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A note on ∆1 indu
tion and Σ1 
olle
tionbyNeil Thapen (Oxford)
Abstra
t. Slaman re
ently proved that Σn 
olle
tion is provable from ∆n indu
tionplus exponentiation, partially answering a question of Paris. We give a new version of thisproof for the 
ase n = 1, whi
h only requires the following very weak form of exponentia-tion: �xy exists for some y su�
iently large that x is smaller than some primitive re
ursivefun
tion of y�.By ∆n indu
tion, or I∆n, we mean the usual indu
tion s
heme for every

Σn formula φ whi
h is equivalent in the model to a Πn formula. That is, thes
heme
[∀x (φ(x) ↔ ψ(x))] → [φ(0) ∧ ∀x (φ(x) → φ(x+ 1)) → ∀xφ(x)]for every Σn formula φ and every Πn formula ψ (both possibly with param-eters). By Σn 
olle
tion, or BΣn, we mean the s
heme

∀x < y ∃z φ(x, z) → ∃w ∀x < y ∃z < w φ(x, z)for every Σn formula φ (with parameters).It is reasonably straightforward to prove that BΣn ⊢ I∆n (over a suitablealgebrai
 fragment of PA). Paris posed the question [1℄ whether the otherdire
tion also holds. Slaman [4℄ showed re
ently that I∆n+exp ⊢ BΣn, whereexp is the axiom �∀x, y, xy exists�. This answers the question 
ompletely for
n ≥ 2, sin
e exp is provable in I∆2. We improve the result for n = 1, byrepla
ing exp with the assumption �xy exists for some y su
h that x < p(y)�where p 
an be any primitive re
ursive fun
tion. This is Theorem 2 below.We will not give any more ba
kground here. See Slaman [4℄ for a more
omplete introdu
tion to this problem, or [3℄ or [2℄ for a general introdu
tionto the relevant model theory of arithmeti
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80 N. ThapenOur proof is similar to Slaman's, with two new ideas. The �rst is that we
an use a fun
tion with bounded domain but unbounded range to de�ne avery fast-growing fun
tion on a 
ut. This allows us to redu
e the amount ofexponentiation needed in the proof, and show that I∆1+∀x (xlogk x exists) ⊢
BΣ1, for any k ∈ N (see the remark after Lemma 9). The se
ond is to showthat this 
ut is 
losed under the primitive re
ursive fun
tions. This lets usredu
e it further, to �xy exists for some y that is not very mu
h smallerthan x�, where �very mu
h smaller� is de�ned in terms of primitive re
ursivefun
tions. It is still open whether it is possible to get rid of exponentiationaltogether.A
knowledgements. This work arose from dis
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o, Leszek Koªodziej
zyk, Je� Paris, AlexWilkie and Konrad Zdanowski. I would also like to thank the organizersof the Fall S
hool of the Prague logi
 seminar at Pe
 pod Sn¥ºkou.I am grateful to Leszek Koªodziej
zyk for reading and 
ommenting on anearlier version of this note.Let M be a model of I∆1 with a distinguished element a. We will be
onsidering two kinds of sequen
e of elements of M . The �rst kind is simplythe sequen
e of numbers in [0, a) obtained by writing a number w ∈ M inbase a notation, and we will write the ith element of su
h a sequen
e as (w)i.The se
ond kind is not dire
tly 
oded in the model, in that it is indexedby a 
ut and so has no last element. We will 
all it a Σ1 sequen
e, andformally it is a Σ1 fun
tion w∗ from a Σ1 
ut I to M . For i ∈ I we write the
ith element of the sequen
e as w∗

i .We �rst give a lemma due to Slaman, relating these two kinds of sequen
e.Lemma 1. Let w∗ be a Σ1 sequen
e of elements of [0, a), indexed by a
Σ1 
ut I in M . Suppose it has the extra property that its initial segments areuniformly 
oded in M , whi
h means that there is a Σ1 sequen
e s∗ su
h that ,for i ∈ I, s∗i 
odes (via its base a expansion) the sequen
e w∗

0 . . . w
∗

i .Suppose that there is b ∈ M with I < b and su
h that ab exists. Thenthere exists e < ab 
oding w∗ in M , in the sense that for all i ∈ I, (e)i = w∗

i .Proof. We make the additional assumption that every element of w∗ isstri
tly less than a − 1. This 
an be removed easily, for example by taking
a2 as the parameter in pla
e of a.For ea
h i ∈ I, let c∗i = s∗i ·a

b−i−1, whi
h, written out in base a, looks like
w∗

0 . . . w
∗

i 0 . . . 0where there are b numerals altogether. Then c∗i is an in
reasing Σ1 sequen
e,but not ne
essarily stri
tly in
reasing, sin
e some w∗

i s might be 0. However,we may assume that it has no greatest element, sin
e otherwise we 
ould usethat element as our desired number e.



∆1 indu
tion and Σ1 
olle
tion 81For ea
h i ∈ I, let d∗i = (s∗i + 1) · ab−i−1, whi
h, written out in base a,looks like
w∗

0 . . . w
∗

i−1(w
∗

i + 1)0 . . . 0(here we use the assumption that ea
h w∗

j is less than a − 1). Then d∗i is ade
reasing Σ1 sequen
e.Now de�ne C to be the proper Σ1 
ut {x : ∃i ∈ I x < c∗i } and de�ne Dto be the Σ1 upwards-
losed set {x : ∃i ∈ I x > d∗i }.Clearly C and D do not interse
t, and any e with C < e < D will besu
h that (e)i = w∗

i for all i ∈ I. But there must be some su
h e, sin
eotherwise D = M \ C, whi
h means that C is a ∆1-de�nable proper 
ut,whi
h is impossible in a model of I∆1.We now give our main theorem.Theorem 2. Let M be a model of I∆1, and a ∈M . Suppose that thereis b ∈ M su
h that ab exists and p(b) > a for some primitive re
ursivefun
tion p. Then Σ1 
olle
tion holds at a inM , that is, for any ∆0 formula φ,
M |= ∀x < a∃y φ(x, y) → ∃z ∀x < a∃y < z φ(x, y).The proof takes up the rest of this note. It is by 
ontradi
tion, so our as-sumption from now on is thatM is su
h that the theorem fails. In parti
ular
olle
tion fails, so we 
annot bound the witnesses y for φ for x < a.Lemma 3. There is an inje
tive fun
tion f : a → M with a ∆0 graphand with range unbounded in M .Proof. Map x < a to the number 
oding the pair 〈x, y〉 where y is leastsu
h that φ(x, y) holds.Definition 4. Let θ(i, w, t) express the following:1. w 
odes a sequen
e (w)0, . . . , (w)i ⊆ [0, a).2. For all j ≤ i, f((w)j) ≤ t.3. f((w)0) is the least element of the range of f that is bigger than a.4. For all j < i, f((w)j+1) is the least element of the range of f that isbigger than f((w)j)

2.The formula θ is ∆0, sin
e we in
lude the bound t as a parameter. Let
I = {i : ∃w ∃t θ(i, w, t)}.Lemma 5. I is a 
ut and for all i ∈ I there is a unique w su
h that
∃t θ(i, w, t).Proof. I is 
learly 
losed downwards. To show that it is 
losed undersu

essor, suppose i ∈ I with witnesses w and t. Sin
e the range of f isunbounded in M , there must be some x < a with f(x) > f((w)i)

2. Using
f(x) as an upper bound, ∆0 indu
tion is enough to �nd z < a su
h that
f(z) is the least thing bigger than f((w)i)

2 in the range of f . Note that this



82 N. Thapenis the only pla
e in the proof where we use the unboundedness of the rangeof f .For uniqueness, suppose θ(i, w, t) and θ(i, w′, t′), and, without loss ofgenerality, that t ≥ t′. Then, using t as a bound, ∆0 indu
tion is enough toshow that f((w)j) = f((w′)j) for all j ≤ i. So w = w′, sin
e f is inje
tive.Uniqueness means that we 
an de�ne a Σ1 sequen
e w∗, where for ea
h
i ∈ I we take w∗

i to be (w)i for the unique w su
h that ∃t θ(i, w, t).Lemma 6. For all i ∈ I, a2i exists in M and is less than f(w∗

i ).Proof. Let w, t be su
h that θ(i, w, t). We use indu
tion to show that forall j ≤ i, a2j
< f((w)j). Only ∆0 indu
tion is needed, be
ause we 
an boundeverything by t. Formally, the indu
tive hypothesis is

∃y ≤ t ∃p < y (a2j

= p ∧ f((w)j) = y).Here we are using the fa
t that exponentiation 
an be de�ned by a ∆0formula. The indu
tion step follows from the de�nition of w.Lemma 7. I < a.Proof. Suppose not. Then a ∈ I so there exist w, t su
h that θ(a,w, t).So w 
odes a sequen
e of elements of [0, a), and they must all be distin
tbe
ause f((w)j) stri
tly in
reases as j in
reases. Hen
e we have an inje
tionfrom a + 1 to a, violating the pigeonhole prin
iple. However, a ∈ I impliesthat a2a exists inM , by Lemma 6, whi
h means that ∆0 indu
tion is enoughto 
arry out the standard proof of the pigeonhole prin
iple at a (1).Lemma 8. aI is 
o�nal in M .Proof. Suppose not. Then there exists a b su
h that ab exists and I < b.Let S = {f(w∗

i ) : i ∈ I}. We �rst show that S is unbounded in M .Otherwise there is some upper bound t for S, but then
i ∈ I ⇔ ∃w < ab θ(i, w, t).Here we 
an use ab to bound the size of the sequen
e w, be
ause I < b. Butthis means that I is a ∆0-de�nable proper 
ut, whi
h is impossible.We 
an also apply Lemma 1 to get a number e su
h that (e)i = w∗

i forall i ∈ I.Now 
onsider the fun
tion g : i 7→ f((e)i). Restri
ted to I, this fun
tionis in
reasing and its range S is unbounded in M . So I 
an be de�ned asexa
tly the initial segment on whi
h g is in
reasing. Formally,
i 6∈ I ⇔ ∃i ′ ∃t , t′ (i′ < i ∧ f((e)i′) = t′ ∧ f((e)i) = t ∧ t′ > t).

(1) In fa
t I∆0 by itself is enough to prove the pigeonhole prin
iple for any 
odedfun
tion.



∆1 indu
tion and Σ1 
olle
tion 83This is now a 
ontradi
tion with ∆1 indu
tion, be
ause we have Σ1 def-initions of I and of its 
omplement, but I is a proper 
ut.Lemma 9. I is 
losed under exponentiation.Proof. Suppose not. Then there exists β ∈ I with 2β > I. But then a2βexists, by Lemma 6. This is a 
ontradi
tion, sin
e aI is 
o�nal in M .At this point we 
ould �nish the proof by repla
ing the assumption �abexists� in Theorem 2 with �alogk a exists� for some k ∈ N (where logk meansiterated log). This gives a 
ontradi
tion, be
ause if I is 
losed under expo-nentiation we must have I < logk a.We go on to prove the stronger version of the theorem by showing that
I is 
losed under all primitive re
ursive fun
tions. We do this indire
tly, byshowing that I is a model of IΣ1.Lemma 10. I |= IΣ1.Proof. Suppose indu
tion fails in I for some formula ∃y φ(x, y), where φis ∆0. Let ψ(x, z) be the formula

∀u ≤ x∃y ≤ z φ(u, y) ∧ �z is least su
h that ∀u ≤ x∃y ≤ z φ(u, y)�.Let J = {j ∈ I : ∃z ∈I ψ(j, z)}. Then J is a Σ1 proper 
ut in I (and in M)and ψ is the ∆0 graph of a fun
tion g : J → I.The range of g must be unbounded in I, for suppose there is an upperbound s. Then j ∈ J ⇔ ∃z < sψ(j, z), so J is a ∆0 proper 
ut, whi
h isimpossible.Sin
e J is a proper 
ut in I, there exists β with J < β < I, and β ∈ Iimplies aβ exists (in fa
t a2β does).Consider the fun
tion h : I → M given by i 7→ f(w∗

i ). This has rangeunbounded in M , as aI is 
o�nal in M and for all i ∈ I we have ai < f(w∗

i )(by Lemma 6).For j ∈ J , let v∗j be the sequen
e
w∗

g(0) . . . w
∗

g(j).Then v∗ is a Σ1 sequen
e, so sin
e aβ exists, by Lemma 1 there is a number
e su
h that for all j ∈ J , (e)j = w∗

g(j).Now 
onsider the fun
tion k : j 7→ f((e)j). On J , k is the 
omposition
h ◦ g. The fun
tion h on I is in
reasing and has range unbounded in M ,and the fun
tion g on J is in
reasing and has range unbounded in I. So,restri
ted to J , k is in
reasing and has range unbounded in M . Therefore,as in Lemma 8, we 
an now write the 
omplement of J in a Σ1 way:

j 6∈ J ⇔ ∃j ′ ∃t , t′ (j′ < j ∧ f((e)j′) = t′ ∧ f((e)j) = t ∧ t′ > t).Hen
e J is a ∆1 proper 
ut in M , whi
h is impossible.



84 N. ThapenTo 
omplete the proof of Theorem 2, we now use the assumption thatthere is b ∈ M su
h that ab exists in M and a < p(b) for some primitivere
ursive fun
tion p. Sin
e I < a and I is 
losed under primitive re
ursivefun
tions, we must have I < b. But then aI < ab and so aI is not 
o�nal in
M , giving a 
ontradi
tion.
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