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A fixed-point anomaly in the plane

by

Charles L. Hagopian (Sacramento, CA) and
Janusz R. Prajs (Sacramento, CA, and Opole)

Abstract. We define an unusual continuum M with the fixed-point property in the
plane R

2. There is a disk D in R
2 such that M ∩ D is an arc and M ∪ D does not have

the fixed-point property. This example answers a question of R. H. Bing. The continuum
M is a countable union of arcs.

1. Introduction. It is an elementary fact that if two spaces have the
fixed-point property, then so does their one-point union ([1, Theorem 6]).
From the basic theory of retracts we know that all compact metric absolute
retracts (AR’s) have the fixed-point property, and if X, Y and X ∩ Y are
AR’s, then so is X ∪ Y ([2, Theorem 6.1, p. 90]). Consequently, X ∪ Y has
the fixed-point property. Instead of being an AR, if one of the spaces, say X,
is only assumed to have the fixed-point property, must X ∪ Y still have the
fixed-point property? The general answer to this question is no, even if we
assume X∩Y and Y to be as simple AR’s as an arc and a disk, respectively.
Indeed, in 1967, R. J. Knill [6] defined a 2-dimensional continuum B with
the fixed-point property and a disk D such that B ∩D is an arc and B ∪D
admits a fixed-point-free map. Also in 1967, W. Lopez [7] constructed a
17-dimensional polyhedron and R. H. Bing ([1, Theorems 14 and 15]) con-
structed a nonplanar 1-dimensional continuum with the properties of B.

In this paper, we present a negative answer to the following fundamental
question that Bing asked in 1969.

Question 1 (Bing [1, Question 7]). If C is a plane continuum with the

fixed-point property and D is a disk that intersects C in an arc, must C ∪D
have the fixed-point property?
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We actually show that even when C ∪ D is planar, it may fail to have
the fixed-point property, thus answering a related question of V. Klee and S.
Wagon [5, p. 149]. Our original example was much more complex than the
one presented here. Several more months of study led to the present example,
which is relatively simple. It has only four complementary domains in the
plane. It is a countable union of arcs, has only five arc components and one
ramification point (of order three).

In our construction we employ the concepts of polar and folded spirals in
the plane. Planar spirals were used in other examples in fixed-point theory
(for an early example see [12]). The results involving polar and folded spirals
presented here should provide more precise tools for future constructions.

In this paper the term map means a continuous function. A continuum

means a nonempty compact connected metric space. A space X has the
fixed-point property if each map f : X → X has a fixed point, i.e. a point
x ∈ X such that f(x) = x. A continuum is decomposable if it is the union
of two proper subcontinua. A continuum is hereditarily decomposable if each
of its nondegenerate subcontinua is decomposable. An acyclic hereditarily
decomposable continuum is called a λ-dendroid . A set X in the plane R

2 is
radially convex if for every point x ∈ X the straight line segment from the
origin to x is contained in X. If X ⊂ R

2 is a continuum such that R
2 \X is

connected, then we say that X is a nonseparating plane continuum.

2. Polar and folded spirals. We begin with some general observations
about spirals in the plane.

Definition 1. A polar spiral is an embedding s : [a,∞) → R
2 defined

by a polar formula s(t) = (φ(t), t), where a ∈ R and φ is a nonnegative
continuous function.

Definition 2. Let K be a continuum in R
2. Every polar spiral s(t) in

R
2\K such that Cl(s([a,∞)))\s([a,∞)) = K is called a polar spiral limiting

on K.

Observation 2.1. Let p and q be points of R
2 such that q does not

belong to the radial line Op that starts at the origin and passes through p.
Then for each t > 1 we have d(q,Op) < d(tq, Op).

Using this observation one can prove the following.

Observation 2.2. Let F be a radially convex continuum in R
2. For each

pair of positive numbers t and ε there is a unique point p(ε, t) such that t
is the θ-coordinate of p(ε, t) and d(p(ε, t), F ) = ε. Moreover , the function

(t, ε) 7→ p(t, ε) is continuous.
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Observation 2.3. For every radially convex continuum F in R
2 and

every a ∈ R, the formula s(t) = p(e−t, t) for t ≥ a defines a polar spiral

limiting on Bd(F ).

Observation 2.3 leads to one implication of the following proposition.
The proof of the other implication is left to the reader.

Proposition 2.4. For every nonseparating plane continuum F , there

exists a polar spiral in R
2 \F limiting on Bd(F ) if and only if F is radially

convex.

Proposition 2.5. Let F be a nonseparating plane continuum invariant

with respect to the rotation Rα about the origin, Rα(r, θ) = (r, θ + α), and

let s(t) be a polar spiral limiting on Bd(F ). Then the map s(t) 7→ s(t+ α)
defines a continuous extension of Rα|Bd(F ) to the set Bd(F )∪ s([0,∞)) if

and only if

(∗) lim
t→∞

(|s(t)| − |s(t+ α)|) = 0.

Proof. Suppose that s(t) 7→ s(t + α) continuously extends Rα|Bd(F ),
and the limit limt→∞(|s(t)| − |s(t+ α)|) either does not exist or is different
from 0. Then there are positive numbers tn diverging to ∞ and ε > 0 such
that |(|s(tn)| − |s(tn + α)|)| > ε for each n. Since s(t) limits on a compact
set Bd(F ), without loss of generality we may assume the sequence {s(tn)}
converges to a point p ∈ Bd(F ). By the continuity of the extended map we
have limn→∞ s(tn + α) = Rα(p). Moreover, |Rα(p)| = |p|. Therefore

lim
n→∞

|s(tn + α)| = |Rα(p)| = |p| = lim
n→∞

|s(tn)|.

Thus |(|s(tn + α)| − |s(tn)|)| < ε for almost all n, a contradiction.
Suppose that (∗) is satisfied. To prove that s(t) 7→ s(t + α) continu-

ously extends Rα|Bd(F ) it suffices to show that for each p ∈ Bd(F ), if
limn→∞ s(tn) = p, then limn→∞ s(tn+α) = Rα(p). Fix a point p = (|p|, t0) ∈
Bd(F ), and take any tn ∈ [0,∞) satisfying limn→∞ s(tn) = p. Observe that
limn→∞ tn = ∞. Hence limn→∞ |s(tn)| = |p|, and limn→∞ |s(tn + α)| = |p|
by (∗). If |p| = 0, then p = (0, 0) = Rα(p), and limn→∞ |s(tn + α)| =
limn→∞ |s(tn)| = p = Rα(p). Thus the conclusion holds. Suppose |p| > 0.
Since |p| = |Rα(p)| and the numbers tn converge to t0 in the sense of the
pseudo-distance ̺(tn, t0) = min{|tn + 2kπ − t0| : k is an integer}, we have
limn→∞ s(tn + α) = (|p|, t0 + α) = Rα(p).

Let F be a compact subset of the plane, and G(F ) be the group of
rotations Rα of the plane about the origin such that Rα(F ) = F . Since
every compact group of rotations is either discrete or homeomorphic to a
circle, we have the following known result.
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Proposition 2.6. For each compact subset F of the plane either F is

invariant with respect to every rotation about the origin, or there exists a

minimal positive number α0 such that G(F ) = {Rkα0
: k ∈ Z}. In particular ,

in the latter case 2π is a multiple of α0.

Observation 2.7. Let F be a nonseparating plane continuum invariant

with respect to every rotation about the origin, and s(t) be a polar spiral

limiting on Bd(F ). Then F is either a point (the origin), or a disk , and

for each number α the map s(t) 7→ s(t + α) continuously extends the rota-

tion Rα|F .

If Bd(F ) is not locally connected, one can prove that there are polar
spirals limiting on Bd(F ) that do not admit similar extensions of rotations.
In the next proposition we prove that, nevertheless, such polar spirals can
be replaced by ones admitting such an extension.

Proposition 2.8. Let F be a nonseparating plane continuum invariant

with respect to the rotation Rα. If there exists a polar spiral s(t) limiting

on Bd(F ), then there exists a polar spiral s1 : [0,∞) → R
2 limiting on

Bd(F ) such that the map s1(t) 7→ s1(t + α) continuously extends the rota-

tion Rα|F .

Proof. According to Proposition 2.4 the set F is radially convex. With-
out loss of generality we may assume that s(t) is the spiral s(t) = p(e−t, t),
for t ≥ 0, defined in Observation 2.3. If F is a disk or a point, then s1 = s
satisfies the conclusion by Observation 3.4.

Suppose F is neither a disk nor a point. It suffices to show the conclusion
in the case α = α0, where α0 is the minimal positive angle such that Rα0

belongs to G(F ) (see Proposition 2.6). Note that by the invariance of F with
respect to Rα, and by the definition of s(t), which also uses Observation 2.2,
we have |s(t+ α)| < |s(t)|. Define a function φ : R → R+ by letting φ(t) =
|p(1, t)| (see Observation 2.3) for t ≤ 0, and recursively,

φ(t) = max

{
|s(t)|, φ(t− α) −

t

t2 +1

}
for t > 0.

We prove that the spiral s1(t) = (φ(t), t) for t ≥ 0 satisfies the conclusion.
First, note that

|s(t+ α)| < |s(t)| ≤ φ(t) and φ(t) −
t+ α

(t+ α)2 + 1
< φ(t).

Therefore

φ(t+ α) = max

{
|s(t+ α)|, φ(t) −

t+ α

(t+ α)2 + 1

}
< φ(t) for all t ≥ 0.
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In particular, since 2π is a multiple of α (see Proposition 2.6), we have
|s1(t + 2π)| = φ(t + 2π) < φ(t) = |s1(t)| for t ≥ 0, and thus s1 has no
self-intersections. Observe that for every t ≥ 0 we have |s(t)| ≤ |s1(t)| by
the definition of s1.

We also prove that |s1(t + 2kπ)| ≤ |s(t)| for infinitely many positive
integers k. Indeed, otherwise we would have φ(t + 2kπ) = |s1(t + 2kπ)| >
|s(t)| > |s(t+ 2kπ)| for k ∈ {k0, k0 + 1, . . .}, where k0 is some positive inte-
ger. Note that (t+ 2kπ − α) − (t+ 2(k − 1)π) = 2π − α is a multiple of α.
Therefore

φ(t+ 2kπ) = φ(t+ 2kπ − α) −
t+2kπ

(t+2kπ)2 +1

≤ φ(t+ 2(k − 1)π) −
t+2kπ

(t+2kπ)2 +1
,

and thus

φ(t+ 2(k − 1)π) − φ(t+ 2kπ) ≥
t+ 2kπ

(t+ 2kπ)2 + 1
.

Consequently,

φ(t+ 2k0π) − φ(t+ 2kπ) ≥
k∑

l=k0+1

t+ 2lπ

(t+ 2lπ)2 + 1
→ ∞ as k → ∞.

Hence φ(t+ 2kπ) would be negative for some k, which is impossible by the
definition of φ.

Using the inequalities |s(t+ 2kπ)| ≤ |s1(t+ 2kπ)| ≤ |s(t)| (for infinitely
many k’s) and |s1(t + 2π)| < |s1(t)| (for all t), one can prove that, since
s(t) limits on Bd(F ), so does s1(t). By the definitions of φ and s1 we also
have |s1(t)| − |s1(t+ α)| ≤ t/(t2 + 1). Hence the function s1(t) 7→ s1(t+ α)
continuously extends the rotation Rα|F by Proposition 2.5. The proof is
complete.

Proposition 2.9. Let F be a nonseparating plane continuum invariant

with respect to a rotation Rα, and s1(t) and s2(t) be two disjoint polar spirals

limiting on Bd(F ). Then the map s1(t) 7→ s1(t + α) continuously extends

Rα|F if and only if s2(t) 7→ s2(t+ α) does.

Proof. Suppose that s1(t) 7→ s1(t + α) continuously extends Rα|F (the
proof of the other case is similar). Then, for some t0, there is an integer m
(maybe negative) such that s2(t0) belongs to the straight line segment from
s1(t0 + 2mπ) to s1(t0 + 2mπ+ 2π). Each triple of points s2(t), s1(t+ 2mπ)
and s1(t + 2mπ + 2π) have common polar coordinate θ, and thus they are
collinear. Since s2(t0) is between s1(t0 + 2mπ) and s1(t0 + 2mπ + 2π), the
points s2(t), s1(t + 2mπ) and s1(t + 2mπ + 2π) are collinear for each t,
and s1 and s2 are disjoint, it follows that s2(t) belongs to the straight
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line segment from s1(t + 2mπ) to s1(t + 2mπ + 2π) for each t > t0. Note
that

lim
t→∞

d(s1(t+ 2mπ), s1(t+ 2mπ + 2π)) = 0

because the spiral s1 limits on Bd(F ).
To prove the continuity of the extension s2(t) 7→ s2(t + α) of Rα|F ,

suppose lim s2(tn) = p for some sequence of numbers tn and some p ∈
Bd(F ). Since s2 limits on Bd(F ), we have lim tn = ∞. Therefore, for suf-
ficiently large n the point s2(tn) belongs to the straight line segment from
s1(tn + 2mπ) to s1(tn + 2mπ+ 2π), and the point s2(tn +α) belongs to the
straight line segment from s1(tn + α+ 2mπ) to s1(tn + α+ 2mπ + 2π). We
also have

lim d(s1(tn + 2mπ), s1(tn + 2mπ + 2π))

= lim d(s1(tn + α+ 2mπ), s1(tn + α+ 2mπ + 2π)) = 0.

Consequently, lim s1(tn + 2mπ) = lim s1(tn + 2mπ + 2π) = p. By the conti-
nuity of the extension s1(t) 7→ s1(t+ α) we have

lim s1(tn + α+ 2mπ) = lim s1(tn + α+ 2mπ + 2π) = Rα(p).

Hence lim s2(tn + α) = Rα(p).

If we have a finite collection of mutually disjoint polar spirals limiting on
the same set, then each arc in any of the spirals is free in the closure of the
union of the spirals. Thus the spirals admit mutually disjoint neighborhoods
in the plane that are also disjoint from the limiting set. This leads to the
following observation.

Observation 2.10. Let F be a nonseparating plane continuum and

s1(t), . . . , sk(t) be mutually disjoint polar spirals limiting on Bd(F ). Then

there are polar spirals s1(t), . . . , sk(t) such that for every t the straight

line segments from si(t + 2jπ) to si(t + 2jπ) are mutually disjoint for

i ∈ {1, . . . , k} and j ∈ {0, 1, . . .}. (In particular , the spirals s1(t), . . . , sk(t),
s1(t), . . . , sk(t) are mutually disjoint.)

Let si(t) be one of the spirals s1(t), . . . , sk(t) as in Observation 2.10. Let
si(t) be the corresponding spiral guaranteed by the observation. Then the
formula (1−u)·si(t)+u·si(t), for u ∈ [0, 1], defines a homotopy from si(t) to
si(t) of mutually disjoint polar spirals limiting on Bd(F ). Reparametrizing
u by the formula w = u/(1 − u) we obtain a continuous family of polar
spirals si(t, w) for w ∈ [0,∞) with si(t) = si(t, 0). (The spiral si(t) would
correspond to si(t,∞), though this notation will not be used.) Note that,
in view of the previous observation, the spirals si(t, w1) and sj(t, w2) are
disjoint whenever either i 6= j or w1 6= w2.
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Definition 3. For every continuous function t : [0,∞) → [0,∞) such
that limw→∞ t(w) = ∞ the function ŝi : [0,∞) → R

2 defined by ŝi(w) =
si(t(w), w), where si(t, w) is the continuous collection of polar spirals de-
scribed above, is called a folded spiral following si and limiting on Bd(F )
(actual folds appear if t(w) is not monotone).

Suppose F is invariant with respect to a rotation Rα and the map
si(t) 7→ si(t+α) continuously extends Rα|F . In the next proposition we dis-
cuss a sufficient condition implying that a folded spiral ŝi(w) following si(t)
admits a similar extension. To simplify notation we use s(t), s(t), s(t, w), and
ŝ(w) = s(t(w), w) instead of si(t), si(t), si(t, w), and ŝi(w) = si(t(w), w),
respectively.

Proposition 2.11. Let F be a nonseparating plane continuum invariant

with respect to a rotation Rα, and s(t) be a polar spiral limiting on Bd(F )
such that the map s(t) 7→ s(t+ α) continuously extends the rotation Rα|F .

Let s(t) be the spiral guaranteed by Observation 2.10 (with, possibly , some

other spirals sj(t) considered), and let s(t, w) be a corresponding continuous

family of spirals discussed above. Suppose that φ is a real continuous periodic

function with period α such that t(w) = w+φ(w) is nonnegative for w ≥ 0.
Then the map ŝ(w) = s(t(w), w) is a folded spiral following s(t) such that

ŝ(w) 7→ ŝ(w + α) continuously extends the rotation Rα|F .

Proof. To prove that ŝ(w) 7→ ŝ(w+α) continuously extends the rotation
Rα|F , suppose that lim ŝ(wn) = p for some sequence wn of numbers and
some p ∈ Bd(F ). Since ŝ(w) limits on Bd(F ), it follows that limwn = ∞.
Therefore, by the definition we have lim t(wn) = ∞. Note that ŝ(wn) belongs
to the straight line segment from s(t(wn)) to s(t(wn)) for each n. The spirals
s(t) and s(t) both limit on Bd(F ) and lim t(wn) = ∞, which implies that
lim d(s(t(wn)), s(t(wn))) = 0. Thus

lim s(t(wn)) = lim s(t(wn)) = lim ŝ(wn) = p.

Since s(t) 7→ s(t + α) continuously extends Rα|F , so does the map s(t) 7→
s(t+ α) by Proposition 2.9. Consequently,

lim s(t(wn) + α) = lim s(t(wn) + α) = Rα(p).

Note that

t(wn + α) = (wn + α) + φ(wn + α) = wn + α+ φ(wn) = t(wn) + α,

and thus ŝ(wn + α) belongs to the straight line segment from s(t(wn) + α)
to s(t(wn) + α) for each n. Since the limit of the lengths of these segments
is 0, we have lim ŝ(wn + α) = Rα(p). The proof is complete.

3. The construction. We begin with a construction of a double
Warsaw circle with three limiting spirals. The spirals admit extensions
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of the 180-degree rotation of the Warsaw circle. Such extensions were
previously discussed in [9], [4], and [10]. Here the construction of spirals
and their extensions is based on the theory developed in the previous sec-
tion.

Define the polar equation

r(θ) =
3

2
+

1

2
cos

(
tan

θ

2

)
for 0 ≤ θ < π,

and r(θ) = r(θ − π) for π ≤ θ < 2π. Let W be the closure of the graph
of r(θ) (the double Warsaw circle). The union of W and the bounded com-
plementary domain of W is radially convex with respect to the origin. Note
that the union is invariant with respect to the rotation Rπ, and W is its
boundary in the plane. Let WA and WB be the two arc components of W ,
where the θ-coordinates of the points in WA belong to [0, π), and of those
in WB to [π, 2π).

According to Observation 2.3 and Proposition 2.8 there is a polar spiral
s0(t) in the unbounded complementary domain of W , limiting on W , such
that the map s0(t) 7→ s0(t + π) defines a continuous extension of Rπ|W
to the set W ∪ s0([0,∞)). Applying Observation 2.10 twice, we define, in
the unbounded complementary domain of W , two other polar spirals s1(t)
and s2(t) limiting on W such that s0, s1 and s2 are mutually disjoint. By
Proposition 2.9 the maps s1(t) 7→ s1(t+π) and s2(t) 7→ s2(t+π) continuously
extend the rotation Rπ|W .

Let

φ0(w) = 7π sin2w, φ1(w) = 3π sin2w, φ2(w) = 3π sin2w.

Note that φ0, φ1 and φ2 are continuous and periodic with period π. Let
ŝ0(w), ŝ1(w), ŝ2(w) be mutually disjoint folded spirals following s0(t), s1(t),
s2(t), respectively, with the corresponding folding functions t0(w) = w +
φ0(w), t1(w) = w + φ1(w) and t2(w) = w + φ2(w) (see Definition 3).
Note that, according to Proposition 2.11, the maps ŝ0(w) 7→ ŝ0(w + π),
ŝ1(w) 7→ ŝ1(w + π), ŝ2(w) 7→ ŝ2(w + π) continuously extend the rotation
Rπ|W . Let

Ŝ0 = ŝ0([0,∞)), Ŝ1 = ŝ1([0,∞)),

Ŝ2 = ŝ2([0,∞)), Ω0 = W ∪ Ŝ0 ∪ Ŝ1 ∪ Ŝ2.

We need the following lemma to study the mapping properties of Ω0.

Lemma 3.1. Let

g1(x) = 7 sin2 x− z(x) − 3 sin2(x+ πz(x)),

g2(x) = 3 sin2 x− z(x) − 7 sin2(x+ πz(x)),
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for x ∈ [0,∞), where z(x) is a real continuous function. Define

ψ1(x) = eπg1(x)i = cos(πg1(x)) + i sin(πg1(x)),

ψ2(x) = eπg2(x)i = cos(πg2(x)) + i sin(πg2(x)).

Then for every number M there are numbers x̃j > M , j ∈ {1, 2}, such that

ψj(x̃j) = −1.

Proof. Suppose that there are M and j such that ψj(x) 6= −1 for all
x > M . Then, for some integer k, we have (2k − 1)π < gj(x)π < (2k + 1)π
whenever x > M . Consequently, |gj(b) − gj(a)| < 2 for all a, b > M . In
particular gj is a bounded function.

Case 1. Suppose j = 1. Let m be an integer such that mπ > M . We
have

2 > g1(mπ + π/2) − g1(mπ)

= 7 sin2(mπ + π/2) − z(mπ + π/2)

− 3 sin2(mπ + π/2 + πz(mπ + π/2))

− [7 sin2(mπ) − z(mπ) − 3 sin2(mπ + πz(mπ))]

= 7 − [z(mπ + π/2) − z(mπ)]

− 3[sin2(mπ + π/2 + πz(mπ + π/2)) − sin2(mπ + πz(mπ))]

≥ 4 − [z(mπ + π/2) − z(mπ)]

Therefore z(mπ + π/2) − z(mπ) > 2 and

[(mπ + π/2) + πz(mπ + π/2)] − [mπ + πz(mπ)] > π/2 + 2π > 2π.

Since the function x+πz(x) is continuous, there are numbers a, b such that
mπ ≤ a < b ≤ mπ+ π/2, a+ πz(a) = lπ− π/2 and b+ πz(b) = lπ for some
integer l. So (b + πz(b)) − (a + πz(a)) = π/2, and thus z(b) − z(a) < 1/2.
Consequently,

g1(b) − g1(a) = 7(sin2 b− sin2 a) − [z(b) − z(a)]

− 3[sin2(πl) − sin2(πl − π/2)]

> 7(sin2 b− sin2 a) − 1/2 − (−3)

= 7(sin2 b− sin2 a) + 5/2.

The condition mπ ≤ a < b ≤ mπ + π/2 implies sin2 a < sin2 b. Hence
g1(b) − g1(a) > 5/2 > 2, a contradiction.

Case 2. Suppose j = 2. Since g2 and sin2 are bounded functions, it
follows that so is z. Therefore limx→∞(x + πz(x)) = ∞. By the continuity
of the function x + πz(x) there are numbers a, b such that M < a < b,



242 C. L. Hagopian and J. R. Prajs

a+ πz(a) = lπ− π/2 and b+ πz(b) = lπ for some integer l. Similarly to the
previous case, we conclude that z(b) − z(a) < 1/2. Hence

g2(b) − g2(a)

= 3(sin2 b− sin2 a) − [z(b) − z(a)] − 7[sin2(b+ πz(b)) − sin2(a+ πz(a))]

= 3(sin2 b− sin2 a) − [z(b) − z(a)] − 7[sin2(lπ) − sin2(lπ − π/2)]

= 7 + 3(sin2 b− sin2 a) − [z(b) − z(a)]

≥ 4 − (z(b) − z(a)) > 4 − 1/2 > 2,

a contradiction. The proof is complete.

The following property of Ω0 will be used in the study of the main
example.

Property 3.2. Let f : Ω0 → Ω0 be a continuous function such that

f(W ) = W . Then f(Ŝ0) ⊂ Ŝ0 and f(Ŝ1 ∪ Ŝ2) ⊂ Ŝ1 ∪ Ŝ2.

Proof. Let g be the rotation Rπ|W extended to Ω0 by the mappings
ŝk(w) 7→ ŝk(w+π) for k ∈ {0, 1, 2}. Since continuous maps preserve arc con-
nectedness, and WA and WB are all arc components of W and f(W ) = W ,
it follows that either f(WA) = WA and f(WB) = WB, or f(WA) = WB

and f(WB) = WA. In the latter case we first replace f with f ′ = g ◦ f ,
which satisfies the former condition, i.e., f ′(WA) = WA and f ′(WB) = WB.
Observe that if the property holds for f ′ (instead of f), then it holds for f

because g(Ŝk) ⊂ Ŝk for k ∈ {0, 1, 2}. Therefore, without loss of generality,
we assume that f(WA) = WA and f(WB) = WB.

Observe that for each k ∈ {0, 1, 2} there is a j ∈ {0, 1, 2} such that

f(Ŝk) ⊂ Ŝj . Indeed, otherwise f(Ŝk) ⊂ WA or f(Ŝk) ⊂ WB. Since ŝk(w)
limits onW , we would have f(W ) ⊂ Cl(WA) 6= W or f(W ) ⊂ Cl(WB) 6= W ,
contrary to the assumption f(W ) = W .

For each point p ∈ Ω0 let θ(p) be the θ-coordinate of p (though θ(p) is
not unique), and let ψ(p) = e[θ(p)−θ(f(p))]i. Note that ψ is uniquely defined
and continuous. Observe that ψ(p) = −1 is equivalent to the fact that p
and f(p) are collinear with the origin and lie on the opposite sides of the
origin. Since f(WA) = WA and f(WB) = WB, we have ψ(p) 6= −1 for each
p ∈W .

Note that for each point p = ŝj(w) ∈ Ŝj the number θ(p) can be repre-

sented as w+φj(w) for j ∈ {0, 1, 2}. Suppose f(Ŝj) ⊂ Ŝk. Since w 7→ ŝm(w)
is an embedding for m ∈ {0, 1, 2}, we define hk,j : [0,∞) → [0,∞) by

hk,j(w) = ŝ−1
j (f(ŝk(w))) and note that hk,j is continuous.

Claim 1. f(Ŝ0) ⊂ Ŝ0.
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Indeed, suppose f(Ŝ0) ⊂ Ŝj for some j ∈ {1, 2}. Assume j = 1 (the other

case is similar). For each point p = ŝ0(w) ∈ Ŝ0 we can define

θ(p) = w + φ0(w) = w + 7π sin2w,

θ(f(p)) = h0,1(w) + φ1(h0,1(w)) = h0,1(w) + 3π sin2(h0,1(w)).

Let z1(w) = (h0,1(w) − w)/π. Then

θ(p) − θ(f(p)) = w + 7π sin2w − [h0,1(w) + 3π sin2(h0,1(w))]

= 7π sin2w − πz1(w) − 3π sin2(w + πz1(w))

= π[7 sin2 w − z1(w) − 3 sin2(w + πz1(w))].

According to Lemma 3.1 (apply the function g1), there are arbitrarily large

numbers wn with corresponding points pn = ŝ0(wn) ∈ Ŝ0 such that

ψ(pn) = e[θ(pn)−θ(f(pn))]i = eπ[7 sin2 wn−z1(wn)−3 sin2(wn+πz1(wn))]i = −1.

The spiral Ŝ0 limits on W . Hence there is a point p0 ∈ W such that
ψ(p0) = −1, a contradiction.

Claim 2. f(Ŝ1 ∪ Ŝ2) ⊂ Ŝ1 ∪ Ŝ2.

Indeed, to prove this claim it suffices to show f(Ŝ1) 6⊂ Ŝ0 and f(Ŝ2) 6⊂ Ŝ0.
This can be done using a similar argument as in the proof of Claim 1 for
j = 1 or j = 2 and k = 0, and applying the function g2 from Lemma 3.1.
The details are left to the reader.

Let T be a simple triod in the plane with the ramification point r and
one end point at ŝ0(0) such that T ∩ Ω0 = {ŝ0(0)}. Denote the other end
points of T by p1 and p2. Choose a point q in the arc in T from r to p2

such that r 6= q 6= p2, and a point a in the arc in T from r to q such that
r 6= a 6= q. Additionally, we choose a point b in the arc in T from r to ŝ0(0)
such that r 6= b 6= ŝ0(0). In what follows we employ the notation p1r, p2q,
rq, ra, etc., for arcs in T having the corresponding end points. Let L1 and
L2 be rays in the plane, i.e. homeomorphic copies of [0,∞), whose only end
points are ŝ1(0) and ŝ2(0), respectively, such that

(1) each of the sets Cl(L1) and Cl(L2) is homeomorphic to the sin(1/x)
curve with the convergence arc p1r and p2q, respectively;

(2) we have L1 ∩ L2 = ∅, L1 ∩ (Ω0 ∪ T ) = {ŝ1(0)} and L2 ∩ (Ω0 ∪ T ) =
{ŝ2(0)}.

The set Ω = Ω0 ∪ T ∪ L1 ∪ L2 is the main example of the paper. The
figure below represents Ω, though, in the part of the picture corresponding

to Ω0, the folds of the spirals Ŝ0, Ŝ1 and Ŝ2 are not shown. (Including the
folds would heavily compromise the clarity of the picture. The reader can
imagine that the folds are so tight that they disappear from view.)
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Observe that Ω is a hereditarily decomposable continuum in the plane.

Define S0 = Ŝ0 ∪T , S1 = Ŝ1 ∪L1 and S2 = Ŝ2 ∪L2. Note that WA, WB, S0,
S1 and S2 are all the arc components of Ω.

Property 3.3. The continuum Ω has the fixed-point property.

Proof. Suppose that f : Ω → Ω is a fixed-point-free map. First note
that f(Sj) ∩ W = ∅ for j ∈ {0, 1, 2}. Indeed, otherwise f(Sj) ⊂WA or

f(Sj) ⊂WB by the continuity of f . Since Ŝj ⊂ Sj limits on W , we would
have either f(Cl(WA)) ⊂ f(W ) ⊂ Cl(WA) or f(Cl(WB))⊂ f(W )⊂Cl(WB).
Both sets Cl(WA) and Cl(WB) have the fixed-point property, and thus one
of them would contain a fixed point of f , a contradiction.

Second, notice thatW ⊂ f(Ω). Indeed, observe that every subcontinuum
K of Ω such that W \K 6= ∅ does not separate the plane and is hereditarily
decomposable. Therefore it is a λ-dendroid. All λ-dendroids have the fixed-
point property [8]. In the case W \ f(Ω) 6= ∅, the image f(Ω) would have
the fixed-point property, and thus it would contain a fixed point of f , a con-
tradiction.

Since f(Sj) ∩W = ∅ for j ∈ {0, 1, 2} and W ⊂ f(Ω), it follows that
f(W ) = W and f(Ω \W ) ⊂ Ω \W .

Note thatΩ0 is a neighborhood ofW inΩ. Let U be a neighborhood ofW
in Ω such that f(U) ⊂ Ω0. Let g : Ω0 → Ω0 be an extension of the rotation
R2mπ|W by the maps ŝj(w) 7→ ŝj(w + 2mπ) (see Proposition 2.11) for a
positive integer m large enough to satisfy g(Ω0) ⊂ U . Then the composition
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f ◦ g : Ω0 → Ω0 is well defined and (f ◦ g)(W ) = W . It follows from

Property 3.2 that (f ◦ g)(Ŝ0) ⊂ Ŝ0 and (f ◦ g)(Ŝ1 ∪ Ŝ2) ⊂ Ŝ1 ∪ Ŝ2. Since

g(Ŝj) ⊂ Ŝj and Ŝj ⊂ Sj for j ∈ {0, 1, 2}, we have

f(S0) ∩ S0 6= ∅, f(S1) ∩ (S1 ∪ S2) 6= ∅ 6= f(S2) ∩ (S1 ∪ S2).

The sets S0, S1 and S2 are arc components of Ω, and thus f(S0) ⊂ S0 and
f(S1 ∪ S2) ⊂ S1 ∪ S2. Consequently,

f(Cl(S0)) ⊂ Cl(S0), f(Cl(S1 ∪ S2)) ⊂ Cl(S1 ∪ S2) = Cl(S1) ∪ Cl(S2).

Note that Cl(S0) ∩ Cl(S1) = p1r ∪W and Cl(S0) ∩ Cl(S2) = p2q ∪W , and
f(Ω \W ) ⊂ Ω \W . Therefore

f(p1r ∪ p2q) = f([Cl(S0) ∩ (Cl(S1) ∪ Cl(S2))] \W )

⊂ f(Cl(S0) ∩ (Cl(S1) ∪ Cl(S2))) \W

⊂ [f(Cl(S0)) ∩ f(Cl(S1) ∪ Cl(S2))] \W

⊂ [Cl(S0) ∩ (Cl(S1) ∪ Cl(S2))] \W ⊂ p1r ∪ p2q.

Note that p1r and p2q are the only two components of p1r ∪ p2q. We have
two cases.

Case 1. f(p1r) ⊂ p1r . The set p1r is an arc, which has the fixed-point
property. Hence p1r contains a fixed point of f .

Case 2. f(p1r) ⊂ p2q . We have f(r) ∈ p2q ⊂ rp2. Let h : rp2 → R

be defined by h(x) = d(x, f(x)) if f(x) ∈ xp2, and h(x) = −d(x, f(x))
otherwise. Thus h(r) > 0. Note that h is continuous. If h(x) ≥ 0 for each x,
then f(rp2) ⊂ rp2, and thus rp2 contains a fixed point of f . Otherwise, by
the connectedness of rp2, there is a point y ∈ rp2 with h(y) = 0 which is a
fixed point of f . The proof is complete.

Property 3.4. There exists a disk D in the plane such that Ω ∩D is

an arc (in the boundary of D) and Ω ∪ D does not have the fixed-point

property.

Proof. Let ab be an arc in the plane with a and b as its end points
such that ab ∩ Ω = {a, b}. (In the figure, ab is represented as the straight
line segment from a to b.) Let D be the union of the simple closed curve
ra∪ab∪ br and the bounded complementary domain of that curve. To show
that D has the desired properties, first define a retraction g′ : D → ra ∪ ab
and extend it to a retraction g : Ω ∪D → Ω1 = (Ω \D)∪ ra∪ ab by letting
g(x) = x for x ∈ Ω \D.

Second, define a homeomorphism h : Ω1 → Ω1 as follows. For x ∈ Ŝ0∪W
put h(x) = x. Also let h(x) = x for x in the arc K from ŝ0(0) to a. For

x = ŝj(w) ∈ Ŝj let h(x) = ŝ2(w) if j = 1, and h(x) = ŝ1(w) if j = 2. In other

words, using the similarity of the folding patterns of Ŝ1 and Ŝ2, these two
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spirals are switched. On the arc p1p2 we define h to be a self-homeomorphism
such that h(a) = a, h(p1) = p2, h(p2) = p1, h(r) = q, h(q) = r.

Further, the homeomorphism h, already defined on p1r ∪ p2q as a self-
homeomorphism of that set, can also be extended to a self-homeomorphism
of Cl(L1)∪Cl(L2). Recall that Cl(L1) and Cl(L2) are both homeomorphic to
the sin(1/x) curve, and p1r, p2q are their corresponding limit arcs. Extend h
to Cl(L1) ∪Cl(L2) in such a way that h(Cl(L1)) = Cl(L2) and h(Cl(L2)) =
Cl(L1). This completes the definition of h. Note that h(x) = x if and only

if x ∈ K ∪ Ŝ0 ∪W .
Third, define a map f : Ω1 → Ω1 as follows. The map f on W is the

rotation Rπ|W further extended to the spirals Ŝj by the formula ŝj(w) 7→
ŝj(w+π) for j ∈ {0, 1, 2}. Let z1 and z2 be points in ra\{r, a} and aq\{a, q},
respectively. The map f on p1r ∪ p2q is the identity. The arcs rz1 and z2q
are stretched homeomorphically by f to the arcs ra and aq, respectively.
In particular, we have f(r) = r, f(z1) = a, f(q) = q, and f(z2) = a.
The arcs z1a and az2 are both mapped homeomorphically onto K such
that f(a) = ŝ0(0). The arc K is mapped homeomorphically onto ŝ0([0, π])
with f(ŝ0(0)) = ŝ0(π). The rays L1 and L2 are homeomorphically mapped
onto L1 ∪ ŝ1([0, π]) and L2 ∪ ŝ2([0, π]), respectively, in such a way that
f(ŝ1(0)) = ŝ1(π), f(ŝ2(0)) = ŝ2(π), and f(x) = x for points x ∈ L1 suf-
ficiently near to p1r and x ∈ L2 sufficiently near to qp2.

The reader can easily verify that the map f is well defined and continu-
ous, and the composition f ◦h◦g : Ω∪D → Ω1 ⊂ Ω∪D is a fixed-point-free
map. Therefore Ω ∪D does not have the fixed-point property.

4. Final remarks and questions. As we mentioned in the introduc-
tion, our example is relatively simple. It has only four complementary do-
mains in the plane. It is a countable union of arcs, has only five arc com-
ponents and one ramification point (of order three). It is natural to ask
whether there exist even simpler examples answering Bing’s question. The
main result of this section states that any such example has to have at least
three arc components (see Proposition 4.5 below). To prove this result we
need the following three known results.

Observation 4.1. Let X be a continuum in R
n and Kα be a collection

of continua in R
n such that Bd(Kα) ⊂ X for each α. Then X ∪

⋃
Kα is a

continuum.

Indeed, this observation follows from the fact that each complementary
domain of X is either contained in some Kα, or disjoint from

⋃
Kα. Thus

the complement of X ∪
⋃
Kα is the union of some of the complementary

domains of X. This implies that X ∪
⋃
Kα is compact. The connectedness

of X ∪
⋃
Kα is obvious.



A fixed-point anomaly in the plane 247

The next theorem can be proved using the following facts: (i) a locally
connected continuum X ⊂ R

2 separates the plane if and only if it contains
a simple closed curve that separates the plane between two points in R

2 \X
([11, (2.51), p. 107]); (ii) Observation 4.1, and (iii) a locally connected non-
separating plane continuum is an AR ([2, Theorem (13.1), p. 132]) and
therefore contractible. The details are left to the reader.

Theorem 4.2. An arcwise connected planar set A is simply connected

if and only if for each disk D in the plane such that Bd(D) ⊂ A we have

D ⊂ A.

Theorem 4.3 (Hagopian, [3]). Let X be a planar continuum, f : X→X
be a map, and P be a partition of X such that P is simply connected and

f(P ) ⊂ P for each P ∈ P. Then f has a fixed point.

Corollary 4.4. Let X be a planar continuum with only finitely many

arc components, A be a simply connected subset of X and f : X → A be a

map. Then f has a fixed point.

Proof. By the continuity of f the set f(X) has only finitely many arc
components. Since A is arcwise connected, there is a finite collection of arcs
A1, . . . , Ak in A such that Y = f(X)∪A1 ∪ · · · ∪Ak is an arcwise connected
continuum. Note that for each disk D in the plane such that Bd(D) ⊂ Y we
have D ⊂ A. Let U be the union of all such disks D. Then Z = Y ∪ U ⊂ A
and Z is a continuum by Observation 4.1. Moreover, Z is simply connected
by Theorem 4.2. Applying Theorem 4.3 for the map f |Z : Z → Z and the
trivial partition of Z into the only element Z, we see that f has a fixed point
in Z.

Proposition 4.5. Let X be a planar continuum having at most two arc

components, and D be a disk in the plane such that X ∩D is an arc. Then

X ∪D has the fixed-point property whenever X does.

Proof. Suppose X and D satisfy the hypothesis of the proposition, and
assume that X has the fixed-point property. Suppose f : X∪D → X∪D is a
fixed-point-free map. Let AD be the arc component ofX∪D that containsD.
First we prove that f(AD) ⊂ AD. Indeed, otherwise f(AD) ⊂ B for some
arc component B of X such that AD ∩ B = ∅. Let r : D → X ∩ D be a
retraction extended to a retraction r̂ : X ∪D → X (by letting r̂(x) = x for
x ∈ X). Then r̂ ◦ f |X : X → X is a fixed-point-free map, a contradiction.

SinceX has the fixed-point property, it cannot be retracted onto a simple
closed curve. Therefore, each simple closed curve in X has its bounded com-
plementary domain contained in X. This implies that each arc component
of X is simply connected by Theorem 4.2. Gluing together X and the disk
D along an arc does not change the fundamental group of the arc compo-
nent of X containing X ∩D. Hence the fundamental group of AD has to be
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trivial. Thus each arc component of X ∪D is simply connected. By Corol-
lary 4.4 the image f(X ∪D) cannot be contained in one arc component of
X ∪ D. Therefore X ∪ D has an arc component B different from AD and
f(B) ⊂ B. Hence f has a fixed point by Theorem 4.3 with P = {AD, B}, a
contradiction.

Remark 4.6. In the plane there exist a continuum X and a disk D such
that X ∩D is an arc, X has the fixed-point property and X ∪D does not,
and X has only three arc components. The example is more complicated
than the continuum Ω presented in this paper. It has more complementary
domains and more ramification points. Therefore it is not included in this
paper.

Remark 4.7. It is natural to ask whether the assumption that the con-
tinuum X in Corollary 4.4 has only finitely many arc components can be
relaxed. In fact, the authors can prove the following:

Let f : X → A ⊂ X be a map of a planar continuum X into a simply

connected subset A. Then f has a fixed point.

Our proof, which is quite long, may be included in a future paper.

The continuum Ω has exactly four complemetary domains in the plane.
Planar continua with only one complementary domain, i.e. nonseparating
plane continua, are particularly interesting in fixed-point theory. The prob-
lem whether all of them have the fixed-point property is almost a century
old, remains open, and has been called the most interesting problem in plane
topology ([1, p. 122]). Therefore, we ask the following natural question.

Question 2. Let X be a nonseparating plane continuum with the fixed-

point property , and D be a disk in the plane such that X∩D is an arc. Must

X ∪ D have the fixed-point property? What if X has exactly two (three)
complementary domains?

Let X be a continuum with the fixed-point property. In the past the
fixed-point problem for the unions of X with disks (as in Questions 1 and 2)
has been associated with the problem for the cylinder over X, i.e. the prod-
uct X × [0, 1]. The motivation for the product problem is similar to the one
for unions (see the discussion in the introduction) and comes from the fact
that the product of two AR’s is an AR (see [2, Theorem 7.1, p. 92]). The
cylinder over each of the examples by Knill [6] and Lopez [7] mentioned in
the introduction does not have the fixed-point property and is a counterex-
ample for products. W. L. Young [13] showed that the cylinder over Bing’s
continuum ([1, Theorem 14]) has the fixed-point property. Bing asked the
following question.
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Question 3 (Bing, [1, Question 9]). If C is a 1-dimensional continuum

with the fixed-point property , must C × [0, 1] have the fixed-point property?

Question 3 remained open for over thirty years until recently M. Sobole-
wski answered it in the negative with his example [10]. It is still unknown
whether there exists such an example in the plane.

Question 4 (Bing, [1, Question 10]). If C is a continuum in the plane

with the fixed-point property , must C × [0, 1] have the fixed-point property?

The properties of Ω established here can be used to prove that the cylin-
der Ω × [0, 1] has the fixed-point property. Question 4 remains a major
challenge in the area.
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