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Semiproper ideals
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Abstract. We say that an ideal I on P, is semiproper if the corresponding poset
P; is semiproper. In this paper we investigate properties of semiproper ideals on P A\.

1. Introduction. Large cardinal properties of ideals on P, such as sat-
uration, presaturation, and precipitousness have been studied extensively by
many set-theorists. These are properties extracted from the dual ideals of
supercompact filters or strongly compact filters on P,A. These properties
are large cardinal properties in the sense of consistency strength. In general
the existence of an ideal on P,A with such a property does not imply that
either k or A is a large cardinal.

In many cases these properties of ideals can be characterized by the prop-
erties of posets corresponding to those ideals. For example, an ideal I on
Pi A is y-saturated if and only if P;, the poset of all I-positive sets ordered
by inclusion, has the 7-chain condition (vy-c.c.). I is also called precipitous
if for every Pr-generic filter G, the ultrapower of V' by G is well-founded.
In the development of the theory of forcing, many properties of posets have
been introduced, e.g. o-closure, o-Baireness, properness, semiproperness,
etc. We can define the properties of ideals corresponding to these as follows:
Let us say that an ideal I on P\ is o-strategically closed (o-Baire, proper*,
semiproper, etc.) if Py is o-strategically closed (o- Baire, proper, semiproper,
etc.). (Usually if P\ does not belong to an ideal I over Py, then we say
I is proper. To distinguish from this properness, we add the superscript x*.)

In Matsubara [9], [10], o-strategically closed ideals, o-Baire ideals and
proper™ ideals were investigated. In this paper, we study semiproper ideals
on P, A. Our main results are as follows:

THEOREM 1.1. Assume that, for some cardinal A > wa, there is an wo-
complete semiproper ideal on Po,\ whose dual filter is fine. Then 280 < Ry
and Chang’s Conjecture holds.
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THEOREM 1.2. Assume k is a reqular cardinal, A is a cardinal > k and
there is a k-complete semiproper ideal on Py whose dual filter is fine. Then
O, fails for every cardinal v such that k <~ < \.

THEOREM 1.3. The following is consistent relative to some large cardinal
azxiom: There are reqular cardinals k < A and a stationary S C Eﬁ’)‘ such
that NS, \[S is semiproper, where NS, \ is the nonstationary ideal on Pi)\

and B = {zx € PoA | zNk €k Act(zNk) =w).

From Theorems 1.1 and 1.2, we can see that semiproperness is a large
cardinal property.

Theorem 1.2 is a generalization of Solovay’s theorem that if x is -
supercompact then C-principles fail between x and A\. Matsubara [10] gener-
alized Solovay’s theorem and showed that if there is a normal o-strategically
closed ideal on P, A then O-principles fail between x and A. Theorem 1.2 is
a further generalization.

In Theorem 1.3, note that NS, x\[S cannot be proper*. In fact if I is a

normal ideal on P, such that E& is in the dual filter of I then an easy
calculation shows that cf(x) = w in the generic ultrapower. Hence P; makes
the cofinality of k countable and so Py is not proper. Theorem 1.3 says that
such an ideal I can be semiproper.

This paper is organized as follows. In Section 2, we make a basic analysis
of semiproper ideals. Among other things, we show Theorems 1.1 and 1.2.
In Section 3, we prove Theorem 1.3. More precisely, we prove that, under
some condition on the ground model, if a supercompact cardinal is Levy
collapsed to A* then there is a stationary S C E such that NS IS is
semiproper.

NOTATIONS AND DEFINITIONS. We believe our notations are standard.
Here we only present the notations and basic definitions related to P,W
and ideals on P,W. For those which are not presented here, see Jech [5] or
Kanamori [6]. Let x be a regular uncountable cardinal and let W be a set
with K C W.

For an ideal I on P.W, I denotes the set of all I-positive sets, F
denotes the dual filter of I, and P; denotes the poset (I, C). For S € IT,
I1S denotes the restriction of I to S, that is, the ideal on P,W such that
for every X CP,W, X € IS if and only if X NS € [I.

An ideal I on P.W is called a k-ideal if I is a proper k-complete ideal
on P,W whose dual filter F7 is fine, i.e. {x € P,W | w € z} € Fy for every
w € W. NS, w, the nonstationary ideal on P,W, is a normal s-ideal on
P.W.

A k-ideal I on P,W is called semiproper if the corresponding poset P is
semiproper. In this paper, we adopt the following definition of semiproper-
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ness of posets. Let IP be a poset. For a set M, an (M, P)-semimaster condition
q is a condition q € P such that ¢ IF “7 € w} — 7 € M” for every P-name
T € M. P is called semiproper if for every sufficiently large regular cardinal
0, every countable elementary submodel M of (Hy, €) with P € M and every
p € PN M, there is an (M, P)-semimaster condition g below p.

Other properties of ideals such as o-strategic closure, properness®, etc.
are defined in the same fashion. A k-ideal I on P, W is called o-strategically
closed if Py is o-strategically closed, and I is called proper® if Py is proper.
(For the definition of o-strategic closure and properness of posets see Jech
[5].) Moreover I is called wi-stationary preserving, respectively wi-preserv-
ing, if P; preserves stationary subsets of wi, respectively preserves wi. The
order of the strength of these properties is as follows:

o-strategically closed > proper* > semiproper
> wi-stationary preserving > wi-preserving

Next we give notations for subsets of P,W. For a regular v < k, let
Ef:={a €k |cf(a) =~} and EEV = {zePW |znke EXY}.

Assume W C W and (X, | w € W') is a family of subsets of P,W
indexed by elements of W’. Then V(X,, | w € W') or Vyew' X, denotes
the diagonal union {x € P.,W | Jw € W/, w € = € X,}. Note that if
X C Vyew Xy is stationary in P,W then there is a w € W’ such that
X N X, is stationary. That is, {X,, | w € W' A X,, is stationary} is predense
below vwEW’Xw in ]P)NSK,,W'

Finally, we present basic facts on P,W which are used in this paper. The
proof of Fact 1.5 can also be found in Jech [5, Theorem 8.27].

FactT 1.4. Let k and A be reqular uncountable cardinals such that k < .
Then for every club C C Py Hy, there is an A C Hy such that {M € P,H) |
M < (Hy,e, A NMNkekr}CC.

Proof. Let C'C P.Hy be a club. Then there is a function F : [H)]<* —
P Hy such that Crp C C, where Cp := {x € P,/H) | Vs € [z]<¥, F(s) C z}.
Note that F C Hy. We show that {M € P.H)\ | M < (Hy, €, F) AM Nk
ek} CC.

Take an arbitrary M such that M < (Hy,€,F) and M Nk € k. It
suffices to show that M € Cp. Let s € [M]|<“. Then F(s),|F(s)| € M by
the elementarity of M. Moreover there is a bijection g € M from |F(s)| to
F(s). Note that |F(s)| € M because |F(s)| € M Nk and M Nk € k. Hence
F(s)=g[|F(s)]] €S M andso M € Cp. m

Facr 1.5 (Menas [12]). Let x be a regular uncountable cardinal and
W, W be sets with k CW CW.
(1) If X C P.W is stationary then { € P.W | ZNW € X} is stationary
in PW.
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(2) If X C P.W s stationary then {TNW | T € X} is stationary in
P.W.

FACT 1.6. Let k be a regular uncountable cardinal and W, W be sets with
k CW CW and [W|=|W|. Let m : W — W be a bijection and let C' C
P.W be a club consisting of all T € P.W which are closed under 7 and m=*.

(1) For every X C C, X is stationary in P.W if and only if {T W |
T € X} is stationary in P,W.

(2) Assume X C C is stationary and let X := {tNW |z € X}. Then
PNSKWD? and Pxs, v 1x are isomorphic.

(3) Assume X C P.W is stationary, v is an ordinal and {X¢ | £ <~} C
Pxs, v s predense below X. Let X :={T € P,W | zNW € X} and
Xe={T € P,W |ZNW € X¢} for each & <. Then {X¢ | £ <~}
is predense below X in IP’NS&W.

Proof. (1) Let X C C. If X is stationary in P,W then {TNW | T € X}
is stationary in P,W by Fact 1.5(2). On the other hand, assume X is non-
stationary in P.W. Let B C P.W be a club such that BN X = (). Then
{n[Z) | T € B} is club in P,W and {n[7] | T € B} N {x[z] | T € X} = 0.
Moreover if T € X then 7[%] = £ N W because 7 is closed under 7 and 7~ 1.
Hence {n[7] | # € X} = {ZNW | T € X}. Therefore {TNW | T € X} is
nonstationary.

(2) Let 7 : P(P,W) — P(P,W) be such that 7*(Y) := {n[z] | T € Y }.
Note that 7*(X) = X by the argument above. Then it is easy to see that
" TPNSK,W 5 is an isomorphism from PNSR,W ix to PNs, wix-

(3) Take an arbitrary stationary ¥ C X. We must find ¢ < v such that
Y N X is stationary. We may assume Y C C. First let Y := {ZnW | Z € Y }.
Then Y is a stationary subset of X and so there is a { < v with ¥ N X,
stationary. Here note that Y N X, = {NW | £ € Y N X¢}. Moreover

Y NX¢ C C. Therefore Y N X is stationary in P,W by (1). u

2. Basic analysis of semiproper ideals. In this section we investigate
properties of semiproper ideals.

First we discuss precipitousness. In Matsubara [9], it is shown that every
proper® k-ideal on P, is precipitous. We do not know whether semiproper-
ness implies precipitousness. In Gitik—Shelah [3], it was shown that if 2" =
k1 then every s-complete ideal I on s such that P; preserves w; is precipi-
tous. The following is the P, A version of this.

THEOREM 2.1. Assume & is a reqular uncountable cardinal, A is a car-
dinal > k and A" — AT, Assume that I is a normal w1 -preserving k-ideal
on PxA. Then I is precipitous.
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Theorem 2.1 follows from the following two facts.

Fact 2.2. Assume v is a reqular uncountable cardinal and P is a poset
of cardinality <. Then lFp “cf(y) = |v|”.

Proof. Let v be a regular uncountable cardinal and P be a poset with
|P| < . We show that if @ is a P-name of an unbounded subset of v then
there is a function f € V from « to 7 such that IFp “f[a] = v”. Clearly this
suffices.

Fix an enumeration (ps | £ < 7) of P. For each (£,n) € ?v, we define
agy < 7y and gg, € P by induction on the lexicographical order <jex of 2.
Assume that (£, ) € 2y and that agr,y was defined for each (¢, 1) <jex (€, 7).
Then let ag, and g, be such that

o gy > gy for every (€,1) <iex (£,1),

® Gy < pe and qgy lFp “agy € a7
We can take such ag, and g¢, because « is regular and a is a P-name of
an unbounded subset of v. Now let f : v — ~ be a function such that
flagy) = n for each (£,71) € ?y.

We show that IFp “f[a] = 7”. Take an arbitrary n < v and p € P, say
p = pe. Then ge < p and gy - “n € fla]”. The latter is because gg, IFp
“agp € @” and f(ogy) = n. This implies that IFp “f[a] =~". =

Fact 2.3 (Baumgartner—Taylor [1]). Assume k is a regular uncountable
cardinal, A is a cardinal > k and 22" — AT. Moreover assume that I
is a normal k-ideal on Px\ such that Ikp, “cf(A\T)Y) > w”. Then I is
precipitous.

Proof of Theorem 2.1. Let k, A and I be as in the theorem. Because
22" = At we have |P;| < At. Hence, by Fact 2.2 applied to v = AT,
IFp, “cf(AT)Y) = |(AH)V|”. Moreover IFp, “|(AT)Y| > w” because I is wi-
preserving. Therefore IFp, “cf((A*)Y) > w”. Then, by Fact 2.3, I is precipi-
tous. m

It is easy to see P, A cannot carry semiproper ideals. Assume A is an un-
countable cardinal, I is an wi-ideal on P, A and G is a Pr-generic filter over
V. Then the critical point of the generic ultrapower map is wY . Therefore
wY is countable in the ultrapower of V' by G and thus is in V[G]. Note that
this argument does not need precipitousness. Hence I is not wi-preserving.

THEOREM 2.4. Assume that \ is an uncountable cardinal and that I is
an wi-ideal on Py, A. Then I is not wi-preserving. So I is not semiproper.

Next we discuss consequences of the existence of semiproper ideals on
PiA. The argument uses the following principle.

DEFINITION 2.5. For a regular uncountable cardinal v > wo, let @, be
the following statement:
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For every sufficiently large regular cardinal 6, there is a club C' C
[Hg]“ which satisfies the following conditions.

(1) For every M € C, M < (Hg, €).
(2) For every M € C and « < v there is an N € C such that:

(a) M C N,
(b) MNwy =N Nw,
(¢) sup(NN~) > a.

D, is known as a strong form of Chang’s Conjecture and it is easy to
see that @, implies Chang’s Conjecture. Shelah [13] showed that if Namba
forcing is semiproper then @,,, holds, and Todorcevié¢ [15] showed that Rado’s
Conjecture implies @,,. Here we show that if there is a semiproper x-ideal
on PeA then @, holds for every regular cardinal between x and A. For this
we prepare a standard lemma on the Skolem hull.

LEMMA 2.6. Let 0 be a regular uncountable cardinal, A be a well order-
ing of Hg and A C Hy. Assume that M < (Hg,€, A, A) and that ) # D C
Ee M. Let

N:={fd)|Incw, f:"E—-HoNfeMANde"D}.
Then N is the Skolem hull of M U D in (Hg, €, A, A).

Proof. Let A := (Hy,€,A, A). Clearly N is included in the Skolem hull
of M UD in A. By taking f as the identity function on E, we can see that
D C N. For each a € M, by taking f as the constant function on E with
value a, we find that « € N. So M U D C N. Hence it suffices to show that
N < A.

We use Tarski—Vaught’s criterion. Assume (v, v1,...,v,) is a formula,
ai,...,an, € N and A E Jv ¢[v,a1,...,a,). It suffices to show that there
exists an a € N such that

AE pla,al, ..., ay).

Foreach k =1,...,n,let mp € w, dp € ™ FE and f : " FE — Hy be
a function such that fr € M and fi(dg) = a. Let m = Y _;_, my and
d = dy"dy” ... "d,. We define a function f on ™FE as follows. Assume
e € ME. Let (e, | k = 1,...,n) be such that e = e; "ea” ... "¢, and
er, € "™ E. If there is a b such that A F @b, fi(e1),. .., fn(en)] then let f(e)
be the A-least such b. Otherwise let f(e) := 0. Because 6 is regular and
E € Hy, it follows that f € Hy. Moreover f is definable in A from the
parameters F, fi,..., f, which are in M. So, by elementarity, f € M and
therefore f(d) € N. On the other hand, the definition of f and the assump-
tion on ay,...,a, imply that A E ¢[f(d),a1,...,a,]. Now we have shown
there is an a € N such that AFE ¢la,a1,...,ay,]. =
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LEMMA 2.7. Assume k is a regular uncountable cardinal, X is a cardinal
> K and there is a semiproper k-ideal on PyA. Then @, holds for every
regqular cardinal v such that k < v < A.

Proof. First note that x > ws by Theorem 2.4. Let I be a semiproper
k-ideal on P, A and 7 be a regular cardinal with x < v < A. To show &,,
let 0 be a sufficiently large cardinal. Fix a well ordering A of Hy. Then let
C be the set of all countable M < (Hy, €, A) with k,\, I,y € M. We show
that C' witnesses @, for 6.

(1) of @, is clear. We show that (2) holds. Take an arbitrary M € C and
a < 7. Then because P; is semiproper we can take an (M, Pr)-semimaster
condition X € I'T. We may assume that

e for every function f : P.\ — wy which is in M and for every & < wy,
if fI{E N X €1 then f[{e}NX = 0.

For this, note that Z := J{f 1 [{&}]NX | f : PuA — wi Af € MAFH{E}N
X € I} isin I because M is countable and I is wy-complete. Simply replace
X by X\ Z.

Now, because Fy is fine, there is an x € X with o € . Let N := {f(x) |
f:PA — Hg AN f € M}. Then by Lemma 2.6 applied to D = {z} and
E =P\ MU{z} CN < (Hy,€,4). Therefore M C N € C. Moreover,
because a < sup(zN~y) € N, we see that a < sup(N N~y). So all we have to
show is M Nw; = N Nuwj.

For this it suffices to show that if f € M is a function from P,
to wy then f(z) € M. Take an arbitrary function f € M from P, to
wi. First let 7 € M be the P;-name of an ordinal in w; such that for
each ¢ < wy, if f71{€}] € IT then f~1[{¢}] IF “7 = €. Then because
X is an (M,P;)-semimaster condition, X N f~1[{¢}] € I for each & €
wi \ M. So, by the assumption on X, f~1[{&}] N X = @ for each ¢ €
w1 \ M. Because z € X, this implies that f(z) € M. This completes the
proof. m

COROLLARY 2.8. Assume A is a cardinal > wo and there is a semiproper
wy-tdeal on Py, A. Then Chang’s Conjecture holds.

Todoréevi¢ [15] showed that if @, holds then for every stationary S C
[wa]¥ there exists an o < wo such that S N [a] is stationary in [a]“. More-
over Todor¢evié [16] showed that this type of stationary reflection principle
implies 280 < N,. Hence:

COROLLARY 2.9. Assume X is a cardinal > we and there is a semiproper
wa-ideal on Py,\. Then for every stationary S C [we]“, there exists an
o < wy such that S N [a]* is stationary in [a]”. Therefore 280 < Ny.
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Next we discuss U-principles. It is known that Chang’s Conjecture im-
plies the failure of [,,. Here we show that @.+ implies the failure of [,.
For an uncountable cardinal ~, recall that [1, is the following statement:

There is a sequence (C,, | @ € Lim(y")) such that

(1) C, is closed unbounded in « for each a € Lim(y™),
(2) if B8 € Lim(C,) then Cg = Co N G for all «, f € Lim(y™),
(3) 0.t.(Cy) < vy for each a € Lim(y™T).

(For a set A of ordinals, Lim(A) denotes the set of all &« € A such that
sup(ANa) = a.) (Cq | @ € Lim(y™)) satisfying (1)—(3) is called a O,-
sequence.

We use the following easy lemma.

LEMMA 2.10. Let v be an uncountable cardinal and assume that [,
holds. Then there is a Oy-sequence (Co | o € Lim(y")) such that {a €
Lim(y ") | 0.t.(Cy) = w1} is stationary in 7.

Proof. Let (Cy | @ € Lim(y")) be an arbitrary [J,-sequence. We modify
(Cq | @ € Lim(yT)). Let E := B

First let E¢ := {a € E | 0.t.(Cy) = (} for each ¢ < v and let ¢ be the
least ¢ < v such that E; is stationary in 4. Because E = UCS’Y E¢, there
is such a o. Then take a club C' C 4t such that C' N E; = () for every ¢ < o
and let o : v© — C be the increasing enumeration of C. Here note that
if @ € Lim(C) N E, then 0.t.(Cq N C) = wy. Because C, N C is club in «,
0.t.(Co NC) > wi. Assume 0.t.(Co, N C) > wi. Let B be the with element
of C N Cy. Then 8 < a and Cg = C, N . Hence 8 € E; for some ¢ < p.
Thus 8 € C'N E¢ for some ¢ < p. This contradicts the construction of C'.
Therefore 0.t.(Co, N C) < wy.

Now, for each a € Lim(y"), define C}, as follows: If Cy ) N C' is un-
bounded in ¢ () then let C, := 07 '[Cy(q) N C]. Assume C, oy N C is not
unbounded in o(a). Then note that cf(a) = w. Let C} be an arbitrary
unbounded subset of « of order type w.

It is easy to check that (C}, | & € Lim(y™)) is a O,-sequence. Moreover,
by the observation before, if a € Lim(y") No~![E,] then 0.t.(C%) = w;. On
the other hand, note that o~ ![E,] is stationary in v+ because E, is station-
ary and o is continuous. So {a € Lim(y*") | 0.t.(C¥*) = w;} is stationary
in 4*. This completes the proof. m

LEMMA 2.11. Let v be an uncountable cardinal. Then .+ — —Ll,.

Proof. Assume that both @.+ and [J, hold. By Lemma 2.10 let (C, |
a € Lim(y")) be a O,-sequence such that {a € Lim(y") | 0.t.(Co) = w1}
is stationary in v*. Let @ be a sufficiently large regular cardinal and let
C C [Hp]* be a club witnessing &, +.
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Cram 2.11.1. There is an N < (Hg, €) such that yv*,(Cy | « € Lim(yT))
€N, O't'(csup(Nﬂ'y+)) =wj and N Nwy € wi.

Proof of Claim. Let A be a well-ordering of Hg. Then there is a K <
(Hg, €, A,C) such that v, (C, | @ € Lim(y")) € K, o* :== KN~yT € 4T
and 0.t.(Cy+) = wi. Note that every proper initial segment of Cy is in K
because C, € K for each aw < o* and (Cy | o € Lim(y)) is a O,-sequence.
Let (a¢ | £ < wi) be the increasing enumeration of Cox.

Now, by induction on { < wi, define My € C as follows. Let My be
an element of C' with v, (C,, | @ € Lim(y")) € M. If £ is limit then let
M, = U77 <€ M,,. Finally, assume M has been defined for some { < w;.
Then, recalling that C' witnesses @.+, let M¢ 1 be the A-least N € C' such
that Mg C N, Mg Nw; = N Nw; and a¢ < sup(N N~T). This completes the
inductive definition. Note that, because every initial segment of Cy» is in K,
every initial segment of this induction can be carried out in K. So M € K
for each ¢ < w;. Hence Mg C K for each £ < w; because M¢ is countable.

Let N := Uy, Me. Then N C K and so sup(N NyF) < a*. On the
other hand, sup(N N~y™") > o* because ag < sup(Me1Ny") < sup(NNyT)
for each £ < wy. Hence sup(N Ny") = o* and 50 0.t.(Coup(nnyt)) = wi-
Moreover clearly v*, (Cy, | @ € Lim(y")) € N < (Hg, €). Therefore N is the
one desired. mcpaim

Now we return to the proof of the lemma. Let N be the one obtained
from Claim 2.11.1. Let o* := sup(NNy") and (a¢ | £ < wq) be the increasing
enumeration of C,+. Then we can take a limit £ < wy such that N Nwy < &
and N Nog is unbounded in a¢. Let 3 := min(N \ o). Note that 5 is a limit
ordinal and Cg € N.

Cram 2.11.2.

(1) Cy Nag = Cg Naoag = Cag.

(2) Cap NN is unbounded in ag.

Proof of Claim. Because ¢ is limit, Cor N ag = C,,. Moreover, by the
elementarity of N, it is easy to see that N N Cp is unbounded in cg. This
implies that e € Lim(Cp)U{B} and therefore CgNag = C,,. Hence Cp NN
is unbounded in c¢. mClaim

By the claim above, there is an 7 such that N Nw; < n < £ and
ap € N. Then, again by the claim, «, is the nth element of C3. Then,
because Cg and o, are in N, we infer that » € N. This contradicts the fact
that NNw; < n<wp. n

COROLLARY 2.12. Assume k is a regular uncountable cardinal, X\ is a
cardinal > k and there is a semiproper k-ideal on PcX. Then [, fails for
every cardinal v with kK < 4T < \.
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Here we turn our attention to (}), where (}) is the statement that for
every poset PP, P preserves stationary subsets of w; if and only if P is
semiproper. In Foreman—Magidor—Shelah [2], () was introduced and shown
to have interesting consequences. Here we see that if () holds then [, fails
for every uncountable cardinal .

As mentioned before, Shelah [13] showed that if Namba forcing is semi-
proper then @,,, holds. This can be generalized to an arbitrary regular car-
dinal v > wsy. For each regular cardinal v > wa, let Nm(~y) be the poset of
all trees T'C <“~ such that |{s € T'| t C s}| = v for every ¢t € T. The order
is defined by inclusion. Note that Nm(~) forces cf(y) = w. It is known that
Nm(~y) preserves stationary subsets of w;. Therefore () implies Nm(y) is
semiproper.

LEMMA 2.13. Let v be a reqular cardinal > wy. If Nm(y) is semiproper
then @~ holds. Hence if (1) holds then @, holds for every regular cardinal
v 2= wa.

Proof. Assume Nm(7y) is semiproper. To show ., take a sufficiently
large regular cardinal 6. Fix a well-ordering A of Hy. Let C be the set of
all countable M < (Hp,€,A) with v € M. Then C is club in [Hg]* and
satisfies (1) of the definition of @,. We show that C' satisfies (2).

Take an arbitrary M € C and « € v. For each 8 € v, let Ng := {f(5) |
f v — HgANf € M}. Then by Lemma 2.6, Ng is the Skolem hull of
M U{B} in (Hg,€,A). It suffices to show that there exists § > a with
Ng Nwi =M Nuw;.

Let G be an Nm(y)-generic filter containing an (M, Nm(y))-semimaster
condition. Working in V[G], we show that there exists such a 8. Let M[G] :=
{r¢ | 7 € M A7 is an Nm(vy)-name}. Then M[G] Nw; = M Nw; because G
contains an (M, Nm(~y))-semimaster condition. Moreover M [G] N+ is cofinal
in . This is because Nm(7) forces cf(y) = w and Nm(y) € M < (Hy, €, A).
Let > a be an element of M[G]N~. Then it is easy to see that Ng C M[G].
Hence M Nwi; € NgNwi € M[G]Nwi = M Nwy. Thus NgNwy = M Nwy.
This completes the proof. m

COROLLARY 2.14. If (f) holds then O fails for every uncountable car-
dinal ~.

Solovay [14] showed that if x is a A-strongly compact cardinal then the
Singular Cardinal Hypothesis holds between x and A. Matsubara [10] showed
that if there is a normal o-strategically closed k-ideal on Py\ then the
Singular Cardinal Hypothesis holds between x and A. We end this section
with the following question:

QUESTION. Does the existence of a semiproper k-ideal on P\ imply the
Singular Cardinal Hypothesis between k and A\?
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3. Consistency. In this section we discuss the consistency of the exis-
tence of semiproper ideals. In Matsubara [10] the following was shown.

THEOREM 3.1. Suppose 7y is a reqular uncountable cardinal and k and A
are cardinals such that v < k < X and k is A-supercompact. Let I be a normal
mazimal k-ideal on PX. Then, in V<) T is a normal o-strategically
closed k-ideal on P AV, where Col(~, < k) is the Levy collapse making k
become v+ and I is the ideal on PANVIE generated by 1.

Therefore even if k is a successor cardinal, PxA can carry a normal o-
strategically closed k-ideal.

On the other hand, there is an obvious limitation. If I is a normal x-ideal
on Py with Ef* € It then I is not proper*. (If G is a Pj-generic filter with
E& € G then cf(k) = w in the generic ultrapower of V' by G and thus is in
V[G]. Hence Py is not proper.) In fact, it is known that if y* < & then there
is no normal proper* k-ideal on P\ with ES A € I't. See Matsubara-Shelah
[11].

In this section we show that it is possible to have a normal semiproper k-
ideal I on P\ with Ef,”\ € I'". More precisely, using the method developed
in Foreman-Magidor—Shelah [2], we show that under some assumption on
the ground model, if a supercompact cardinal is Levy collapsed to A" then
there is a stationary S C ES’/\ such that NS, y[S is semiproper.

We begin with a review of the notion of internal approachability which
is introduced in Foreman-Magidor-Shelah [2]. We only use the notion of
internal approachability of length w.

DEFINITION 3.2. A set z is said to be internally approachable of length
w (or in brief I.A. of length w) if there exists a C-increasing sequence (., |
n € w) C x such that x = J,, o, Zn. For a regular uncountable cardinal
and a regular cardinal A > k, let

IARY .= {M € PHy | M < (Hy, €) A M is LA. of length w}.
Note that IAfZ’)\ is stationary in P,Hy. The following lemma is basic:

LEMMA 3.3. Let A be a regular uncountable cardinal and A be a well-
ordering of Hy. Then the following holds:

(1) Suppose (M, | n € w) is a C-increasing sequence such that for each
n € w, M, < (Hx, €) and M, is L A. of length w. Then |, . My, is
also I.A. of length w.

(2) Let A C Hy. Assume x C Hy is LA. of length w and a C Hy is a
countable set. Then the Skolem hull of x Ua in (Hy, €, A, A) is LA.
of length w.

Proof. (1) is easy. We show (2). Let A, x and a be as in (2). Let (x,, | n €
w) C x be such that | J, ., xn =  and let (a, | n € w) be an enumeration

new

new
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of a. Furthermore, let (¢, | n € w) be an enumeration of all formulae
and assume that each ¢, has k, free variables. For convenience, by adding
dummy variables if necessary, assume that k,, > 2 for each n € w. For each
n € w, let h, be the Skolem function for ¢, defined as follows. For each
bi,..., bk, —1 € Hy, let hy(by,..., bk, —1) be the A-least b such that (H), €,
A A)E pn(b,y by, ..., by, —1) if such a b exists, and let hy,(b1,...,bk,—1) =0
otherwise.
Now let N be the Skolem hull of z Ua in (Hy, €, A, A). Then

N = Uh [F=l(z Ua)] U U B [F Y (2 U {ao, . . ., am_1})).
new new mew
For any n,m € w, let yp m = B[~ (2, U {ao, - . ., @m-1})]. Then Yn,m €
Hy and Yy, is definable in (Hy, €, A, A) from parameters z,, ag, . . ., Gm—1.
Hence y,, m € N for all n,m € w. Therefore if we let y; := Un7m<l Yn,m for
each [ € wtheny € N and |J,c,, s = N. This implies N is . A. of length w. m

Now we show that some stationary reflection principle, which holds if
a supercompact cardinal is Levy collapsed to AT, implies NS, 7/, [IAZZ’A is
wi-stationary preserving. In the proof, we use Facts 1.4-1.6.

THEOREM 3.4. Let k, X\ and 0 be regular cardinals such that wy < k <
A < 220 < 0. Assume that for every X C IAZ’Q which is stationary in Py Hag,
there is a W such that Hy C W, |W| = |Hy| and X NP, W is stationary in
P.W. Then NS, #, [TARA is wy -stationary preserving.

We use the following lemma:

LEMMA 3.5. Let k, A and 0 be regul_ar cardinals such that wy < k <
A < 22 < 0. Assume that for every X C IAf;G which is stationary in
P.Hp, there is a W such that Hy C W, |W| = |Hy| and X N PW s
stationary in P.,W. Let X C IA® be stationary in P.Hy and for each
B < wi, let I(B) € On and let (X? | & < I(B)) be a mazimal antichain
below X in Pxs, ,,, . (Note that [(8) < [P(PeHA)| = 22 ) Moreover let
X ={TePHy|TNHy € X} and)_(g ={T € PuHo | TN H\ EX?} for
each & < I(B). Then (Nge,, V§<l(ﬁ))_(§ is stationary in PHyg.

First we show Theorem 3.4 using Lemma 3.5, and then we show Lemma
3.5.

Proof of Theorem. Let I be NS, 31, [IAZ’)‘. Fix a well-ordering Ay of Hy.
To show the theorem, take arbitrary X, E and D such that

e X C IAZ’)‘ and X is stationary in P,Hy,

e [ is a P;-name such that X | “E is a club subset of w}”,

e D is a stationary subset of w;.
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We want to show that there are an o € D and a stationary ¥ C X such
that Y IF “a € E”.
For each 3 < wy, let I(3), (Xg | £ < 1(B)) and <*yg | £ < I(B)) be such that

° Xg C X for every f < w; and & < I(f),

o (X? | € < 1(B)) is a maximal antichain below X in Py,

o fyg < w and X? I Sy = min(E \ §)” for each £ < I(f3).
Then it suffices to show that there are an o € D and a stationary ¥ C X
such that

(x)  for all f<a and £<I(P), if YOX? is stationary in P,H, then ’y§<a.

To use Lemma 3.5, let X := {ZT € P.Hy | TNHy € X} and )?? ={z €
P.Ho | TNHy € Xg} for each 3 < wy and ¢ < I(3). Moreover let Y :=
Np<io, V§<l(5))?§ and let_?a = ﬂﬂ<aV()_(§ | € <1(B) A ’yg < a) for each
a < wi. By Lemma 3.5, Y is stationary in P,Hy. We claim the following:

CLAIM 3.4.1. There are club many o < wy such that Y NIA%Y is sta-
tionary in P, Hy.

Proof of Claim. First we show that Y is stationary for club many
o < wy. Then we prove that if Y is stationary then Y ﬂIAf;H is stationary.
Assume that F := {a < wy | Y is nonstationary in PyHy} is station-
ary in wi. Then |J weF Y®is nonstationary in P,Hy because £ > wi. Hence

there is an N € Y \ UaeFYQ. For each 8 < wiy, let £(8) < I(B3) be such
that £(3) € N € )?g(ﬁ). Such a &(f) exists because N € Y C V5<l(ﬁ))?§.
Now, because F' is stationary in wi, there is an o € F' such that 7?(@ <o
for each 8 < a. Then N € Y by the definition of 7_06 This contradicts
N ¢ Uper Y“. Thus there are club many a < w; with Y stationary.

Next assume that Y is stationary in P,Hg. We show that Yon IAZ’G
is also stationary. It suffices to show that for every A C 'Hy, there is an
M € Y NIA%Y such that M < (Hg, €, A) and M Nk € k.

_ Take an arbitrary A C H,. Because Y s stationary we can take an
NeY" such that N < (Hyp, €, Ag, A) and N Nk € k. Because Y CX
note that N NHy € X C IA%A. For each 8 < a, let £(3) < I(B) be such

that £(8) € N € )Tf(ﬂ) and ’y?(m < a. Now let M be the Skolem hull of

(N N Hy) U {6B) | B < a}in <H9,E,A9,Z>._We show ]\zis as desired.
First note that M N"Hy = N N Hy because N NHy € M C N. Hence
&B)eM e X? for each 8 < avand so M € Y. Moreover MMk = NNk € k.
Next recall that NNHy, € TA®*. Hence M € TA%? by Lemma 3.3(2). Finally,
it is clear that M < (Hg, €, A). mClaim
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We return to the proof of the theorem. We must show that there is an
a € D and a stationary Y C X satisfying (%).

By Claim 3.4.1, there is an a € D such that Y*n IAZ’9 is stationary.
Then by the assumption of the lemma, there is a W such that Hy C W,
|W| = |H,| and Y* NP.W is stationary in P.W. Let 7 : W — H, be a
bijection and let Y := {M NHy | M € Y NP.W A M is closed under
7,71}, We show that « and Y satisfy (x).

Assume < «, £ <I(f) and Y N X? is stationary. Note that Y N X? =

{(MNHy | M € Y'NPWN X? A M is closed under 7,7~ '}. Hence
Y NPWNX, = (Y NPW)N(Xe NPW) is stationary in P,W by Fact
1.6(1). Here note that Y NP, W = V(X0 NP | € 1(B) W Ay < a).
Therefore ’yf < . This shows that o and Y satisfy (x). ®Theorem

We must prove Lemma 3.5. It can be shown by the catching antichain
argument due to Foreman, Magidor and Shelah [2]. The point is that by
restricting to IA"”\ we can iterate catching antichain procedures w; times.

Proof of Lemma 3.5. Let X, (Xﬁ | € <1(B), X (Xg | € < I(B)) be as

in Lemma 3.5 and fix a well-ordering Ay of Hy. We may assume X gﬂ cX
for each 8 < wy and £ < I(B).

CLAIM 3.5.2. X NTA%? is stationary in P Hy. )?? NIA%Y is also sta-
tionary for every § < wy and £ < 1(5).

Proof of Claim. We only show the former statement. The proof of the
latter is the same. It suffices to show that for every A C Hy, there is an
M € X NTA"Y such that M < (Hy,€,A) and M Nk € k.

Take an arbitrary A C Hg. Then, because X is stationary, there is an
N € X such that N < (Hy, €, Ag, A) and N Nk € k. Let M be the Skolem
hull of NNHy in <H9, €, Ay, A) We show that M has the above properties.
First note that NNHy € M C N and so M NHy = N N H,. Therefore
Mnk € k and M € X. Moreover, because NNHy € X C IAZ’\, we see that
M e IA"Z"9 by Lemma 3.3(2). Finally, it is clear that M < (Hg, €, A). #Claim

The following is the key claim.

CLAIM iB.S._TheLe is a club C C PNHg_such that for every B < wq
and every M € CN XN IAZ’Q, there is an N € P.Hgy with the following
properties:

(1) MCN<<H9,6 Ag).

(2) MNHy=NnNH,.

/9’

(3) N S V5<l(5) £
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Proof of Claim. Assume not. Then, because k > wy and X N IAZ’G is
stationary, there is a 3 < w; and a stationary S C X N IAZ’B such that for
every M € S there is no N satisfying (1)-(3). Then, by the assumption of
the lemma, there is a W such that Hy C W, |W| = |H,| and S NP, W is
stationary in P,W.

Recall that {X? | £ € U(B)} is predense below X in Png, ,, - So {X? N
PW | £ < 1(8)} is predense below X NP,W in Pys,, by Fact 1.6(3).
Moreover SNP. W C X NP, W is stationary. Hence there is a ¢ < I(3) such
that X? NS NP.W is stationary in P,W . Now we can take an N € P.Hy
such that £ € N < (Hg, €, Ag) and NNW € X?ﬂg. Let M := NNW. Then
M € S and clearly N satisfies (1) and (2) for this M. Moreover, by the choice
of NéeNeX ? Hence N satisfies (3). This is a contradiction. mcjaim

We return to the proof of the lemma. Let Y := MNs<in V§<l(ﬁ))_(?.

_ Take an arbitrary club C C P Hg. We show that CNY # (. By reducing
C if necessary, we may assume that C' witnesses Claim 3.5.3 and there is an
A C Hg such that C = {M € P Hg | M < (Hp, €, A9, A) NM Nk € K}.

By induction on 3 < wy, we define C-increasing (Mg | 3 < wy) so that
for each § € w1,

(a) Mge CnNXNIALY,

(b) Mﬁﬂ'H,\ = Mo NHy,

= 5
(€) Mpi1 € VeqpXe-

First let M be an element of cCnX ﬂIAfJ’H with 22°* € M, o- Next assume
f < wy is limit and M g has been defined to satisfy (a)—(c) for each 5’ < §.
Then let ]\7_5 =Ug<p Mg . Note that My € TA%? by Lemma 3.3(1). Tt is
clear that M g satisfies other conditions in (a)—(c).

Finally, assume 3 < wy and M g has been defined to satisfy (a)-(c). Then
because Mz € C N )_(QIAL’Z’Q there is an N € P, Hy satisfying (1)—(3) of
Claim 3.5.3 for 8 and Mg. Let £ < I(3) be the one witnessing (3), i.e. such
that £ € N € X¢. Now let Mgy = {f(€) | /22 = Hy A f € Mp}. We
must check Mgy satisfies (a)—(c). Note that

(i) Mgy is the Skolem hull of Mg U {£} in (He, €, Ag, A),

(ii) MgNHy=Mpg1 NHy=NNH,.

For (ii), note that Mg C Mgy € N and MgN'Hy = N NH,.

(a) Tt is easy to check Mg, € CNX. Because Mg € TA%Y Mg, € TAR?
by Lemma 3.3(2).

(b) is clear from (ii).
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(c) By (ii) and the fact that N € X?, we have Mg, € )_(? Then

£ € Mgy € )?? and so Mg, satisfies (c). This completes the inductive
definition of (Mg | 8 < wy).
Now let M* := Up<w, Mpg. Then clearly M" e C. Moreover M €

V5<l(ﬁ))?§ for each B < wy because Mﬁ+1 NHy = M NH, and Mﬁ+1 €
V5<l(@))?§. Hence M~ €Y. Therefore M € CNY # (. WLemma

COROLLARY 3.6. Assume k and A are reqular cardinals such that wy <

k < X and § is a supercompact cardinal > X. Then the following hold in
VCOI(A,<6):

(1) NSy, [TARA is w -stationary preserving.

(2) There is a stationary S C Ej”\ such that NS, \[S is wi-stationary
preserving.

(3) If k = X\ then NSL|E" is wi-stationary preserving.

Proof. (1) In V<9 the assumption of Theorem 3.4 holds. Hence
(1) holds.

(2) First note that in VUM<0 |7{,| = \. Let 7 : H) — A be a bijection
and let S := {M NX| M €IA®* MnNk € r, M is closed under 7,7 '}.
Then by (1) and Fact 1.6(2), NS,@ AlS is wi-preserving. Moreover it is easy
to see S C E

(3) Assume x = \. Let S be as in the proof of (2). Then S C Ef and
NS, [S is wi-stationary preserving. We show that Ef \ S is nonstationary.
First note that if M < (H, €, m) and M Nk € E’; then M is the Skolem hull
of MNk in (Hy, €,7) and so M € TA" by Lemma 3.3. Hence S O {M N« |
M < (Hy,€,m) NM Nk € EX}. Therefore E% \ S is nonstationary. m

Note that ideals in Corollary 3.6 are not necessarily semiproper. If [,
fails in V' for some v with £ < 1 < A then 0, still fails in Y Cel(A<0)  There-
fore, by Corollary 2.12, there is no semiproper r-ideal on P, in 1 CelA<d)

On the other hand, recall that MA™ (o-closed) is preserved by ws-closed
posets and MA™ (o-closed) implies (f). For the former see Kénig—Yoshinobu
[7] and for the latter see Foreman—Magidor—Shelah [2].

COROLLARY 3.7. Let k and A be reqular cardinals such that wy < Kk <
A and assume § is a supercompact cardinal > X. Moreover assume that

MA™*(o-closed) holds in V. Then in VCIN<O) the following hold:

(1) NSy, [TAR is semiproper.
(2) There is a stationary S C E.y A such that NS, IS is semiproper.
(3) If k = X\ then NS.|E" is semiproper.

We end this paper with two remarks.
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First, using the method developed in Goldring [4], we can replace “a
supercompact cardinal” in Corollaries 3.6 and 3.7 by “a Woodin cardinal”.

Next it is shown in Larson [8] that MM is preserved by we-directed closed
posets. Hence, in the theorem above, if we assume MM holds in V' then it still
holds in VCoA<8) and therefore we can apply MM for the corresponding
posets of ideals in Corollary 3.7.
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