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New topological measures on the torus

by

Finn F. Knudsen (Trondheim)

Abstract. Recently Entov and Polterovich [1] asked if the Grubb measure was the
only symplectic topological measure on the torus. Much to our surprise we discovered a
whole new class of intrinsic simple topological measures on the torus, many of which were
symplectic.

Introduction. Topological measures were first introduced by Johan
Aarnes under the name of quasi-measures. Associated with such a measure
there is also a theory of integration for continuous functions. The existence
of a non-subadditive quasi-measure proved the existence of a non-linear
quasi-state on a commutative C∗-algebra. See [5]. The definition given by
Aarnes is the following.

Definition 1. A topological measure on a compact Hausdorff space X
is a non-negative function µ, defined on the collection of open or closed
subsets of X, A(X), with the following properties.

(a) µ(∅) = 0.
(b) If A1 ⊆ A2, then µ(A1) ≤ µ(A2).
(c) If A =

⋃n
i=1 Ai is a disjoint union, then µ(A) =

∑n
i=1 µ(Ai).

(d) If U is open, then µ(U) = sup{µ(C) |C ⊆ U and C closed}.

A topological measure is called simple if it takes only values 0 and 1.

A topological measure µ on the torus is determined by its components
µε on equivalence classes of 2-sided sets, and µc on the 1-sided sets. See [2].
If µc(A) = 0 on all contractible sets A, the measure is called intrinsic. In
this case the µε’s are independent. The Grubb measure is the translation
invariant intrinsic topological measure for which all the µε’s are restrictions
of the Haar measure. The Grubb measure is symplectic. See [1].
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Entov and Polterovich ask if this is the only symplectic measure on
the torus. During the investigation of this hypothesis we stumbled over the
center of mass topological measures. These are simple intrinsic topological
measures. From the homotopy formula for the Lie derivative of a differen-
tial form, also called Cartan’s magic formula, it follows that many of these
measures are symplectic.

The technique for constructing the center of mass topological measures is
to restrict the above measures to simple smooth closed curves on the torus.

Intrinsic simple topological measures on the torus. Intrinsic
topological measures on the torus are determined by their restriction to
the solid 2-sided closed sets Cs2. See [2, Definition 8].

Proposition 2. Let M be the subset of Cs2 consisting of smooth

1-dimensional manifolds C, and let µ : M → {0, 1} be a function. Then

µ is the restriction of a unique intrinsic simple topological measure if and

only if it has the following two properties.

M1 If C1 and C2 are in M and µ(C1) = µ(C2) = 1, then C1 ∩ C2 6= ∅.
M2 If {Ci}

n
i=1 is a disjoint family of members of M, and µ(Ci) = 0 for

1 ≤ i ≤ n, then there is a C ∈ M disjoint from every Ci and with

µ(C) = 1.

Proof. The “only if” part follows because given disjoint sets {Ci}
n
i=1

there is, up to orientation, a unique, surjective function f : T2 → S1 with
f(Ck) = exp(2kπi/n), and such that f is harmonic in T2 \

⋃n
i=1 Ci. The

fibers of f are then all in M, and exactly one of them has measure 1, since
every simple topological measure on the circle S1 is a point measure. To
prove the converse note that if µ is the restriction of an intrinsic simple
topological measure, then we would have µ(D) = 1 for a closed solid 2-sided
set D if and only if for every C ∈ M with µ(C) = 1, C ∩D 6= ∅. If we define
µ in this way on closed solid 2-sided sets, the same argument as above shows
that the three conditions in [2, Proposition 3] are satisfied.

To each C ∈ Cs2, there is associated a submodule LC ∈ H1(T2, Z) of rank
one. In fact if we realize H1(T2, Z) as harmonic 1-forms, then ω ∈ LC if and
only if

T
γ
ω = 0 for all closed curves in T2 disjoint from C. The function

L : Cs2 → {M |M is a rank one isotropic submodule of H1(T2, Z)} deter-
mines an equivalence relation on Cs2 whose partition E coincides with the
one defined in [2, Section 4].

We consider the torus as the quotient C/Z2. The harmonic differentials
dx and dy form a basis for the module H1(T2, Z). The rank one isotropic sub-
modules are in one-to-one correspondence with Q∪{∞} as follows: α(M) = ε
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if and only if for all ω = rdx + sdy ∈ M , ε = r/s. The fiber of the function
L corresponding to a module M with α(M) = ε is denoted by Cs2,ε.

If C1 and C2 are in M and L(C1) 6= L(C2), then C1 ∩ C2 6= ∅. For this
reason, the conditions M1 and M2 of Proposition 2 will be satisfied if they
are satisfied independently on each equivalence class.

Definition 3. For each ε ∈ Q∪ {∞} we define Mε = {C |α(LC) = ε}.

Theorem 4. Let µ : M → {0, 1} be a function, and let µε : Mε →
{0, 1} be its restriction. Then µ is the restriction of a unique intrinsic simple

topological measure if and only if for each ε ∈ Q ∪ {∞} it has the following

properties.

M1 If C1 and C2 are in Mε and µ(C1) = µ(C2) = 1, then C1 ∩ C2 6= ∅.
M2 If {Ci}

n
i=1 is a disjoint family of members of Mε, and µ(Ci) = 0

for 1 ≤ i ≤ n, then there is a C ∈ Mε disjoint from every Ci and

with µ(C) = 1.

Proof. This is [2, Theorem 32] or [4, Proposition 5.3].

Definition 5. With notation as in the theorem above, we write

µ =
∏

ε∈Q∪{∞}

µε

for the uniquely defined intrinsic simple topological measure µ on T2 which
restricts to all the µε’s.

On a space which is simply co-connected [4] or of Aarnes genus zero [6],
there is a standard procedure for constructing simple topological measures.
These measures are the generalized point-measures. On spaces X with g(X)
= 0, the generalized point-measures form a dense subset of the space of all
simple topological measures [4]. For general spaces the only known topo-
logical measures are, in a sense which is made more precise in the next
definition, push-forwards of measures on simpler topological spaces.

Definition 6. If Y is a space and µ is a topological measure of the form
µ = f∗(ν), where f : X → Y is a continuous map and X is a space with
g(X) = 0, we call µ a patched-on topological measure.

All previously known intrinsic simple topological measures on the torus
are of the form µ =

∏
ε∈Q∪{∞} µε, where each restriction µε is the restriction

of a patched-on simple topological measure.

Center of mass topological measures on the torus. In this section
we construct the center of mass topological measures, by specifying func-
tions µε for each ε ∈ Q ∪ {∞}. In order to do this we need some concepts
associated with such an ε.
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Definition 7. A commutative diagram

R × R S1 × R

T2

JJJJJJJJJ %%

σε //

πε

��

given by

p1σε(x, y) = xε ≡ px + qy (mod1),

p2σε(x, y) = yε = rx + sy,

πε(xε, yε) = (x, y)

will be called an ε-marking if
(

p q
r s

)
∈ SL(2, Z) and ε = r/s.

Lemma 8. If C ∈ Mε and πε is an ε-marking , then for any parameter-

ization γ : S1 → T2 of C,\
γ

dyε =
\
γ

(r dx + s dy) = 0 and
\
γ

dxε =
\
γ

(p dx + q dy) = ±1.

Proof. The first integral vanishes by definition of Mε. Since dxε and dyε

generate H1(T2, Z) it follows by duality that there is a map δ : S1 → T2 such
that

T
δ
dyε = 0 and

T
δ
dxε = 1. Hence there is an integer n and a homotopy

γ ∼ nδ. But C is solid so there is an η with η ∩ γ = 1, and hence n = ±1.

Definition 9. With notation as in Lemma 8, we say that a parameter-
ization γ : S1 → T2 of C is πε-oriented if

T
γ
dxε = 1.

Lemma 10. Let πε be an ε-marking , fε a non-negative function on S1

with
T
S1 fε(x) dx = 1, and let C ∈ Mε. If we choose a lifting γ̃ of a πε-

oriented parameterization of C

S1 × R

S1 T2

πε

��

γ̃wwwwwww ;;

γ
//

then \̃
γ

fε(xε) dxε = 1,

and \̃
γ

yεfε(xε) dxε

is well defined up to an integer and does not depend on the particular pa-

rameterization or the lifting.
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Proof. Let δ = (1S1 , r) for some constant r ∈ R. Since γ is a πε-oriented
parameterization of C, the paths γ̃ and δ are homotopic. By the Stokes
Theorem, since d(fε(xε)dxε) = 0, we have

T̃
γ
fε(xε) dxε =

T
δ
fε(xε) dxε, and

the first statement follows by the definition of fε. The second statement
follows since any two liftings differ by an integer.

Definition 11. Given an ε-marking πε, a real number 0 ≤ rε < 1, and
a distribution-function fε, the function µε = µ(πε, fε, rε) : Mε → {0, 1} is
defined by the formula

µε(C) = 1 if and only if
\̃
γ

yεfε(xε) dxε ≡ rε (mod1),

where γ̃ is a lifting of a πε-oriented parameterization of C.

Theorem 12. If for each ε ∈ Q ∪ {∞}, (πε, fε, rε) is a triple as in

Definition 11, then there is a unique intrinsic simple topological measure µ
on T2 restricting to the function µε = µ(πε, fε, rε) on each Mε. We call µ
the center of mass topological measure associated to the triples (πε, fε, rε).

Proof. We have to show that for any ε, the function µε satisfies the
conditions M1 and M2 of Theorem 4. Let C1 and C2 be disjoint members
of Mε, and let γ̃1 and γ̃2 be liftings of πε-oriented parameterizations of C1

and C2. We may choose the liftings such that 0 < p2 ◦ γ̃2(0)−p2 ◦ γ̃1(0) < 1.
By the Stokes Theorem, the difference

r =
\̃
γ2

yεfε(xε) dxε −
\̃
γ1

yεfε(xε) dxε =
\
D

fε(xε) dxε ∧ dyε

is a weighted area between the curves, and since the curves are disjoint
we have 0 < r < 1. This proves M1. To prove M2 we may use the same
technique as in the “only if” part of the prof of M2 in Proposition 2.

Remark 13. This construction has recently been generalized by Grubb
to all spaces of Aarnes genus one. See [3].

Remark 14. To see that a center of mass topological measure is not
patched-on, notice that for any real number R > 0, there is a smooth sur-
jective function f : T2 → S1 such that no connected component of any
lifting to S1 ×R of any fiber f−1(exp(it)) is contained in S1 × [−R, R]. Just
consider a function whose fibers are sufficiently tilted meridians. That could
be f(x, y) = e2πi(y−R sin 2πx). For the center of mass topological measure as-
sociated to the uniform distribution function, we can find arbitrarily tilted
meridians with measure 1.

Theorem 15. A center of mass topological measure associated with a

family of triples (πε, 1, rε), meaning that all the distributions are uniform,
is a symplectic topological measure in the sense of [1].
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Proof. Since the torus is a surface, all topological measures give rise
to strongly quasi-linear functionals. Furthermore the intrinsic topological
measures vanish on all displaceable sets. Hence it remains only to show
invariance under symplectomorphisms homotopic to the identity. It suffices
to do this infinitesimally, so let f be a smooth function on the torus and
let X be the corresponding Hamiltonian vector field. This means that X
(dx ∧ dy) = X (dxε ∧ dyε) = df . Here we have used the sign convention
of Bourbaki, Algèbre, Chapitre 3, where the left interior multiplication of a
vector and an exterior form is defined by the rule 〈Z, X ω〉 = 〈Z ∧ X, ω〉.
For any vector X, the operator i(X) :

∧
T ∗ →

∧
T ∗ defined on p-forms

by i(X)(ω) = (−1)p−1X ω is an anti-derivation of degree −1, and the Lie
derivative of differential forms is give by the celebrated formula

LX = i(X) ◦ d + d ◦ i(X).

Let C ∈ Mε, and let γ̃ be a lifting of a πε-oriented parameterization of C.

We also let f̃ and X̃ be liftings of f and X. If Ct denotes the image of the
set C after having drifted with the flow of X for a time t, and γ̃t is its lifting,
then

µε(Ct) = 1 if and only if
\̃
γt

yε dxε ≡ rε (mod1).

From the homotopy formula we have

d

dt

( \̃
γt

yε dxε

)
=
\̃
γ

L
X̃

(yε dxε) =
\̃
γ

(d(X̃ (yε dxε)) − X̃ (dyε ∧ dxε))

=
\̃
γ

(d(X̃ (yεdxε)) + df̃) = 0,

and therefore the value µε(Ct) remains constant.

Remark 16. It is possible to prove that the only intrinsic, translation

invariant symplectic measure is the Grubb measure, but the proof I know
is very long and highly technical and will not be included.
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