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Abstract. Let λ be an infinite cardinal number. The ordinal number δ(λ) is the least
ordinal γ such that if φ is any sentence of Lλ+ω, with a unary predicate D and a binary
predicate ≺, and φ has a model M with 〈DM,≺M〉 a well-ordering of type ≥ γ, then φ has

a model M′ where 〈DM
′

,≺M
′

〉 is non-well-ordered. One of the interesting properties of
this number is that the Hanf number of Lλ+ω is exactly iδ(λ). It was proved in [BK71] that
if ℵ0 < λ < κ are regular cardinal numbers, then there is a forcing extension, preserving
cofinalities, such that in the extension 2λ = κ and δ(λ) < λ++. We improve this result by
proving the following: Suppose ℵ0 < λ < θ ≤ κ are cardinal numbers such that

• λ<λ = λ;

• cf(θ) ≥ λ+ and µλ < θ whenever µ < θ;

• κλ = κ.

Then there is a forcing extension preserving all cofinalities, adding no new sets of cardi-
nality < λ, and such that in the extension 2λ = κ and δ(λ) = θ.

1. Introduction. William Hanf [Han62] showed that for every logic L
whose class of sentences is a set, there are cardinal numbers λ such that if
φ ∈ L has a model of cardinality ≥ λ, then φ has arbitrarily large models.
The smallest such λ is called the Hanf number of L and denoted by h(L).
It is an easy consequence of the compactness theorem that h(Lω ω) = ℵ0.
For other infinitary languages Lλ κ even weak versions of the compactness
theorem fail unless λ is at least weakly compact [Han64]. But there are
other, more refined ways to calculate Hanf numbers.

For κ > ℵ0 the number h(Lλ κ) is quite large and hard to compute.
For example, it is larger than the first weakly compact cardinal if V = L
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([Sil71]). This is largely due to the fact that we can define well-ordering in
Lλ κ when κ > ℵ0.

In contrast, well-order is not definable in the languages Lλ ω (even with
extra predicates) [LE66], and methods developed first in [Mor65] give the
estimates

iλ+ ≤ h(Lλ+ ω) < i
(2λ)+

.

It is known that these estimates cannot be improved in ZFC alone
[BK71]. The main goal of this paper is to continue the work of [BK71]
by studying what values h(Lλ+ ω) can possibly assume between the lower
and the upper bound.

Let us call a sentence φ of some logic, in a vocabulary that includes a
binary predicate ≺ and a unary predicate D, well-ordered if 〈DM,≺M〉 is a
well-ordered structure for every model M of φ. Let δ(φ) be the supremum of
order-types of 〈DM,≺M〉 (if it exists) when M ranges over all models of φ.
It follows from the undefinability of well-order by extra predicates that δ(φ)
always exists if φ is a well-ordered sentence of Lλ+ ω. Thus we can define δ(λ)
to be the supremum of δ(φ) when φ ranges over all well-ordered sentences
of Lλ+ ω. The basic connection between δ(λ) and h(Lλ+ ω) was proved in
[BK71]:

h(Lλ+ ω) = iδ(λ).

This reduced the problem of computing the Hanf number of Lλ+ ω to the
problem of computing δ(λ). An old result from [Hel64] tells us that if λ is a
strong limit cardinal of cofinality ω, then δ(λ) = λ+. In Section 3 we define
a modification of the concept of tree-accessible ordinal of [BK71] and use it
to make the rather easy observations:

(1.1) δ(λ) < (2λ)
+
.

(1.2) cf(δ(λ)) > λ.
(1.3) If α < δ(λ), then α = δ(φ) for some φ ∈ Lλ+ ω.

Of these, (1.3) seems to be new. For more results on δ(λ) see [She90, Chapter
VII, §5].

It was proved in [BK71] that if ℵ0 < λ < κ are regular cardinal numbers,
then there are forcing extensions VP1 and VP2 , preserving cofinalities, such
that in both extensions 2λ = κ, while in VP1 we have δ(λ) < λ++, and
in VP2 we have δ(λ) > κ. We improve this result by fixing in advance the
cardinal that, in the extension, will be δ(λ). The approach of Barwise and
Kunen in [BK71] was to use Cohen forcing for VP1 and a standard forcing
adding dominating functions for VP2 . We use a more tailor made forcing.
To this end we improve in Section 4 the machinery of Section 3. As a result,
there is a clear idea what is the natural forcing for pushing up δ(λ). Section 4
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introduces this forcing and establishes its basic properties. The main result
(Theorem 2) of the paper is proved in Section 5:

Theorem 1. Suppose ℵ0 < λ < θ ≤ κ are cardinal numbers such that

• λ<λ = λ;
• cf(θ) ≥ λ+ and µλ < θ whenever µ < θ;
• κλ = κ.

Then there is a forcing extension preserving all cofinalities, adding no new

sets of cardinality < λ, and such that in the extension δ(λ) = θ and 2λ = κ.

The above theorem shows that δ(λ) need not always be of cofinality λ+.
This means that if we define δ(γ, λ) like δ(λ) but restricting ourselves to
sentences of quantifier-rank < γ, then the numbers δ(γ, λ) do not have to
(strictly) increase with γ < λ+. Note that our result is for regular λ. For sin-
gular strong limit λ of uncountable cofinality Shelah [She90, VII, §5] proved
δ(λ) > 2λ. In fact, he gets a lower bound for δ(λ) in terms of ranks ‖f‖D,
D an ℵ1-complete filter on λ. Grossberg and Shelah [GS] get such lower
bounds for a modified Hanf number, related to the infinitary (i.e. Lλ+ω)
order property, even for regular λ. For another modified Hanf number, also
related to the order property, they also get non-trivial upper bounds [GS86].
In view of the above theorem such bounds cannot be obtained for δ(λ).

2. The Σ1
1-relations on P(λ). Throughout the paper λ is an uncount-

able regular cardinal.

Definition 2.1. Suppose φ is a sentence of the infinitary language
Lλ+ ω[v], where v is a vocabulary of cardinality ≤ λ which contains a bi-
nary relation symbol ≺ and a unary predicate symbol D. We say that φ is
a w.o. sentence if every model M of φ is such that the interpretation ≺M

of ≺ is a well-ordering of the interpretation DM of D.

For a w.o. sentence φ, we write δ(φ) ≥ α if for every β < α there is a
model M of φ such that 〈DM,≺M〉 has order type at least β. We write
δ(φ) = α if δ(φ) ≥ β for every β < α and there is no model of φ such that
〈DM,≺M〉 has order type at least α.

Definition 2.2. A binary relation R on P(λ) is called Σ1
1 if there exists

a vocabulary v, a model M, and a sentence ψ such that

• card(v) ≤ λ;
• the universe of M is λ;
• ψ is a first order sentence of vocabulary v;
• v contains unary predicate symbols P0, P1, and P2;
• the vocabulary of M is v r {P0, P1, P2};
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• for all X,Y ∈ P(λ), R(Y,X) if and only if there exists Z ∈ P(λ) such
that

〈M, X, Y, Z〉 |= ψ

where X, Y , and Z are the interpretations of P0, P1, and P2 respec-
tively.

Definition 2.3. Suppose R is a binary relation on P(λ). The rank
rkR(X) of X in R, and the rank rk(R) of R, are defined as usual: rkR(X)≥α
if for every β<α there exists Y ∈P(λ) such that R(Y,X) and rkR(Y )≥β;
rkR(X) = ∞ if rkR(X) ≥ α for every α ∈ On; rk(R) = ∞ if for every
α ∈ On there is X ∈ P(λ) such that rkR(X) ≥ α, otherwise rk(R) =
sup{rkR(X) | X ∈ P(λ)}.

Lemma 2.4. For every α < δ(λ) there is a Σ1
1-relation R on P(λ) such

that rk(R) 6= ∞ and rk(R) ≥ α.

Proof. Suppose α < δ(λ) and φ is a w.o. sentence in Lλ+ ω[v] such that
δ(φ) ≥ α+ 1. We define a Σ1

1-relation Rφ having the desired properties.
Remember that D and ≺ are symbols in v as in Definition 2.1. Without

loss of generality we may assume that v has Skolem functions and hence
the class of models of φ is closed under submodels and unions of increasing
chains of models. Moreover, we may assume that α ≥ λ, otherwise it is easy
to define a suitable Rφ.

Define An to be {(ω · i) + l | i < λ and l < n} for every n < ω.
Using a suitable coding, say π, we may assume that every X ⊆ λ codes a
pair 〈MX , cX〉 of a v-model MX and an element cX ∈ MX such that the
universe of MX is a subset of An for some n < ω. Moreover, we may assume
that π is such that

• if m ≤ n < ω, X ⊆ Am, and Y ⊆ An, then X = Y ∩ Am implies
MX ⊆ MY ;

• for every 〈N , d〉, if N has universe An for some n < ω, then there is
X ⊆ An such that MX = N and cX = d;

• for all v-models N1 ⊆ N2 and n < ω, if N1 has universe An and N2 has
universe An+1, then for thoseX1 ⊆ An andX2 ⊆ An+1 coding 〈N1, d1〉
and 〈N2, d2〉 for some d1 and d2 respectively, we have X1 = X2 ∩An.

For all X,Y ⊆ λ define Rφ(Y,X) if there exists n < ω such that

• X ⊆ An and Y ⊆ An+1;
• X = Y ∩An (which implies MX ⊆ MY );
• MX |= φ and MY |= φ;
• cX ∈ DMX , cY ∈ DMY , and cY ≺MY cX .

We may assume that φ is coded as a subset of λ. Hence there exists a
first order sentence ψ and a parameter U ⊆ λ such that for all X ⊆ λ,
〈λ, π,X,U〉 |= ψ if and only if MX |= φ. Hence Rφ is a Σ1

1-relation on P(λ).
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Necessarily we have rk(Rφ) 6= ∞. Namely, if rk(Rφ) = ∞ then there ex-
ists 〈Xn | n < ω〉 such that Rφ(Xn+1, Xn) for every n < ω. By the definition

〈MXn | n < ω〉 is an increasing chain of models of φ and cXn+1 ≺MXn+1 cXn .
By the assumption on Skolem functions, N =

⋃
n<ω MXn is a model of φ

such that 〈DN ,≺N 〉 is not well-ordered. This contradicts the choice of φ.

Define Γ (α) to be the set of all (strictly) descending sequences of ordinals
below α. To prove rk(Rφ) ≥ α, it suffices to find Xη, for every η ∈ Γ (α), so
that Rφ(Xν , Xη) whenever ν = η a 〈ξ〉 ∈ Γ (α) for some ξ ∈ α.

Let N be a model of φ such that the order type of 〈DN ,≺N 〉 is at least α.
By induction on lh(η), η ∈ Γ (α), define sets Xη, functions fη, and models
Nη as follows. Set X∅ = f∅ = N∅ = ∅. Suppose η, ν ∈ Γ (α), ν = η a 〈ξ〉,
lh(η) = n, and Xη, fη, Nη are already chosen. Moreover, suppose that if
n 6= 0, then

• Nη is a submodel of N (Nη |= φ by the assumption on Skolem func-
tions);

• card(Nη) = λ (remember card(v) ≤ λ);
• Xη ⊆ An;
• MXη has universe An;
• fη is an isomorphism between Nη and MXη ;

• the ≺N -order type of {x ∈ DN | x ≺N cXη} is η(n− 1).

By the choice of π , we can chooseXν ⊆ An+1, Nν ⊆ N , and an isomorphism
fν : Nν

∼= MXν such that the conditions above become satisfied when η

and n are replaced with ν and n+1 respectively. Moreover, we can guarantee
that Nη ⊆ Nν and fη ⊆ fν (which implies MXη ⊆ MXν , and hence Xν =
Xη ∩An).

Lemma 2.5. For all Σ1
1-relations R on P(λ), either rk(R) = ∞ or there

exists a w.o. sentence φR in Lλ+ ω such that δ(φR) = rk(R).

Proof. Suppose R is a Σ1
1-relation on P(λ) such that rk(R) = α+ 1 and

v, ψ, M are objects witnessing R to be a Σ1
1-relation (obviously the possible

ranks of Σ1
1-relations are closed under successor ordinals). We define a w.o.

sentence φR in Lλ+ ω such that δ(φR) ≥ α+ 1.

As above, Γ (α) denotes the set of all descending sequences of ordinals
below α. By induction on η ∈ Γ (α) choose a subset Xη of λ such that

• rkR(Xη) ≥ α if η = ∅;
• rkR(Xη) ≥ η(n) if η 6= ∅, where n = lh(η) − 1.

Moreover, we can guarantee that, if ν = η a 〈ξ〉 ∈ Γ (α), then

〈M, Xη, Xν , Zν〉 |= ψ for some fixed Zν ⊆ λ

(which means R(Xν , Xη) by the choice of M and ψ).



198 S. Shelah et al.

Now define a vocabulary v+ and a v+-model N as follows. First of all
v+ is v ∪{D,≺}∪{Q0, . . . , Q5}∪ {ci | i < λ} (we may assume that the new
symbols are not in v). The universe of N is M ∪ (α + 1) ∪ Γ (α) (we may

assume α ≥ λ and M∩ ((α+ 1)∪ Γ (α)) = ∅). For all S ∈ v, set SN = SM.
Moreover, define the interpretations of the rest of the symbols as follows:

• DN = α+ 1;
• ≺N= ∈ ↾(α+ 1);
• QN

0 = M;

• QN
1 = λ;

• cNi = i for every i < λ (remember that M has universe λ);
• QN

2 = {η | η is a finite ≺N -descending sequence of elements of DN };

• QN
3 = {〈η, lh(η), l, η(l)〉 | η ∈ QN

2 , l < lh(η)};

• QN
4 = {〈η, i〉 | η ∈ QN

2 and i ∈ Xη};

• QN
5 = {〈η, i〉 | η ∈ QN

2 r {∅} and i ∈ Zη}.

Then define φR to be a conjunction of all relevant Lλ+ ω-sentences holding
in N , e.g., φR contains a conjunction of the first order theory of N and the
following:

if η, ν ∈ Q2, “ν = η a 〈ξ〉” (use Q3 to denote this), then the model
〈Q0, Q3 ∩ ({η} × λ), Q3 ∩ ({ν} × λ), Q4 ∩ ({ν} × λ)〉 satisfies ψ.

By the choice of DN and ≺N , δ(φR) ≥ α + 1. It remains to prove that
δ(φR) ≤ α + 1. Suppose, contrary to the claim, that N is a model of φR

such that 〈DN ,≺N 〉 has order type ≥ α + 2. We show that rk(R) ≥ α+ 2,
a contradiction.

Let 〈dl | l < n∗〉 be a sequence of elements of DN such that n∗ ≥ 2
and dn+1 ≺N dn for every n < n∗ − 1. Let ηn be a shorthand for 〈dl |
l < n〉 for every n ≤ n∗. By the choice of φR, ηn is in QN

2 . Define Xn,
n ≤ n∗, to be {i < λ | 〈ηn, c

N
i 〉 ∈ QN

4 }, and if n < n∗ − 1, let Zn+1 be
{i < λ | 〈ηn, c

N
i 〉 ∈ QN

5 }. It follows (provided that φR is correctly chosen)
that 〈M, Xηn , Xηn+1 , Zηn+1〉 |= ψ for every n < n∗ − 1, where M = QN

0 .
Hence R(Xηn+1 , Xηn) for every n < n∗ − 1.

The Σ1
1-relations provide very easy proofs for the following facts.

Corollary 2.6.

(a) δ(λ) < (2λ)
+
;

(b) cf(δ(λ)) > λ;
(c) the set {δ(φ) | φ is a w.o. sentence in Lλ+ ω} is an initial segment

of ordinals below (2λ)
+
.

Proof. (a) follows from the definition of a Σ1
1-relation and Lemma 2.4.

(b) follows from the fact that the ranks of Σ1
1-relations are closed under

unions of length ≤ λ, i.e., if 〈Ri | i < λ〉 are Σ1
1-relations on P(λ), then

there exists a Σ1
1-relation R on P(λ) such that rk(R) ≥

⋃
i<λ rk(Ri).
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(c) follows from Lemma 2.5 and the fact that {rkR(X) | X ⊆ λ} is an
initial segment of the ordinals for every relation R on P(λ).

3. The ω-sequences of λ-trees. In this section we define auxiliary
devices, ω-sequences of λ-trees, needed in the proof of the consistency result
presented in the next section. Under the assumption λ<λ = λ, this notion
provides representations for all the Σ1

1-relations with different ranks.

Definition 3.1. A sequence T = 〈Tn | n < ω〉 is called an ω-sequence

of λ-trees if the following conditions are satisfied:

• T0 = {∅};
• for every non-zero n < ω, Tn consists of sequences t = 〈tl | l < n〉

such that for some γ ∈ λ, each tl is a function from γ into λ (for
t ∈ Tn, ht(t) denotes 0 if t = ∅, and otherwise, the ordinal γ which is
the domain of every function in t);

• for every m < n < ω, Tm = {t↾m | t ∈ Tn} (Tm is a “projection”
of Tn);

• for every n < ω, E is the following tree order on Tn: for all t = 〈tl |
l < n〉 and s = 〈sl | l < n〉 in Tn, t E s if tl ⊆ sl for all l < n;

• for every n < ω, Tn is closed under E-initial segments.

For nodes t in T and β < ht(t), t↓β denotes the E-initial segment 〈tl↾β |
l < lh(t)〉 of t.

To simplify our notation in the next section, we establish the following
notation.

Definition 3.2. Suppose T is an ω-sequence of λ-trees. The height of T,
denoted by ht(T), is the ordinal δ such that for every non-zero n < ω, δ is
the smallest ordinal satisfying ht(t) < δ for all t ∈ Tn (such a common δ

exists because Tm is a “projection” of Tn for all 0 < m < n < ω). A branch

through Tn is a sequence b such that

• b = ∅ if n = 0;
• if n > 0 and δ = ht(Tn) is a limit ordinal, then b = 〈bl | l < n〉

for some functions bl satisfying dom(bl) = δ and b↓γ ∈ Tn for every
γ < δ;

• if ht(Tn) is a successor ordinal, say δ + 1, then b ∈ {t ∈ Tn | ht(t)
= δ}.

The set of all branches through Tn is denoted by Br(Tn).

Definition 3.3. Suppose T is an ω-sequence of λ-trees. We define a
rank function rkT by induction on ordinals as follows: For all n < ω and
b ∈ Br(Tn),
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rkT(b) ≥ α if for every β < α, there exists c ∈ Br(Tn+1) such that b ⊆ c

and rkT(c) ≥ β.

Moreover we define

• rkT(b) = ∞ if rkT(b) ≥ α for all α ∈ On, and
• rkT(b) = α if rkT(b) ≥ α and rkT(b) 6≥ α+ 1.

We denote by rk(T) the rank of the trivial branch ∅ through T0 (by Defi-
nition 3.1, rk(T) equals ∞ or the supremum of the ranks of the branches
through T1).

Lemma 3.4. Suppose λ is an uncountable cardinal such that λ<λ = λ.

Then there exists an ω-sequence T of λ-trees such that rk(T) ≥ α and

rk(T) 6= ∞ if and only if there exists a Σ1
1-relation R on P(λ) such that

rk(R) ≥ α and rk(R) 6= ∞.

Proof. Suppose T is an ω-sequence of λ-trees. We define a binary relation
RT on P(λ) as follows. Let π be a coding such that every X ⊆ λ codes a
finite sequence bX of functions in λλ. Moreover, suppose that b∅ = ∅ and
every finite sequence of functions in λλ is coded by some X ⊆ λ. For all
X,Y ∈ P(λ), define RT(Y,X) if

• there is n < ω such that lh(bX) = n and lh(bY ) = n+ 1;
• bX ⊆ bY and bY is a branch through Tn+1 (in this case bX is a branch

through Tn).

Since λ<λ = λ, we have card(H(λ)) = λ (the set of all elements whose
transitive closure has cardinality ≤ λ). Furthermore Tn ⊆ H(λ) for every
n < ω. It follows that there exists a first order sentence ψ of vocabulary
{∈, Q0, Q1, P0, P1, P2} such that for all X,Y ⊆ λ, RT(Y,X) if and only if
〈H(λ),∈, π,T, X, Y, Z〉 |= ψ for some Z ⊆ λ. Therefore RT is a Σ1

1-relation
(since λ<λ = λ, choose M having universe λ such that it is isomorphic to
〈H(λ),∈, π,T〉). Clearly rk(RT) ≥ α if rk(T) ≥ α. Furthermore, if rk(RT) =
∞ then there exists an “RT-descending” sequence 〈Xn | n < ω〉 of subsets
of λ such that bXn ∈ Br(Tn) and bXn ⊆ bXn+1 for every n < ω. Thus
rk(RT) = ∞ implies rk(T) = ∞.

Suppose R is a Σ1
1-relation on P(λ) and the objects v, M , and ψ witness

this fact. Firstly define the following sets for every function f having domain
in λ ∪ {λ} and range λ:

Xf = {f(ω · ξ + 3 · k) | ξ < λ and k < ω},

Zf = {f(ω · ξ + 3 · k + 1) | ξ < λ and k < ω},

Cf = {f(ω · ξ + 3 · k + 2) | ξ < λ and k < ω}.

Then define an ω-sequence TR of λ-trees as follows. Set TR
0 = {∅} and for

every n < ω, define t = 〈tl | l < n+ 1〉 ∈ TR
n+1 if
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• t↾n ∈ TR
n ;

• if n = 0, t0 is a function from δ into λ for some δ ∈ λ;
• if n 6= 0, tn is a function from δ into λ where δ = dom(fn−1);
• if n 6= 0 and δ is a limit ordinal, f(α + (3 · k) + 2) ≥ α + 3 · k for all
k < ω and α < δ of the form ω ·ξ for some ξ < λ, and moreover, Ctn is
closed under supremums;

• if n 6= 0, then for every γ ∈ Ctn , there exist X,Y, Z ⊆ λ such that
〈M, X, Y, Z〉 |= ψ and 〈M↾γ,Xtn−1 , Xtn , Ztn〉 is an elementary sub-
model of 〈M, X, Y, Z〉 (recall that M must have universe λ).

It follows that Tn is closed under E-initial segments for every n < ω.
To guarantee that Tm is a “projection” of Tn if m < n < ω, we may as-
sume that rk(R) is a limit ordinal and demand that for every t ∈ TR

n+1,

〈M, Xtn , Y, Z〉 |= ψ for some Y, Z ⊆ λ. Hence TR is an ω-sequence of λ-trees
having height λ. Moreover, assuming that rk(R) ≥ α ≥ λ, rk(TR) ≥ α.

Suppose rk(TR) = ∞. Then there exist functions 〈bl | l < ω〉 from
λ into λ such that 〈bl | l < n〉 ∈ Br(TR

n ) for every n < ω. We claim
that R(Xbl+1

, Xbl
) for every l < ω, and hence rk(R) = ∞. Fix l < ω. We

show that 〈M, Xbl
, Xbl+1

, Zbl+1
〉 |= ψ. Suppose, contrary to this claim, that

the model satisfies ¬ψ. Choose a closed unbounded C of λ such that 〈M↾γ,

Xbl
∩ γ, Xbl+1

∩ γ, Zbl+1
∩ γ〉 is an elementary submodel of 〈M, Xbl

,

Xbl+1
, Zbl+1

〉 for every γ ∈ C. Since 〈bk↾β | k < l + 2〉 is in TR
l+2 for every

β < λ, Cbl+1
must be a closed and unbounded subset of λ. Choose a limit

ordinal δ from C ∩ Cbl+1
. Let tl denote bl↾δ and tl+1 denote bl+1↾δ. By the

choice of the coding, Xtl = Xbl
∩ δ, Xtl+1

= Xbl+1
∩ δ, and Ztl+1

= Zbl+1
∩ δ.

By the definition there should exist X,Y, Z ⊆ λ such that 〈M, X, Y, Z〉 |= ψ

and 〈M↾δ,Xtl , Xtl+1
, Ztl+1

〉 = 〈M↾δ,Xbl
∩ δ,Xbl+1

∩ δ, Zbl+1
∩ δ〉 is an ele-

mentary submodel of 〈M, X, Y, Z〉.

So 〈M↾δ,Xbl
∩ δ,Xbl+1

∩ δ, Zbl+1
∩ δ〉 satisfies ψ, a contradiction.

4. A forcing notion increasing the well-ordering number. In this
section λ is an uncountable cardinal satisfying λ<λ = λ. Our main target is
Theorem 2 on page 209. For that we are going to define a forcing notion in
two phases: first we define a basic version P−(I) and then the real version
P(I).

Definition 4.1. Suppose I is a linear order. Let Γ (I) denote the set of
all finite (strictly) I-descending sequences of elements of I. For every n < ω,
the set {η ∈ Γ (I) | lh(η) = n} is abbreviated by Γn(I).

Definition 4.2. Suppose I is a linear order. The forcing notion P−(I)
consists of all the tuples p = 〈Tp, Γ p, 〈bp

η | η ∈ Γ p〉〉 satisfying the following
demands:
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• Tp is an ω-sequence 〈T p
n | n < ω〉 of λ-trees such that ht(Tp) = δp +1

for some δp ∈ λ;
• card(T p

n) < λ for every n < ω;
• Γ p is a subset of Γ (I) such that card(Γ p) < λ and Γ p is closed under

initial segments (Γ p
n denotes Γ p ∩ Γn(I) for every n < ω);

• for every n < ω and η ∈ Γ
p
n , b

p
η ∈ Br(T p

n) (remember that by Defini-
tion 3.2, Br(T p

n) = {t ∈ T
p
n | ht(t) = δp});

• for all η ⊆ ν ∈ Γ p, b
p
η ⊆ b

p
ν .

The order of P−(I) is defined by setting q ≤ p if

• ht(Tp) ≤ ht(Tq);
• for every n < ω, T q

n is an end-extension of T p
n , i.e., T p

n = {t ∈ T
q
n |

ht(t) < ht(T p
n)};

• Γ p ⊆ Γ q;
• b

p
η E b

q
η for every η ∈ Γ p.

Definition 4.3. Suppose I is a linear order and G is a P−(I)-generic
filter over V. We denote by TG the sequence 〈TG

n | n < ω〉 where each
TG

n is
⋃

p∈G T
p
n . Moreover, bG

∅ denotes ∅, and for every non-zero n < ω and

η ∈ Γn(I), bG
η denotes the sequence 〈cl | l < n〉 where each cl is a union of

all the lth members of b
p
η for different p’s in G.

To be sure that the definitions above make sense we note:

Fact 4.4. Suppose I is a linear order and λ<λ = λ.

(a) P−(I) has λ+-c.c.

(b) P−(I) is λ-complete.

(c) For the rest of the items suppose G is a P−(I)-generic filter over V.

In V[G], TG is an ω-sequence of λ-trees having height λ.

(d) In V[G], bG
η is well defined for every η ∈ Γ (I) and bG

η 6= bG
ν ∈

Br(TG
n ) for all n < ω and η 6= ν ∈ Γn(I). Moreover , for all η, ν ∈

Γ (I),

bG
η ⊆ bG

ν if and only if η ⊆ ν.

(e) Suppose I is a well-ordering of order type at least α. Then rk(TG) ≥
α+ 1 in V[G].

(f) In particular , if I is a well-ordering of order type α, rk(TG) is ex-

actly α+ 1 in V[G].

Proof. (a) This is a standard ∆-lemma argument.

(b) This follows from the definition.

(c) By (b) the set {q ∈ P−(I) | ht(T q
n) ≥ δ} is dense for every non-zero

n < ω and δ < λ. Hence the claim follows from the definition of G and
Definition 4.2.
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(d) The set {p ∈ P−(I) | η ∈ Γ p} is dense for every η ∈ Γ (I). Hence the
fact that bG

η and bG
ν are branches through TG

n follows from Definition 4.2.

Necessarily bG
η 6= bG

ν since {p ∈ P−(I) | bp
η 6= b

p
ν} is dense when η 6= ν. The

last property follows from Definition 4.2 and the fact that whenever η 6⊆ ν,
{p ∈ P−(I) | bp

η 6⊆ b
p
ν} is dense.

(e) Applying Definition 3.3 and (d) one can prove by induction on β < α

that if xβ is an element in I such that {y ∈ I | y <I xβ} has order type β,
then rkTG(bG

〈xβ〉
) ≥ β. Hence rkTG(bG

∅ ) ≥ α+ 1 (of course bG
∅ is ∅).

(f) A proof of this fact is presented later on in Lemma 4.9 (for another
reason we have to add some restrictions to P−(I)).

So far the forcing under consideration is a kind of ω copies of the stan-
dard Kurepa forcings (a Kurepa forcing adds a generic λ-tree with many
λ-branches through it; cf. [Jec71] or [SV02, Lemma 2.3]). Of course the
Γ (I)-structure makes the forcing a little bit more complicated. Our main
goal is to have a generic extension where 2λ is huge and the possible ranks of
ω-sequences of λ-trees are under very strict control (and thereby we know
the value of δ(λ), see Theorem 2). Even though we do know the rank of
the generic ω-sequence TG of λ-trees, we do not know whether P−(α) (or
a product of such forcings) adds some new ω-sequence of λ-trees having
some unwanted rank. Hence we will introduce a modified version P(I) of
the forcing P−(I). The new properties of the modification are exploited in
the next section. The main benefit is Lemma 5.1 which guarantees certain
absoluteness between P(J) and P(I) for J ⊆ I. We postpone Lemma 5.1 to
the next section in order to emphasize the fact that the modification is not
yet applied in this section. On the contrary, we first want to demonstrate
that the modification does not destroy the good properties of P−(I).

The reader may look at the comment at the end of the proof of Lemma 5.1
if she or he has difficulties to see why the modification below is needed.

Remark. In the next definition we would like to have “a potential
branch through a fixed tree T p

n” instead of “a collection of potential branches
through all the trees T p

n , n < ω”. However, our goal is to prove Lemma 5.1.
Without considering “ω-sequences of potential branches” Lemma 5.1 holds
only for well-orderings, and that does not suffice for our purposes.

Definition 4.5. Suppose I is a linear order. The conditions in the forc-
ing P(I) are of the form

p = 〈Tp, Γ p, 〈bp
η | η ∈ Γ p〉, ∆p〉,

where Tp, Γ p, and 〈bp
η | η ∈ Γ p〉 are as in Definition 4.2 and ∆p is a set of

pairs 〈η, t〉 (t is “a potential branch”, possibly of length ω) such that

• card(∆p) < λ;
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• η ∈ Γ p;
• t = 〈tn | n < n∗〉, where n∗ is such that lh(η) < n∗ ≤ ω;
• t↾n ∈ T

p
n for every n < n∗ (remember Br(T p

n) ⊆ T
p
n because ht(T p

n) is
a successor ordinal).

Moreover, our main demand is that there exists a sequence c = 〈cn |
n < n∗〉 such that

• c↾n ∈ Br(T p
n) and t E c↾n for every finite n ≤ n∗;

• c↾lh(η) = b
p
η.

To define the order q ≤ p for the elements of P(I) we demand, in addition
to the demands presented in Definition 4.2, that ∆p ⊆ ∆q.

Remark. Even though P−(I) is λ-complete, P(I) is not λ-complete any-
more. However, P(I) is almost λ-complete as proved in Lemma 4.7.

We denote by Even the class of all even ordinals, i.e., Even = {α ∈
On | α = 0 or α = β + 2n for some limit ordinal β and n < ω} (+ denotes
the ordinal addition). The class of all odd ordinals, denoted by Odd, is
On r Even.

Definition 4.6. Suppose 〈P,≤〉 is a partial order and 1 is its greatest
element. Let θ be an ordinal. We denote by Gθ(P) the following two-player
Banach–Mazur game. The players, player 1 (also called “outward” player)
and player 2 (also called “inward” player), choose in turns a sequence 〈pi |
i < θ〉 of elements in P such that

• p0 is 1 ;
• if i ∈ θ ∩ Odd, player 1 chooses an element pi+1 such that pi+1 ≤ pi;
• if i ∈ θ ∩ Even is nonzero, player 2 chooses an element pi such that
pi ≤ pj for all j < i.

Player 2 wins a play of Gθ(P) if he is able to follow the rules θ rounds. A
partial order P is called strategically θ-complete if player 2 has a winning
strategy in the game Gθ(P).

Lemma 4.7. For all linear orders I , P(I) is strategically λ-complete.

Proof. We describe a winning strategy for player 2. Suppose i ∈ λ ∩
Even is nonzero and the conditions 〈pj | j < i〉 are already played. If i
is a successor ordinal, say j + 1, player 2 chooses pi to be the condition
〈Tpj , Γ pj , 〈b

pj
η | η ∈ Γ pj 〉, ∆pi〉, where

∆pi = ∆pj ∪
{
〈η, ei

η,t〉 | 〈η, t〉 ∈ ∆pj
}
,

and the extensions ei
η,t of t’s are defined as follows (remember that t might

have length ω). For each 〈η, t〉 ∈ ∆pi (= ∆pj ), ei
η,t = 〈en | n < lh(t)〉 is

such that
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(A) 〈em | m < n〉 ∈ Br(T pi
n ) for every finite n ≤ lh(t);

(B) tn = en↾dom(tn) for every n < lh(t);
(C) 〈en | n < lh(η)〉 = b

pi
η .

The existence of such objects is guaranteed by the definition of ∆pi . The
idea is that player 2 adds new potential branches extending the old ones.
This ensures that in the forthcoming limit rounds player 2 is able to find
witnessing branches for all “potential branches” introduced so far.

Suppose i is a limit ordinal. Let T ∗
n denote

⋃
j<i T

pj
n for every n < ω.

Let ∆∗ denote
⋃

j<i∆
pj . Define Γ ∗ to be

⋃
j<i Γ

pj , and b∗
η to be

⋃
{b

pj
η |

j < i and η ∈ Γ pj} for every η ∈ Γ ∗. Fix 〈η, t〉 from ∆∗ for a while. By
the choice of the strategy for player 2 in the earlier rounds, there exists a
sequence ei

η,t = 〈en | n < lh(t)〉 such that 〈em | m < n〉 ∈ Br(T ∗
n) for every

finite n < lh(t), and also (B) and (C) are satisfied when b
pj
η is replaced

with b∗
η. Now player 2 chooses pi to be 〈Tpi , Γ pi , 〈bpi

η | η ∈ Γ pi〉, ∆pi〉,
where

• Γ pi = Γ ∗;
• b

pi
η = b∗

η for every η ∈ Γ pi ;

• ∆pi = {〈η, ei
η,t〉 | 〈η, t〉 ∈ ∆∗} ∪∆∗;

• T
pi
n = T ∗

n ∪ {bpi
η | η ∈ Γ pi} ∪ {ei

η,t | 〈η, t〉 ∈ ∆∗} for every n < ω;
• Tpi = 〈T pi

n | n < ω〉.

Lemma 4.8. Suppose I is a linear order and G is a P(I)-generic filter

over V. Let TG and bG
η for η ∈ Γ (I) be as in Definition 4.3.

(a) TG is an ω-sequence of λ-trees in V[G] and ht(TG) = λ.

(b) For all n < ω and η 6= ν ∈ Γn(I), bG
η 6= bG

ν ∈ Br(TG
n ). Moreover ,

for all η, ν ∈ Γ (I), bG
η ⊆ bG

ν if and only if η ⊆ ν.

(c) If I is a well-ordering of order type α, then rk(TG) ≥ α+1 in V[G].

Proof. (a) Suppose δ is a limit ordinal below λ and p ∈ P(I). By
Lemma 4.7, player 2 can use his winning strategy against such a move of
player 1 that after δ rounds p1 = p and T

pi+1
n 6= T

pi
n for all 0 < n < ω and

0 < i < δ. Hence ht(Tpδ) ≥ δ where pδ is the answer of player 2 in round δ.
Applying this idea we conclude that {q ∈ P(I) | ht(T q

n) ≥ δ} is dense for
every nonzero n < ω and δ < λ.

The rest of the items are proved in the same manner as Fact 4.4.

Lemma 4.9. Suppose I is a well-ordering of order type α and G is a

P(I)-generic filter over V. Moreover , suppose Q̃ is a P(I)-name for a forcing

notion such that

1 P(I) “ Q̃ is strategically ω + 1-complete and 1 
Q̃

cf(λ) = λ”.

Let H be a Q̃G-generic filter over V[G]. Then TG has rank α+1 in V[G][H].
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Proof. By Lemma 4.8(c), rk(TG) ≥ α+ 1 in V[G] and, by the absolute-
ness of the Σ1

1-relations, the same holds in V[G][H]. Without loss of gener-
ality I equals 〈α,∈〉. It remains to prove rkTG(∅) 6≥ α+2. By Lemma 4.8(b)
it suffices to prove in V[G][H] that for all non-zero n < ω,

(A) Br(TG
n ) = {bG

η | η ∈ Γn(I)}.

Namely, applying (A) we reach a contradiction as follows. Suppose
rkTG(bG

∅ ) ≥ α + 2. Define α0 = α + 1 and choose α1 < α0 such that

rkTG(bG
〈α1〉

) ≥ α0. If α1>0, we may choose α2 < α1 such that rkTG(bG
〈α1,α2〉

)

≥ α1. We may continue choosing αm’s until for some n < ω, αn+1 = 0 and
rkTG(bG

η ) ≥ αn > 0, where η = 〈α1, . . . , αn+1〉. Hence there should be

c ∈ Br(TG
n+2) such that c↾(n+1) = bG

η . By (A) there should be ν ∈ Γn+2(I)

satisfying c = bG
ν , and moreover, by Lemma 4.8(b), η ( ν. This contradicts

the fact that ν should be a strictly descending sequence of ordinals.
We prove (A) in the same manner as an analogous lemma is proved for

Kurepa trees in [Jec71] (or in [SV02, Lemma 2.3]). The only difference is
that instead of “λ-completeness” we apply “strategical ω + 1-completeness
of Q̃” together with “a special winning strategy” for player 2 in Gω+1(P(I)).
The winning strategy described in the proof of Lemma 4.7 does not suffice,
because in addition to “avoiding the generic branches” we are forced to
“avoid the potential branches extended by the winning strategy” (see (F)
below).

Suppose n∗ < ω, 〈p0, q̃0〉 is a condition in P(I) ∗ Q̃, and c̃ is a name such
that

〈p0, q̃0〉  c̃ ∈ Br(T G̃
n∗) r {bG̃

η | η ∈ Γn∗(I)}.

Moreover, let w̃ be a P(I)-name such that

〈p0, q̃0〉  “ w̃ is a winning strategy for player 2 in Gω+1(Q̃)”.

Let δ0 be the height of T p0
n∗ . By induction on 0 < i < ω we define

conditions 〈pi, q̃i〉 ∈ P(I) ∗ Q̃ as follows. Always δi is a shorthand for ht(T pi

n∗).
For i ∈ ω ∩ Odd, say i = j + 1, 〈pi, q̃i〉 is such that

pi ≤ pj ,(B)

pi  q̃i ≤ q̃j ,(C)

ht(T pi

n∗) > ht(T
pj

n∗),(D)

〈pi, q̃i〉  c̃↓δi 6∈ {bpi
η ↓δi | η ∈ Γ

pj

n∗}.(E)

There is no problem to find such a condition because we used Γ
pj

n∗ instead
of Γ pi

n∗ in (E) and by the assumption 1 
P(I)∗Q̃

cf(λ) = λ, every condition

below 〈p0, q̃0〉 forces that for every X ⊆ Γn∗(I) of cardinality < λ there is γ
below λ such that

c̃↓γ 6∈ {bG̃
η ↓γ | η ∈ X}.
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For non-zero i ∈ ω ∩ Even, say i = j + 1, 〈pi, q̃i〉 is chosen as follows.
First let 〈r, s̃〉 ≤ 〈pj , q̃j〉 be such that ht(T r

n∗) = δj +2 and also the following

holds. For every t ∈ Br(T
pj

n∗) and η ∈ Γ
pj
m , m < n∗, if b

pj
η ⊆ t then there

exist c 6= d in Br(T r
n∗) such that

• t E c and t E d;
• 〈η, c〉 and 〈η,d〉 are in ∆r.

Then choose 〈r′, s̃′〉 ≤ 〈r, s̃〉 such that for some si ∈ V (remember that P(I)
does not add sets of cardinality < λ),

〈r′, s̃′〉  c̃↓(δj + 1) = si ∈ T G̃
n∗ .

Choose pi ≤ r as follows (as in the proof of Lemma 4.7 except that the height
of Tr might increase and (F) below holds). Ensure that for each 〈η, t〉 ∈ ∆r

there exists ei
η,t such that (A), (B), and (C) from the proof of Lemma 4.7

are satisfied, and moreover,

(F) if t ∈ T
pj

n∗ and t E si, then si 6E ei
η,t (by the choice of ht(si), t 6= si).

This time there is no problem to fulfill these demands because of the choice
of r (and in (F) we used T

pj

n∗ instead of T r′

n∗). As in the successor case of the
proof of Lemma 4.7, make sure that ∆pi = ∆r ∪ {〈η, ei

η,t〉 | 〈η, t〉 ∈ ∆r}.
Choose q̃i so that pi P(I) w̃(〈q̃j | j < i〉) = q̃i (q̃i is the answer of player 2
according to the winning strategy w̃).

Now define 〈pω, q̃ω〉 as follows. The condition pω is defined as in the limit
case of the proof of Lemma 4.7. Recall that ∆∗ denotes

⋃
i<ω ∆

pi . Then we
have

Br(T pω

n∗ ) = {bpω
η | η ∈ Γ pω} ∪ {ei

η,t | 〈η, t〉 ∈ ∆∗}.

Define q̃ω to be such that pω P(I) w̃(〈q̃i | i < ω〉) = q̃ω. Then 〈pω, q̃ω〉 is a
lower bound for the conditions 〈pi, q̃i〉, i < ω, and it forces c̃↓δω ∈ Br(T pω

n∗ ).
On the other hand, by (E) we have c̃↓δω 6∈ {bpω

η | η ∈ Γ pω} and by (F) we
have c̃↓δω 6∈ {ei

η,t | t ∈ T
pω

n∗ and 〈η, t〉 ∈ ∆∗}. This is a contradiction.

5. The well-ordering number can have large cofinality. The prop-
erty introduced in the first lemma is the reason for the modification P(I)
(Definition 4.5) of P−(I). The property has a central role in the proof of
Theorem 2 presented after some definitions.

Lemma 5.1. Suppose J is a sublinear order of I. Then P(J) is a complete

subforcing of P(I) (for a definition and properties of a complete subset see

e.g. [Kun83, She98]).

Proof. We must show that every maximal antichain A ⊆ P(J) remains
a maximal antichain in P(I). Clearly, if p, q ∈ P(J) and r ∈ P(I) are such
that r ≤ p, q, then the “reduction r′ of r to J” satisfies r′ ≤ p, q, where
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r′ = 〈Tr, Γ r′ , 〈br
η | η ∈ Γ r′〉, ∆r′〉, Γ r′ = Γ r ∩ Γ (J), and ∆r′ = ∆r ∩

(Γ (J) ×
⋃

n<ω T
r
n).

To prove that the maximality is preserved we show that for every q ∈
P(I) there is a special reduction q′′ to J such that for every p ≤ q′′ in P(J)
there exists r ∈ P(I) satisfying r ≤ p, q. The special reduction q′′ is like
the reduction q′ defined above except that the branches having index in
Γ q r Γ (J) are included into the set of potential branches of q′′. The formal
details are given below.

We define q′′ = 〈Tq, Γ q′′ , 〈bq
η | η ∈ Γ q′′〉, ∆q′′〉, where Γ q′′ = Γ q∩Γ (J) as

in the “ordinary reduction”. We define∆q′′ to contain∆q∩(Γ (J)×
⋃

n<ω T
q
n),

but we also add some new members. Suppose η and 〈νm | m < m∗〉 are
such that

• 1 ≤ m∗ ≤ ω;
• η ∈ Γ (J) ∩ Γ q (remember ∅ ∈ Γ (J));
• νm ∈ Γ q r Γ (J) for every m < m∗;
• η ⊆ ν0 and lh(ν0) = lh(η) + 1;
• νm ⊆ νm+1 and lh(νm+1) = lh(νm) + 1 for every m < m∗ − 1;
• if m∗ is finite, ν is maximal in Γ q with respect to ⊆.

For such objects we set 〈η, t〉 ∈ ∆q′′ , where t = 〈tn | n < n∗〉 is such that
n∗ = lh(η) + m∗ if m∗ is finite, and m∗ = ω otherwise, and moreover, for
every finite n ≤ n∗,

〈tl | l < lh(νn)〉 = bq
νn
.

Now it is easy to check (since ∆q′′ ⊆ ∆p) that for given p ≤ q′′, every
branch b

q
ν with ν ∈ Γ q r Γ (J) can be extended to a branch through T p

n . It
follows that the desired condition r = 〈Tr, Γ r, 〈br

η | η ∈ Γ r〉, ∆r〉 is such
that Tr = Tp, Γ r = Γ p ∪ Γ q, ∆r = ∆p ∪∆q, and the branches br

ν , ν ∈ Γ r,
are chosen according to the demands. (The reader may wonder what goes
wrong if p ∈ P−(J). In that case consider two different branches b

q
ν and b

q
̺

with η ⊆ ν, ̺ ∈ Γ q r Γ (J). Then p might be such that for say b
q
ν there

exists a branch c through T
p
n with c↾lh(η) = b

p
η, because by the definition

b
p
η must be an initial segment of some branch in Br(T p

n). However b
q
̺ might

be such that no extension of it has b
p
η as its initial segment.)

Definition 5.2. We are going to use the following assumptions:

(A) λ is an uncountable cardinal such that λ<λ = λ;
(B) θ is a cardinal such that cf(θ) ≥ λ+ and ξλ < θ for every ξ < θ;
(C) κ is a cardinal such that θ ≤ κ and κλ = κ.

The following definition introduces an auxiliary device. We are going to
force δ(λ) to have a desired value θ ∈ 2λ r λ+. So we first add generic ω-
sequences of λ-trees using P(α) for every α < θ. Then we have to argue that
there does not exist an ω-sequence of λ-trees having rank between θ and ∞.
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To succeed in the latter task we need some auxiliary forcing. A solution
is to force with P(I)’s where I is not well-ordered, and to show that such
a forcing adds a “descending” sequence of branches to any ω-sequence of
λ-trees of rank ≥ θ. Hence the forcings together ensure that “rk(T) ≥ θ

implies rk(T) = ∞” in the generic extension.

Definition 5.3. We define a linear order 〈Ilex, <lex〉 as follows. Ilex con-
sists of all finite sequences of ordinals below λ+. For all x, y ∈Ilex, define
x <lex y if

• l = lh(x) < lh(y) and x = y↾l, or
• there exists l < min{lh(x), lh(y)} such that x↾l = y↾l and xl < yl.

Definition 5.4. Let 〈α∗
i | i < θ〉 be an increasing enumeration of all

limit ordinals below θ. Define P(I ) to be the product of the forcings in
〈P(Ii) | i < κ〉 with <λ-support, where

• for every i < θ, Ii is 〈α∗
i ,∈〉 ;

• for every i ∈ κr θ, Ii is 〈Ilex, <lex〉.

Theorem 2. Suppose λ < θ ≤ κ are cardinals as in Definition 5.2 and

P(I ) is a forcing as in Definition 5.4. In VP(I) we have:

• all cofinalities are preserved ;
• no new sets of cardinality < λ are added ;
• λ<λ = λ;
• 2λ = κ;
• δ(λ) = θ.

The rest of this section is dedicated to the proof of this theorem.

The first two items follow from Lemma 4.7, Lemma 4.8, and the fact

that P(I ) has λ+-c.c. Moreover, 2λ ≥ κ in VP(I), because each P(Ii) adds

a new subset of λ, and 2λ ≤ κ in VP(I), because card(P(I )) = κ, P(I ) has
λ+-c.c., and we have assumed Definition 5.2(C).

By Lemma 3.4, δ(λ) equals θ if in VP(I ) we have

(5.1) for every α < θ there is an ω-sequence T of λ-trees such that α ≤
rk(T) 6= ∞;

(5.2) for every ω-sequence T of λ-trees, either rk(T) < θ or rk(T) = ∞.

Since P(i) does not add new sets of cardinality < λ,

1 
P(i) “ P(Ii) is strategically λ-complete”

for every i < κ. Thus Lemma 4.9 guarantees that in VP(I ), for every i ∈ θ

there is an ω-sequence Ti of λ-trees such that rk(Ti) = rk(Ii) = α∗
i . It

follows that (5.1) holds in VP(I).
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It remains to prove (5.2) in VP(I ). Suppose p∗ ∈ P(I ) and 〈T̃n | n < ω〉
are P(I )-names such that

(5.3) p∗  “ 〈T̃n | n < ω〉 is an ω-sequence of λ-trees having rank ≥ θ.”

To simplify our notation let T̃ be a P(I )-name such that

1  T̃ = 〈T̃n | n < ω〉.

We aim at the conclusion p∗  rk(T̃) = ∞.

Since P(I) does not add new functions having domain of cardinality < λ,

the interpretation of each T̃n in a generic extension is a subset of V. More-
over, because of the λ+-c.c. property, we may assume that each dom(T̃n) is
a nice P(I )-name of cardinality at most λ.

Even though our proof is quite straightforward, we want to introduce
some notations in order to be precise.

Definition 5.5. For a P(I )-name σ, let dom(σ) denote the smallest
subset X of κ such that dom(p) ⊆ X for all conditions p appearing in σ.
For every p ∈ P(I), define I p to be the sequence 〈Ip

i | i ∈ dom(p)〉,

where I
p
i is {x ∈ Ii | for some η ∈ Γ p(i), x appears in η}. Moreover,

let I σ denote the sequence 〈Iσ
i | i ∈ dom(σ)〉, where Iσ

i = {x ∈ Ii |
for some p appearing in σ, i ∈ dom(p) and x ∈ I

p
i }.

Definition 5.6. A sequence J = 〈Ji | i ∈ dom(J )〉 is called a part

of I if dom(J ) ⊆ dom(I ) = κ and Ji is a non-empty subset of Ii for every
i ∈ dom(J). Such a sequence is called a small part of I if card(dom(J )) ≤ λ,
and card(Ji) ≤ λ for every i ∈ dom(J ) ∩ θ (for i ∈ κ r θ, card(Ji) might
be λ+).

Remark. For every nice name σ for a subset of V of cardinality at
most λ, I σ is a small part of I . Without loss of generality also T̃ is chosen

so that IT̃ and each I T̃n are small parts of I .

For parts J of I let P(J) denote the product of the forcings P(Ji), i ∈
dom(J ), with <λ-support.

Fact 5.7. For every part J of I, P(J ) is a complete subforcing of P(I ).

Proof. This is a standard consequence of Lemma 5.1.

Before the introduction of the main tool we need two more auxiliary
definitions.

Definition 5.8. Suppose J is a finite sequence of small parts of I . Let
dom(J) denote

⋃
J ∈J

dom(J ) and J[i] denote
⋃
{Ji | J ∈ J and i ∈ dom(J )}

for every i ∈ dom(J). By P(J) we denote the forcing P(〈J[i] | i ∈ dom(J)〉).
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Definition 5.9. Define a part K = 〈Ki | i < dom(K )〉 of I by setting

• dom(K ) = dom(p∗)∪ dom(T̃)∪ ((θ+ λ+) r θ) (where the + after the
first θ denotes the ordinal addition);

• Ki = Ii = α∗
i if i ∈ dom(K ) ∩ θ;

• Ki = Ilex if i ∈ dom(K ) r θ.

The next definition might look a little bit technical but the content of it
is very simple: we introduce an order-preserving mapping which determines
a complete embedding from P(J) into P(K ) (for a definition and properties
of a complete embedding see e.g. [Kun83, She98]). The source of the techni-
cality is the need that the mapping must be “extendable” when the length
of the finite sequence of small parts increases.

Definition 5.10. For all finite sequences J of small parts of I , we define
“order preserving” mappings oJ “from J into K ” by induction on lh(J) < ω

as follows. Set o∅ = ∅. Suppose oJ is already defined and J is a small part

of I . A mapping oJa〈J 〉 is defined as follows.
Without loss of generality we may assume that each set J appearing

in J or J is closed under supremums. (If that is not the case, take a closure.
Then the resulting parts remain small.)

Let dom(oJa〈J 〉) be {〈i, x〉 | i ∈ dom(J) ∪ dom(J ) and x ∈ J[i] ∪ Ji}.

Choose oJa〈J 〉 to be the function satisfying the following demands:

• oJ ⊆ oJa〈J〉.
• The restriction of oJa〈J 〉 to the set

{
〈i, x〉 | i ∈ dom(p∗)∪dom(T̃) and

x ∈ I
p∗

i ∪ IT̃i
}

is identity.

• Suppose i ∈ dom(J ) r (dom(J) ∪ dom(p∗) ∪ dom(T̃)). Then set

j = min(dom(K ) r (θ ∪ dom(p∗) ∪ dom(T̃) ∪ oJ

1 [dom(J)])),

where oJ
1 is the projection map of oJ to the first coordinate (which is

well defined, see the demands below). Note that Kj = Ilex. If i ≥ θ

(Ji ⊆ Ilex), define for all τ ∈ Ji,

oJa〈J 〉(i, τ) = 〈j, τ〉.

If i < θ (hence Ji = α∗
i ), define for all α ∈ Ji,

oJa〈J 〉(i, α) = 〈j, 〈ξα + 1〉〉,

where ξα = otp(Ji ∩ α) (the order type of the set).
• Suppose i ∈ dom(J) and i ≥ θ. Then j = oJ

1 (i) is defined. For all
τ ∈ Ji, set

oJa〈J 〉(i, τ) = 〈j, τ〉.

• Suppose i ∈ dom(J), i < θ. Let j be oJ
1 (i), β∗ be the smallest ordinal

in J[i], and τ ∈ Ilex be such that oJ(i, β∗) = 〈j, τ〉. By the definition
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n = lh(τ) > 0 and τ(n − 1) > 0. For all α ∈ Ji r J[i] with α < β∗,
define

oJa〈J 〉(i, α) = 〈j, τ↾(n− 1) a 〈0, ξα + 1〉〉,

where ξα = otp(Ji ∩ α). For every α ∈ Ji r (J[i] ∪ β∗), there exists
a unique βα ∈ J[i] (by the assumption which makes J[i] closed un-
der supremums) such that βα < α < min((J[i] ∪ {α∗

i }) r (βα + 1)).
Moreover, for every such α, there exists a unique τα ∈ Ilex such that
oJ(i, βα) = 〈j, τα〉. Now for all α ∈ Ji r (J[i] ∪ β∗) define

oJa〈J 〉(i, α) = 〈j, τα a 〈ξα + 1〉〉,

where ξα = otp(Ji ∩ α).

Lemma 5.11. Suppose J is a finite sequence of small parts of I .

(a) The mapping oJ determines a complete embedding ôJ from P(J) into

P(K ).

(b) ôJ(p∗) = p∗ and ôJ(T̃) = T̃.

(c) For all small parts J of I , ôJ ⊆ ôJa〈J 〉.

Proof. (a) First of all let oJ
1 and oJ

2,i, i ∈ dom(J), be the projection map-

pings (these exist by Definition 5.10). Define J ′ to be 〈J ′
j | j ∈ dom(J ′)〉,

where dom(J ′) = oJ
1 [dom(J)] and for i ∈ dom(J) and j = oJ

1 (i), J ′
j =

oJ

2,i[J[i]]. By Definitions 5.10 and 5.3 the mapping oJ

2,i is an order isomor-
phism between the linear orders J[i] and J ′

j for every i ∈ dom(J) and

j = oJ
1 (i).

Define a mapping ôJ from P(J) onto P(J ′) by setting ôJ = {〈p, p′〉 |
p ∈ P(J)}, where dom(p′) = oJ

1 [dom(p)] for every p ∈ P(J), and for every
i ∈ dom(p) and j = oJ

1 (i) we have

• p′(j) =
〈
Tp′(j), Γ p′(j), 〈b

p′(j)
η′ | η′ ∈ Γ p′(j)〉, ∆p′(j)

〉
;

• Tp′(j) = Tp(i);
• η′ = 〈oJ

2,i(ξl) | l < n〉 for every η = 〈ξl | l < n〉 ∈ Γ (J[i]);

• Γ p′(j) = {η′ | η ∈ Γ p(i)};

• b
p′(j)
η′ = b

p(i)
η for every η ∈ Γ (J[i]);

• ∆p′(j) = {〈η′, t〉 | 〈η, t〉 ∈ ∆p(i)}.

Clearly ôJ is an isomorphism between P(J) and P(J ′). So the claim follows
from Lemma 5.1 and the fact that J ′

j ⊆ Kj for every j ∈ dom(J ′).

(b) This follows from Definition 5.10.

(c) By Definition 5.10, oJ ⊆ oJa〈J 〉. Hence the claim follows from the

definition of ôJ and ôJa〈J 〉.
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Lemma 5.12. Suppose J is a small part of I such that p∗ ∈ P(J ) and T̃

is a P(J)-name. For all P(J )-names d̃ and n < ω, the following properties

are equivalent :

(A) p∗ 
P(I) d̃ ∈ Br(T̃n);

(B) p∗ 
P(J ) d̃ ∈ Br(T̃n);

(C) p∗ 
P(K ) ôJ (d̃) ∈ Br(T̃n).

Proof. The equivalence between (A) and (B) follows from Lemma 5.1
together with the fact that for any P(I )-generic filter G over V with p ∈ G,
H = G ∩ P(J ) is a P(J )-generic filter over V and V[H] ⊆ V[G].

In the same manner the equivalence between (B) and (C) follows from
Lemma 5.11(b) and Lemma 5.11(a).

Now we are ready to prove the desired conclusion. Let α∗ be the supre-
mum of {α∗

i | i ∈ θ ∩ (dom(p∗) ∪ dom(T̃))}. Since dom(T̃) has cardinality
≤ λ and because of Definition 5.2(B), we have α∗ < θ and µ ≤ θ, where µ

denotes the successor cardinal of card([α∗]λ).

Define S0 to be the whole µ. By our assumption (5.3) on page 210, there

exists a sequence 〈f̃0,α | α < µ〉 of nice P(I)-names such that for every

α ∈ S0, f̃0,α has cardinality λ (by λ+-c.c.) and

(5.4) p∗ 
P(I ) 〈f̃0,α〉 ∈ Br(T̃1) and rk

T̃
(〈f̃α,0〉) ≥ α.

For every α < µ, let J0,α denote 〈Ip∗ , IT̃, I f̃0,α〉 and g̃0,α be ôJ
0,α

(f̃0,α).

By the choice of µ, there exists a P(K )-name h̃0 and S1 ⊆ S0 of cardinality µ

such that g̃0,α = h̃0 for every α ∈ S1.

By (5.4) we may choose a sequence 〈f̃1,α | α ∈ S1〉 of P(I )-names such

that for every α ∈ S1, f̃1,α has cardinality λ and

p∗ 
P(I) 〈f̃0,α′ , f̃1,α〉 ∈ Br(T̃2) and rk

T̃
(〈f̃0,α′ , f̃1,α〉) ≥ α,

where α′ denotes the smallest β ∈ S1 such that β > α.

For every α ∈ S1, define J1,α to be J0,α a 〈I f̃1,α〉 and g̃1,α be ôJ
1,α

(f̃1,α).

So again, there exists a P(K )-name h̃1 and S2 ⊆ S1 of cardinality µ such

that g̃1,α = h̃1 for every α ∈ S2.

This way choose for every n < ω,

• P(I )-names f̃n,α, α ∈ Sn,

• P(K )-name h̃n, and
• Sn+1 ⊆ Sn

such that ôJ
n,α

(f̃n,α) = h̃n for every α ∈ Sn+1, and moreover, if t̃α, for every

α ∈ Sn, denotes a name for the sequence 〈f̃l,αl
| l < n+ 1〉, where αn = α
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and αl−1 = minSl r (αl + 1) for every non-zero l ≤ n, then

p∗ 
P(I) (t̃α ∈ Br(T̃n+1) and rk

T̃
(t̃α) ≥ α) for every α ∈ Sn.

By Lemma 5.11, p∗ P(K ) 〈h̃n | l < n〉 ∈ Br(T̃n) for every n < ω. Since

P(K ) is a complete subforcing of P(I ) we have p∗ 
P(I) rk(T̃) = ∞.
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