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Fixed point theory for homogeneous spaces, II

by

Peter Wong (Lewiston, ME)

Abstract. Let G be a compact connected Lie group, K a closed subgroup and M =
G/K the homogeneous space of right cosets. Suppose that M is orientable. We show that
for any selfmap f : M → M , L(f) = 0 ⇒ N(f) = 0 and L(f) 6= 0 ⇒ N(f) = R(f)
where L(f), N(f), and R(f) denote the Lefschetz, Nielsen, and Reidemeister numbers
of f , respectively. In particular, this implies that the Lefschetz number is a complete
invariant, i.e., L(f) = 0 iff f is deformable to be fixed point free. This was previously
known under the hypothesis that p∗ : Hn(G) → Hn(M) is nontrivial where n = dim M .
A simple formula using equivariant degree is given for the Reidemeister trace of a selfmap
f : M → M .

1. Introduction. Let M be a closed connected triangulated orientable
manifold of dimension ≥ 3. For any selfmap f : M → M , there is only one
obstruction (primary), denoted by o(f), to deforming f to be fixed point
free. If L(f) = 0⇒ o(f) = 0, where L(f) denotes the Lefschetz number of f ,
then the converse of the Lefschetz fixed point theorem holds true. In other
words, the Lefschetz number would be a complete invariant. The vanishing
of o(f) is equivalent to the vanishing of the Nielsen numberN(f) which gives
a sharp lower bound for the number of fixed points of maps in the homotopy
class of f . The relationship between o(f) and N(f) was given explicitly by
E. Fadell and S. Husseini in [4]. Since N(f) is defined to be the number of
fixed point classes of nonzero fixed point index and the Lefschetz number
is the sum of the fixed point indices of the fixed point classes, L(f) = 0
implies N(f) = 0 when the fixed point classes have index of the same sign.
In fact, L(f) 6= 0 ⇒ N(f) = R(f) where R(f) denotes the Reidemeister
number defined at the fundamental group level. It is therefore desirable to
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find spaces M for which

L(f) = 0 ⇒ N(f) = 0,(C1)

L(f) 6= 0 ⇒ N(f) = R(f),(C2)

for all selfmaps f : M →M . We call such spaces Jiang type spaces. In [16],
we employed the Nielsen root theory of R. Brooks [1] to further explore
the connection, made explicit by E. Fadell in [3], between the fixed point
problem for orientable homogeneous spaces and the associated Borsuk–Ulam
type problem. In particular, we showed that an orientable homogeneous
space M = G/K, where G is a compact connected Lie group and K a
closed subgroup, is a Jiang type space provided the homomorphism p∗ :
Hn(G) → Hn(M) induced by the projection map on the n = dimM -th
integral homology is nonzero. When K is connected, it is well known that
M = G/K is a Jiang space. The main objective of this paper is to prove the
same result (Theorem 2.2) without the hypothesis on p∗. Thus, our result
implies that for orientable coset spaces of compact connected Lie groups,
the Lefschetz number is a complete invariant. Analogously, it is known that
if M1 and M2 are closed connected orientable triangulated manifolds of the
same dimension then the topological degree is a complete invariant, i.e., for
any f : M1 →M2 and e ∈M2, deg f 6= 0 iff g−1(e) 6= ∅ for any g ∼ f .

First consider the following example in which p∗ is trivial.

Example 1.1. Let p : S3 → S2 be the Hopf map. Consider S2 = S3/S1

as a coset space and let [e] ∈ S2 be the coset of the identity element e ∈ S3.
Then p has exactly one root class, namely S1

[e] = p−1([e]), whose root index

ω(p, S1
[e]) is the zero homomorphism but S1

[e] is essential because p is not

null-homotopic.
Consider ϕ(g) = [e], the constant map at [e]. The subgroup S1 acts on S2

via left translation and it acts on S3 via k ∗ g = gk−1 for k ∈ S1 and g ∈ S3.
Now ϕ becomes an S1-equivariant map and it has one root class α = S3

which is inessential as an ordinary root class but it cannot be removed by
any S1-homotopy.

In this example, the secondary obstruction to deforming p to be root free
is nontrivial while the primary one vanishes. Thus p cannot be homotopic
to any map q with q−1([e]) = ∅. For the map ϕ, the ordinary root index
ω(ϕ, S3) (see [1] or [16]), which can be viewed as the primary obstruction to
deforming ϕ to be root free, is zero. Furthermore, the secondary obstruction,
which lies in H3(S3;π3(S

2)), is also trivial. Hence, ϕ is homotopic to a
map ψ such that ψ−1([e]) = ∅. On the other hand, when we consider the
deformation problem for ϕ in the S1-equivariant homotopy class, there is
only one (primary) equivariant obstruction and it is nontrivial. This simple
example suggests that the hypothesis p∗ 6= 0 need not be necessary and
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equivariant obstruction may be used to handle the situation when p∗ is zero.
Since the assumption p∗ 6= 0 was used in [16] to show that the ordinary root
index was nonzero, which then implied the equivariant root index to be
nonzero, we must by-pass the use of the ordinary root index and instead
give a direct proof of the nonvanishing of the equivariant root index.

Throughout we assume that G is a compact connected Lie group and K
is a closed but not necessarily connected subgroup. In addition, we assume
that the homogeneous space M = G/K of right cosets is orientable. The
subgroup K acts freely on G via k ∗ g = gk−1 for k ∈ K and g ∈ G. It also
acts on M via k ◦ (gK) = kgK. Given any selfmap f : M → M , there is
an associated K-equivariant map ϕ : G → M given by ϕ(g) = g−1f(gK).
In fact, this association is a 1-1 correspondence between the selfmaps of M
and the set of K-maps from G to M (see [3]). Note that f(gK) = gK iff
ϕ(g) = eK where e ∈ G denotes the identity element in G. Thus, the fixed
point problem of a map f : M →M is equivalent to the K-equivariant root
problem: ϕ(g) = eK.

Let K1, . . . ,K|π0(K)| denote the connected components of K, dimK = k,
dimM = n and so dimG = n+k. Without loss of generality, we may assume
that f has a finite number of fixed points in M . For an isolated fixed point
gK of f , let Og be the isolated K-orbit of roots of ϕ containing g. Consider
the diagram

(G,G−K)
θg
→ (G,G−Og)

i
←֓ (Vg, Vg −Og)

ϕ
→ (M,M − eK)

j
←֓ M

where Vg is a closed K-invariant neighborhood of Og containing no other
roots of ϕ, and θg is the homeomorphism induced by g. This defines an
integer-valued equivariant root index ωK(ϕ,Og). For each i, 1 ≤ i ≤ |π0(K)|,
we let Oig = Og ∩Ki and the equivariant root index of the ith component

Oig is simply

ωK(ϕ,Oig) =
1

|π0(K)|
ωK(ϕ,Og).

The connection between the equivariant root index of ϕ and the fixed
point index of f is given by the following

Lemma 1.2 ([16, Lemma 2.3]). Given a selfmap f : M → M and its

corresponding K-map ϕ : G→M , if gK is an isolated fixed point of f , then

ωK(ϕ,O1
g) = (−1)n ind(f, gK) where n = dimM .

Remark 1. We take this opportunity to correct Lemma 2.3 of [16]. The
extra quantity (−1)n should be added. The computation there used the def-
inition of the Lefschetz number incorrectly since L(1, f) = (−1)nL(f, 1) =
(−1)nL(f).
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In Section 2, we show that any two K-orbits of roots of ϕ are related
by a homotopy and hence that their equivariant root index must be of the
same sign, yielding Theorem 2.2.

The existence of a fixed point free map homotopic to f : M → M is
equivalent to the vanishing of the obstruction o(f) to deforming the graph
of 1 × f off the diagonal of M . In fact, this obstruction has a cochain rep-
resentation in terms of the fixed point indices of the essential fixed point
classes of f (Theorem 4.3 of [4]). In Section 3, we consider the (primary)
equivariant obstruction oK(ϕ) to deforming ϕ equivariantly to a root free
map, analogous to o(f). We employ the Bredon–Illman cohomology with
local coefficients developed in [11]. The appropriate equivariant local coef-
ficient system admits an action from the equivariant fundamental groupoid
whose typical object group is the fundamental group of a transformation
group of F. Rhodes [14]. This action coincides with the action of the ex-
tension group ΓG on π as described in [16]. We show that oK(ϕ) = 0 iff
o(f) = 0. Furthermore, oK(ϕ) has a cochain representation in terms of the
equivariant root indices of the K-Nielsen root classes of ϕ.

The relationship between o(f) and N(f) gives rise to the connection

between o(f) and L(f, f̃), the Reidemeister trace of f (with respect to the

lift f̃). The Reidemeister trace (also known as the generalized Lefschetz
number in [4] and in [9]) is an alternating sum of traces involving the in-
tegral group ring Zπ where π is the group of deck transformations of the
universal cover of M . The Reidemeister trace contains information on both
the Lefschetz and the Nielsen numbers so that

o(f) = 0 ⇔ L(f, f̃) = 0.

In the last section, we define an equivariant (Reidemeister) degree DK(ϕ, ϕ̃),

analogous to the Reidemeister trace L(f, f̃). A simple formula relating

L(f, f̃) and DK(ϕ, ϕ̃) is given; it generalizes a similar formula obtained
in [16] when K is a finite subgroup. The connection between DK(ϕ, ϕ̃) and

the equivariant obstruction oK(ϕ), similar to that between L(f, f̃) and o(f)
as in [4], will also be given. By defining the notion of an equivariant Nielsen
number for roots, we obtain a similar description of DK(ϕ, ϕ̃) such that the
sum of the coefficients yields the sum of the equivariant root indices, and
the sum of the number of classes yields the equivariant Nielsen root number.

2. Computation of ωK(ϕ,O). In this section, we compute the equiv-
ariant root index ωK(ϕ,O) and show that the equivariant root indices are all
zero or have the same sign. We prove our main result, Theorem 2.2, which
states that orientable homogeneous spaces of compact connected Lie groups
are Jiang type spaces.
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Let O1, . . . ,Om be the root orbits of ϕ and g1K, . . . , gmK be the corre-
sponding fixed points of f .

Lemma 2.1. If ωK(ϕ,Oi) = 0 for some i, then ωK(ϕ,Oj) = 0 for all j,
1 ≤ j ≤ |π0(K)|. If ωK(ϕ,Oi) 6= 0, then

ωK(ϕ,Oi) · ωK(ϕ,Oj) > 0 for all j, 1 ≤ j ≤ |π0(K)|.

Proof. Without loss of generality, we may assume that each giK is a
distinct fixed point class of f and thus the Oi’s are distinct K-orbit root
classes of ϕ.

Each Oi is a disjoint union of ordinary root classes of ϕ. In fact, if γ1

and γ2 are root classes of ϕ so that γ1 and γ2 belong to the same O then
there exists a σ ∈ K such that γ2 = σγ1. Conversely, if α is an ordinary
root class and α ⊂ Oi, then α is a disjoint union of components of Oi. Since
ωK(ϕ,Oi1i ) = ωK(ϕ,Oi2i ) for any two components Oi1i and Oi2i of Oi, one
can define ωK(ϕ, α) to be kα · ωK(ϕ,O1

i ) where kα denotes the number of
connected components in α.

Let α ⊂ Oi, β ⊂ Oj be two distinct root classes of ϕ. Let x ∈ α, y ∈ β
and C be a path in G with C(0) = y, C(1) = x. Since M is a manifold, there
exists an isotopy H : M × [0, 1] → M such that H1 = 1M and Ht(eK) =
ϕ ◦ C(t). Let F : G× [0, 1]→M be given by Ft = Ht ◦ ϕ. Now,

{Ft(C(1− t))} = {Ht ◦ ϕ ◦ C(1− t)}

= {Ht ◦H1−t(eK)} ∼ {eK} (relative to endpoints).

This implies that α and β are F -related and thus they belong to the same
root class N of F .

Let Nt = p1(N ∩ (G × {t})) where p1(w, s) = w, s ∈ [0, 1]. Note that
α = N0 and β = N1. Choose an open neighborhood W of N in G × [0, 1]
so that cl(W ) does not contain any roots of F other than N . For any r,
0 ≤ r ≤ 1, let

Wr = p1(W ∩ (G× {r})), Kr = p1(F
−1(eK))−Wr.

Since Kr is compact, by uniform continuity, for any ε > 0, there exists δ > 0
such that

|r − s| < δ ⇒ |Fr(z)− Fs(z)| < ε, ∀z ∈ Kr.

Thus, Fs has no roots in Kr and so Ns ⊂Wr.
Define {Γ r,st } : G→M by

Γ r,st (z) = F (z, (1− t)r + ts).

Then, Γ r,s0 = Fr, Γ
r,s
1 = Fs and⋃

0≤t≤1

(Γ r,st )−1(eK) ∩Wr

is compact in Wr.



166 P. Wong

Next, we show that ϕ∗(oα) = ϕ∗(oβ) where oα and oβ denote the fun-
damental homology classes around α and β respectively. To see that, we
observe that for any t ∈ [0, 1], the inclusion

j :
(
Wr,Wr −

⋃

0≤τ≤1

(Γ r,sτ )−1(eK)
)
→֒ (Wr,Wr − (Γ r,st )−1(eK))

induces on homology a homomorphism j∗ which takes o1 to o2 where

o1 = fundamental homology class around
⋃

0≤τ≤1

(Γ r,sτ )−1(eK) ∩Wr,

o2 = fundamental homology class around (Γ r,st )−1(eK) ∩Wr.

Since

{Γ r,st |Wr} :
(
Wr,Wr −

⋃

0≤τ≤1

(Γ r,sτ )−1(eK)
)
→ (M,M − eK)

is a homotopy, it follows that

(Γ r,s0 |Wr)∗(o1) = (Γ r,s1 |Wr)∗(o1).

Together with excision, we obtain

(Fr)∗ ◦ i
−1
∗ (o1) = (Fs)∗ ◦ i

−1
∗ (o1)

where

i :
(
Wr,Wr −

⋃

0≤τ≤1

(Γ r,sτ )−1(eK)
)
→ (G,G−Nz)

is the inclusion. By the compactness of [0, 1], we conclude that F0∗ = F1∗ ,
which then implies that

(H0 ◦ ϕ)∗(oα) = ϕ∗(oβ)

where oα and oβ denote the fundamental homology classes around α and β
respectively.

Since Ht is an isotopy and M is orientable, we have

(H0 ◦ ϕ)∗ = ϕ∗.

In other words,

ωK(ϕ, α) = ωK(ϕ, β).

Since two roots in the same connected component of Oi are Nielsen equiv-
alent as ordinary roots of ϕ, α consists of a disjoint union of connected
components of Oi, all homeomorphic to one other. We conclude that

ωK(ϕ,Oi) = 0 ⇔ ωK(ϕ, α) = 0 ⇔ ϕ∗(oα) = 0 ⇔ ωK(ϕ,Oj) = 0.

Moreover,

ωK(ϕ, α) = kα · ωK(ϕ,O1
i ), ωK(ϕ, β) = kβ · ωK(ϕ,O1

j )
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for some positive integers kα, kβ. Since

ωK(ϕ,Oi) = |π0(K)| · ωK(ϕ,O1
i ),

it follows that

ωK(ϕ,Oi) =
|π0(K)|

kα
· ωK(ϕ, α), ωK(ϕ,Oj) =

|π0(K)|

kβ
· ωK(ϕ, β).

Hence, if ωK(ϕ,Oi) 6= 0 then ωK(ϕ,Oi) · ωK(ϕ,Oj) > 0.

Now, we prove our main result.

Theorem 2.2. Let G be a compact connected Lie group, K a closed

subgroup and M = G/K the homogeneous space of right cosets. Assume that

M is orientable. For any f : M → M , either (1) L(f) = 0 ⇒ N(f) = 0;
or (2) L(f) 6= 0 ⇒ N(f) = R(f). Furthermore, L(f) = 0 implies that f is

homotopic to a fixed point free map.

Proof. It follows from Lemma 1.2 that

ωK(ϕ,Oi) = (−1)n|π0(K)| · ind(f, giK)

for 1 ≤ i ≤ |π0(K)|. By Lemma 2.1, we conclude that either ind(f, giK) = 0
for all i or the fixed point indices are all nonzero of the same sign. Thus,
L(f) = 0 ⇒ N(f) = 0, and when L(f) 6= 0, the argument in the proof
of Theorem 5.3 of [16] yields the equality N(f) = R(f). The assertion
that f is deformable to be fixed point free when L(f) = 0 follows from
Theorem 4.2 and Proposition 3.4 of [16] with one additional case to consider.
This additional case is when M is the 2-sphere, which is clearly Wecken.
Hence, the proof is complete.

Remark 2. Theorem 2.2 is clearly false if M is nonorientable, e.g.,
take M to be an even-dimensional real projective space. This result does
not hold for orientable homogeneous spaces of noncompact Lie groups in
general. There exist orientable solvmanifolds for which neither (1) nor (2)
holds (see, e.g., [8]).

3. The equivariant obstruction oK(ϕ). In this section, we compute
the (primary) equivariant obstruction to deformation oK(ϕ) and show that
it vanishes if and only if the primary obstruction to deforming f to be
fixed point free o(f) vanishes. There are a number of different equivariant
obstruction theories developed for different purposes. Since we are in the
equivariant setting of the situation as in [4], equivariant local coefficients
must be employed. Therefore, we employ the one developed in [11]. We
should point out that an equivariant cohomology theory with equivariant
local coefficients was developed in [10], which then turned out to coincide
with that in [11] for discrete groups (see [12]). We follow the obstruction
theory for deformation as presented in [4] and in [11].
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First, we replace the inclusion i : M − eK →֒M by a fiber map q : E →
M given by q(x, ω) = ω(1) where E = {(x, ω) ∈M×M [0,1] | ω(0) = x} with
compact-open topology. If y ∈ M then q−1(y) = F = {(x, ω) | ω(1) = y}.
Choose a base point x0 ∈M − eK. It follows that

(3.1) πk(F, (x, x0)) ∼= πk+1(M,M − eK, x0).

If n = dimM ≥ 3 then F is (n− 2)-connected and hence F is q-simple for
all q > 0. Note that E is a K-space. Given a K-map ϕ : G → M , ϕ is
K-deformable into M − eK iff there is a solution ψ such that the following
diagram is commutative:

G

ϕ
  A

A

A

A

A

A

A

A

ψ // E

q

��
M

That is, there exists a K-map ψ : G → E such that q ◦ ψ = ϕ. Following
[11], there is an equivariant (primary) obstruction oK(ϕ) to finding such a
K-map ψ.

One can often regard a root problem as a coincidence problem with one
of the maps being a constant map. Thus, we obtain a K-fibration p : E →
M ×M by replacing M ×M −∆ →֒M ×M . Given a K-map ϕ : G→M ,
one can show, using an elementary argument about the equivariant covering
homotopy property of a K-fibration, that ϕ × eK : G → M × M is K-
deformable into M ×M −∆ iff ϕ is K-deformable into M − eK. Denote by
oK(ϕ× eK) the corresponding obstruction.

In order to define oK(ϕ) (or oK(ϕ × eK)), we first recall the Bredon–
Illman cohomology with local coefficients as developed in [11].

Let X be a K-space. Define a category ΠK(X) as follows. The objects of
ΠK(X) are K-maps xH : K/H → X and a morphism from xH : K/H → X

to yL : K/L → X is a pair (k̂, [φ]) where k̂ : K/H → K/L is the K-map
corresponding to k−1Hk ⊆ L and [φ] is the K-homotopy class of the K-

homotopy φ : K/H × [0, 1] → X from xH to yL ◦ k̂. Then an equivariant
local (coefficient) system is simply a contravariant functor Γ : ΠK(X)→ Ab
where Ab denotes the category of abelian groups.

Since there is a natural bijection between MapK(K/H,X) and XH , an

object xH in ΠK(X) may be identified with a point in XH and so if (k̂, [φ])

is a morphism then φ may be identified with a path in XH from xH to yL ◦ k̂
where k̂ : K/H → K/L. Since K-maps from K/L to K/H need not exist,
ΠK(X) is not a groupoid in general.

Given an equivariant local system Γ on a K-space X, let SnK(X;Γ )
be the group of all functions c which map an equivariant n-simplex σ :
∆n×K/H → X to an element of Γ (σ) where σ is the restriction of σ to the
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first vertex of ∆n. Following [11] (see also [12] and [10]), the cohomology

H
∗
K(X;Γ ) := H∗(S∗

K(X;Γ ))

is called the Bredon–Illman cohomology of X with local coefficients Γ .
In the nonequivariant situation, the obstruction to deforming a map

to be fixed point (or coincidence) free was calculated in [4] as follows. First
consider the path fibration p : E →M×M induced by replacing the inclusion
map M ×M −∆ →֒ M ×M . The fiber F of p gives rise to a local system
πn−1(F) ∼= Zπ and the action of π1(M ×M) ≡ π × π on πn−1(F) is given
by the action of π × π on π via

(σ, τ) • α 7→ τασ−1.

For the coincidence situation (see e.g. [7]), the primary obstruction on(f, g)
to deforming f, g : Z →M to be coincidence free on the nth skeleton of Z,
n = dimM , lies in Hn(Z; Zπ∗) where Zπ∗ is the local system induced by
pulling back Zπ over M ×M by f × g. Furthermore, the action of π1(Z) on
Zπ∗ is given by

(3.2) σ • α 7→ ψ2(σ)αψ1(σ)−1

where σ ∈ π1(Z), and ψ1, ψ2 : π1(Z) → π are the induced homomorphisms
of f and of g respectively.

Consider the K-map ϕ × eK : G → M × M where eK denotes the
constant map at eK ∈M . Then the pullback (ϕ×eK)∗(πn(F)) is an equiv-
ariant local system on G. Since G is a freeK-space, the categoryΠK(G) is in
fact a groupoid. Furthermore, ΠK(G) is the semidirect product groupoid or
the fundamental groupoid of the transformation group (G,K) of [2]. It was
pointed out in [2] that a typical object group is the fundamental group of
the transformation group, denoted by σ(G, e,K), introduced by F. Rhodes
in [14] (for generalization of Rhodes groups and their connection with equiv-
ariant fixed point theory, see [6]). Thus, in order to compute the obstruction
to K-deformation, we need to know how σ(G, e,K) acts on π and hence on
Zπ ∼= (ϕ×eK)∗(πn−1(F)). In other words, the action (3.2) must be modified
by replacing ψ1 and ψ2 with the appropriate homomorphisms.

Given a K-space X and a base point x0, the fundamental group of the
transformation group (X,K) is, by definition, the group of homotopy classes
of the form [k;α] where α is a path from x0 to kx0, with multiplication
given by

[k1;α1] ∗ [k2;α2] := [k1k2;α1 + k1α2].

By considering the universal cover X̃ as the space of all path classes [α] of

paths α beginning at x0, and the covering map η : X̃ → X which sends a
point [α] to α(1), the endpoint of α, it is straightforward to show that there

is a one-to-one correspondence between [k;α] and the unique lift k̃ of k such
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that k̃([x0]) = [α] where x0 is the constant path at x0. This bijection is a

group isomorphism between σ(X,x0,K) and the extension group K̃ given by

K̃ = {k̃ ∈ Homeo(X̃) | ηk̃ = kη for some k ∈ K}.

In [16], K̃ = ΓM when X = M and K̃ = ΓG when X = G.
Now in our situation, the K-map ϕ : G→M induces a homomorphism

Ψ : ΓG → ΓM (but not to π). Similarly, the constant map eK : G→M also
induces a map τ̃ : ΓG → ΓM so that for any σ ∈ ΓG, τ̃(σ) = [σ; eK] where
σ ∈ K is covered by σ. Hence, the action (3.2) now becomes

(3.3) σ • α 7→ τ̃(σ)αΨ(σ)−1.

This action coincides with the action given on p. 36 of [16] (the τ(σ) there
is the same element as the τ̃(σ) given here).

The K-action on G gives rise to a K-equivariant CW decomposition on
G by attaching equivariant cells of type K (since the K-action is free). More
precisely, there is a filtration

(3.4) G(0) ⊂ G(1) ⊂ · · · ⊂ G(n) = G

where G(0) = ∅ and G(i) is obtained from G(i − 1) by attaching free i-
cells. Note that the K-equivariant cellular dimension of G is n, which is
the dimension of M = G/K. For each i, a typical i-cell is given by the
K-(characteristic) map

(ei ×K, ∂ei ×K)→ (G(i), G(i− 1))

where ei is a typical (nonequivariant) i-cell in M = G/K and is homeo-
morphic to the unit i-ball in R

i. The K-action on (ei, ∂ei) is trivial. One
can define K-equivariant cellular cochains and show that the corresponding
cohomology group is isomorphic to H∗

K(X;Γ ) (see Theorem 7.3 of [11]).
Suppose n = dimM ≥ 3 (if dimM = 2, then M must be either the 2-

sphere or the torus). Every selfmap f : M →M is homotopic to a map with
a finite number of fixed points each of which lies in the interior of an n-cell.
Equivalently, the corresponding K-map is K-homotopic to a K-map with a
finite number of root orbits each of which lies inside an equivariant n-cell.
Thus, without loss of generality, we may assume that ϕ already has this
property, i.e., ϕ is root free on G(n − 1). The map ϕ × eK : G → M ×M
has an equivariant partial lifting ϕn−1 × eK : G(n − 1) → E such that
p ◦ (ϕn−1 × eK) = (ϕ × eK)|G(n−1). Therefore, following [15], there is a
primary equivariant obstruction to extending ϕn−1 to all of G. Thus the
equivariant obstruction we consider is the one for ϕ× eK and is given by

onK(ϕ× eK) ∈ H
n
K(G; (ϕ× eK)∗πn−1(F)).

Next, we compute this obstruction by giving a cochain representation
cnK(ϕ× eK) in terms of the equivariant root indices of ϕ.
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Given an equivariant n-cell σ : ∆n × K → G, we consider its corre-
sponding nonequivariant n-cell σ̃ : ∆n → G given by σ̃(x) = σ(x, e). Then
(ϕ× eK) ◦ σ̃|∂∆n

gives rise to a function

cnK(ϕ× eK)(σ) = [(ϕ× eK) ◦ σ̃|∂∆n
]

defined on equivariant n-cells σ with values in (ϕ × eK)∗πn−1(F). In fact,
cnK(ϕ× eK) is a cocycle representing the primary obstruction onK(ϕ× eK).
Following pp. 65–70 of [4] and using the identification πn−1(F) ∼=
πn−1(M,M − eK), we have

(3.5) cnK(ϕ× eK)(σ) =

{
0 if ϕ is root free on σ,

ωK(ϕ,Og)[ϕ′
σ] if Og ⊂ σ.

Here ϕ′
σ represents the composite ϕ|Vg ◦ iσ where

iσ : (σ, ∂σ)→ (Vg, Vg −Og)

sends a fixed orientation to the orientation on Vg. Hence, we have

Theorem 3.1. The cocycle cnK(ϕ× eK) is given by

cnK(ϕ× eK) =
∑

σ

ωK(ϕ,Og)[ϕ
′
σ].

4. Reidemeister trace and equivariant Reidemeister degree. In
[4], the Nielsen number N(f) and the obstruction o(f) were related to the

Reidemeister trace L(f, f̃) (also called the generalized Lefschetz number
in [4]). In this final section, we define a similar element DK(ϕ, ϕ̃), which

corresponds to L(f, f̃), in the free Z-module generated by the equivariant
Reidemeister root orbit classes of ϕ.

Let ηM : M̃ →M be the universal cover of M . Denote by π the group of
covering transformations which can be identified with π1(M). Suppose that

f̃ : M̃ → M̃ is a lift of f . Given any σ ∈ π there exists a unique element

φ(σ) ∈ π such that f̃ ◦ σ = φ(σ) ◦ f̃ . This defines a group homomorphism
φ : π → π and hence an action of π on π by

(4.1) σ • α = σαφ(σ)−1 for α, σ ∈ π.

Let ZRφ[π] be the free Z-module generated by the set Rφ[π] of orbits of the

Reidemeister action (4.1). The Reidemeister trace L(f, f̃) is defined to be
an alternating sum of traces at the chain level in the universal cover and it
can be written (see [4, p. 89]) as a weighted sum so that

L(f, f̃) =
∑

̺∈Rφ[π]

ind(f,F̺)̺ ∈ ZRφ[π]

where F̺ is the fixed point class associated to the Reidemeister class ̺. Note

that L(f, f̃) contains information on both the Nielsen and the Lefschetz
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numbers, and it enjoys the usual properties such as homotopy invariance,
commutativity and homotopy type invariance (see §6 of [4] or [9]).

Denote by ηG : G̃→ G the universal cover. Let ϕ : G→M be a K-map
and f : M → M its associated selfmap. Consider the following extension
groups covering the K-actions. Let

ΓG = {γ̃ ∈ Homeo(G̃) | ηGγ̃ = γηG for some γ ∈ K},

ΓM = {γ̃ ∈ Homeo(M̃) | ηM γ̃ = γηM for some γ ∈ K}.

Thus, we have the following exact sequences of groups:

1→ π1(G) ≡ Cov(ηG)→ ΓG → K → 1

and

1→ π1(M) ≡ Cov(ηM )→ ΓM → K → 1.

For simplicity, we suppose ϕ(e) = eK so that f(eK) = eK. Choose base

points ẽ ∈ η−1
G (e), ẽK ∈ η−1

M (eK) and lifts

ϕ̃ : G̃→ M̃ and f̃ : M̃ → M̃

of ϕ and f , respectively so that ϕ̃(ẽ) = ẽK and f̃(ẽK) = ẽK. For any
σ ∈ ΓG, there exists a unique element Ψ(σ) ∈ ΓM such that ϕ̃σ = Ψ(σ)ϕ̃.
In fact, Ψ : ΓG → ΓM is a group homomorphism. Since γ ∗ eK = eK for all
γ ∈ K, there exists a unique element τ(γ) ∈ ΓM such that τ(γ)(ẽK) = ẽK
and τ(γ) covers γ. In particular, if γ = e, then τ(γ) = 1

M̃
. Thus, ΓG acts

on π1(M) via

(4.2) σ · β = τ(σ)βΨ(σ)−1

where σ ∈ ΓG, σ ∈ K is covered by σ, and β ∈ π1(M). We should point out
that τ(σ) = τ̃(σ) so that the action (4.2) coincides with (3.3).

Denote by 〈β〉K the orbit of β under the action given by (4.2). We call
〈β〉K the K-Reidemeister root orbit class of ϕ containing β and let ΛKϕ be
the set of such classes. Lemma 5.2 of [16] gives a bijection between Rφ[π]
and ΛKϕ . This bijection extends linearly to an isomorphism

Ξ∗ : ZRφ[π]→ ZΛKϕ

where ZΛKϕ denotes the free Z-module generated by the set ΛKϕ . On the
one hand, ZRφ[π] is obtained by the Reidemeister action (4.1), and on the
other, ΛKϕ is obtained by the action of (4.2). In fact, we have the following
commutative diagram of Z-modules:

ZRφ[π]
Ξ∗ // ZΛKϕ

Zπ

α

ddI
I

I

I

I

I

I

I

I

β

OO



Fixed point theory for homogeneous spaces, II 173

The map α is induced by the orbit map of the Reidemeister action (4.1) of
π on π while the map β is induced by the orbit map of the action (4.2) of
ΓG on π.

For any K-map ϕ : G → M , we define the K-Nielsen equivalence on
ϕ−1(eK) as follows. Two roots g1, g2 ∈ ϕ−1(eK) are said to be K-Nielsen

equivalent as roots of ϕ if either (i) g2 = k ∗ g1 = g1k
−1 for some k ∈ K

or (ii) there is a path σ : [0, 1] → G with σ(0) = g1, σ(1) = γ ∗ g2 for
some γ ∈ K such that ϕ ◦ σ is homotopic to the constant map eK relative
to the endpoints. We call the equivalence classes K-Nielsen root classes;
each of them consists of K-orbits of roots. It is easy to see that every such

K-Nielsen root class is of the form KηG(βϕ̃)−1(ẽK) for some β ∈ π1(M).
Given a K-Nielsen root class α, we say that α is essential if the equivariant
root index ωK(ϕ, α) is nonzero. Define the K-Nielsen root number to be

NK(ϕ; eK) := #{essential K-Nielsen root classes}.

It is straightforward to verify that NK(ϕ; eK) possesses the usual prop-
erties of the classical Nielsen number. In particular, it is invariant under
K-equivariant homotopy. Define the K-Reidemeister degree of ϕ to be

DK(ϕ, ϕ̃) =
∑

〈β〉K∈ΛK
ϕ

ωK(ϕ,KηG(βϕ̃)−1(ẽK))〈β〉K

where KηG(βϕ̃)−1(ẽK) ⊂ ϕ−1(eK) is the K-Nielsen root class of ϕ corre-
sponding to 〈β〉K . By Lemma 1.2, we obtain the following

Theorem 4.1.

Ξ∗(L(f, f̃)) = (−1)n
DK(ϕ, ϕ̃)

|π0(K)|
.

Define the K-equivariant degree of ϕ to be

degK ϕ :=
∑

ωK(ϕ,Og),

the sum of the equivariant root indices of the Reidemeister root orbit classes.
By Theorem 2.2, if one of the indices is nonzero, all the classes are essential,
in which case the Reidemeister root orbit classes coincide with the essential
Nielsen root classes.

The augmentation map ZRφ[π] → Z sends L(f, f̃) to L(f). Likewise,
the augmentation map ZΛKϕ → Z sends DK(ϕ, ϕ̃) to degK ϕ. Thus, as a
corollary of Theorem 4.1, we have

Corollary 4.2.

L(f) = (−1)n
degK ϕ

|π0(K)|
and N(f) = NK(ϕ; eK).
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Remark 3. When K is finite, ωK(ϕ,Og) coincides with the ordinary
root index ω(ϕ,Og) so that degK ϕ = degϕ. Thus Corollary 4.2 generalizes
Corollary 4.5 of [16].

Given a map f : X → Y and a point a ∈ Y , the Nielsen root number
of [1] was shown to be equal to either 0 or [π1(Y ) : f#(π1(X))] = R(f ; a) if
Y is a manifold. In our equivariant setting, we obtain the following similar
result.

Theorem 4.3. Let RK(ϕ; eK) denote the cardinality of ΛKϕ . Then

NK(ϕ; eK) =

{
RK(ϕ; eK) if ωK(ϕ,Og) 6= 0 for some root orbit Og,

0 otherwise.

Remark 4. To justify the use of the term degree in defining DK(ϕ, ϕ̃),
observe that the sum of the integral coefficients of DK(ϕ, ϕ̃) is equal to

degK ϕ :=
∑

ωK(ϕ,Og)

where the sum ranges over the set of essential K-Nielsen root classes. As
in the nonequivariant case, this equivariant degree degK ϕ gives an alge-
braic count of the number of K-orbits in the preimage ϕ−1(eK). Hence, the
K-Reidemeister degree DK(ϕ, ϕ̃) contains both the information on the K-
Nielsen root number NK(ϕ; eK) as well as the equivariant degree degK ϕ.
This description of DK(ϕ, ϕ̃) in terms of NK(ϕ; eK) and degK ϕ is com-

pletely analogous to that of the Reidemeister trace L(f, f̃) in terms of N(f)
and L(f).

In [4], the obstruction o(f) was explicitly calculated so that the fixed
point index of each essential Nielsen class appears as the coefficient of the
corresponding Reidemeister class in the Reidemeister trace. Similarly, from
our calculation of cnK(ϕ× eK) in Theorem 3.1, we have the following

Theorem 4.4.

oK(ϕ) = 0 ⇔ DK(ϕ, ϕ̃) = 0.

Remark 5. Although one can obtain Theorem 4.4 indirectly, using the
fact that o(f) = 0 iff oK(ϕ) = 0 and Theorem 4.1, the explicit representation
of the equivariant obstruction cochain cnK(ϕ × eK) and Lemma 2.1 give a
more direct proof.
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