose Γ ∩ Γ ′ is a uniform lattice of L. Then for any continuous maps

f, g : Γ\L→ Γ ′\L, we have

L(f, g) =
[Γ ′ : Γ ∩ Γ ′]

[Γ : Γ ∩ Γ ′]
det(g∗ − f∗), N(f, g) = |L(f, g)|.

Proof. Let Λ := Γ ∩ Γ ′ be the uniform lattice of L. Thus Λ has finite
index in both Γ and Γ ′. Choose preferred bases b,a,a′ of the uniform lattices
Λ, Γ, Γ ′, respectively. Then by Lemma 3.1 we have b = aN = a′N ′

for some
upper triangular block integral matrices N,N ′ with [Γ : Λ] = det(N) and
[Γ ′ : Λ] = det(N ′). The endomorphisms Φ∗, Ψ∗ induced by f, g on the vector
space L with various preferred bases yield the commuting diagram

(L, log a)
Φ∗−−−−→
Ψ∗

(L, log a′)
xid

xid

(L, logb)
Φ∗−−−−→
Ψ∗

(L, logb)

The corresponding matrices thus satisfy

[Φ∗]
log a

′

log a
· [id]log a

log b
= [id]log a

′

logb
· [Φ∗]

log b

log b
,

[Ψ∗]
log a

′

log a
· [id]log a

log b
= [id]log a

′

logb
· [Ψ∗]log b

log b
,

or

F∗ · [id]log a

log b
= [id]log a

′

logb
· f∗, G∗ · [id]log a

logb
= [id]log a

′

log b
· g∗

By Lemma 3.2,

det([id]log a

logb
) = [Γ : Λ], det([id]log a

′

log b
) = [Γ ′ : Λ].

Theorem 2.4, together with the above observation, yields

L(f, g) = det(G∗ − F∗)

=
det([id]log a

′

log b
)

det([id]log a

logb
)

det(g∗ − f∗) =
[Γ ′ : Γ ∩ Γ ′]

[Γ : Γ ∩ Γ ′]
det(g∗ − f∗),

N(f, g) = |L(f, g)|.
This finishes the proof.

Example 3.4. Let L be the 3-dimensional Heisenberg group. That is,

L =








1 x z

0 1 y

0 0 1


 x, y, z ∈ R




.
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We denote this general element by {x, y, z}. For any integer k > 0, we
consider the subgroups Γk = {{m,n, l/k} | m,n, l ∈ Z} of L. These are
uniform lattices of L, and every uniform lattice of L is isomorphic to some Γk.

Let Φ : L→ L be an endomorphism. Then we have a commuting diagram

1 −−−−→ [L,L] −−−−→ L −−−−→ L/[L,L] −−−−→ 1
yΦ̂

yΦ
yΦ

1 −−−−→ [L,L] −−−−→ L −−−−→ L/[L,L] −−−−→ 1

Since [L,L] = {{0, 0, z} | z ∈ R} and L/[L,L] ∼= {{x, y, 0} | x, y ∈ R},
Φmust send {x, y, z} to {αx+γy, βx+δy, ηz+ϕ(x, y, z)} for some α, β, γ, δ, η
∈ R. In particular, Φ({x, y, 0} · {0, 0, z}) = Φ({x, y, 0}) · Φ({0, 0, z}) implies
that ϕ(x, y, z) = ϕ(x, y, 0). Thus ϕ : R

2 → R is a function depending only
on x and y. Comparing the images of {x, y, 0} = {0, y, 0} · {x, 0, 0} and
{x, y, xy} = {x, 0, 0} · {0, y, 0} under Φ shows that αδ − βγ = η.

Suppose Φ maps Γk into Γk′ . Then α, β, γ, δ ∈ Z and Φ({0, 0, 1/k}) =
{0, 0, η/k} = {0, 0, l/k′} for some l ∈ Z. Thus, if (k, k′) = m, i.e., k = ms,
k′ = mt and (s, t) = 1, then η is a multiple of s and l is a multiple of t.

Let Φ, Ψ : L→ L be the endomorphisms of L given by

Φ({x, y, z}) = {2x− 2y, 2x+ y, 6z + 2x2 − 4xy − y2},
Ψ({x, y, z}) = {3y, x+ y,−3z + 3xy + 3

2y
2}.

Then Φ(Γ6) ⊂ Γ4 and Ψ(Γ6) ⊂ Γ4. Thus the endomorphisms Φ, Ψ : L → L
induce f, g : Γ6\L→ Γ4\L so that the following diagram commutes:

L
Φ−−−−→
Ψ

L
y

y

Γ6\L
f−−−−→
g

Γ4\L

Since Γ2 = Γ4 ∩ Γ6, by Corollary 3.3 the Lefschetz and Nielsen coincidence
numbers of f, g are given by

L(f, g) =
2

3
det(g∗ − f∗), N(f, g) = |L(f, g)|,

where f∗, g∗ are the matrices of the differentials of Φ, Ψ with respect to any
basis of L.

We take an ordered (linear) basis for the Lie algebra L of L as follows:

e1 =



0 0 1

0 0 0

0 0 0


 , e2 =




0 1 0

0 0 0

0 0 0


 , e3 =



0 0 0

0 0 1

0 0 0


 .
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Note that this basis for L is obtained from the preferred basis {0, 0, 1},
{1, 0, 0}, {0, 1, 0} for Γ1. With respect to this basis, the differentials of Φ
and Ψ are

f∗ =




6 0 0

0 2 −2

0 2 1


 , g∗ =




−3 0 0

0 0 3

0 1 1


 .

Therefore, the Lefschetz and Nielsen coincidence number of the maps f, g :
Γ6\L→ Γ4\L are

L(f, g) =
2

3
det(g∗ − f∗) =

2

3
(−45) = −30, N(f, g) = 30.
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