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Semiproper ideals

by
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Abstract. We say that an ideal I on Pκλ is semiproper if the corresponding poset
PI is semiproper. In this paper we investigate properties of semiproper ideals on Pκλ.

1. Introduction. Large cardinal properties of ideals on Pκλ such as sat-
uration, presaturation, and precipitousness have been studied extensively by
many set-theorists. These are properties extracted from the dual ideals of
supercompact filters or strongly compact filters on Pκλ. These properties
are large cardinal properties in the sense of consistency strength. In general
the existence of an ideal on Pκλ with such a property does not imply that
either κ or λ is a large cardinal.

In many cases these properties of ideals can be characterized by the prop-
erties of posets corresponding to those ideals. For example, an ideal I on
Pκλ is γ-saturated if and only if PI , the poset of all I-positive sets ordered
by inclusion, has the γ-chain condition (γ-c.c.). I is also called precipitous

if for every PI -generic filter G, the ultrapower of V by G is well-founded.
In the development of the theory of forcing, many properties of posets have
been introduced, e.g. σ-closure, σ-Baireness, properness, semiproperness,
etc. We can define the properties of ideals corresponding to these as follows:
Let us say that an ideal I on Pκλ is σ-strategically closed (σ-Baire, proper∗,
semiproper, etc.) if PI is σ-strategically closed (σ- Baire, proper, semiproper,
etc.). (Usually if Pκλ does not belong to an ideal I over Pκλ, then we say
I is proper. To distinguish from this properness, we add the superscript ∗.)

In Matsubara [9], [10], σ-strategically closed ideals, σ-Baire ideals and
proper∗ ideals were investigated. In this paper, we study semiproper ideals
on Pκλ. Our main results are as follows:

Theorem 1.1. Assume that , for some cardinal λ ≥ ω2, there is an ω2-

complete semiproper ideal on Pω2
λ whose dual filter is fine. Then 2ℵ0 ≤ ℵ2

and Chang’s Conjecture holds.
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Theorem 1.2. Assume κ is a regular cardinal , λ is a cardinal ≥ κ and

there is a κ-complete semiproper ideal on Pκλ whose dual filter is fine. Then

�γ fails for every cardinal γ such that κ ≤ γ+ ≤ λ.

Theorem 1.3. The following is consistent relative to some large cardinal

axiom: There are regular cardinals κ ≤ λ and a stationary S ⊆ Eκ,λ
ω such

that NSκ,λ↾S is semiproper , where NSκ,λ is the nonstationary ideal on Pκλ

and Eκ,λ
ω = {x ∈ Pκλ | x ∩ κ ∈ κ ∧ cf(x ∩ κ) = ω}.

From Theorems 1.1 and 1.2, we can see that semiproperness is a large
cardinal property.

Theorem 1.2 is a generalization of Solovay’s theorem that if κ is λ-
supercompact then �-principles fail between κ and λ. Matsubara [10] gener-
alized Solovay’s theorem and showed that if there is a normal σ-strategically
closed ideal on Pκλ then �-principles fail between κ and λ. Theorem 1.2 is
a further generalization.

In Theorem 1.3, note that NSκ,λ↾S cannot be proper∗. In fact if I is a

normal ideal on Pκλ such that Eκ,λ
ω is in the dual filter of I then an easy

calculation shows that cf(κ) = ω in the generic ultrapower. Hence PI makes
the cofinality of κ countable and so PI is not proper. Theorem 1.3 says that
such an ideal I can be semiproper.

This paper is organized as follows. In Section 2, we make a basic analysis
of semiproper ideals. Among other things, we show Theorems 1.1 and 1.2.
In Section 3, we prove Theorem 1.3. More precisely, we prove that, under
some condition on the ground model, if a supercompact cardinal is Levy
collapsed to λ+ then there is a stationary S ⊆ Eκ,λ

ω such that NSκ,λ↾S is
semiproper.

Notations and Definitions. We believe our notations are standard.
Here we only present the notations and basic definitions related to PκW
and ideals on PκW . For those which are not presented here, see Jech [5] or
Kanamori [6]. Let κ be a regular uncountable cardinal and let W be a set
with κ ⊆ W .

For an ideal I on PκW , I+ denotes the set of all I-positive sets, FI

denotes the dual filter of I, and PI denotes the poset 〈I+,⊆〉. For S ∈ I+,
I↾S denotes the restriction of I to S, that is, the ideal on PκW such that
for every X ⊆ PκW , X ∈ I↾S if and only if X ∩ S ∈ I.

An ideal I on PκW is called a κ-ideal if I is a proper κ-complete ideal
on PκW whose dual filter FI is fine, i.e. {x ∈ PκW | w ∈ x} ∈ FI for every
w ∈ W . NSκ,W , the nonstationary ideal on PκW , is a normal κ-ideal on
PκW .

A κ-ideal I on PκW is called semiproper if the corresponding poset PI is
semiproper. In this paper, we adopt the following definition of semiproper-



Semiproper ideals 253

ness of posets. Let P be a poset. For a set M , an (M, P)-semimaster condition

q is a condition q ∈ P such that q 
 “τ ∈ ωV
1 → τ ∈ M” for every P-name

τ ∈ M . P is called semiproper if for every sufficiently large regular cardinal
θ, every countable elementary submodel M of 〈Hθ,∈〉 with P ∈ M and every
p ∈ P ∩ M , there is an (M, P)-semimaster condition q below p.

Other properties of ideals such as σ-strategic closure, properness∗, etc.
are defined in the same fashion. A κ-ideal I on PκW is called σ-strategically
closed if PI is σ-strategically closed, and I is called proper∗ if PI is proper.
(For the definition of σ-strategic closure and properness of posets see Jech
[5].) Moreover I is called ω1-stationary preserving, respectively ω1-preserv-
ing, if PI preserves stationary subsets of ω1, respectively preserves ω1. The
order of the strength of these properties is as follows:

σ-strategically closed > proper∗ > semiproper

> ω1-stationary preserving > ω1-preserving

Next we give notations for subsets of PκW . For a regular γ < κ, let
Eκ

γ := {α ∈ κ | cf(α) = γ} and Eκ,W
γ := {x ∈ PκW | x ∩ κ ∈ Eκ

γ }.
Assume W ′ ⊆ W and 〈Xw | w ∈ W ′〉 is a family of subsets of PκW

indexed by elements of W ′. Then ∇〈Xw | w ∈ W ′〉 or ∇w∈W ′Xw denotes
the diagonal union {x ∈ PκW | ∃w ∈ W ′, w ∈ x ∈ Xw}. Note that if
X ⊆ ∇w∈W ′Xw is stationary in PκW then there is a w ∈ W ′ such that
X ∩Xw is stationary. That is, {Xw | w ∈ W ′∧Xw is stationary} is predense
below ∇w∈W ′Xw in PNSκ,W

.
Finally, we present basic facts on PκW which are used in this paper. The

proof of Fact 1.5 can also be found in Jech [5, Theorem 8.27].

Fact 1.4. Let κ and λ be regular uncountable cardinals such that κ ≤ λ.

Then for every club C ⊆ PκHλ, there is an A ⊆ Hλ such that {M ∈ PκHλ |
M ≺ 〈Hλ,∈, A〉 ∧ M ∩ κ ∈ κ} ⊆ C.

Proof. Let C ⊆ PκHλ be a club. Then there is a function F : [Hλ]<ω →
PκHλ such that CF ⊆ C, where CF := {x ∈ PκHλ | ∀s ∈ [x]<ω, F (s) ⊆ x}.
Note that F ⊆ Hλ. We show that {M ∈ PκHλ | M ≺ 〈Hλ,∈, F 〉 ∧ M ∩ κ
∈ κ} ⊆ C.

Take an arbitrary M such that M ≺ 〈Hλ,∈, F 〉 and M ∩ κ ∈ κ. It
suffices to show that M ∈ CF . Let s ∈ [M ]<ω. Then F (s), |F (s)| ∈ M by
the elementarity of M . Moreover there is a bijection g ∈ M from |F (s)| to
F (s). Note that |F (s)| ⊆ M because |F (s)| ∈ M ∩ κ and M ∩ κ ∈ κ. Hence
F (s) = g[|F (s)|] ⊆ M and so M ∈ CF .

Fact 1.5 (Menas [12]). Let κ be a regular uncountable cardinal and

W, W be sets with κ ⊆ W ⊆ W .

(1) If X ⊆ PκW is stationary then {x ∈ PκW | x∩W ∈ X} is stationary

in PκW .
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(2) If X ⊆ PκW is stationary then {x ∩ W | x ∈ X} is stationary in

PκW .

Fact 1.6. Let κ be a regular uncountable cardinal and W, W be sets with

κ ⊆ W ⊆ W and |W | = |W |. Let π : W → W be a bijection and let C ⊆
PκW be a club consisting of all x ∈ PκW which are closed under π and π−1.

(1) For every X ⊆ C, X is stationary in PκW if and only if {x ∩ W |
x ∈ X} is stationary in PκW .

(2) Assume X ⊆ C is stationary and let X := {x ∩ W | x ∈ X}. Then

PNS
κ,W

↾X and PNSκ,W ↾X are isomorphic.

(3) Assume X ⊆ PκW is stationary , γ is an ordinal and {Xξ | ξ < γ} ⊆
PNSκ,W

is predense below X. Let X := {x ∈ PκW | x∩W ∈ X} and

Xξ := {x ∈ PκW | x ∩ W ∈ Xξ} for each ξ < γ. Then {Xξ | ξ < γ}
is predense below X in PNS

κ,W
.

Proof. (1) Let X ⊆ C. If X is stationary in PκW then {x ∩ W | x ∈ X}
is stationary in PκW by Fact 1.5(2). On the other hand, assume X is non-
stationary in PκW . Let B ⊆ PκW be a club such that B ∩ X = ∅. Then
{π[x] | x ∈ B} is club in PκW and {π[x] | x ∈ B} ∩ {π[x] | x ∈ X} = ∅.
Moreover if x ∈ X then π[x] = x ∩W because x is closed under π and π−1.
Hence {π[x] | x ∈ X} = {x ∩ W | x ∈ X}. Therefore {x ∩ W | x ∈ X} is
nonstationary.

(2) Let π∗ : P(PκW ) → P(PκW ) be such that π∗(Y ) := {π[x] | x ∈ Y }.
Note that π∗(X) = X by the argument above. Then it is easy to see that
π∗↾PNS

κ,W
↾X is an isomorphism from PNS

κ,W
↾X to PNSκ,W ↾X .

(3) Take an arbitrary stationary Y ⊆ X. We must find ξ < γ such that
Y ∩Xξ is stationary. We may assume Y ⊆ C. First let Y := {x∩W | x ∈ Y }.
Then Y is a stationary subset of X and so there is a ξ < γ with Y ∩ Xξ

stationary. Here note that Y ∩ Xξ = {x ∩ W | x ∈ Y ∩ Xξ}. Moreover
Y ∩ Xξ ⊆ C. Therefore Y ∩ Xξ is stationary in PκW by (1).

2. Basic analysis of semiproper ideals. In this section we investigate
properties of semiproper ideals.

First we discuss precipitousness. In Matsubara [9], it is shown that every
proper∗ κ-ideal on Pκλ is precipitous. We do not know whether semiproper-
ness implies precipitousness. In Gitik–Shelah [3], it was shown that if 2κ =
κ+ then every κ-complete ideal I on κ such that PI preserves ω1 is precipi-
tous. The following is the Pκλ version of this.

Theorem 2.1. Assume κ is a regular uncountable cardinal , λ is a car-

dinal ≥ κ and 2λ<κ

= λ+. Assume that I is a normal ω1-preserving κ-ideal

on Pκλ. Then I is precipitous.



Semiproper ideals 255

Theorem 2.1 follows from the following two facts.

Fact 2.2. Assume γ is a regular uncountable cardinal and P is a poset

of cardinality ≤ γ. Then 
P “cf(γ) = |γ|”.

Proof. Let γ be a regular uncountable cardinal and P be a poset with
|P| ≤ γ. We show that if ȧ is a P-name of an unbounded subset of γ then
there is a function f ∈ V from γ to γ such that 
P “f [ȧ] = γ”. Clearly this
suffices.

Fix an enumeration 〈pξ | ξ < γ〉 of P. For each 〈ξ, η〉 ∈ 2γ, we define
αξη < γ and qξη ∈ P by induction on the lexicographical order <lex of 2γ.
Assume that 〈ξ, η〉 ∈ 2γ and that αξ′η′ was defined for each 〈ξ′, η′〉 <lex 〈ξ, η〉.
Then let αξη and qξη be such that

• αξη > αξ′η′ for every 〈ξ′, η′〉 <lex 〈ξ, η〉,
• qξη ≤ pξ and qξη 
P “αξη ∈ ȧ”.

We can take such αξη and qξη because γ is regular and ȧ is a P-name of
an unbounded subset of γ. Now let f : γ → γ be a function such that
f(αξη) = η for each 〈ξ, η〉 ∈ 2γ.

We show that 
P “f [ȧ] = γ”. Take an arbitrary η < γ and p ∈ P, say
p = pξ. Then qξη ≤ p and qξη 
 “η ∈ f [ȧ]”. The latter is because qξη 
P

“αξη ∈ ȧ” and f(αξη) = η. This implies that 
P “f [ȧ] = γ”.

Fact 2.3 (Baumgartner–Taylor [1]). Assume κ is a regular uncountable

cardinal , λ is a cardinal ≥ κ and 2λ<κ

= λ+. Moreover assume that I
is a normal κ-ideal on Pκλ such that 
PI

“cf((λ+)V ) > ω”. Then I is

precipitous.

Proof of Theorem 2.1. Let κ, λ and I be as in the theorem. Because
2λ<κ

= λ+, we have |PI | ≤ λ+. Hence, by Fact 2.2 applied to γ = λ+,

PI

“cf((λ+)V ) = |(λ+)V |”. Moreover 
PI
“|(λ+)V | > ω” because I is ω1-

preserving. Therefore 
PI
“cf((λ+)V ) > ω”. Then, by Fact 2.3, I is precipi-

tous.

It is easy to see Pω1
λ cannot carry semiproper ideals. Assume λ is an un-

countable cardinal, I is an ω1-ideal on Pω1
λ and G is a PI -generic filter over

V . Then the critical point of the generic ultrapower map is ωV
1 . Therefore

ωV
1 is countable in the ultrapower of V by G and thus is in V [G]. Note that

this argument does not need precipitousness. Hence I is not ω1-preserving.

Theorem 2.4. Assume that λ is an uncountable cardinal and that I is

an ω1-ideal on Pω1
λ. Then I is not ω1-preserving. So I is not semiproper.

Next we discuss consequences of the existence of semiproper ideals on
Pκλ. The argument uses the following principle.

Definition 2.5. For a regular uncountable cardinal γ ≥ ω2, let Φγ be
the following statement:
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For every sufficiently large regular cardinal θ, there is a club C ⊆
[Hθ]

ω which satisfies the following conditions.

(1) For every M ∈ C, M ≺ 〈Hθ,∈〉.
(2) For every M ∈ C and α < γ there is an N ∈ C such that:

(a) M ⊆ N ,
(b) M ∩ ω1 = N ∩ ω1,
(c) sup(N ∩ γ) > α.

Φω2
is known as a strong form of Chang’s Conjecture and it is easy to

see that Φω2
implies Chang’s Conjecture. Shelah [13] showed that if Namba

forcing is semiproper then Φω2
holds, and Todorčević [15] showed that Rado’s

Conjecture implies Φω2
. Here we show that if there is a semiproper κ-ideal

on Pκλ then Φγ holds for every regular cardinal between κ and λ. For this
we prepare a standard lemma on the Skolem hull.

Lemma 2.6. Let θ be a regular uncountable cardinal , ∆ be a well order-

ing of Hθ and A ⊆ Hθ. Assume that M ≺ 〈Hθ,∈, ∆, A〉 and that ∅ 6= D ⊆
E ∈ M . Let

N := {f(d) | ∃n ∈ ω, f : nE → Hθ ∧ f ∈ M ∧ d ∈ nD}.

Then N is the Skolem hull of M ∪ D in 〈Hθ,∈, ∆, A〉.

Proof. Let A := 〈Hθ,∈, ∆, A〉. Clearly N is included in the Skolem hull
of M ∪ D in A. By taking f as the identity function on E, we can see that
D ⊆ N . For each a ∈ M , by taking f as the constant function on E with
value a, we find that a ∈ N . So M ∪ D ⊆ N . Hence it suffices to show that
N ≺ A.

We use Tarski–Vaught’s criterion. Assume ϕ(v, v1, . . . , vn) is a formula,
a1, . . . , an ∈ N and A � ∃v ϕ[v, a1, . . . , an]. It suffices to show that there
exists an a ∈ N such that

A � ϕ[a, a1, . . . , an].

For each k = 1, . . . , n, let mk ∈ ω, dk ∈ mkE and fk : mkE → Hθ be
a function such that fk ∈ M and fk(dk) = ak. Let m :=

∑n
k=1 mk and

d := d1 ̂d2 ̂ . . . ̂dn. We define a function f on mE as follows. Assume
e ∈ mE. Let 〈ek | k = 1, . . . , n〉 be such that e = e1 ̂e2 ̂ . . . ̂en and
ek ∈ mkE. If there is a b such that A � ϕ[b, f1(e1), . . . , fn(en)] then let f(e)
be the ∆-least such b. Otherwise let f(e) := 0. Because θ is regular and
E ∈ Hθ, it follows that f ∈ Hθ. Moreover f is definable in A from the
parameters E, f1, . . . , fn which are in M . So, by elementarity, f ∈ M and
therefore f(d) ∈ N . On the other hand, the definition of f and the assump-
tion on a1, . . . , an imply that A � ϕ[f(d), a1, . . . , an]. Now we have shown
there is an a ∈ N such that A � ϕ[a, a1, . . . , an].
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Lemma 2.7. Assume κ is a regular uncountable cardinal , λ is a cardinal

≥ κ and there is a semiproper κ-ideal on Pκλ. Then Φγ holds for every

regular cardinal γ such that κ ≤ γ ≤ λ.

Proof. First note that κ ≥ ω2 by Theorem 2.4. Let I be a semiproper
κ-ideal on Pκλ and γ be a regular cardinal with κ ≤ γ ≤ λ. To show Φγ ,
let θ be a sufficiently large cardinal. Fix a well ordering ∆ of Hθ. Then let
C be the set of all countable M ≺ 〈Hθ,∈, ∆〉 with κ, λ, I, γ ∈ M . We show
that C witnesses Φγ for θ.

(1) of Φγ is clear. We show that (2) holds. Take an arbitrary M ∈ C and
α < γ. Then because PI is semiproper we can take an (M, PI)-semimaster
condition X ∈ I+. We may assume that

• for every function f : Pκλ → ω1 which is in M and for every ξ < ω1,
if f−1[{ξ}] ∩ X ∈ I then f−1[{ξ}] ∩ X = ∅.

For this, note that Z :=
⋃
{f−1[{ξ}]∩X | f : Pκλ → ω1∧f ∈ M∧f−1[{ξ}]∩

X ∈ I} is in I because M is countable and I is ω2-complete. Simply replace
X by X \ Z.

Now, because FI is fine, there is an x ∈ X with α ∈ x. Let N := {f(x) |
f : Pκλ → Hθ ∧ f ∈ M}. Then by Lemma 2.6 applied to D = {x} and
E = Pκλ, M ∪ {x} ⊆ N ≺ 〈Hθ,∈, ∆〉. Therefore M ⊆ N ∈ C. Moreover,
because α < sup(x∩ γ) ∈ N , we see that α < sup(N ∩ γ). So all we have to
show is M ∩ ω1 = N ∩ ω1.

For this it suffices to show that if f ∈ M is a function from Pκλ
to ω1 then f(x) ∈ M . Take an arbitrary function f ∈ M from Pκλ to
ω1. First let τ ∈ M be the PI -name of an ordinal in ω1 such that for
each ξ < ω1, if f−1[{ξ}] ∈ I+ then f−1[{ξ}] 
 “τ = ξ”. Then because
X is an (M, PI)-semimaster condition, X ∩ f−1[{ξ}] ∈ I for each ξ ∈
ω1 \ M . So, by the assumption on X, f−1[{ξ}] ∩ X = ∅ for each ξ ∈
ω1 \ M . Because x ∈ X, this implies that f(x) ∈ M . This completes the
proof.

Corollary 2.8. Assume λ is a cardinal ≥ ω2 and there is a semiproper

ω2-ideal on Pω2
λ. Then Chang’s Conjecture holds.

Todorčević [15] showed that if Φω2
holds then for every stationary S ⊆

[ω2]
ω there exists an α < ω2 such that S ∩ [α]ω is stationary in [α]ω. More-

over Todorčević [16] showed that this type of stationary reflection principle
implies 2ℵ0 ≤ ℵ2. Hence:

Corollary 2.9. Assume λ is a cardinal ≥ ω2 and there is a semiproper

ω2-ideal on Pω2
λ. Then for every stationary S ⊆ [ω2]

ω, there exists an

α < ω2 such that S ∩ [α]ω is stationary in [α]ω. Therefore 2ℵ0 ≤ ℵ2.
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Next we discuss �-principles. It is known that Chang’s Conjecture im-
plies the failure of �ω1

. Here we show that Φγ+ implies the failure of �γ .
For an uncountable cardinal γ, recall that �γ is the following statement:

There is a sequence 〈Cα | α ∈ Lim(γ+)〉 such that

(1) Cα is closed unbounded in α for each α ∈ Lim(γ+),
(2) if β ∈ Lim(Cα) then Cβ = Cα ∩ β for all α, β ∈ Lim(γ+),
(3) o.t.(Cα) ≤ γ for each α ∈ Lim(γ+).

(For a set A of ordinals, Lim(A) denotes the set of all α ∈ A such that
sup(A ∩ α) = α.) 〈Cα | α ∈ Lim(γ+)〉 satisfying (1)–(3) is called a �γ-
sequence.

We use the following easy lemma.

Lemma 2.10. Let γ be an uncountable cardinal and assume that �γ

holds. Then there is a �γ-sequence 〈Cα | α ∈ Lim(γ+)〉 such that {α ∈
Lim(γ+) | o.t.(Cα) = ω1} is stationary in γ+.

Proof. Let 〈Cα | α ∈ Lim(γ+)〉 be an arbitrary �γ-sequence. We modify

〈Cα | α ∈ Lim(γ+)〉. Let E := Eγ+

ω1
.

First let Eζ := {α ∈ E | o.t.(Cα) = ζ} for each ζ ≤ γ and let ̺ be the
least ζ ≤ γ such that Eζ is stationary in γ+. Because E =

⋃
ζ≤γ Eζ , there

is such a ̺. Then take a club C ⊆ γ+ such that C ∩ Eζ = ∅ for every ζ < ̺
and let σ : γ+ → C be the increasing enumeration of C. Here note that
if α ∈ Lim(C) ∩ E̺ then o.t.(Cα ∩ C) = ω1. Because Cα ∩ C is club in α,
o.t.(Cα ∩ C) ≥ ω1. Assume o.t.(Cα ∩ C) 
 ω1. Let β be the ω1th element
of C ∩ Cα. Then β < α and Cβ = Cα ∩ β. Hence β ∈ Eζ for some ζ < ̺.
Thus β ∈ C ∩ Eζ for some ζ < ̺. This contradicts the construction of C.
Therefore o.t.(Cα ∩ C) ≤ ω1.

Now, for each α ∈ Lim(γ+), define C∗
α as follows: If Cσ(α) ∩ C is un-

bounded in σ(α) then let C∗
α := σ−1[Cσ(α) ∩ C]. Assume Cσ(α) ∩ C is not

unbounded in σ(α). Then note that cf(α) = ω. Let C∗
α be an arbitrary

unbounded subset of α of order type ω.
It is easy to check that 〈C∗

α | α ∈ Lim(γ+)〉 is a �γ-sequence. Moreover,
by the observation before, if α ∈ Lim(γ+)∩σ−1[E̺] then o.t.(C∗

α) = ω1. On
the other hand, note that σ−1[E̺] is stationary in γ+ because E̺ is station-
ary and σ is continuous. So {α ∈ Lim(γ+) | o.t.(C∗

α) = ω1} is stationary
in γ+. This completes the proof.

Lemma 2.11. Let γ be an uncountable cardinal. Then Φγ+ → ¬�γ .

Proof. Assume that both Φγ+ and �γ hold. By Lemma 2.10 let 〈Cα |
α ∈ Lim(γ+)〉 be a �γ-sequence such that {α ∈ Lim(γ+) | o.t.(Cα) = ω1}
is stationary in γ+. Let θ be a sufficiently large regular cardinal and let
C ⊆ [Hθ]

ω be a club witnessing Φγ+ .
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Claim 2.11.1. There is an N ≺〈Hθ,∈〉 such that γ+, 〈Cα | α∈Lim(γ+)〉
∈ N , o.t.(Csup(N∩γ+)) = ω1 and N ∩ ω1 ∈ ω1.

Proof of Claim. Let ∆ be a well-ordering of Hθ. Then there is a K ≺
〈Hθ,∈, ∆, C〉 such that γ+, 〈Cα | α ∈ Lim(γ+)〉 ∈ K, α∗ := K ∩ γ+ ∈ γ+

and o.t.(Cα∗) = ω1. Note that every proper initial segment of Cα∗ is in K
because Cα ∈ K for each α < α∗ and 〈Cα | α ∈ Lim(γ+)〉 is a �γ-sequence.
Let 〈αξ | ξ < ω1〉 be the increasing enumeration of Cα∗ .

Now, by induction on ξ < ω1, define Mξ ∈ C as follows. Let M0 be
an element of C with γ+, 〈Cα | α ∈ Lim(γ+)〉 ∈ M . If ξ is limit then let
Mξ :=

⋃
η<ξ Mη. Finally, assume Mξ has been defined for some ξ < ω1.

Then, recalling that C witnesses Φγ+ , let Mξ+1 be the ∆-least N ∈ C such
that Mξ ⊆ N , Mξ ∩ω1 = N ∩ω1 and αξ < sup(N ∩γ+). This completes the
inductive definition. Note that, because every initial segment of Cα∗ is in K,
every initial segment of this induction can be carried out in K. So Mξ ∈ K
for each ξ < ω1. Hence Mξ ⊆ K for each ξ < ω1 because Mξ is countable.

Let N :=
⋃

ξ<ω1
Mξ. Then N ⊆ K and so sup(N ∩ γ+) ≤ α∗. On the

other hand, sup(N ∩γ+) ≥ α∗ because αξ < sup(Mξ+1∩γ+) < sup(N ∩γ+)
for each ξ < ω1. Hence sup(N ∩ γ+) = α∗ and so o.t.(Csup(N∩γ+)) = ω1.
Moreover clearly γ+, 〈Cα | α ∈ Lim(γ+)〉 ∈ N ≺ 〈Hθ,∈〉. Therefore N is the
one desired. Claim

Now we return to the proof of the lemma. Let N be the one obtained
from Claim 2.11.1. Let α∗ := sup(N∩γ+) and 〈αξ | ξ < ω1〉 be the increasing
enumeration of Cα∗ . Then we can take a limit ξ < ω1 such that N ∩ ω1 < ξ
and N ∩αξ is unbounded in αξ. Let β := min(N \αξ). Note that β is a limit
ordinal and Cβ ∈ N .

Claim 2.11.2.

(1) Cα∗ ∩ αξ = Cβ ∩ αξ = Cαξ
.

(2) Cαξ
∩ N is unbounded in αξ.

Proof of Claim. Because ξ is limit, Cα∗ ∩ αξ = Cαξ
. Moreover, by the

elementarity of N , it is easy to see that N ∩ Cβ is unbounded in αξ. This
implies that αξ ∈ Lim(Cβ)∪{β} and therefore Cβ∩αξ = Cαξ

. Hence Cαξ
∩N

is unbounded in αξ. Claim

By the claim above, there is an η such that N ∩ ω1 < η < ξ and
αη ∈ N . Then, again by the claim, αη is the ηth element of Cβ . Then,
because Cβ and αη are in N , we infer that η ∈ N . This contradicts the fact
that N ∩ ω1 < η < ω1.

Corollary 2.12. Assume κ is a regular uncountable cardinal , λ is a

cardinal ≥ κ and there is a semiproper κ-ideal on Pκλ. Then �γ fails for

every cardinal γ with κ ≤ γ+ ≤ λ.
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Here we turn our attention to (†), where (†) is the statement that for
every poset P, P preserves stationary subsets of ω1 if and only if P is
semiproper. In Foreman–Magidor–Shelah [2], (†) was introduced and shown
to have interesting consequences. Here we see that if (†) holds then �γ fails
for every uncountable cardinal γ.

As mentioned before, Shelah [13] showed that if Namba forcing is semi-
proper then Φω2

holds. This can be generalized to an arbitrary regular car-
dinal γ ≥ ω2. For each regular cardinal γ ≥ ω2, let Nm(γ) be the poset of
all trees T ⊆ <ωγ such that |{s ∈ T | t ⊆ s}| = γ for every t ∈ T . The order
is defined by inclusion. Note that Nm(γ) forces cf(γ) = ω. It is known that
Nm(γ) preserves stationary subsets of ω1. Therefore (†) implies Nm(γ) is
semiproper.

Lemma 2.13. Let γ be a regular cardinal ≥ ω2. If Nm(γ) is semiproper

then Φγ holds. Hence if (†) holds then Φγ holds for every regular cardinal

γ ≥ ω2.

Proof. Assume Nm(γ) is semiproper. To show Φγ , take a sufficiently
large regular cardinal θ. Fix a well-ordering ∆ of Hθ. Let C be the set of
all countable M ≺ 〈Hθ,∈, ∆〉 with γ ∈ M . Then C is club in [Hθ]

ω and
satisfies (1) of the definition of Φγ . We show that C satisfies (2).

Take an arbitrary M ∈ C and α ∈ γ. For each β ∈ γ, let Nβ := {f(β) |
f : γ → Hθ ∧ f ∈ M}. Then by Lemma 2.6, Nβ is the Skolem hull of
M ∪ {β} in 〈Hθ,∈, ∆〉. It suffices to show that there exists β > α with
Nβ ∩ ω1 = M ∩ ω1.

Let G be an Nm(γ)-generic filter containing an (M, Nm(γ))-semimaster
condition. Working in V [G], we show that there exists such a β. Let M [G] :=
{τG | τ ∈ M ∧ τ is an Nm(γ)-name}. Then M [G] ∩ ω1 = M ∩ ω1 because G
contains an (M, Nm(γ))-semimaster condition. Moreover M [G]∩γ is cofinal
in γ. This is because Nm(γ) forces cf(γ) = ω and Nm(γ) ∈ M ≺ 〈Hθ,∈, ∆〉.
Let β > α be an element of M [G]∩γ. Then it is easy to see that Nβ ⊆ M [G].
Hence M ∩ ω1 ⊆ Nβ ∩ ω1 ⊆ M [G] ∩ ω1 = M ∩ ω1. Thus Nβ ∩ ω1 = M ∩ ω1.
This completes the proof.

Corollary 2.14. If (†) holds then �γ fails for every uncountable car-

dinal γ.

Solovay [14] showed that if κ is a λ-strongly compact cardinal then the
Singular Cardinal Hypothesis holds between κ and λ. Matsubara [10] showed
that if there is a normal σ-strategically closed κ-ideal on Pκλ then the
Singular Cardinal Hypothesis holds between κ and λ. We end this section
with the following question:

Question. Does the existence of a semiproper κ-ideal on Pκλ imply the

Singular Cardinal Hypothesis between κ and λ?
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3. Consistency. In this section we discuss the consistency of the exis-
tence of semiproper ideals. In Matsubara [10] the following was shown.

Theorem 3.1. Suppose γ is a regular uncountable cardinal and κ and λ
are cardinals such that γ < κ ≤ λ and κ is λ-supercompact. Let I be a normal

maximal κ-ideal on Pκλ. Then, in V Col(γ,<κ), I is a normal σ-strategically

closed κ-ideal on PκλV [G], where Col(γ, < κ) is the Levy collapse making κ

become γ+ and I is the ideal on PκλV [G] generated by I.

Therefore even if κ is a successor cardinal, Pκλ can carry a normal σ-
strategically closed κ-ideal.

On the other hand, there is an obvious limitation. If I is a normal κ-ideal
on Pκλ with Eκ,λ

ω ∈ I+ then I is not proper∗. (If G is a PI -generic filter with

Eκ,λ
ω ∈ G then cf(κ) = ω in the generic ultrapower of V by G and thus is in

V [G]. Hence PI is not proper.) In fact, it is known that if γ+ < κ then there

is no normal proper∗ κ-ideal on Pκλ with Eκ,λ
γ ∈ I+. See Matsubara–Shelah

[11].
In this section we show that it is possible to have a normal semiproper κ-

ideal I on Pκλ with Eκ,λ
ω ∈ I+. More precisely, using the method developed

in Foreman–Magidor–Shelah [2], we show that under some assumption on
the ground model, if a supercompact cardinal is Levy collapsed to λ+ then
there is a stationary S ⊆ Eκ,λ

ω such that NSκ,λ↾S is semiproper.
We begin with a review of the notion of internal approachability which

is introduced in Foreman–Magidor–Shelah [2]. We only use the notion of
internal approachability of length ω.

Definition 3.2. A set x is said to be internally approachable of length
ω (or in brief I.A. of length ω) if there exists a ⊆-increasing sequence 〈xn |
n ∈ ω〉 ⊆ x such that x =

⋃
n∈ω xn. For a regular uncountable cardinal κ

and a regular cardinal λ ≥ κ, let

IAκ,λ
ω := {M ∈ PκHλ | M ≺ 〈Hλ,∈〉 ∧ M is I.A. of length ω}.

Note that IAκ,λ
ω is stationary in PκHλ. The following lemma is basic:

Lemma 3.3. Let λ be a regular uncountable cardinal and ∆ be a well-

ordering of Hλ. Then the following holds:

(1) Suppose 〈Mn | n ∈ ω〉 is a ⊆-increasing sequence such that for each

n ∈ ω, Mn ≺ 〈Hλ,∈〉 and Mn is I.A. of length ω. Then
⋃

n∈ω Mn is

also I.A. of length ω.

(2) Let A ⊆ Hλ. Assume x ⊆ Hλ is I.A. of length ω and a ⊆ Hλ is a

countable set. Then the Skolem hull of x∪ a in 〈Hλ,∈, ∆, A〉 is I.A.

of length ω.

Proof. (1) is easy. We show (2). Let A, x and a be as in (2). Let 〈xn | n ∈
ω〉 ⊆ x be such that

⋃
n∈ω xn = x and let 〈an | n ∈ ω〉 be an enumeration
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of a. Furthermore, let 〈ϕn | n ∈ ω〉 be an enumeration of all formulae
and assume that each ϕn has kn free variables. For convenience, by adding
dummy variables if necessary, assume that kn ≥ 2 for each n ∈ ω. For each
n ∈ ω, let hn be the Skolem function for ϕn defined as follows. For each
b1, . . . , bkn−1 ∈ Hλ, let hn(b1, . . . , bkn−1) be the ∆-least b such that 〈Hλ,∈,
∆, A〉 � ϕn(b, b1, . . . , bkn−1) if such a b exists, and let hn(b1, . . . , bkn−1) := 0
otherwise.

Now let N be the Skolem hull of x ∪ a in 〈Hλ,∈, ∆, A〉. Then

N =
⋃

n∈ω

hn[kn−1(x ∪ a)] =
⋃

n∈ω

⋃

m∈ω

hn[kn−1(xm ∪ {a0, . . . , am−1})].

For any n, m ∈ ω, let yn,m := hn[kn−1(xm ∪ {a0, . . . , am−1})]. Then yn,m ∈
Hλ and yn,m is definable in 〈Hλ,∈, ∆, A〉 from parameters xm, a0, . . . , am−1.
Hence yn,m ∈ N for all n, m ∈ ω. Therefore if we let yl :=

⋃
n,m<l yn,m for

each l ∈ ω then yl ∈ N and
⋃

l∈ω yl = N . This implies N is I.A. of length ω.

Now we show that some stationary reflection principle, which holds if
a supercompact cardinal is Levy collapsed to λ+, implies NSκ,Hλ

↾IAκ,λ
ω is

ω1-stationary preserving. In the proof, we use Facts 1.4–1.6.

Theorem 3.4. Let κ, λ and θ be regular cardinals such that ω2 ≤ κ ≤
λ < 22<λ

< θ. Assume that for every X ⊆ IAκ,θ
ω which is stationary in PκHθ,

there is a W such that Hλ ⊆ W , |W | = |Hλ| and X ∩PκW is stationary in

PκW . Then NSκ,Hλ
↾IAκ,λ

ω is ω1-stationary preserving.

We use the following lemma:

Lemma 3.5. Let κ, λ and θ be regular cardinals such that ω2 ≤ κ ≤
λ < 22<λ

< θ. Assume that for every X ⊆ IAκ,θ
ω which is stationary in

PκHθ, there is a W such that Hλ ⊆ W , |W | = |Hλ| and X ∩ PκW is

stationary in PκW . Let X ⊆ IAκ,λ
ω be stationary in PκHλ and for each

β < ω1, let l(β) ∈ On and let 〈Xβ
ξ | ξ < l(β)〉 be a maximal antichain

below X in PNSκ,Hλ
. (Note that l(β) ≤ |P(PκHλ)| = 22<λ

.) Moreover let

X := {x ∈ PκHθ | x ∩ Hλ ∈ X} and X
β
ξ := {x ∈ PκHθ | x ∩ Hλ ∈ Xβ

ξ } for

each ξ < l(β). Then
⋂

β∈ω1
∇ξ<l(β)X

β
ξ is stationary in PκHθ.

First we show Theorem 3.4 using Lemma 3.5, and then we show Lemma
3.5.

Proof of Theorem. Let I be NSκ,Hλ
↾IAκ,λ

ω . Fix a well-ordering ∆θ of Hθ.

To show the theorem, take arbitrary X, Ė and D such that

• X ⊆ IAκ,λ
ω and X is stationary in PκHλ,

• Ė is a PI -name such that X 
 “Ė is a club subset of ωV
1 ”,

• D is a stationary subset of ω1.
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We want to show that there are an α ∈ D and a stationary Y ⊆ X such
that Y 
 “α ∈ Ė”.

For each β < ω1, let l(β), 〈Xβ
ξ | ξ < l(β)〉 and 〈γβ

ξ | ξ < l(β)〉 be such that

• Xβ
ξ ⊆ X for every β < ω1 and ξ < l(β),

• 〈Xβ
ξ | ξ < l(β)〉 is a maximal antichain below X in PI ,

• γβ
ξ < ω1 and Xβ

ξ 
 “γβ
ξ = min(Ė \ β)” for each ξ < l(β).

Then it suffices to show that there are an α ∈ D and a stationary Y ⊆ X
such that

(⋆) for all β<α and ξ<l(β), if Y ∩Xβ
ξ is stationary in PκHλ then γβ

ξ <α.

To use Lemma 3.5, let X := {x ∈ PκHθ | x ∩Hλ ∈ X} and X
β
ξ := {x ∈

PκHθ | x ∩ Hλ ∈ Xβ
ξ } for each β < ω1 and ξ < l(β). Moreover let Y :=

⋂
β<ω1

∇ξ<l(β)X
β
ξ and let Y

α
:=

⋂
β<α ∇〈X

β
ξ | ξ < l(β) ∧ γβ

ξ < α〉 for each

α < ω1. By Lemma 3.5, Y is stationary in PκHθ. We claim the following:

Claim 3.4.1. There are club many α < ω1 such that Y
α
∩ IAκ,θ

ω is sta-

tionary in PκHθ.

Proof of Claim. First we show that Y
α

is stationary for club many
α < ω1. Then we prove that if Y

α
is stationary then Y

α
∩IAκ,θ

ω is stationary.
Assume that F := {α < ω1 | Y

α
is nonstationary in PκHθ} is station-

ary in ω1. Then
⋃

α∈F Y
α

is nonstationary in PκHθ because κ > ω1. Hence

there is an N ∈ Y \
⋃

α∈F Y
α
. For each β < ω1, let ξ(β) < l(β) be such

that ξ(β) ∈ N ∈ X
β

ξ(β). Such a ξ(β) exists because N ∈ Y ⊆ ∇ξ<l(β)X
β
ξ .

Now, because F is stationary in ω1, there is an α ∈ F such that γβ
ξ(β) < α

for each β < α. Then N ∈ Y
α

by the definition of Y
α
. This contradicts

N /∈
⋃

α∈F Y
α
. Thus there are club many α < ω1 with Y

α
stationary.

Next assume that Y
α

is stationary in PκHθ. We show that Y
α
∩ IAκ,θ

ω

is also stationary. It suffices to show that for every A ⊆ Hθ, there is an
M ∈ Y

α
∩ IAκ,θ

ω such that M ≺ 〈Hθ,∈, A〉 and M ∩ κ ∈ κ.
Take an arbitrary A ⊆ Hθ. Because Y

α
is stationary we can take an

N ∈ Y
α

such that N ≺ 〈Hθ,∈, ∆θ, A〉 and N ∩ κ ∈ κ. Because Y
α
⊆ X

note that N ∩ Hλ ∈ X ⊆ IAκ,λ
ω . For each β < α, let ξ(β) < l(β) be such

that ξ(β) ∈ N ∈ X
β
ξ(β) and γβ

ξ(β) < α. Now let M be the Skolem hull of

(N ∩ Hλ) ∪ {ξ(β) | β < α} in 〈Hθ,∈, ∆θ, A〉. We show M is as desired.
First note that M ∩ Hλ = N ∩ Hλ because N ∩ Hλ ⊆ M ⊆ N . Hence

ξ(β) ∈ M ∈ X
β
ξ for each β < α and so M ∈ Y

α
. Moreover M∩κ = N∩κ ∈ κ.

Next recall that N∩Hλ ∈ IAκ,λ
ω . Hence M ∈ IAκ,λ

ω by Lemma 3.3(2). Finally,
it is clear that M ≺ 〈Hθ,∈, A〉. Claim
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We return to the proof of the theorem. We must show that there is an
α ∈ D and a stationary Y ⊆ X satisfying (⋆).

By Claim 3.4.1, there is an α ∈ D such that Y
α
∩ IAκ,θ

ω is stationary.
Then by the assumption of the lemma, there is a W such that Hλ ⊆ W ,
|W | = |Hλ| and Y

α
∩ PκW is stationary in PκW . Let π : W → Hλ be a

bijection and let Y := {M ∩ Hλ | M ∈ Y
α
∩ PκW ∧ M is closed under

π, π−1}. We show that α and Y satisfy (⋆).

Assume β < α, ξ < l(β) and Y ∩ Xβ
ξ is stationary. Note that Y ∩ Xβ

ξ =

{M ∩ Hλ | M ∈ Y
α
∩ PκW ∩ X

β
ξ ∧ M is closed under π, π−1}. Hence

Y
α
∩PκW ∩X

β
ξ = (Y

α
∩PκW )∩ (X

β
ξ ∩PκW ) is stationary in PκW by Fact

1.6(1). Here note that Y
α
∩PκW = ∇〈X

β
η ∩PκW | η ∈ l(β)∩W ∧ γβ

η < α〉.

Therefore γβ
ξ < α. This shows that α and Y satisfy (⋆). Theorem

We must prove Lemma 3.5. It can be shown by the catching antichain
argument due to Foreman, Magidor and Shelah [2]. The point is that by
restricting to IAκ,λ

ω , we can iterate catching antichain procedures ω1 times.

Proof of Lemma 3.5. Let X, 〈Xβ
ξ | ξ < l(β)〉, X, 〈X

β
ξ | ξ < l(β)〉 be as

in Lemma 3.5 and fix a well-ordering ∆θ of Hθ. We may assume Xβ
ξ ⊆ X

for each β < ω1 and ξ < l(β).

Claim 3.5.2. X ∩ IAκ,θ
ω is stationary in PκHθ. X

β
ξ ∩ IAκ,θ

ω is also sta-

tionary for every β < ω1 and ξ < l(β).

Proof of Claim. We only show the former statement. The proof of the
latter is the same. It suffices to show that for every A ⊆ Hθ, there is an
M ∈ X ∩ IAκ,θ

ω such that M ≺ 〈Hθ,∈, A〉 and M ∩ κ ∈ κ.

Take an arbitrary A ⊆ Hθ. Then, because X is stationary, there is an
N ∈ X such that N ≺ 〈Hθ,∈, ∆θ, A〉 and N ∩ κ ∈ κ. Let M be the Skolem
hull of N ∩Hλ in 〈Hθ,∈, ∆θ, A〉. We show that M has the above properties.
First note that N ∩ Hλ ⊆ M ⊆ N and so M ∩ Hλ = N ∩ Hλ. Therefore
M ∩κ ∈ κ and M ∈ X. Moreover, because N ∩Hλ ∈ X ⊆ IAκ,λ

ω , we see that
M ∈ IAκ,θ

ω by Lemma 3.3(2). Finally, it is clear that M ≺ 〈Hθ,∈, A〉. Claim

The following is the key claim.

Claim 3.5.3. There is a club C ⊆ PκHθ such that for every β < ω1

and every M ∈ C ∩ X ∩ IAκ,θ
ω , there is an N ∈ PκHθ with the following

properties:

(1) M ⊆ N ≺ 〈Hθ,∈, ∆θ〉.
(2) M ∩Hλ = N ∩Hλ.

(3) N ∈ ∇ξ<l(β)X
β
ξ .
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Proof of Claim. Assume not. Then, because κ ≥ ω2 and X ∩ IAκ,θ
ω is

stationary, there is a β < ω1 and a stationary S ⊆ X ∩ IAκ,θ
ω such that for

every M ∈ S there is no N satisfying (1)–(3). Then, by the assumption of
the lemma, there is a W such that Hλ ⊆ W , |W | = |Hλ| and S ∩ PκW is
stationary in PκW .

Recall that {Xβ
ξ | ξ ∈ l(β)} is predense below X in PNSκ,Hλ

. So {X
β
ξ ∩

PκW | ξ < l(β)} is predense below X ∩ PκW in PNSκ,W
by Fact 1.6(3).

Moreover S∩PκW ⊆ X ∩PκW is stationary. Hence there is a ξ < l(β) such

that X
β
ξ ∩ S ∩ PκW is stationary in PκW . Now we can take an N ∈ PκHθ

such that ξ ∈ N ≺ 〈Hθ,∈, ∆θ〉 and N∩W ∈ X
β
ξ ∩S. Let M := N∩W . Then

M ∈ S and clearly N satisfies (1) and (2) for this M . Moreover, by the choice

of N , ξ ∈ N ∈ X
β
ξ . Hence N satisfies (3). This is a contradiction. Claim

We return to the proof of the lemma. Let Y :=
⋂

β<ω1
∇ξ<l(β)X

β
ξ .

Take an arbitrary club C ⊆ PκHθ. We show that C∩Y 6= ∅. By reducing
C if necessary, we may assume that C witnesses Claim 3.5.3 and there is an
A ⊆ Hθ such that C = {M ∈ PκHθ | M ≺ 〈Hθ,∈, ∆θ, A〉 ∧ M ∩ κ ∈ κ}.

By induction on β < ω1, we define ⊆-increasing 〈Mβ | β < ω1〉 so that
for each β ∈ ω1,

(a) Mβ ∈ C ∩ X ∩ IAκ,θ
ω ,

(b) Mβ ∩Hλ = M0 ∩Hλ,

(c) Mβ+1 ∈ ∇ξ<l(β)X
β
ξ .

First let M0 be an element of C∩X∩IAκ,θ
ω with 22<λ

∈ M0. Next assume
β < ω1 is limit and Mβ′ has been defined to satisfy (a)–(c) for each β′ < β.

Then let Mβ :=
⋃

β′<β Mβ′ . Note that Mβ ∈ IAκ,θ
ω by Lemma 3.3(1). It is

clear that Mβ satisfies other conditions in (a)–(c).

Finally, assume β < ω1 and Mβ has been defined to satisfy (a)–(c). Then

because Mβ ∈ C ∩ X ∩ IAκ,θ
ω there is an N ∈ PκHθ satisfying (1)–(3) of

Claim 3.5.3 for β and Mβ. Let ξ < l(β) be the one witnessing (3), i.e. such

that ξ ∈ N ∈ X
β
ξ . Now let Mβ+1 := {f(ξ) | f : 22<λ

→ Hθ ∧ f ∈ Mβ}. We

must check Mβ+1 satisfies (a)–(c). Note that

(i) Mβ+1 is the Skolem hull of Mβ ∪ {ξ} in 〈Hθ,∈, ∆θ, A〉,
(ii) Mβ ∩Hλ = Mβ+1 ∩Hλ = N ∩Hλ.

For (ii), note that Mβ ⊆ Mβ+1 ⊆ N and Mβ ∩Hλ = N ∩Hλ.

(a) It is easy to check Mβ+1 ∈ C∩X. Because Mβ ∈ IAκ,θ
ω , Mβ+1 ∈ IAκ,θ

ω

by Lemma 3.3(2).

(b) is clear from (ii).
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(c) By (ii) and the fact that N ∈ X
β
ξ , we have Mβ+1 ∈ X

β
ξ . Then

ξ ∈ Mβ+1 ∈ X
β
ξ and so Mβ+1 satisfies (c). This completes the inductive

definition of 〈Mβ | β < ω1〉.

Now let M
∗

:=
⋃

β<ω1
Mβ . Then clearly M

∗
∈ C. Moreover M

∗
∈

∇ξ<l(β)X
β
ξ for each β < ω1 because Mβ+1 ∩ Hλ = M

∗
∩ Hλ and Mβ+1 ∈

∇ξ<l(β)X
β
ξ . Hence M

∗
∈ Y . Therefore M

∗
∈ C ∩ Y 6= ∅. Lemma

Corollary 3.6. Assume κ and λ are regular cardinals such that ω2 ≤
κ ≤ λ and δ is a supercompact cardinal > λ. Then the following hold in

V Col(λ,<δ):

(1) NSκ,Hλ
↾IAκ,λ

ω is ω1-stationary preserving.

(2) There is a stationary S ⊆ Eκ,λ
ω such that NSκ,λ↾S is ω1-stationary

preserving.

(3) If κ = λ then NSκ↾Eκ
ω is ω1-stationary preserving.

Proof. (1) In V Col(λ,<δ), the assumption of Theorem 3.4 holds. Hence
(1) holds.

(2) First note that in V Col(λ,<δ), |Hλ| = λ. Let π : Hλ → λ be a bijection
and let S := {M ∩ λ | M ∈ IAκ,λ

ω , M ∩ κ ∈ κ, M is closed under π, π−1}.
Then by (1) and Fact 1.6(2), NSκ,λ↾S is ω1-preserving. Moreover it is easy

to see S ⊆ Eκ,λ
ω .

(3) Assume κ = λ. Let S be as in the proof of (2). Then S ⊆ Eκ
ω and

NSκ↾S is ω1-stationary preserving. We show that Eκ
ω \ S is nonstationary.

First note that if M ≺ 〈Hκ,∈, π〉 and M ∩κ ∈ Eκ
ω then M is the Skolem hull

of M ∩κ in 〈Hκ,∈, π〉 and so M ∈ IAκ,κ
ω by Lemma 3.3. Hence S ⊇ {M ∩κ |

M ≺ 〈Hκ,∈, π〉 ∧ M ∩ κ ∈ Eκ
ω}. Therefore Eκ

ω \ S is nonstationary.

Note that ideals in Corollary 3.6 are not necessarily semiproper. If �γ

fails in V for some γ with κ ≤ γ+ ≤ λ then �γ still fails in V Col(λ,<δ). There-
fore, by Corollary 2.12, there is no semiproper κ-ideal on Pκλ in V Col(λ,<δ).

On the other hand, recall that MA+(σ-closed) is preserved by ω2-closed
posets and MA+(σ-closed) implies (†). For the former see König–Yoshinobu
[7] and for the latter see Foreman–Magidor–Shelah [2].

Corollary 3.7. Let κ and λ be regular cardinals such that ω2 ≤ κ ≤
λ and assume δ is a supercompact cardinal > λ. Moreover assume that

MA+(σ-closed) holds in V . Then in V Col(λ,<δ) the following hold :

(1) NSκ,Hλ
↾IAκ,λ

ω is semiproper.

(2) There is a stationary S ⊆ Eκ,λ
ω such that NSκ,λ↾S is semiproper.

(3) If κ = λ then NSκ↾Eκ
ω is semiproper.

We end this paper with two remarks.
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First, using the method developed in Goldring [4], we can replace “a
supercompact cardinal” in Corollaries 3.6 and 3.7 by “a Woodin cardinal”.

Next it is shown in Larson [8] that MM is preserved by ω2-directed closed
posets. Hence, in the theorem above, if we assume MM holds in V then it still
holds in V Col(λ,<δ) and therefore we can apply MM for the corresponding
posets of ideals in Corollary 3.7.
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