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A higher Albanese map for complex threefolds

based on a construction by M. Green

by

Lorenz Schneider (Erlangen)

Abstract. We construct a higher Abel–Jacobi map for 0-cycles on complex three-
folds and prove that it can be used to describe Mumford’s pull-back of a differential
form, and that its image is infinite-dimensional in many cases. However, making a certain
assumption, we show that it is not always injective.

1. Introduction. According to the Bloch–Beilinson conjectures for al-
gebraic cycles on a smooth projective variety X, there should exist a filtra-
tion F • CHp(X) of the Chow group CHp(X) which satisfies certain prop-
erties (see [Bei]). In particular, in the case of 0-cycles on complex varieties
these properties are:

(i) Fn+1 CH0(X) = 0, where n = dimX.
(ii) The filtration F i is stable under correspondences, that is, for Γ ∈

CHm(X × Y ), m = dimY , the induced map

Γ∗ : CH0(X)Q → CH0(Y )Q

satisfies

Γ∗(F
i CH0(X)Q) ⊂ F i CH0(Y )Q,

where we write CH0(X)Q for CH0(X) ⊗Z Q.
(iii) The graded pieces of the filtration are governed by the global holo-

morphic forms and vice versa, i.e. the map

GriF Γ∗ : GriF CH0(X)Q → GriF CH0(Y )Q

is zero if and only if the map

cl(Γ )∗ : H0(Y,Ωi
Y ) → H0(X,Ωi

X)

is zero.
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It follows from (iii) that F 1 CH0(X) = CH0(X)hom and also that

F 2 CH0(X) = CH0(X)alb,

the subgroup of cycles lying in the kernel of the Albanese map.

An attempt to prove these conjectures for 0-cycles on smooth surfaces
defined over the complex numbers C was made by M. Green. In [Gre1]
and [Gre2] he defined a map ψ2

2 from F 2 CH0(S) := ker(albS) to a higher
Jacobian J2

2 (S) and conjectured that it was an isomorphism.

Had this been true, the construction would have in particular given a
positive answer to Bloch’s conjecture for surfaces, since the Jacobian J2

2 (S)
is built from the transcendental part of H2(S,Z). A filtration on CH0(S)
would have been obtained by setting

F 1 CH0(S) = CH0(S)hom,

F 2 CH0(S) = ker(albS),

F 3 CH0(S) = ker(ψ2
2) = 0.

Green’s construction involves principally extensions of mixed Hodge struc-

tures coming from short exact sequences in relative cohomology of a variety
and a codimension one subvariety.

However, soon after his paper had appeared C. Voisin published a coun-
terexample in [Voi3] to his claim that ψ2

2 was an isomorphism. Nevertheless,
in the same paper, she shows that Green’s higher Abel–Jacobi invariant has
the merit of governing Mumford’s pull-back of holomorphic 2-forms on the
surface S to a variety parametrizing 0-cycles on S. Since this pull-back tech-
nique remains one of the most important in the study of algebraic cycles, it
seems useful to prove an analogous result for threefolds (see Theorem 4.5).

In this article, we construct, for a smooth projective threefold X, two
maps ψ3

2 : ker(albX) → J3
2 and ψ3

3 : ker(ψ3
2) → J3

3 from subgroups of
CH0(X) to higher Jacobians (see Definitions 2.2 and 3.10). The first map is
essentially Green’s map for surfaces. In our construction of the map ψ3

3 we
use pairings derived from the perfect pairings

Hni(Yi,Z) ⊗Z H
ni(Yi,Z) → Z, ni = dimYi,

to couple the various one-extension classes and make the construction inde-
pendent of the chosen subvarieties Yi.

If it were to satisfy the conjectures, the map ψ3
3 should be injective,

since the conjectural filtration F • on CH0(X) should have exactly three
steps. However, it can be shown that if X is the product of a curve C with a
surface S, then for certain 0-cycles on X, ψ3

3 can be expressed as a product of
the Abel–Jacobi map µC for divisors on C and Green’s map ψ2

2 for 0-cycles
on S. So, under a certain assumption, which is given in the final section,
Voisin’s counterexample also furnishes one in this case.
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Voisin proves that Green’s map does indeed have an infinite-dimensional
image if pg(S) > 0, just as Mumford’s theorem demands. Analogously, we
prove that the map ψ3

3 for a threefold X also has infinite-dimensional image
on J3

3 (X) if H0(KX) 6= 0 (see Theorem 5.1).
One comment is in order: There are two ways of describing the one-

extension classes of mixed Hodge structures. One is due to J. Carlson and
involves integral and Hodge splittings of a short exact sequence associated
to the long exact sequence of relative cohomology of the pair (Yk, Yk−1),
and the other one uses the image of the (modified) graph Γj of the map
j : Yk−1 → Yk on Griffiths’ intermediate Jacobian J2k−1(Yk−1×Yk). We need
both versions and use whichever one is more convenient for our purposes in
a given context.

An excellent source for many of the objects and techniques used in this
paper are the books [Voi1] and [Voi2].

Acknowledgements. This article is taken from my Ph.D. thesis, which
was completed under the guidance of Claire Voisin. I would like to thank her
for her generosity and support. I also want to thank Jishnu Biswas, Catriona
Maclean and Gianluca Pacienza for many useful and exciting discussions,
and Chris Peters for his help with the proof of Proposition 5.2. Finally,
I would like to thank an anonymous referee for valuable comments and
suggestions.

2. Construction of ψ3
2. We begin by constructing a higher Abel–Jacobi

map on F 2 CH0(X) := ker(albX) for a threefold X, which is immediately
derived from Green’s map for surfaces. First of all we explain how his map
is defined.

2.1. Green’s higher Abel–Jacobi map. Let S be a smooth projective com-
plex surface, and let Z0 be a 0-cycle of S in the kernel of the Albanese map.
Let i : C → S be a smooth, but not necessarily connected curve, which
maps generically one-to-one onto its image i(C) on S, and let Z be a 0-cycle
supported on C, of degree 0 on each component of C, such that i∗(Z) = Z0.

Green constructs two Abel–Jacobi invariants fC,Z and eS,C . The first is
just the image of Z under the Abel–Jacobi map µC : CH0(C)0 → J(C),
where J(C) = H0,1(C)/H1(C,Z) is the Jacobian of C and CH0(C)0 =
CH0(C)hom. However, here this Jacobian is interpreted as a real torus

J(C) ∼= H1(C,Z) ⊗Z R/Z.

This is done via the isomorphisms H1(C,R) ∼= H0,1(C), obtained as the
composite H1(C,R) →֒ H1(C,C) → H0,1(C), and H1(C,R)/H1(C,Z) ∼=
H1(C,Z) ⊗Z R/Z. We consider fC,Z as an element of this tensor product.

The second invariant eS,C is defined as the extension class of a short
exact sequence of mixed Hodge structures as follows. Let τ : S′ → S be
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a blow-up of S along the singularities of the image of C, i.e. a birational
morphism such that i′ : C →֒ S′ is the inclusion map and τ ◦ i′ = i. The
long exact sequence in relative cohomology for the couple i′ : C →֒ S′ then
leads to the short exact sequence

(1) 0 →
H1(C,Z)

i′∗H1(S′,Z)
→ H2(S′, C,Z) → H2(S′,Z)C → 0,

where

H2(S′,Z)C := ker(i′
∗

: H2(S′,Z) → H2(C,Z)).

There is naturally the same sequence with complex coefficients; the impor-
tant point is that it is a short exact sequence of mixed Hodge structures.
Let

H2(S,Z)tr ⊂ H2(S,Z)

be the orthogonal of the Néron–Severi group NS(S) ⊂ H2(S,Z) (the sub-
group generated by classes of curves), i.e. the kernel of the map

〈NS(S), ·〉 : H2(S,Z) → Z

given by the intersection pairing 〈·, ·〉 on H2(S,Z). This is the transcendental

part ofH2(S,Z) and by definition it remains invariant under birational maps.
Since a class in H2(S,Z)tr naturally vanishes when pulled back via i∗ to
H2(C,Z) and there is an inclusion τ∗H2(S,Z) ⊂ H2(S′,Z), we obtain the
inclusion map

t : H2(S,Z)tr →֒ H2(S′,Z)C .

Again, this is also defined for the cohomology groups with complex coeffi-
cients, and the inclusion t is actually a morphism of Hodge structures. Also
note that H1(S′,Z) ∼= H1(S,Z); but to make the notation easier let us as-
sume for the moment that S is regular (otherwise we just keep writing the
quotient on the left).

Now the sequence (1) pulls back via this inclusion map to the sequence

(2) 0 → H1(C,Z) → H2(S′, C,Z)tr → H2(S,Z)tr → 0,

where H2(S′, C,Z)tr is the fibered product of H2(S′, C,Z) and H2(S,Z)tr
overH2(S′,Z)C . Because (2) is an exact sequence of mixed Hodge structures,
there is a section σZ of the sequence (2) that preserves the integral structure,

σZ(H2(S,Z)tr) ⊂ H2(S′, C,Z)tr,

and a section σF that preserves the Hodge filtration,

σF (F pH2(S)tr) ⊂ F pH2(S′, C)tr.

The difference of these two sections will be viewed as a map

ψ = σF − σZ : H2(S,C)tr → H1(C,C).
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Evidently ψ depends on the choice of the sections, but in the quotient

J(Hom(H2(S)tr, H
1(C))

:=
HomC(H2(S,C)tr, H

1(C,C))

F 0 HomC(H2(S,C)tr, H1(C,C)) + HomZ(H2(S,Z)tr, H1(C,Z))

it does not. This complex torus is isomorphic to Ext1MHS(H2(S)tr, H
1(C))

and therefore parametrizes the extensions of the sequence (2). Again we will
write it as a real torus: firstly we have

HomC(H2(S,C)tr, H
1(C,C)) ∼= H2(S,C)∗tr ⊗C H

1(C,C)

(and the same for HomZ) and

F 0 HomC(H2(S,C)tr, H
1(C,C)) ∼= F 2(H2(S,C)∗tr ⊗C H

1(C,C)),

where in the last expression F • is now the usual Hodge filtration and the
right hand side is seen as a Hodge structure of weight 3. Secondly, just as
for the Jacobian of the curve C, we may identify

H2(S,C)∗tr ⊗C H
1(C,C)

F 2(H2(S,C)∗tr ⊗C H1(C,C))
∼= H2(S,R)∗tr ⊗R H

1(C,R)

and then write

H2(S,R)∗tr ⊗R H
1(C,R)

H2(S,Z)∗tr ⊗Z H1(C,Z)
∼= H2(S,Z)∗tr ⊗Z H

1(C,Z) ⊗Z R/Z.

Green considers the extension class eS,C as an element of this tensor product.
If we keep track of the irregularity, we get an element eS,C of

H2(S,Z)∗tr ⊗Z

H1(C,Z)

H1(S,Z)
⊗Z R/Z.

Now the construction is almost done. Remark that if Z0 ∈ ker(albS), then
the Abel–Jacobi invariant µC(Z) must vanish under the map

i∗ : J(C) ∼= H1(C,Z) ⊗Z R/Z → Alb(S) ∼= H1(S,Z) ⊗Z R/Z,

that is, µC(Z) ∈ ker(i∗ : H1(C,Z) → H1(S,Z)) ⊗Z R/Z.
Use now the pairing

ker(i∗ : H1(C,Z) → H1(S,Z)) ⊗Z

H1(C,Z)

i∗H1(S,Z)
→ Z

to contract fC,Z and eS,C to an element

fC,Z · eS,C ∈ H2(S,Z)∗tr ⊗Z R/Z ⊗Z R/Z.

Green defines U2
2 (S) ⊆ H2(S,Z)∗tr ⊗Z R/Z ⊗Z R/Z as the subgroup gen-

erated by all elements fC,Z · eS,C such that i∗Z = 0 as a 0-cycle of S. The
higher Jacobian J2

2 (S) is defined as

J2
2 (S) :=

H2(S,Z)∗tr ⊗Z R/Z ⊗Z R/Z

U2
2 (S)
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and the map

ψ2
2 : CH0(S)alb → J2

2 (S)

is then defined as follows: if Z0 ∈ Z0(S)alb, choose a curve C, a morphism
j : C → S, and a cycle Z on C homologous to 0 such that j∗Z = Z0.
Then define ψ2

2(Z0) as the image of fC,Z · eS,C in J2
2 (S). By definition of

U2
2 this image does not depend on the choices of C and Z. If now Z0 is

rationally equivalent to 0, for some C and Z, we may assume that Z is
rationally equivalent to 0 in C, and it follows that fC,Z = 0. Hence for this
choice fC,Z ·eS,C = 0, which shows that ψ2

2 defined above on Z0(S)alb factors
through rational equivalence.

2.2. Construction of ψ3
2. Let X be a smooth projective complex three-

fold. Let Z0 be a 0-cycle of degree 0 in the kernel of the Albanese map:
albX(Z0) = 0 ∈ Alb(X). Choose a smooth ample surface S ⊂ X containing
supp(Z0): by the Lefschetz hyperplane theorem H1(X,Z) ∼= H1(S,Z), so
Alb(X) ∼= Alb(S) and since albX(Z0) = 0, we have albS(Z0) = 0.

Let i : C → S be a smooth, but not necessarily connected curve, which
maps generically one-to-one onto its image i(C) on S, and Z a 0-cycle sup-
ported on C such that i∗(Z) = Z0.

In general, we will consider all smooth surfaces j : S → X and smooth
curves i : C → S carrying a 0-cycle Z such that (j ◦ i)∗(Z) = Z0 and
albS(i∗(Z)) = 0.

Given such S,C and Z we can apply Green’s construction of the higher
Abel–Jacobi map ψ2

2 for a 0-cycle on a surface. Let now j∗ : H2(S,Z) →
H4(X,Z) be the Gysin morphism induced by j : S → X and also let

j∗ : H2(S,Z)∗tr → H4(X,Z)/j∗ NS(S)

be the induced map on the quotient.

Definition 2.1. H4(X,Z)∗tr = H4(X,Z)/〈j∗ NS(S)〉 for all j : S → X,
where S is a smooth surface.

We have the projection

π :
H4(X,Z)

j∗ NS(S)
⊗Z R/Z ⊗Z R/Z → H4(X,Z)∗tr ⊗Z R/Z ⊗Z R/Z.

Definition 2.2. Let U3
2 (X) be the group generated by all j∗(eS,C ·fC,Z)

for which (j ◦ i)∗(Z) = 0 as a 0-cycle of X. Let

J3
2 (X) =

H4(X,Z)∗tr ⊗Z R/Z ⊗Z R/Z

U3
2 (X)

.

Lemma 2.3. The projection of j∗(eS,C · fC,Z) into J3
2 (X) is independent

of the surface S chosen in the construction.
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Proof. Suppose Z1, |Z1| ⊂ C1
i1→ S1

j1
→X, and Z2, |Z2| ⊂ C2

i2→ S2
j2
→X,

are both 0-cycles mapping to Z0 on X. Then Z1 − Z2 with

|Z1 − Z2| ⊂ C1 ⊔ C2
i′
→ S1 ⊔ S2

j′
→X

obviously satisfies (j′ ◦ i′)∗(Z1 − Z2) = 0, and we have

j1∗(eS1,C1
· fC1,Z1

) − j2∗(eS2,C2
· fC2,Z2

)

= j′∗(eS1⊔S2,C1⊔C2
· fC1⊔C2,Z1−Z2

) ∈ U3
2 (X).

So, by the independence from the choices made, this defines a map

ψ3
2 : ker(albX) → J3

2 (X), Z0 7→ [j∗(eS,C · fC,Z)],

which factors through rational equivalence. For if a cycle Z0 is rationally

equivalent to 0, then there is a smooth curve C
i
→X and a cycle Z rationally

equivalent to 0 in C such that i∗Z = Z0. Then since fC,Z = 0, i′(Z) is
Albanese equivalent to 0 in S, and furthermore we have j∗(eS,C · fC,Z) = 0

for any C
i′
→ S

j
→X, with S a smooth surface.

3. Construction of ψ3
3. In this section we construct the higher Abel–

Jacobi map ψ3
3 defined on ker(ψ3

2). We consider three extension classes
dX,S , eS,C and fC,Z , each one reflecting a codimension one subvariety in its
ambient variety. The classes eS,C and fC,Z are basically those of Green’s con-
struction from the previous section, but in order to contract them with dX,S
we exploit the fact that they lead to an invariant that vanishes on J3

2 (X).
The extension class dX,S introduced here (see Definition 3.7) is not de-

fined via Carlson’s method, but instead by considering the graph Γj of the
morphism j : S → X. Modifying it by the (2, 2)-Künneth component of
the cycle class of the diagonal ∆S ⊂ S × S and the (3, 3)-component of
∆X ⊂ X ×X to obtain a homologically trivial cycle permits us to take its
A-J invariant on Griffiths’ intermediate Jacobian—however, for a technical
reason (basically because the Hodge conjecture is still a conjecture), it does
not work quite like this and we have to make a detour through Deligne
cohomology in order to carry out our construction.

Then we define the contraction of dX,S , eS,C and fC,Z to dX,S ·eS,C ·fC,Z
and the higher Jacobian J3

3 (X). This Jacobian is a quotient of J3(X) ⊗Z

R/Z⊗Z R/Z, where J3(X) is Griffiths’ intermediate Jacobian of X, and first
of all we must quotient by the image of the Abel–Jacobi map

φX : Z1(X)hom → J3(X)

in order to make this contraction well defined (see Lemma 3.9).
Finally, we show that the map ψ3

3 is independent of the chosen curve
and surface, and that 0-cycles rationally equivalent to zero are mapped to
(0) ∈ J3

3 (X).
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Let Z0 be a 0-cycle in the kernel of the map ψ3
2 : ker(albX) → J3

2 (X).
For an appropriate choice of Z → C → S we construct invariants

dX,S ∈ J3(X)AJ ⊗Z H
2(S,Z)∗new,

eS,C · fC,Z ∈ H2(S,Z)∗tr,new ⊗Z R/Z ⊗Z R/Z,

which we contract to an element lying in J3(X)AJ ⊗Z R/Z⊗2. This element
is then projected onto a certain quotient J3

3 (X) to obtain our third Abel–
Jacobi invariant of the 0-cycle Z.

The invariant eS,C · fC,Z is essentially the one from Green’s construction
for 0-cycles on surfaces. We show how to obtain dX,S . Let Γj ⊂ S × X be
the graph of the morphism j : S → X. It has its cohomology class [Γj ] in
H6(S ×X,Z).

Let ∆X ⊂ X × X be the diagonal in X × X, and let [∆3] = idH3(X,Z)

be the component of [∆X ] lying in H3(X,Z) ⊗Z H
3(X,Z) in the Künneth

decomposition of H6(X × X,Z). Note that [∆3] is a Hodge class (i.e. it
maps to H3,3(X)), but it is not necessarily an analytic (algebraic) cycle
class.

Let ∆S ∈ S × S be the diagonal in S × S, and let [∆2] = idH2(S,Z)

be the component of [∆S] lying in H2(S,Z) ⊗Z H
2(S,Z) in the Künneth

decomposition of H4(S × S,Z). Note that [∆2] is not only a Hodge class,
but by a result of Murre ([Mur]) it is also analytic (algebraic).

We recall that for any complex analytic manifoldX there is a short exact
sequence

0 → J2p−1(X) → H2p
D (X,Z(p)) → Hdg2p(X) → 0,(3)

where

J2p−1(X) =
H2p−1(X,C)

F pH2p−1(X) +H2p−1(X,Z)

is the pth Griffiths intermediate Jacobian of X, HD denotes Deligne coho-
mology, which is defined as the hypercohomology of the complex of sheaves
on X

Z(p)D : 0 → Z(p) → OX → Ω1
X → · · · → Ωp−1

X → 0,

and Hdg2p(X) are the Hodge classes {η ∈ H2p(X,Z) : α∗η ∈ Hp,p(X)},
with α∗ : H2p(X,Z) → H2p(X,C) the natural map (see [EV] and [GMV]
for descriptions).

For two classes S in X × Y and T in Y ×Z (which may be cohomology
classes in H∗(X × Y ), Deligne cohomology classes in H∗

D(X × Y ), or cycle
classes in CHp(X ×Y ) resp. . . . (Y ×Z)) we define the composed correspon-

dence S ◦ T := p13∗{p
∗
12S · p∗23T} on X × Z. Here “·” denotes cup product,

the product in Deligne cohomology and intersection product of cycles, re-
spectively, and the pij are the various projection maps from X ×Y ×Z (see
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Chapter 16 in [Ful]). In the case of Deligne cohomology, we will denote the
composition by “◦D”.

Now, since Γj and ∆2 are both algebraic cycles, we can compose them
to obtain Γj ◦∆2 ⊂ S ×X, with [Γj ◦∆2] ∈ H6(S ×X,Z).

Lemma 3.1. [∆3] ◦ [Γj ◦∆2] = 0 on S ×X.

Proof. This is clear by reasons of cohomological degree.

For the cycle Γj ◦∆2 we have the Deligne cycle class map

clD : CH3(S ×X) → H6
D(S ×X,Z(3)), Γj ◦∆2 7→ [Γj ◦∆2]D,

which is compatible with the usual cycle class map cl, i.e. [Γj ◦ ∆2]D goes
to [Γj ◦∆2] in the short exact sequence

0 → J5(S ×X) → H6
D(S ×X,Z(3)) → Hdg6(S ×X) → 0.(4)

Since we do not know whether [∆3] ∈ Hdg6(X ×X) is algebraic, we cannot
use the Deligne cycle class map, but we can still lift it to a class [∆3]D ∈
H6

D(X ×X,Z(3)) via the sequence

0 → J5(X ×X) → H6
D(X ×X,Z(3)) → Hdg6(X ×X) → 0.(5)

Then it is clear that [∆3]D ◦D [Γj ◦ ∆2]D ∈ H6
D(S × X,Z(3)) will map to

[∆3]◦ [Γj ◦∆2] ∈ Hdg6(S×X), which we have just proven to be zero. Hence
[∆3]D ◦D [Γj ◦∆2]D is in fact an element δ ∈ J5(S×X) = J(H5(S×X)). We
introduce a convenient notation for the Jacobian of a (pure) Hodge structure
of odd weight:

Definition 3.2. Let (VZ, F
•) be a pure Hodge structure of weight 2k−1,

i.e. VZ is a finitely generated free abelian Z-module and there is a decompo-
sition

VC := VZ ⊗Z C =
⊕

p+q=2k−1

V p,q,

where V p,q := F pVC ∩F qVC is defined via the Hodge filtration F •. Then we
put

J(V ) :=
VC

F kVC + VZ

.

Now using the Künneth decomposition H5(S × X) =
∑5

p=0H
p(S) ⊗

H5−p(X), we obtain a natural projection from J(H5(S ×X)) to

J(H2(S) ⊗H3(X)) ∼= H3(X,Z) ⊗Z H
2(S,Z) ⊗Z R/Z,

and a further projection to

J

(
H2(S)

j∗H2(X)
⊗

H3(X)

j∗H1(S)

)
∼=

H3(X,Z)

j∗H1(S,Z)
⊗Z

H2(S,Z)

j∗H2(X,Z)
⊗Z R/Z
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(see Lemma 1.2 in [Gre1] for these isomorphisms). The projection δ′ of δ in

this quotient can be seen as an element of J3(X)

Pic0(S)
⊗Z

H2(S,Z)
j∗H2(X,Z)

.

Lemma 3.3. δ′ is independent of the lifting [∆3]D of [∆3].

Proof. Suppose that we had chosen a different lifting [∆3]D + ν, ν ∈
J5(X × X). We work with the projection maps from S × S × X × X. We
have

p∗34([∆3]D + ν) ·D p
∗
23[Γj]D ·D p

∗
12[∆2]D

= (p∗34[∆3]D + p∗34ν) ·D p
∗
23[Γj ]D ·D p

∗
12[∆2]D

= p∗34[∆3]D ·D p
∗
23[Γj ]D ·D p

∗
12[∆2]D + p∗34ν · p

∗
23[Γj] · p

∗
12[∆2]

in H12
D (S × S ×X ×X,Z(6)), since the intermediate Jacobian is an ideal of

square zero (see Proposition 7.10 in [EV]), and where · denotes the action
of a cohomology class on the intermediate Jacobian. Now via the Künneth
formula we have the decomposition

ν ∈ J5(X ×X) = J(H5(X ×X)) =
5⊕

i=0

J(H i(X) ⊗H5−i(X)).

The class [Γj ] acts on J(H5(X × X)) as j∗ × idX (see Proposition 16.1.1
in [Ful]), and the class [∆2] kills all the components other than J(H2(S) ⊗
H3(X)). But anything in the image of j∗ : H2(X) → H2(S) goes to zero in
the quotient defined above, so we are done.

Lemma 3.4. δ′ is independent of the choice of the representative ∆2 ∈
CH2(S × S) of [∆2].

Proof. The proof is similar to the previous one. Murre stresses in his
paper [Mur, Section 5] that the choice of ∆2 as a cycle class is not canonical.
What is clear, however, is that such a representative will be sent to [∆2] ∈
H4(S×S,Z), and so again any two representatives will at most differ by an
element µ ∈ J3(S × S) when mapped into the Deligne cohomology group
H4

D(S × S,Z(2)).

The difference from the previous proof is that µ will be pushed forward
via the graph of j, not pulled back, but this kind of element will be taken
care of by the quotient H3(X)/j∗H

1(S). We obtain

p∗34[∆3]D ·D p
∗
23[Γj]D ·D p

∗
12([∆2]D + µ)

= p∗34[∆3]D ·D p
∗
23[Γj ]D ·D p

∗
12[∆2]D + p∗34[∆3] · p

∗
23[Γj] · p

∗
12µ

in H12
D (S × S ×X ×X,Z(6)). We have the decomposition

µ ∈ J(H3(S × S)) =
3⊕

i=0

J(H i(S) ⊗H3−i(S)).



A higher Albanese map 121

Now [Γj ] acts on J3(S × S) as idS ×j∗, and this time [∆3] only leaves
J(H2(S) ⊗H3(X)), which completes the proof.

We have to work a little more to obtain our final invariant dX,S .

Definition 3.5. Let H2(S,Z)new = ker(j∗ : H2(S,Z) → H4(X,Z)).

Then we have H2(S,Z)∗new = H2(S,Z)/j∗H2(X,Z). In order to contract
dX,S and eS,C · fC,Z to dX,S · eS,C · fC,Z , we quotient J3(X) by the image of
the Abel–Jacobi map φX : Z2(X)hom → J3(X), where Z2(X)hom denotes
the group of codimension two algebraic cycles of X which are homologically
equivalent to zero.

Definition 3.6. J3(X)AJ := J3(X)/im(φX).

Note that im(φX) ⊇ j∗H
1(S,Z) ⊗Z R/Z = j∗ Pic0(S).

Definition 3.7. We define dX,S to be the projection of δ′ in

J3(X)AJ ⊗Z H
2(S,Z)∗new.

We now specify our choice of C and S: since by assumption Z0 lies in the
kernel of the map ψ3

2 , we know that there exists a surface S, a curve C and
a lifting Z of Z0 such that the invariant eS,C · fC,Z ∈ H2(S,Z)∗tr ⊗Z R/Z⊗2

belongs to H2(S,Z)∗tr,new ⊗Z R/Z⊗2, where

H2(S,Z)∗tr,new := ker

(
j∗ : H2(S,Z)∗tr =

H2(S,Z)

NS(S)
→

H4(X,Z)

j∗ NS(S)

)
.

Lift eS,C · fC,Z to an element in H2(S,Z)new ⊗Z R/Z⊗2. This lifting will
depend upon the choice of an element α ∈ ker(j∗ : NS(S) → H4(X,Z)). In
order to have a well defined contraction between dX,S and eS,C ·fC,Z via the
pairing H2(S,Z)∗new ⊗Z H

2(S,Z)new → Z, we must prove the following:

Lemma 3.8.

dX,S · eS,C · fC,Z ∈ J3(X)AJ ⊗Z R/Z⊗2

is independent of the element α chosen in the lifting.

Proof. We can view

δ′ ∈
J3(X)

j∗ Pic0(S)
⊗Z

H2(S,Z)

j∗H2(X,Z)

as an element

δ′ ∈ Hom

(
H2(S,Z) ∩ ker j∗,

J3(X)

j∗ Pic0(S)

)
.

We now prove

Lemma 3.9. The restriction of δ′ (the coboundary map in the diagram

below) to NS(S) ∩ ker j∗ is equal to the composition

φX ◦ j∗ : NS(S) ∩ ker j∗ → Z(X)2hom/j∗ Pic0(S) → J3(X)/j∗ Pic0(S).
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Proof of Lemma 3.9. Consider the action of

δ = [∆3]D ◦D [Γj ]D ◦D [∆2]D

on a class α ∈ NS(S) ∩ ker j∗ ⊆ NS(S) = Hdg2(S), which we can lift to an
element α̃ ∈ H2

D(S,Z(1)) ∼= Pic(S):

0 // Pic0(S)

��

// H2
D(S,Z(1))

◦D[∆2]D
��

// Hdg2(S)

id
��

// 0

0 // Pic0(S)

j∗
��

// H2
D(S,Z(1))

◦D[Γj ]D=j∗
��

// Hdg2(S)

j∗
��

// 0

0 // J3(X)

id
��

// H4
D(X,Z(2))

◦D[∆3]D
��

// Hdg4(X)

��

// 0

0 // J3(X) // H4
D(X,Z(2)) // Hdg4(X) // 0

Since j∗(α) = 0 ∈ Hdg4(X), j∗(α̃) gives an element of J3(X), which is
precisely the Abel–Jacobi image φX(j∗(α)) (see Proposition 1 in [EZ], for
example), and which is well defined up to an element in j∗ Pic0(S).

But since we have quotiented by the image of the Abel–Jacobi map φX
in the definition of dX,S , we see that the choice of α makes no difference in
our construction; this completes the proof of Lemma 3.8.

Now we can define the higher Jacobian J3
3 (X) and the corresponding

map ψ3
3 for 0-cycles on X:

Definition 3.10. Let U3
3 (X) be the group generated by all dX,S · eS,C ·

fC,Z for which (j ◦ i)∗(Z) = 0 as a 0-cycle of X, let

J3
3 (X) =

J3(X)AJ ⊗Z R/Z⊗2

U3
3 (X)

,

and define the map

ψ3
3 : ker(ψ3

2) → J3
3 (X), Z0 7→ [dX,S · eS,C · fC,Z ].

What remains to be shown in order to have a well defined map is this:

Lemma 3.11. ψ3
3(Z0) is independent of the choice of the surface S.

Proof. The proof is like the one of Lemma 2.3: suppose again that Z1 →
C1 → S1 and Z2 → C2 → S2 are both 0-cycles mapping to Z0 on X. Then
we immediately have

dX,S1
· eS1,C1

· fC1,Z1
− dX,S2

· eS2,C2
· fC2,Z2

= dX,S1⊔S2
· eS1⊔S2,C1⊔C2

· fC1⊔C2,Z1−Z2
∈ U3

3 (X).
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Finally, we mention that—for exactly the same reason as ψ3
2 in Sec-

tion 2—the map ψ3
3 factors through rational equivalence, and so indeed

defines a map from ker(ψ3
2) ⊂ CH0(X) to J3

3 (X).

4. A formula for the pull-back of holomorphic 3-forms. In this
section we prove that Mumford’s pull-back of a holomorphic 3-form on X to
a variety parametrizing 0-cycles on X can be computed with our three Abel–
Jacobi invariants—this is Theorem 4.5. We change our point of view: instead
of considering fixed 0-cycles, curves and surfaces, we now let them vary in a
family parametrized by an open complex ball B. This allows us to consider
the cohomology groups used before as local systems and the Abel–Jacobi
invariants as maps from the base B which we can then differentiate using the
Gauss–Manin connection. First we give a definition of Green’s pull-back of a
holomorphic form in order to state the theorem. Then we prove the theorem.
The homomorphisms dδ′C, de

′
C and dfC are derived from the Abel–Jacobi

invariants δ′X,S , eS,C and fC,Z of the previous section, and at each step we
describe the action of these maps geometrically (see Propositions 4.6, 4.9
and 4.12). Combining these three steps finally leads to our formula.

4.1. Statement of the theorem. We let our curves and surfaces vary in
families parametrized by the same open complex ball B. Consider the fol-
lowing situation: Let C and S be smooth complex varieties with proper
submersive holomorphic maps π and ̺ to B of relative dimensions 1 and 2,
respectively. Let i : C → S and j : S → X × B be analytic morphisms
making both squares in the diagram below commute:

C
i

//

π

��

S
j

//

̺

��

B ×X
pr2

//

pr1
��

X

B B B

Let s1, . . . , sN be holomorphic sections of π : C → B, and let m1, . . . ,mN

be integers such that the 0-cycle

Zb :=
N∑

i=0

misi(b)

satisfies the following conditions for all b ∈ B:

1. It is of degree 0 on each component of the curve Cb,
2. ib∗Zb is Abel–Jacobi equivalent to 0 in Sb, and
3. jb∗(eb · fb) = 0 in H4(X,Z)/jb∗ NS(Sb) ⊗Z (R/Z)⊗2,

where eb = eSb,Cb
, fb = fCb,Zb

, and eb ·fb ∈ H2(Sb,Z)∗tr⊗Z(R/Z)⊗2 is Green’s
contraction introduced in the previous section.
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We would like to differentiate the invariants (eb)b∈B with respect to the
parameters. However, since the groups H2(Sb,Z)tr do not form a local sys-
tem (the Néron–Severi group may jump), we cannot do that.

Instead, let e′b = e′Sb,Cb
be the extension class of the short exact sequence

of mixed Hodge structures

(6) 0 →
H1(Cb)

i∗bH
1(Sb)

→ H2(Sb, Cb) → H2(Sb)Cb
→ 0,

where H2(Sb)Cb
:= ker(i∗b : H2(Sb) → H2(Cb)). Identifying the intermediate

Jacobian in which e′b lies with its underlying real torus, we have

e′b ∈
H1(Cb,Z)

i∗bH
1(Sb,Z)

⊗Z (H2(Sb,Z)Cb
)∗ ⊗Z R/Z

=
H1(Cb,Z)

i∗bH
1(Sb,Z)

⊗Z

H2(Sb,Z)

〈Cb,r〉
⊗Z R/Z,

where the Cb,r are the components of the curve Cb. We know that the pre-
vious invariant eb is obtained by projecting e′b via the quotient map

H2(Sb,Z)

〈Cb,r〉
→

H2(Sb,Z)

〈NS(Sb)〉
= H2(S,Z)∗tr.

Now since the first two quotients in the last expression above are locally
constant, and B is simply connected, we have natural identifications

H1(Cb,Z)

i∗bH
1(Sb,Z)

∼=
H1(C0,Z)

i∗bH
1(S0,Z)

and
H2(Sb,Z)

〈Cb,r〉
∼=
H2(S0,Z)

〈C0,r〉
.

Next, the Abel–Jacobi invariant

fb = alb(Zb) ∈ J(Cb) ∼= H1(Cb,Z) ⊗Z R/Z

belongs to H1(Cb,Z)new ⊗Z R/Z by our second assumption, where
H1(Cb,Z)new := ker(ib∗ : H1(Cb,Z) → H3(Sb,Z)). The groupsH1(Cb,Z)new

form a local system, and as above we identify canonically H1(Cb,Z)new
∼=

H1(C0,Z)new. So now we can view (e′b)b∈B and (fb)b∈B as maps

e′ : B →
H1(C0,Z)

i∗bH
1(S0,Z)

⊗Z

H2(S0,Z)

〈C0,r〉
⊗Z R/Z, b 7→ e′b,

and

f : B → H1(C0,Z)new ⊗Z R/Z, b 7→ fb,

which are differentiable—in fact they are even real-analytic, since we know
by Griffiths’ results that the Abel–Jacobi invariants vary holomorphically in
the family. Differentiating these two functions gives maps

de′ : TR
B →

H1(C0,Z)

i∗0H
1(S0,Z)

⊗Z

H2(S0,Z)

〈C0,r〉
⊗Z R
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and
df : TR

B → H1(C0,Z)new ⊗Z R,

and by adjunction real differential forms

de′ ∈
H1(C0,Z)

i∗0H
1(S0,Z)

⊗Z

H2(S0,Z)

〈C0,r〉
⊗Z Ω

R
B

and
df ∈ H1(C0,Z)new ⊗Z Ω

R
B .

Remark 4.1. Instead of trivializing the local systems and differentiating
the functions b 7→ e′b, b 7→ fb, we could have introduced the Gauss–Manin
connections ∇ on the local systems considered, and applied them to our
sections e′b and fb. The two points of view are equivalent and both will be
adopted in what follows. The advantage of the second point of view is that
one does not need to distinguish a point 0.

Finally, contracting via the natural pairing between H1(C0,Z)new and
H1(C0,Z)/i∗0H

1(S0,Z) = H1(C0,Z)∗new, and using wedge product for 1-
forms, we obtain a real 2-form

de′ ∧ df ∈
∧2ΩR

B ⊗Z H
2(S0,Z)/〈C0,r〉.(7)

Now we do the following: Firstly, by the duality

H2(S0,Z)/〈C0,r〉 ∼= (H2(Sb,Z)Cb
)∗,

this 2-form can be viewed as an element

de′ ∧ df ∈ HomZ(H2(Sb,Z)Cb
,
∧2ΩR

B),

which gives, by C-linear extension, an element

de′ ∧ dfC ∈ HomC(H2(Sb,C)Cb
,
∧2ΩC

B).

Secondly, it follows from our third hypothesis that the 2-form (7) actually
takes values in

∧2ΩR
B ⊗Z ker

(
j0∗ :

H2(S0,Z)

〈C0,r〉
→

H4(X,Z)

j0∗(NS(S0))

)
,

so that our homomorphism de′ ∧ dfC in fact vanishes on

j∗0(H2(X,C) ∩ (j0∗(NS(S0))
⊥)).

In particular, it will vanish on j∗0H
2,0(X), which will be crucial for a pairing

to come later, since we will be dealing with a complex 2-form of type (2, 0)
on the surface S0 which is only defined up to the pull-back of a (2, 0)-form
on X.

We will similarly need to differentiate the third Abel–Jacobi invariant:
Recall that

δ′b ∈
H2(Sb,Z)

j∗bH
2(X,Z)

⊗Z (H3(X,Z)Sb
)∗ ⊗Z R/Z,
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where

H3(X,Z)Sb
:= ker(j∗b : H3(X,Z) → H3(Sb,Z)).

The groups H2(Sb,Z)/j∗bH
2(X,Z) and H3(X,Z)Sb

form a local system,
hence we have natural identifications

H2(Sb,Z)

j∗bH
2(X,Z)

∼=
H2(S0,Z)

j∗0H
2(X,Z)

and H3(X,Z)Sb
∼= H3(X,Z)S0

.

This allows us to view δ′ as a map

B →
H2(S0,Z)

j∗0H
2(X,Z)

⊗Z (H3(X,Z)S0
)∗ ⊗Z R/Z, b 7→ δ′b,

which again by Griffiths’ results is differentiable and even real-analytic. Its
differential is a map

dδ′ : TR
B →

H2(S0,Z)

j∗0H
2(X,Z)

⊗Z (H3(X,Z)S0
)∗ ⊗Z R,

or a real 1-form

dδ′ ∈
H2(S0,Z)

j∗0H
2(X,Z)

⊗Z (H3(X,Z)S0
)∗ ⊗Z Ω

R
B .

This 1-form in turn can be viewed as an element

dδ′ ∈ HomZ

(
H3(X,Z)S0

,
H2(S0,Z)

j∗0H
2(X,Z)

⊗Z Ω
R
B

)
,

and again, by C-linear extension, as

dδ′C ∈ HomC

(
H3(X,C)S0

,
H2(S0,C)

j∗0H
2(X,C)

⊗C Ω
C
B

)
.

The main result of this section concerns pull-backs to B of global holo-
morphic 3-forms on X. Before we can state it, we need a lemma. Note that
simply by reason of type, a (3, 0)-form ω on X will vanish when pulled back
to the surface Sb, so that its class [ω] belongs to H3(X,C)Sb

. Hence we
can apply our homomorphism dδ′C to it, and the following statement makes
sense:

Lemma 4.2. Let ω be a form of type (3, 0) on X. Then at 0 ∈ B,

dδ′C([ω]) ∈
H2,0(S0)

j∗0H
2,0(X)

⊗C Ω
1,0
B,0 ⊂

H2(S0,C)

j∗0H
2(X,C)

⊗C Ω
C
B,0.

This lemma is an immediate consequence of Proposition 4.6, which gives
an explicit description of the map dδ′C and will be proved later in this section.
Assuming it and using the remarks made after the definition of

de′ ∧ dfC ∈ HomC(H2(S0,C)C0
,
∧2ΩC

B),
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it follows that de′ ∧ dfC(dδ′C([ω])) ∈ Ω3
B,0,C is well defined. Here we use

contraction and wedge products of forms. Notice that, as mentioned in Re-
mark 4.1, Lemma 4.2 holds true at any point (with 0 replaced by b ∈ B
everywhere), so that the construction in fact works over B and thus pro-
vides a 3-form on B.

Definition 4.3. We call

dδ′ ∧ de′ ∧ df([ω]) := de′ ∧ dfC(dδ′C([ω]))

Green’s pull-back of the holomorphic 3-form ω on X to B.

Next, following Mumford [Mum], another way to obtain a 3-form on B
from one on X is this: Define the maps

θi = pr2 ◦ j ◦ i ◦ si : B → X, i = 1, . . . , N,

and recall that m1, . . . ,mN are the coefficients of the 0-cycles

Zb =
N∑

i=0

misi(b), b ∈ B,

on the curves Cb.

Definition 4.4. We call

M∗(ω) :=
N∑

i=0

miθ
∗
i (ω)

Mumford’s pull-back of the holomorphic 3-form ω to the variety B parametr-
izing 0-cycles on X.

Now we can finally state our main result of this section:

Theorem 4.5. Let ω be a holomorphic 3-form on X. Then dδ′ ∧ de′ ∧
df([ω]) is holomorphic and equal (up to sign) to M∗(ω), i.e. Green’s and

Mumford’s pull-backs of ω to B are the same (up to sign).

4.2. The proof of Theorem 4.5. For the proof, we shall use the following
alternative description of the Abel–Jacobi invariants e′ and δ′.

Let φ : X → Y be a morphism of smooth projective varieties. There
is a mixed Hodge structure on the relative cohomology groups H∗(Y,X,Z)
which fit in the long exact sequence

· · · → H∗(Y,X) → H∗(Y ) → H∗(X) → H∗+1(Y,X) → · · ·

This sequence splits into short exact sequences of mixed Hodge structures

0 →
H∗−1(X)

φ∗H∗−1(Y )
→ H∗(Y,X) → H∗(Y )X → 0,

where as usual H∗(Y )X := ker(H∗(Y ) → H∗(X)). It is known by results of
Carlson [Car1, Car2] that this exact sequence of mixed Hodge structures is
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described by its extension class

eY,X ∈ J

(
Hom

(
H∗(Y )X ,

H∗−1(X)

φ∗H∗−1(Y )

))
.

It turns out that these extension classes are exactly the Abel–Jacobi invari-
ants associated to the cycle Γφ = graph(φ) of X × Y . From now on we will
use this fact freely.

Step 1: The action of dδ′C. Let ω be a holomorphic 3-form on X, let Ωk
B

and Ωk
S denote the sheaves of holomorphic k-forms on B and S, respectively.

Define H2
S = R2̺∗C ⊗ OB, and let H2

X be the trivial bundle over B with
fiber H2(X,C). Consider the following sequence of sheaves on S, defining K:

(8) 0 → K → Ω3
S

p
→ Ω2

S/B ⊗ ̺∗Ω1
B → 0.

We project the section j∗ω of Ω3
S to the section p(j∗ω) of Ω2

S/B ⊗ ̺∗Ω1
B ,

further via ̺∗ to a section still denoted by p(j∗ω) of

̺∗Ω
2
S/B ⊗ ̺∗̺

∗Ω1
B = H2,0

S ⊗Ω1
B ⊆ H2

S ⊗Ω1
B ,

and finally via the projection H2,0
S → H2,0

S /j∗H2,0
X to a section

α(ω) ∈
H2,0

S

j∗H2,0
X

⊗Ω1
B .

Here H2,0
S ⊂ H2

S and H2,0
X ⊂ H2

X are the Hodge bundles with fibers H2,0(Sb)
∼= H0(Ω2

Sb
) ⊂ H2(Sb,C) and H2,0(X) ⊂ H2(X,C), respectively.

Proposition 4.6. Let ω be a holomorphic 3-form on X. Then for any

b ∈ B we have the equality

dδ′C([ω])b = α(ω)b

via the inclusion

H2,0(Sb,C)

j∗bH
2,0(X,C)

⊗C Ω
1
B,b ⊆

H2(Sb,C)

j∗bH
2(X,C)

⊗C Ω
C
B,b

∼=
H2(S0,C)

j∗0H
2(X,C)

⊗C Ω
C
B,b.

Proof. By Carlson’s description of δ′X,Sb
as an extension class it is the

class of σF − σZ in the quotient

HomC(H3(X,C)Sb
, H2(Sb,C)/j∗bH

2(X,C))

F 0 HomC(·, ·) ⊕ HomZ(·, ·)
,(9)

where F • is the natural Hodge filtration on the homomorphism group, and
HomZ is the integral structure on the homomorphism group. Here

σF : H3(X,C)Sb
→ H3(X,Sb,C)

and

σZ : H3(X,Z)Sb
→ H3(X,Sb,Z)
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are splittings of the sequence

0 →
H2(Sb)

j∗bH
2(X)

→ H3(X,Sb) → H3(X)Sb
→ 0(10)

which preserve the Hodge filtration and the integral structure, respectively.
The identification of the Jacobian (9) with its underlying real torus

HomR(H3(X,R)Sb
, H2(Sb,R)/j∗bH

2(X,R))

HomZ(H3(X,Z)Sb
, H2(Sb,Z)/j∗H2(X,Z))

comes from the identification

HomC(H3(X,C)Sb
, H2(Sb,C)/j∗bH

2(X,C))

F 0 HomC(H3(X,C)Sb
, H2(Sb,C)/j∗bH

2(X,C))

∼= HomR(H3(X,R)Sb
, H2(Sb,R)/j∗bH

2(X,R)).

This isomorphism translates into the fact that there is one and only one
real splitting that, when complexified, also preserves the Hodge filtration.
We call this splitting σR,F .

Hence we conclude that the Abel–Jacobi invariant we want to differenti-
ate, which is the Abel–Jacobi invariant δ′X,Sb

seen as an element of the real
torus

HomZ(H3(X,Z)Sb
, H2(Sb,Z)/j∗H2(X,Z)) ⊗Z R/Z,(11)

is the class of

σR,F − σZ ∈ HomR(H3(X,R)Sb
, H2(Sb,R)/H2(X,R))

in the quotient

HomR(H3(X,R)Sb
, H2(Sb,R)/j∗bH

2(X,R))

HomZ(H3(X,Z)Sb
, H2(Sb,Z)/j∗bH

2(X,Z))
.

Now, starting from the cohomology class [ω] ∈ H3,0(X), we have a class
σR,F ([ω]) ∈ F 3H3(X,Sb); on the other hand, since j∗bω = 0 on Sb for all b, the
(3, 0)-form ω also determines a class inH3(X,Sb), which is easily seen to vary

holomorphically with b, so that we get a section ω̃ of the bundle H3,0
X,S , the

holomorphic vector bundle over B with fiber H3,0(X,Sb) ⊂ H3(X,Sb,C).
We have

Lemma 4.7. For any b ∈ B, the equality σR,F,b([ω]) = ω̃b holds.

Proof of Lemma 4.7. We have F 3(H2(Sb)/j
∗
bH

2(X)) = 0. Since the class
[ω] belongs to F 3H3(X), any Hodge lifting of [ω] belongs to F 3H3(X,Sb).
Since

F 3H3(X,Sb) ∩
H2(Sb)

j∗bH
2(X)

= F 3 H2(Sb)

j∗bH
2(X)

= 0,

the Hodge lifting of [ω] is unique. Hence ω̃ and σR,F,b must coincide.
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Recall (see Remark 4.1) that dδ′C is the C-linear extension of ∇δ′X,Sb
,

where ∇ is the Gauss–Manin connection applied to the family of tori (11).
On the other hand, we have just shown that δ′X,Sb

= σF,R − σZ modulo

HomZ(H3(X,Z)Sb
, H2(Sb,Z)/j∗bH

2(X,Z)). Since σZ is integral, hence flat,
we get ∇δ′X,Sb

= ∇σF,R.

Next, since [ω] gives a flat section of the bundle H3
S with fiber H3(X)Sb

,
we find that

∇σF,R([ω]) = ∇X,S(σF,R([ω])).

Here, on the right hand side, the Gauss–Manin connection acts on the bundle
H3
X,S of complex relative cohomology, with fiber H3(X,Sb) at b ∈ B, but

the resulting form lies in

ΩC
B ⊗ (H2

S/H
2
X) ⊂ ΩC

B ⊗H3
X,S ,

because the projection of σF,R([ω]) in H3
S is flat. By Lemma 4.7, we have

σF,R([ω]) = ω̃, and

(12) dδ′C([ω]) = ∇δ′X,Sb
([ω]) = ∇σF,R([ω]) = ∇X,S(σF,R([ω])) = ∇X,S(ω̃).

The proof of the proposition will be complete once we have shown that

∇X,S(ω̃) = α(ω).(13)

This follows from a general fact concerning the Gauss–Manin connection
acting on the relative cohomology of a family (cf. [Voi3]).

Let X ⊂ Y be an immersion of two families of compact differentiable
manifolds parametrized by a basis B. Let α be a closed differentiable k-form
on Y which vanishes on each fiber Xb. Then α also provides a natural section
α̃ of the bundle Hk

Y,X of relative cohomology. The projection of α̃ into Hk
Y

is flat, so that ∇α̃ belongs to (Hk−1
X /Hk−1

Y )⊗ΩC
B . On the other hand, since

α vanishes on Xb, the form α projects into a section of Ak−1(Xb)⊗ΩB,b for
each b ∈ B, which is closed. Hence we get an element

p(αb) ∈ Hk−1(Xb) ⊗ΩB,b.

Lemma 4.8. The projection of p(αb) into (Hk−1(Xb)/H
k−1(Yb))⊗ΩB,b

coincides with ∇α̃ at any point b ∈ B.

This lemma shows equality (13) and completes the proof of Proposi-
tion 4.6.

Step 2: The action of de′C. Recall that we have the map

de′ ∧ dfC ∈ HomC(H2(S0,C)C0
,
∧2ΩC

B).

By (12) and (13) we have

dδ′C([ω]) = ∇X,S(ω̃) = α(ω) ∈
H2,0

S

j∗H2,0
X

⊗Ω1
B ,
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so that we can calculate de′∧dfC(dδ′C([ω])) as de′∧dfC(α(ω)). Now, since α(ω)

is the projection of p(j∗ω) ∈ H2,0
S ⊗ ΩB in the quotient (H2,0

S /H2,0
X ) ⊗ ΩB ,

we have as well

de′ ∧ dfC(dδ′C([ω])) = de′ ∧ dfC(p(j∗ω)).(14)

We begin the computation again by writing

de′ ∈
H1(C0,Z)

i∗0H
1(S0,Z)

⊗Z

H2(S0,Z)

〈C0,r〉
⊗Z Ω

R
B

as a homomorphism (after C-linear extension)

de′C ∈ HomC

(
H2(S0,C)C0

,
H1(C0,C)

i∗0H
1(S0,C)

⊗C Ω
C
B

)
.

This map in turn defines an extended homomorphism

de′C,1 ∈ HomC

(
H2(S0,C)C0

⊗C Ω
C
B ,

H1(C0,C)

i∗0H
1(S0,C)

⊗C

∧2ΩC
B

)

by the rule

de′C,1(α⊗C η) = de′C(α) ∧ η.(15)

Similarly, we have

df ∈ (ker i0∗ : H1(C0,C) → H3(S0,C)) ⊗C Ω
C
B ,

which we view as a homomorphism

dfC ∈ Hom

(
H1(C0,C)

i∗0H
1(S0,C)

, ΩC
B

)
,

which can be extended to

dfC,2 ∈ Hom

(
H1(C0,C)

i∗0H
1(S0,C)

⊗C

∧2ΩC
B ,

∧3ΩC
B

)

by the rule

dfC,2(α⊗C η) = dfC(α) ∧ η.

It is clear from these definitions that

de′ ∧ dfC(p(j∗ω)) = −dfC,2(de
′
C,1(p(j

∗ω))).(16)

(Notice that we are not allowed to write this equality with p(j∗ω) replaced
by α(ω), since de′C,1 does not act on α(ω).)

So first we have to compute de′C,1(p(j
∗ω)). On C we have a natural sur-

jective morphism

q : Ω3
C → ΩC/B ⊗ π∗Ω2

B .

By pulling back via j ◦ i, the holomorphic 3-form ω on X gives a section
(j ◦ i)∗ω of Ω3

C ; we project it via q to the section q((j ◦ i)∗ω) of Ω1
C/B⊗π∗Ω2

B ,
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further via π∗ to a section still denoted by q((j ◦ i)∗ω) of

π∗Ω
1
C/B ⊗ π∗π

∗Ω2
B = H1,0

C ⊗Ω2
B ⊆ H1

C ⊗Ω2
B ,

and then to a section

β(ω) ∈
H1,0

C

i∗H1,0
S

⊗Ω2
B .

Here H1,0
C and H1,0

S denote the Hodge bundles with fibers H1,0(Cb) and
H1,0(Sb), respectively.

Proposition 4.9. Let ω be a holomorphic 3-form on X. Then for any

b ∈ B we have the equality

de′C,1(p(j
∗ω))b = β(ω)b

via the inclusion

H1,0(Cb,C)

i∗bH
1,0(Sb,C)

⊗C Ω
2
B,b ⊆

H1(Cb,C)

i∗bH
1(Sb,C)

⊗C Ω
2,C
B,b

∼=
H1(C0,C)

i∗0H
1(Sb,C)

⊗C Ω
2,C
B,b.

Proof. Carlson’s description of e′Sb,Cb
as an extension class says it is the

class of σ′F − σ′Z in the quotient

HomC(H2(Sb,C)Cb
, H1(Cb,C)/i∗bH

1(Sb,C))

F 0 HomC(·, ·) + HomZ(·, ·)
,

where σ′F and σ′Z are Hodge and integral splittings of the sequence

0 → H1(Cb)/j
∗
bH

1(Sb) → H2(Sb, Cb) → H2(Sb)Cb
→ 0(17)

of mixed Hodge structures.

Just as in the previous step we find that e′Sb,Cb
is the class of σ′R,F − σ′Z

in the quotient

HomZ(H2(Sb,Z)Cb
, H1(Cb,R)/i∗bH

1(Sb,R))

HomZ(H2(Sb,Z)Cb
, H1(Cb,Z)/i∗bH

1(Sb,Z))

∼= HomZ(H2(Sb,Z)Cb
, H1(Cb,Z)/i∗bH

1(Sb,Z)) ⊗Z R/Z,

where σ′R,F is the unique real splitting of (17) that also preserves the Hodge
filtration.

Now, by the above we have

de′ = ∇(σ′F,R − σ′Z) = ∇σ′F,R,(18)

since σ′Z is an integral, hence flat section of the bundle with fiber

Hom(H2(Sb)Cb
, H1(Cb)/i

∗
bH

1(Sb)).

In what follows we shall denote by H2
C ⊂ H2

S the flat subbundle with fiber
H2(Sb)Cb

and by H2
S,C the flat bundle with fiber H2(Sb, Cb). The Gauss–

Manin connection acts in a compatible way on all of these bundles.
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Since p(ω) is a section of H2
C ⊗ ΩB which is closed with respect to the

Gauss–Manin connection, it follows from Leibniz’s rule (15) and the formula
(18) that

de′C,1(p(j
∗ω)) = (∇σ′F,R)(p(j∗ω)) = ∇(σ′F,R(p(ω))),(19)

where ∇ on the right hand side acts on the bundle H2
S,C of relative coho-

mology.

Now, the argument in the proof of Lemma 4.7 gives as well

Lemma 4.10. If α ∈ H2,0(Sb), the class σ′F,R(α) ∈ H2(Sb, Cb,C) is the

class of the closed form α, which vanishes on Cb.

It follows from this lemma that σ′F,R(p(j∗ω)) ∈ H2
S,C ⊗ ΩC

B is equal to

p̃(ω), where the tilde denotes the lifting H2,0(Sb) → H2(Sb, Cb) described in
the statement of the lemma. Combining (19) and the lemma above, we get

de′C,1(p(j
∗ω)) = ∇(p̃(j∗ω)),(20)

where ∇ on the right hand side acts on H2
S,C ⊗ ΩC

B, but the resulting dif-

ferential lies in (H1
C/i

∗H1
S) ⊗

∧2ΩC
B , because the projection of p̃(j∗ω) into

H2
C ⊗ΩC

B is ∇-closed.

The proof of Proposition 4.9 is then concluded by the following

Lemma 4.11. We have the equality

∇(p̃(j∗ω)) = β(ω)(21)

in (H1
C/i

∗H1
S) ⊗

∧2ΩC
B.

This lemma follows from a slight generalization of Lemma 4.8, which
concerned the Gauss–Manin connection acting on the relative cohomology
of a family of pairs. Remember that p(j∗ω) ∈ H2

S ⊗ ΩB is obtained from
the 3-form j∗ω on S by observing that j∗ω is closed and in L1A3

S—here
L•A•

S denotes the Leray filtration on the sheaf of differential forms on S (cf.
[Voi2]). Now the form i∗(j∗ω) on C belongs to L2A3

C , so this provides on the

one hand the lifting p̃(j∗ω) of p(j∗ω) to H2
S,C ⊗ΩB , and on the other hand

the projection q(i∗(j∗ω)) ∈ H1
C ⊗ Ω2

B . The equality (21) is then essentially
the same statement as the equality given in Lemma 4.8, just for the L2 level
of the Leray filtration. This completes the proof of Proposition 4.9.

Step 3: The action of dfC. In this third and last step we calculate
de′ ∧ dfC(dδ′C([ω])), that is, Green’s pull-back of ω. We already noted that

de′ ∧ dfC(dδ′C([ω])) = −dfC,2(de
′
C,1(p(j

∗ω)).
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Since by Proposition 4.9 we know that

de′C,1(p(j
∗ω)) = β(ω) ∈

H1,0
C

i∗H1,0
S

⊗Ω2
B ,

we do this by computing dfC,2(β(ω)). Recall that β(ω) is the projection of

q(i∗(j∗ω)) ∈ ΩC/B ⊗
∧2ΩB in (H1,0

C /i∗H1,0
S ) ⊗ Ω2

B . It follows that we have
in fact dfC,2(β(ω)) = dfC,2(q(ω)). Theorem 4.5 then follows from this last
result:

Proposition 4.12. Let ω′ be a form of type (3, 0) on C, and q(ω′) the

section of H1,0
C ⊗Ω2

B associated to it. Then

dfC,2(q(ω)) =

N∑

i=0

mis
∗
i (ω

′) ∈ Ω3
B .

This proposition is proved exactly as in [Voi3, Lemma 8], where it is
stated for a 2-form on C.

5. On the image of the map ψ3
3. In this section we use Theorem 4.5

comparing Mumford’s and Green’s pull-backs to prove the following result:

Theorem 5.1. Let X be a 3-fold with h1,0(X) = b4,tr(X) = 0 (this
implies that the maps albX and ψ3

2 are identically zero). Then if

h3,0(X) := dimH0(Ω3
X) > 0,

the map ψ3
3 : ker(ψ3

2) → J3
3 (X) has, modulo torsion, positive-dimensional

image.

Note that the conditions are fulfilled, for example, by 3-dimensional com-
plete intersections of hypersurfaces in projective space in view of Lefschetz’s
hyperplane theorem.

The theorem is obtained by arguing that if ψ3
3 is 0, then we can find a

diagram as at the beginning of the previous section, with

(j ◦ i)∗Zb = xb − yb,

δ′b · eb · fb = 0 for any b, and the map b 7→ (xb, yb) ∈ X ×X is submersive.
One can then apply Theorem 4.5 together with Proposition 5.4 below to
conclude that H3,0(X) = 0.

More generally, Mumford’s technique of pulling back a holomorphic form
on the symmetric product X(k) ×X(k) of the variety X, induced by a holo-
morphic form on X, to a variety parametrizing 0-cycles, in order to bound
the dimension of the fibers of a map defined on this symmetric product, can
be combined with the reasoning above to prove that if H3,0(X) 6= 0, then
the image of ψ3

3 is actually infinite-dimensional.



A higher Albanese map 135

We work with the diagram from the beginning of the last section, in
which the 0-cycles, curves and surfaces are parametrized by a complex
ball B. The first step in the proof of the theorem is the following result:

Proposition 5.2. Let V ⊂ B be a smooth, real-analytic subset such

that for all b ∈ V , the Green contraction

δ′b · eb · fb ∈ J3(X)AJ ⊗Z (R/Z)⊗2

is torsion. Then for any holomorphic 3-form ω on X, the 3-form dδ′ ∧ de′ ∧
df([ω]) defined in the previous section vanishes on V .

Here δ′b = δ′X,Sb
, eb = eSb,Cb

, and fb = fCb,Zb
.

Proof. To make the calculation a bit simpler, we will assume that the
surface S = S0 is regular, i.e. that H1(S,Z) = 0. Let C = C0 and let

{αi, βi}, i = 1, . . . , g,

be a symplectic basis for H1(C,Z). Let

{γj}, j = 1, . . . , b2(S), and {γ∗j }, j = 1, . . . , b2(S)new,

be respectively a basis of H2(S,Z) such that {γj}, j = 1, . . . , b2(S)new,
induces a basis of

H2(S,Z)new = ker(j∗ : H2(S,Z) → H4(X,Z)),

and the dual basis of H2(S,Z)∗new = H2(S,Z)/j∗H2(X,Z). Hence by defi-
nition we have 〈γi, γ

∗
j 〉 = 0 for i 6= j, i ≤ b2(S)new and 〈γj , γ

∗
j 〉 = 1, where

〈·, ·〉 is the duality between H2(S,Z)new and H2(S,Z)/j∗H2(X,Z). Finally,
let

{δn}, n = 1, . . . , b3(X),

be a basis of

H3(X,Z)∗S =
H3(X,Z)

j∗H1(S,Z)
,

which is equal to H3(X,Z) by our assumption that S is regular. Then we
can write explicitly

fb =

g∑

i=1

φi(b) ⊗Z αi +

g∑

i=1

ψi(b) ⊗Z βi ∈ R/Z ⊗Z H
1(C,Z),

e′b =

b2(S)∑

j=1

{ g∑

i=1

̺ij(b) ⊗Z γj ⊗Z αi +

g∑

i=1

χij(b) ⊗Z γj ⊗Z βi

}
,

modulo

R/Z ⊗Z NS(S) ⊗Z H
1(C,Z),
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and

δ′b =

b3(X)∑

n=1

b2(S)new∑

j=1

ηnj(b) ⊗Z δn ⊗Z γ
∗
j ,

where φi, ψi, ̺ij , χij and ηnj : B → R/Z are differentiable functions.

By assumption, Green’s contraction e′b · fb belongs to

ker

(
j∗ :

H2(S,Z)

NS(S)
→

H4(X,Z)

j∗ NS(S)

)
,

which is isomorphic to H2(S,Z)new/(NS(S) ∩ ker j∗). This means that

b2(S)∑

j=1

( g∑

i=1

̺ij(b) ⊗Z ψi(b) −

g∑

i=1

χij(b) ⊗Z φi(b)
)
⊗Z γj

belongs to (R/Z)⊗2⊗ZH
2(S,Z)new modulo (R/Z)⊗2⊗Z NS(S). Let us write

b2(S)∑

j=1

( g∑

i=1

̺ij(b) ⊗Z ψi(b) −

g∑

i=1

χij(b) ⊗Z φi(b)
)
⊗Z γj = a+ c,

with a ∈ (R/Z)⊗2 ⊗Z H
2(S,Z)new, and c ∈ (R/Z)⊗2 ⊗Z NS(S). Then

a =

b2(S)new∑

j=1

( g∑

i=1

̺ij(b) ⊗Z ψi(b) −

g∑

i=1

χij(b) ⊗Z φi(b)
)
⊗Z γj

modulo (R/Z)⊗2 ⊗Z (NS(S) ∩ ker j∗). Furthermore, by the definition of our
contraction δ′b · eb · fb, it is equal (modulo (R/Z)⊗2 ⊗Z im(AJX)) to the con-
traction δ′b · a obtained by making use of the pairing between H2(S,Z)new

and H2(S,Z)/j∗H2(X,Z). Hence

δ′b · eb · fb =

b3(X)∑

n=1

b2(S)new∑

j=1

ηnj(b)(22)

⊗Z

{ g∑

i=1

̺ij(b) ⊗Z ψi(b) −

g∑

i=1

χij(b) ⊗Z φi(b)
}
⊗Z δn

modulo (R/Z)⊗2 ⊗Z im(AJX).

We have to show that if the expression (22) vanishes modulo torsion in
J3(X)AJ ⊗Z (R/Z)⊗2 for any point b of V , then for any ω ∈ H3,0(X), the
3-form dδ ∧ de ∧ df([ω]) defined on B vanishes on V .

First of all, we note that this assumption means that for any v ∈ V there
exists a non-zero integer m ∈ N such that mδ′b · e

′
b · fb = 0. The formula for

δ′b · e
′
b · fb now shows that the locus Vm ⊂ V where mδ′b · e

′
b · fb = 0 is a

countable union of real-analytic subsets of V . The assumption says that V
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is the union over m of the Vm’s and by Baire’s theorem it follows that V
must be equal to some Vm. So we may assume that mδ′b · e

′
b · fb = 0 on V .

The image of the Abel–Jacobi map. The image im(AJX) of the Abel–
Jacobi map is a subgroup of J3(X); it is an extension of an Abelian subvari-
ety J3(X)alg of J3(X), its connected component of 0, by a countable group

Griff(X). J3(X)alg corresponds to a certain real subtorus

H3(X,Z)alg ⊗Z R/Z ⊂ H3(X,Z) ⊗Z R/Z = J3(X),

where the sublattice H3(X,Z)alg ⊂ H3(X,Z) has the property that the
complexification H3(X,Z)alg ⊗Z C ⊂ H3(X,C) is contained in H2,1(X) ⊕
H1,2(X), and thus is perpendicular to H3,0(X) with respect to Poincaré
duality.

A special case. Assume first that the stronger condition

mδ′b · e
′
b · fb = 0 in (J3(X)/J3(X)alg) ⊗Z (R/Z)⊗2(23)

is satisfied along V . We may suppose that the basis δn has been chosen so
that the

δk, k ≤ b3(X)alg := rkH3(X,Z)alg,

induce a basis of H3(X,Z)alg. Then from (22) we conclude that

m

b3(X)∑

n=b3(X)alg+1

b2(S)new∑

j=1

ηnj(b)(24)

⊗Z

{ g∑

i=1

̺ij(b) ⊗Z ψi(b) −

g∑

i=1

χij(b) ⊗Z φi(b)
}
⊗Z δn

vanishes in (H3(X,Z)/H3(X,Z)alg)⊗Z (R/Z)⊗3. Now we observe that since
[ω] is perpendicular to δn, n ≤ b3(X)alg, we have

dδ′C([ω]) =

b3(X)∑

n=b3(X)alg+1

b2(S)new∑

j=1

dηnj(b)〈δn, [ω]〉 ⊗ γ∗j(25)

in H2(S,C)new ⊗C Ω
C
B . It follows that the coefficients ηnj with n ≤ b3(X)alg

will not play any role in the computation of dδ ∧ de ∧ df([ω]).
Suppose we start out with finitely many real vector spaces V1, . . . , Vk,

all of finite dimension, and that we have a relation F = 0 in V1 ⊗Q · · · ⊗Q

Vk⊗Q (R/Q)⊗k. Taking R-bases for the vector spaces this gives a number of
equations in (R/Q)⊗k together equivalent to the original relation F = 0.

Suppose next that the vector spaces are the stalks at v ∈ V of a local
system of R-vector spaces. Gauss–Manin allows one to differentiate smooth
sections in the corresponding vector bundle. For computations, B is a small
ball so that the local systems can be considered to be trivialized in a flat
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frame and the Gauss–Manin connection then amounts to differentiating the
coefficients in this frame. We also suppose that the relation extends over
V ⊂ B, a real-analytic submanifold, so that it can be differentiated. Say we
have ∑

I

vi1(v) ⊗Q · · · ⊗Q vik(v) = 0,

where I = (i1, . . . , ik), and the vij (v) are smooth sections of Vj ⊗Q (R/Q)
(see Proposition 3 and its proof in [Voi3]). As we saw above, the relation is
equivalent to equations of the form

∑

I

ri1 ⊗Q · · · ⊗Q rik = 0,

where I = (i1, . . . , ik), and the rij are smooth functions on V with values in
R/Q. One wants to see that there is a relation

∑

I

dvi1(v) ∧ · · · ∧ dvik(v) = 0

inside Ωk
V . This follows inductively by using the next result:

Lemma 5.3. Let ωλ be a smooth section of Ωa
V ⊗Q (R/Q)⊗b, and eλ a

smooth R/Q-valued function on V such that

(26)
∑

λ∈I

ωλ ⊗Q eλ = 0

in each stalk of Ωa
V ⊗Q (R/Q)⊗(b+1). Then

∑

λ∈I

ωλ ⊗Q deλ = 0 in Ωa+1
V ⊗Q (R/Q)⊗b.

Proof. First we may assume that V is connected. Then, by a Baire cat-
egory argument, there is a dense subset V 0 of V with the property that
any relation

∑
aiei(v) = 0 over V 0 holds over V . Now pick a subset J ⊂ I

such that ej(v0) gives a Q-basis for the Q-span of the ei(v0). This gives ex-
pressions for ei, i 6∈ J , in terms of the ej, j ∈ J , with constant coefficients,
hence similar expressions for dei, i 6∈ J , in terms of the dej , j ∈ J , say
dei =

∑
aijdej , i 6∈ J. Substituting this in the relation (26) above, we find

ωj = −
∑

i6∈J aijωi and so
∑

i∈I

ωi ∧ dei =
∑

j∈J

[∑

i6∈J

−aijωi

]
⊗Q dej +

∑

i6∈J

ωi ⊗Q

[∑

j∈J

aijdej

]
= 0,

which proves the result.

The general case. We now consider the general case where mδ′b · eb · fb ∈
im(AJX) ⊗Z (R/Z)⊗2, in contrast to (23). With the above notation, this
means that the term (24) vanishes in the quotient of (H3(X,Z)/H3(X,Z)alg)
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⊗Z (R/Z)⊗3 by Griff(X) ⊗Z (R/Z)⊗2, where the group

Griff(X) ⊂
H3(X,Z)

H3(X,Z)alg
⊗Z R/Z ∼=

J3(X)

J3(X)alg

is countable. This implies the existence of finitely many cn,k ∈ R/Z such that
we obtain the following equality in (H3(X,Z)/H3(X,Z)alg) ⊗Z (R/Z)⊗3:

(27) m

b3(X)∑

n=b3(X)alg+1

b2(S)new∑

j=1

ηnj(b)

⊗Z

{ g∑

i=1

̺ij(b) ⊗Z ψi(b) −

g∑

i=1

χij(b) ⊗Z φi(b)
}
⊗Z δn

=

b3(X)∑

n=b3(X)alg+1

∑

k

cn,k ⊗Z τn,k ⊗Z δn,

where τn,k ∈ C∞(V,R/Z)⊗2. It is clear that the right hand side vanishes
under the triple derivative

d3 : C∞(V,R/Z)⊗3 →
∧3ΩR

V , f ⊗ g ⊗ h 7→ df ∧ dg ∧ dh.

But if we go back to the construction of dδ′ ∧ de′ ∧ df([ω]), we see that
it is obtained by a suitable contraction using various Poincaré dualities of
d3(δ′⊗e′⊗f⊗[ω]). It follows that the equality (27) has the same implication
on dδ′ ∧ de′ ∧ df([ω]) as the equality

m

b3(X)∑

n=b3(X)alg+1

b2(S)new∑

j=1

ηnj(b)

⊗Z

{ g∑

i=1

̺ij(b) ⊗Z ψi(b) −

g∑

i=1

χij(b) ⊗Z φi(b)
}
⊗Z δn = 0

considered before (see (24)). So in this case we also conclude that dδ′∧de′∧
df([ω]) vanishes on V .

Putting together Theorem 4.5 and Proposition 5.2 we obtain the follow-
ing result:

Proposition 5.4. Let V ⊂ B be a smooth, real-analytic subset such that

for all b ∈ V , the product δ′b · eb · fb is torsion in J3(X)AJ ⊗Z (R/Z)⊗2. Then

Mumford’s pull-back M∗(ω) of the holomorphic 3-form ω on X vanishes

on V .

The other half of the proof of Theorem 5.1 is:
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Proposition 5.5. Assume that h1,0(X) = b4,tr(X) = 0, and that the

map ψ3
3 vanishes modulo torsion in J3

3 (X). Then there exist data

C //

π

��

S //

��

B ×X

��

B B B

together with sections si of π, and integers mi, defining a family of 0-cycles
Zb =

∑
imisi(b) homologous to zero on Cb, with the properties:

(a) There exists a map Ψ = (Ψ1, Ψ2) : B → X ×X such that

(pr2 ◦ j ◦ i)∗Zb = Ψ1(b) − Ψ2(b)

as a 0-cycle of X, for any b ∈ B.

(b) There is a smooth locally closed real-analytic subset V ⊂ B such

that , for all b ∈ V ,

δ′b · eb · fb = 0 ∈ (J3(X)AJ ⊗Z (R/Z)⊗2)/T,

where T is the torsion subgroup of J3(X)AJ ⊗Z R/Z ⊗Z R/Z, and

(c) Ψ|V is a submersion.

Proof. Since H1,0(X) = 0 = H2,0(X), the maps albX and ψ3
2 are zero.

So ψ3
3 is defined on the cycles x− y, x, y ∈ X. The assumption that ψ3

3 = 0
modulo torsion implies that for any x, y ∈ X there exist a curve C and a
surface S together with morphisms i : C → S and j : S → X, and a cycle
Z on C homologous to 0, such that

1. The cycle j∗(i∗Z) is equal to x− y as a 0-cycle on X.
2. The cycle i∗Z is Albanese equivalent to 0 on S.
3. For some non-zero integer m we have mδ′X,S · eS,C · fC,Z = 0 in

J3(X)AJ ⊗Z (R/Z)⊗2.

There are countably many algebraic varieties Bm parametrizing the data
above, except for condition 3. For each such variety Bm we have a morphism

(Ψm1 , Ψ
m
2 ) : Bm → X ×X

given by property 1.
And for each of these varieties the equations provided by condition 3 are

satisfied on a countable union of locally closed real-analytic subsets Vn,m.
Our assumption is that X × X is filled in by the countable union of the
images (Ψm1 , Ψ

m
2 )(Vm,n). It then follows from Sard’s and Baire’s theorems

that some (Ψm1 , Ψ
m
2 ) must be submersive at some point of some Vm,n.

This proposition, together with Proposition 5.4, now implies the theorem
as follows:

If ψ3
3 = 0 modulo torsion, we are in a position to apply Proposition 5.5.

On the one hand, by property (a) we see that for any holomorphic 3-form
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ω on X, Mumford’s pull-back M∗(ω) is Ψ∗
1 (ω)− Ψ∗

2 (ω). On the other hand,
by property (b) and by Proposition 5.4, we know that M∗ω vanishes on V .

Finally, by property (c) the map Ψ|V : V → X ×X is submersive, so the
vanishing of

Ψ∗
1 (ω) − Ψ∗

2 (ω)|V = Ψ∗
|V (prX1 (ω) − prX2 (ω))

implies that prX1 (ω) − prX2 (ω) is zero on an open set of X ×X, hence ω is
zero, since it is holomorphic.

In sum, we have shown that, under the assumptions h1,0(X) = b4,tr(X)
= 0, if ψ3

3 = 0 modulo torsion, then there are no holomorphic 3-forms on X,
which is just Theorem 5.1.

Remark 5.6. One can prove that the assumption h1,0 = 0 is not neces-
sary here. Indeed, the set Zk,alb ⊂ X(k) ×X(k) consisting of couples (Z,Z ′)
such that albX(Z − Z ′) = 0 is a Zariski closed algebraic subset of codimen-
sion ≤ g := dimAlb(X) in X(k) ×X(k). Hence we can apply the argument
alluded to in the previous remark to Zk,alb for k → ∞ to conclude that
imψ3

3 is infinite-dimensional if h3,0(X) is non-zero, even if g 6= 0.

6. On the non-injectivity of the map ψ3
3. To conclude, we show that

under an additional condition the map ψ3
3 is not always injective. Consider

the special case where the threefold X is the product of a smooth surface
S and a smooth curve C. We establish a connection between the Abel–
Jacobi map albC = µC for C, the map ψ2

2 for S and the map ψ3
3 for X.

Concretely, we will define the map k indicated below and prove that the
following diagram commutes:

CH0(C)0 ⊗ CH0(S)alb
×

//

albC ⊗ψ2
2

��

ker(ψ3
2)

ψ3
3

��

J(C) ⊗ J2
2 (S)

k
// J3

3 (C × S)

Remark 6.6 explains how this fact can be used to give a counterexample
to the demanded injectivity of the map ψ3

3 based on the one by Voisin for
Green’s map.

There is a product “×” for 0-cycles which factors through rational equiv-
alence (see [Ful, 1.10]):

CH0(C)⊗CH0(S) → CH0(X),
∑

i

ni[ci]×
∑

j

mj [dj] 7→
∑

i,j

nimj[ci×dj ].

We begin by showing

Lemma 6.1. The map induced by this product

CH0(C)0 ⊗ CH0(S)alb → CH0(X)alb

has its image in ker(ψ3
2).
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Proof. We will start with the case when Z = ZC × ZS , with ZC =
p − q, p, q ∈ C, and ZS ∈ CH0(S)alb arbitrary. Then we can choose the
surface (p×S)∪(q×S) ⊂ X to compute ψ3

2(Z), since it contains the support
of Z = (p − q) × ZS . Now by construction the map ψ3

2 is given by pushing
forward ψ2

2(ZS) on p× S and −ψ2
2(ZS) on q× S via the inclusion map, and

this is equivalent to pushing forward ψ2
2(ZS) via the Gysin morphism

jp∗ − jq∗ : H2(S) → H4(X).

But the two push-forward maps in cohomology, jp∗ and jq∗, are identical,
since they are induced by the homotopic maps jp and jq, and it follows that

(p− q) × ZS ∈ ker(ψ3
2).

The case of an arbitrary cycle Z ∈ CH0(C)0⊗CH0(S)alb follows by linearity
from this special case.

We now construct the map

k : J(C) ⊗ J2
2 (S) → J3

3 (S × C),

which will be based on the Künneth inclusion

i : H1(C,Z) ⊗Z H
2(S,Z) →֒ H3(C × S,Z).

By definition,

J2
2 (S) =

H2(S,Z)∗tr ⊗Z R/Z ⊗Z R/Z

U2
2 (S)

,

where H2(S,Z)∗tr = H2(S,Z)/NS(S), and J(C) = H1(C,Z) ⊗Z R/Z.

Lemma 6.2. The map

i : H1(C,Z) ⊗Z R/Z ⊗Z H
2(S,Z) ⊗Z (R/Z)⊗2 →֒ H3(C × S,Z) ⊗Z (R/Z)⊗3

followed by the projections

π1 : H3(C × S,Z) ⊗Z (R/Z)⊗3 → J3(C × S)AJ ⊗Z (R/Z)⊗2

and

π2 : J3(C × S)AJ ⊗Z (R/Z)⊗2 →
J3(C × S)AJ ⊗Z (R/Z)⊗2

U3
3 (C × S)

= J3
3 (C × S)

factors through J(C) ⊗ J2
2 (S).

(We recall that π1 is the composition of the identifications

H3(C × S,Z) ⊗Z (R/Z)⊗3 = H3(C × S,Z) ⊗Z R/Z ⊗Z (R/Z)⊗2

∼= J3(C × S) ⊗Z (R/Z)⊗2

and of the projection in J3(C × S)AJ, that is, modulo the image of the
Abel–Jacobi map of C × S.)

We will denote by k : J(C) ⊗ J2
2 (S) → J3

3 (C × S) the induced map on
the higher Jacobians.
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Proof. To begin, we show that for an element η ∈ NS(S)⊗Z (R/Z)⊗2 and
an element γ ∈ J(C) = H1(C,Z) ⊗Z R/Z, i(γ ⊗ η) belongs to im(AJ) ⊗Z

(R/Z)⊗2 and thus vanishes when projected via π1. In order to see this,
note that the class η, being a Hodge class, induces a morphism of Hodge
structures

p∗2η∪ : H1(C,Z) → H3(C × S,Z),

and the corresponding morphism of Jacobians

p∗2η∪ : J(C) → J3(C × S)

is the Abel–Jacobi map associated to the family of 1-cycles ZC× η̃ of C×S,
where ZC is a 0-cycle on C of degree zero, and η̃ is a 1-cycle on S of class η.
Hence the image of p∗2η ∪ (which identifies with the tensor product map
via the Künneth decomposition), is contained in the image of the Abel–
Jacobi map of C × S. It follows that for any η =

∑
i ηi ⊗ αi, ηi ∈ NS(S),

αi ∈ (R/Z)⊗2, and any γ ∈ J(C), i(γ ⊗ η) belongs to im(AJ) ⊗Z (R/Z)⊗2,
which proves our claim.

The second thing to show is that this composite map factors through
J(C)⊗U2

2 (S), but it can be seen that an element of J(C)⊗U2
2 (S) maps to

an element of U3
3 (X) via π1 ◦ i and hence vanishes when projected via π2.

Indeed, these elements are of the form albC(p − q) ⊗ α, α being obtained

by Green’s contraction of some f
C̃,Z̃

· e
C̃,S

, where Z̃ is a 0-cycle of C̃ and

ψ : C̃ → S is a morphism such that ψ∗Z̃ = 0 as a cycle on S. We will show
below that albC(p−q)⊗α is the Green contraction of α with the Abel–Jacobi
invariant of the cycle Γip − Γiq of S ×C × S. Hence, by definition of ψ3

3 , we
find that albC(p− q) ⊗ α belongs to U3

3 (C × S).

Now we can discuss the commutativity of the diagram of the beginning
of this section.

Proposition 6.3. The diagram

(28) CH0(C)0 ⊗ CH0(S)alb
×

//

albC ⊗ψ2
2

��

ker(ψ3
2)

ψ3
3

��

J(C) ⊗ J2
2 (S)

k
// J3

3 (C × S)

commutes.

Proof. This will result from the following description of the Abel–Jacobi
invariant δ′X,p×S − δ′X,q×S : Let Γjp − Γjq be the difference of the graphs of
the two inclusion maps

jp : S → p× S ⊂ X and jq : S → q × S ⊂ X.
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Then by definition δ′X,p×S − δ′X,q×S is obtained by projecting

AJ(Γjp − Γjq) ∈ J5(S ×X)

into the appropriate quotient.

By definition of ψ3
3, since we can see (p − q) × ZS as the cycle ZS on

p× S and −ZS on q × ZS , we find that ψ3
3((p− q)× ZS) is obtained as the

projection in J3
3 (X) of Green’s contraction of any lifting

ψ̃2
2(ZS) ∈ H2(S,Z) ⊗Z (R/Z)⊗2

of ψ2
2(ZS) and of the real version of δ′X,p×S − δ′X,q×S . Since the latter is

obtained as a projection of the (real version of the) Abel–Jacobi invariant of
Γjp −Γjq , we start by computing AJ(Γjp −Γjq) ∈ J5(S×X). Let ∆S ⊂ S×S
be the diagonal; we see immediately that

(29) Γjp − Γjq = p∗13(∆S) · p∗2(p− q)

as a cycle of S × C × S.

Now by (29) we have the following formula for its Abel–Jacobi image in
J5(S ×X) = J(H5(S ×X)):

(30) AJ(Γjp − Γjq) = p∗13([∆S]) · p∗2(albC(p− q)).

We project this invariant via

pr : J(H5(S ×X)) → J(H2(S) ⊗H3(X));

from (30), by analyzing Künneth types, it follows that

(31) pr(AJ(Γjp − Γjq)) = p∗13([∆S ](2,2)) · p
∗
2(albC(p− q)),

where [∆S](2,2) is the (2, 2)-Künneth component of ∆S . Now since [∆S ](2,2)

is a Hodge class, the identifications

J(C) ∼= H1(C,Z) ⊗Z R/Z,

J5(S × C × S) ∼= H5(S × C × S,Z) ⊗Z R/Z

are compatible with the cup product with p∗13[∆S ](2,2) (which via the Kün-
neth decomposition is given by the tensor product with [∆S ](2,2).) Hence we
have proved

Lemma 6.4. The invariant AJ(Γjp − Γjq), viewed as an element of

H2(S,Z) ⊗Z H
1(C,Z) ⊗Z H

2(S,Z) ⊗Z R/Z,

is equal to

p∗13[∆S ](2,2) ∪ p
∗
2fC,p−q.

(Here the cup product identifies with a tensor product , and the element

fC,p−q ∈ H1(C,Z) ⊗Z R/Z is the real version of albC(p− q).)
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In order to compute ψ3
3(Z), we have to make Green’s contraction of

ψ̃2
2(ZS) and AJ(Γjp − Γjq). We now use the following lemma whose proof is

obvious:

Lemma 6.5. The map H2(S,Z) → H2(S,Z), given by contraction with

the class [∆S ](2,2) ∈ H2(S,Z) ⊗Z H
2(S,Z) using Poincaré duality , is equal

to the identity.

It follows from this lemma that Green’s contraction of ψ̃2
2(ZS) with

p∗13[∆S ](2,2) ∪ p
∗
2fp−q,C

is equal to

fC,p−q ⊗ ψ̃2
2(ZS) ∈ H1(C,Z) ⊗Z H

2(S,Z) ⊗Z (R/Z)⊗3.

This proves the commutativity of the diagram (28).

To conclude this section, we point out the following fact:

Remark 6.6. One knows that the map ψ2
2 is not injective (see [Voi3,

Section 2]). The description of the map ψ3
3 just given in this special case

shows that it is not injective if we assume that the following statement is
true:

Let ZS be a 0-cycle on a surface S which is not rationally equivalent
to 0. Then there exist a curve C and a 0-cycle ZC of degree 0 on C such
that ZS × ZC is not rationally equivalent to 0 on C × S.
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