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Determining c0 in C(K) spaces

by

S. A. Argyros and V. Kanellopoulos (Athens)

Abstract. For a countable compact metric space K and a seminormalized weakly
null sequence (fn)n in C(K) we provide some upper bounds for the norm of the vectors in
the linear span of a subsequence of (fn)n. These bounds depend on the complexity of K
and also on the sequence (fn)n itself. Moreover, we introduce the class of c0-hierarchies.
We prove that for every α < ω1, every normalized weakly null sequence (fn)n in C(ωωα

)
and every c0-hierarchy H generated by (fn)n, there exists β ≤ α such that a sequence of
β-blocks of (fn)n is equivalent to the usual basis of c0.

1. Introduction. The present paper is closely related to a recent paper
by I. Gasparis, E. Odell and B. Wahl [GOW] and belongs to the area which
could be named “effective” infinite-dimensional Banach space theory. Many
results in Banach space theory happen to be of a very existential form. An
effective approach is to find recursively defined hierarchies which determine
the desired property to a certain extent. To make this more transparent let
us recall a result from [AMT] (see also [AG], [AGR]).

Let (xn)n be a seminormalized weakly null sequence. Then Mazur’s the-
orem shows that there exists a convex block subsequence norm converging
to zero. The effective approach to this result is as follows:

Theorem I. For each countable ordinal ζ and L ∈ [N] there exists a

regular summability method denoted by ζL such that given a weakly null

sequence (xn)n the following hold:

(a) For each ζ < ω1 there exists N ∈ [N] such that one of the following

two alternatives holds:

(i) For all L ∈ [N ], the subsequence (xn)n∈L is an lζ1-spreading

model.

(ii) For all L ∈ [N ], the sequence (xn)n is ζL-(norm) summable.
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(b) There exists ζ0 < ω1 such that for all ζ < ζ0 (resp. ζ ≥ ζ0) the first

(resp. the second) alternative of the above occurs.

It is obvious that effective results provide a further understanding of
the relevant properties and frequently are key ingredients in applications.
Passing to Banach spaces containing c0 one could ask the following.

Problem. Let X be a c0 saturated Banach space. Does there exist an
effective process which for every seminormalized weakly null sequence (xn)n

of X determines a block sequence of (xn)n equivalent to the usual basis of c0?

A consequence of the results of [GOW] is a positive answer to the above
problem in some special cases. The most important is the case of C(K) with
K a countable compact set. As is well known these spaces are c0-saturated
[BP], [PS]. The approach of Gasparis–Odell–Wahl to the solution of the
problem goes as follows. First to a given Schauder basic sequence (xn)n

using iteration they assign certain normalized block sequences (ζL
n )n with

ζ < ω1 and L ∈ [N]. They call these the normalized ζ-averages of (xn)n. For
this hierarchy the following is proved.

Theorem II. Let (fn)n be a normalized weakly null sequence in C(ωωξ
).

Then there exist ζ ≤ ξ and N ∈ [N] such that for all L ∈ [N ] the sequence

(ζL
n )n is equivalent to the usual basis of c0.

As follows from [BP], the spaces C(ωωξ
) determine all the isomorphs of

C(K) with K countable compact. The proof of the above theorem is deep and
requires intricate arguments. This is naturally expected since for a sequence
(fn)n in C(K) to be equivalent to the usual basis of c0, a control of the
global behavior of (fn)n is required, which is not yet completely clarified.
A positive solution to the above stated problem could also provide more
understanding of the structure of c0-sequences.

One of the goals of the present paper is to give an alternative proof of
Theorem II in a slightly more general setting. In particular we introduce
c0-hierarchies and for such a hierarchy we prove the analog of the above
theorem. Moreover some ingredients of the proof used to provide better
upper estimates in C(ωωξ

) are of independent interest.
Let us pass to a presentation of the content of the paper. Throughout

the paper we will use the representation of countable compact metric spaces
by compact families of finite subsets of N. In particular, the Schreier fami-
lies {Sξ}ξ<ω1

(see [AA]) which correspond to the ordinals of the form ωωξ
,

ξ < ω1, play a key role in our proof.
In Section 2 we recall some well known results concerning mainly the

compact families of finite subsets of N. Section 3 is devoted to an improve-
ment of Proposition 3.4 of [GOW]. This is one of the main results of the
paper and states the following.
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Theorem A. Let γ < ω1 and (fn)n ⊆ C(Sγ) be a normalized weakly

null sequence. Set

β = β((fn)n)(1)

= min{ξ ≤ γ : there exists k ∈ N with lim ‖fn|Sγ∩(Sξ∗k)‖ > 0}

and let δ < ω1 be such that γ = β + δ. Then there exists M ∈ [N], M =
{mn}n, such that for every (an)n ∈ c00(N),

(2)
∥

∥

∥

∑

anfmn

∥

∥

∥
≤ 5

∥

∥

∥

∑

anfmn

∥

∥

∥

Sδ

.

In the above theorem Sξ ∗ k denotes the compact family containing the
subsets of N which are unions of at most k successive members of Sξ, and

(3)
∥

∥

∥

∑

anfmn

∥

∥

∥

Sδ

= sup
{∥

∥

∥

∑

n∈F

anfmn

∥

∥

∥
: {mn : n ∈ F} ∈ Sδ

}

.

The aforementioned proposition in [GOW] provides an upper bound sim-
ilar to (2) with the Sγ norm in place of Sδ. Let us observe here that if
β((fn)n) = γ then δ = 0 and so Theorem A immediately gives that (fn)n

contains a subsequence equivalent to the usual basis of c0. It is also worth
pointing out that the set Sγ ∩ (Sξ ∗ k) which appears in the statement of
the theorem does not correspond to a naturally defined subset of the ordinal
ωωγ

which is the ordinal analog of Sγ . Moreover, the use of Sξ instead of ωωξ

is important in the proof of the theorem. In particular, an ingredient is the
quotient F/G (with F , G compact hereditary families) defined in this sec-
tion. This is a new operation between families of finite subsets of N leading
to another compact family and corresponds to an inverse of the convolution
defined in [AD]. Concerning the quotient Q = (Sξ ∗ k)/Sζ with ζ ≤ ξ we
show in the Appendix that the order of Q is equal to ωδ · k where ζ + δ = ξ.

In Section 4 motivated by the normalized ζ-averages introduced in [GOW]
we define c0-hierarchies. For a given normalized Schauder basic sequence (xn)n

a c0-hierarchy is a family

H = {(ζL
n )n : L ∈ [N], ζ < ω1}

of block subsequences of (xn)n satisfying certain axioms. The basic example
is what we call the “standard c0-hierarchy”, which is the family of normalized
ζ-averages of [GOW]. It follows from the results of [GOW] that they satisfy
the axioms.

In Section 5 we study properties of c0-hierarchies in C(K) spaces which
are mostly of Ramsey type. Section 6 contains the main results for c0-
hierarchies. In particular, the following is shown, which extends the afore-
mentioned Theorem II of [GOW].

Theorem B. Let K be a compact metric space, (fn)n ⊆ C(K) be a

normalized shrinking basic sequence and H be a c0-hierarchy generated by
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(fn)n. Let γ < ω1 and L be a countable closed subset of K homeomorphic

to a subset of ωωγ
. Suppose that for some ζ ≥ γ and N ∈ [N], the family

{(ζL
n |L)n : L ∈ [N ]} is seminormalized. Then there exist β ≤ γ and M ∈ [N ]

such that for all L ∈ [M ] the following hold:

(i) The block sequence (βL
n |L)n is equivalent the usual basis of c0.

(ii) If ζ = β + δ then (βL
n )n is a cδ

0-spreading model.

The above theorem shows that c0-hierarchies effectively determine a c0-
basis in spaces C(K) with K a countable compact metric space and moreover
for ζ > γ the second part of the conclusion of the theorem provides infor-
mation on the global behavior of (βL

n )n in arbitrary compact spaces K. The
proof of Theorem B proceeds by induction on the ordinal γ and is based on
Theorem A and the Ramsey type properties stated and proved in Section 5.

Let us describe briefly the main steps of the proof. First by the properties
of c0-hierarchies it turns out that it suffices to show only part (i) of the
theorem for the special case of ζ = γ. Identifying L with Sγ we set Lξ,k =
Sγ ∩ (Sξ ∗ k) for every ordinal ξ ≤ γ and k ∈ N, and we define an analog of
the index β of Theorem A (see (1)) as follows:

β = min{ξ ≤ γ : ∃N ′ ∈ [N ], ∃k ∈ N such that

the set {(γL
n |Lξ,k

)n : L ∈ [N ′]} is seminormalized}.

Our aim is to prove that the above defined β satisfies the conclusion of
Theorem B. The case of β = γ is treated easily. Indeed, in this case, by the
properties of c0-hierarchies we can find N ′ ∈ [N ] such that β((γL

n |L)n) =
γ for all L ∈ [N ′], and as we have already mentioned after Theorem A,
this implies that for every L ∈ [N ′] there exists a subsequence of (γL

n |L)n

equivalent to the usual basis of c0. So the hard case is when β < γ. Here
we use our inductive assumption and we conclude that there exist N ′ ∈ [N ]
and k ∈ N such that for all L ∈ [N ′], the block sequence (βL

n )n restricted
to the closed subset Lβ,k of L is equivalent to the usual basis of c0, while
on the other hand, (βL

n )n is a cδ
0-spreading model for the whole space K,

where β + δ = γ. Then applying again the properties of c0-hierarchies and
Theorem A we obtain the conclusion of Theorem B.

Finally, in Section 7 some consequences of the above theorem are also
included.

2. Preliminaries

2.1. Notation. Let us first fix some notation. For an infinite subset
M of N, by [M ] (resp. [M ]<ω) we denote the set of all infinite (resp. finite)
subsets of M . If t is a finite subset of N then by |t| we denote the cardinality
of t. Also for k ∈ N, [M ]≤k is the set of all finite subsets of M of cardinality
at most k.
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For t1, t2 finite subsets of N we write t1 < t2 (resp. t1 ≤ t2) if either at
least one of them is empty or max t1 < min t2 (resp. max t1 ≤ min t2). In
particular if n ∈ N and t1 = {n}, we will write n < t2 (resp. n ≤ t2) instead
of {n} < t2 (resp. {n} ≤ t2). Also the notation t1 � t2 means that both t1, t2
have the same cardinality and if they are nonempty then t1 = {n1, . . . , nk},
t2 = {n′

1, . . . , n
′
k} and ni ≤ n′

i for all i = 1, . . . , k. Finally, for s, t finite
subsets of N, by s ⊑ t we denote that s is an initial segment of t. If s ⊑ t
and s 6= t then we say that s is a proper initial segment of t.

2.2. On families of finite subsets of N. A family F of finite subsets of
N is called compact if the set XF = {1t : t ∈ F} of characteristic functions
of its members is a closed subset of 2N; hereditary if for every t ∈ F , F
contains all subsets of t; and spreading if for every t ∈ F , F contains all
t′ ⊆ N with t � t′. If F has all the above three properties then F will be
called a regular family.

If F is a compact family then identifying F with XF , the Cantor–
Bendixson rank |F|CB is naturally defined. We define the order of a compact
family F , denoted by o(F), to be the immediate predecessor of |F|CB.

Observe that if F is assumed to be also hereditary then the first Cantor–
Bendixson derivative F ′ of F is also a compact and hereditary family and

F ′ = {t ∈ F : there exists L ∈ [N] such that t ∪ {l} ∈ F for all l ∈ L}.

In particular if F is a regular family then F ′ is also regular and in this case
we have the following:

(i) F ′ = {t ∈ F : there exists n0 ∈ N such that t ∪ {n} ∈ F for all
n ≥ n0}.

(ii) The ξ-iterated Cantor–Bendixson derivative of F coincides with the
ξ-iterated derivative of the well-founded tree TF = (F ,⊑) and there-
fore o(TF ) = o(F) + 1.

(iii) The set Fmax of all ⊆-maximal members of F coincides with the set
of all ⊑-maximal members of F .

(iv) Fo(F) = {∅}.
(v) For every L ∈ [N], o(F [L]) = o(F), where F [L] = {t ∈ F : t ⊆ L}.

Typical examples of regular families in N of transfinite order are the Schreier

families Sξ, ξ < ω1 (see [AO] for ξ < ω and [AA] for general ξ < ω1).

Definition 1. For ξ = 0, S0 = {{n} : n ∈ N} ∪ {∅}. If Sξ has been
defined then we set

Sξ+1 =
{

n
⋃

i=1

ti : n ≤ t1 < · · · < tn, t1, . . . , tn ∈ Sξ and n ∈ N
}

.

If ξ is a limit ordinal then let (ξn)n be a strictly increasing sequence of
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ordinals with supn ξn = ξ and define

Sξ = {t ⊆ N : there exists n ≤ t with t ∈ Sξn
}.

The following properties of the Schreier families are well known.

(i) For all ξ < ω1, Sξ is a regular family of order ωξ and homeomorphic

to the ordinal ωωξ
+ 1.

(ii) For every ξ < ζ, there exists n0 ∈ N such that {t ∈ Sξ : n0 ≤ t}
⊆ Sζ .

(iii) For every ξ < ω1 and every L ∈ [N] there exists a (unique) maximal
member t of Sξ such that t ⊑ L.

Given two compact and hereditary (resp. regular) families F , G the convo-

lution F ∗ G is defined as follows:

F ∗ G =
{

n
⋃

i=1

ti : there exist m1 ≤ t1 < · · · < mn ≤ tn

with t1, . . . , tn ∈ F , {mi}
n
i=1 ∈ G

}

.

It is easy to see that the above operation is associative and that F ∗ G
is a compact and hereditary (resp. regular) family.

In the following, for a family F and a k ∈ N, we will write F ∗k to denote
the family F ∗ [N]≤k. Note that for all ξ < ω1,

Sξ+1 = Sξ ∗ S1.

The theory of families of finite subsets of N is closely related to Ramsey
theory [NW], [PR]. The following is the fundamental principle of infinite
combinatorics [El], [S], which we will need almost throughout the paper.

A set X ⊆ [N] is said to have the Ramsey property if for every N ∈ [N]
there exists M ∈ [N ] such that either [M ] is contained in X or is disjoint
from X .

Theorem 2. Every analytic subset of [N] has the Ramsey property.

Actually, we will need the above theorem only for open subsets of [N] (for
the Borel version of Theorem 2 see [GP]). One of the numerous consequences
of this principle is the next result (see [G]).

Theorem 3. Let F ,G be hereditary families of finite subsets of N. Then

for every N ∈ [N] there exists M ∈ [N ] such that either F [M ] ⊆ G or

G[M ] ⊆ F .

Notice that in particular if F , G are regular and o(F) < o(G) then the
above theorem shows that for every N ∈ [N] there exists M ∈ [N ] such that
F [M ] ⊆ G.

For a detailed exposition of the results concerning families of finite sub-
sets of N and applications in Ramsey and Banach space theory the reader
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is referred to [T]. The survey paper by H. P. Rosenthal [R] is an excellent
source for results concerning C(K) spaces.

3. Some upper estimates. Our primary aim here is to show that every
seminormalized weakly null sequence in C(K) with K a countable compact
metric space contains a subsequence admitting certain upper estimates. Our
results are refinements of the corresponding ones stated in [GOW]. In order
to attain them we define two new notions. The first is the operation of the
quotient of two families in N and the second is an ordinal index which we
call the Schreier norming index of a seminormalized weakly null sequence
of functions. Let us point out that the representation of countable compact
metric spaces by families of finite subsets of N plays a key role in what
follows.

3.1. Quotient families in N. Let G be a family of finite subsets of N with
the following properties:

(1) G is compact and hereditary.
(2) G covers N, that is, N =

⋃

{t : t ∈ G}.

For each L ∈ [N], set IG(L) = {t ∈ G : t ⊑ L} and notice that IG(L) is a
nonempty set containing at least the empty set and the singleton {minL}.
Furthermore, IG(L) is a finite subset of G and the partial orders ⊑ and ⊆
coincide on IG(L).

Using the above remarks we find that every L ∈ [N] can be decomposed
into a unique sequence (tLn)n of successive members of G defined by induction
as follows. We let tL1 be the maximal (under inclusion or the initial segment
ordering) member of IG(L). Suppose that tL1 < · · · < tLn have been defined.
Then we set Ln = L\

⋃n
i=1 tLi and we define tLn+1 to be the maximal member

of the set IG(Ln).
We call (tLn)n the G-decomposition of L and the set qG(L) = {min tLn}n

the G-quotient of L.
For a given finite subset s of N we set Ns = s ∪ {n ∈ N : n > max s}

(if s = ∅ then N∅ = N) and we define the G-quotient of s to be the set
qG(s) = s ∩ qG(Ns). It is easy to notice that for every L ∈ [N] with s ⊑ L,
we have qG(s) = s ∩ qG(L).

Definition 4. Let F , G be compact and hereditary families of finite
subsets of N and assume that G covers N. Then the G-quotient of F , denoted
by F/G, is defined to be the spreadification of the family of all G-quotients
of the members of F , that is,

F/G = {t ⊆ N : there exists s ∈ F such that qG(s) � t}.

Notice that F/G is a regular family and if F is in addition spreading
then
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(4) F/G ⊆ F .

Also it is obvious that

(5) F ⊆ G ∗ (F/G).

By (4) and (5) we see that for every regular family F and every compact
and hereditary family G covering N,

(6) o(F/G) ≤ o(F) ≤ o(G) · o(F/G).

Let us point out here that it may happen that o(F) = o(G) = o(F/G) (see
the Appendix).

Of particular importance will be the Schreier quotients (Sξ ∗ k)/Sβ for
β ≤ ξ and k ∈ N. The following result is proved in the Appendix.

Proposition 5. Let ξ = β + δ be countable ordinals, k ∈ N and P =
(Sξ ∗ k)/Sβ. Then o(P) = ωδ · k.

The above proposition and Theorem 3 yield the following.

Corollary 6. For every N ∈ [N] there exists M ∈ [N ] such that

P[M ] ⊆ Sδ ∗ (k + 1).

3.2. The Schreier norming index. Fix a compact and hereditary family
F in N such that F ⊆ Sγ ∗ k for some γ < ω1 and k ∈ N. Let also (fn)n be
a seminormalized weakly null sequence in C(F).

Definition 7. We define

β((fn)n) = min{ξ ≤ γ : there exists l ∈ N such that lim‖fn|F∩(Sξ∗l)‖ > 0}.

The ordinal β((fn)n) will be called the Schreier norming index of the se-
quence (fn)n.

Notation. To each countable ordinal β ≥ 1 we associate a sequence
(βi)i of ordinals as follows. In the case where β is a successor ordinal, β =
β′ + 1, we set βi = β′ for all i ∈ N. If β is a limit ordinal then (βi)i is the
strictly increasing sequence of ordinals converging to β that was used in the
definition of Sβ .

Concerning the above defined index we have the next proposition which
is essentially a “sliding hump” argument.

Proposition 8. Let β = β((fn)n). Then given N ∈ [N] and a decreasing

sequence (εn)n of positive scalars converging to zero there exist two strictly

increasing sequences (mn)∞n=0 and (ln)∞n=0 such that m0 = l0 = 1 and for

every n ≥ 1 the following are satisfied :

(a) mn ∈ N .

(b) ln−1 < mn < ln.

(c) For every t ∈ F with t ⊆ [1, ln−1), |fmn(t)| < εn/2.
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(d) If β ≥ 1 and (βi)i is the sequence of ordinals associated to β, then

for all i ≤ ln−1,

‖fmn |F∩(Sβi
∗2ln−1)‖ < εn/2.

(e) For every t, t′ ∈ F with t ∩ [1, ln) = t′ ∩ [1, ln),

|fmn(t) − fmn(t′)| < εn/2.

Proof. The sequences (mn)n, (ln)n are constructed by induction. For
n = 0, we set m0 = l0 = 1. Suppose that for some n ∈ N and every
i = 0, . . . , n − 1, mi and li have been chosen so as to satisfy the conditions
of the proposition. Since (fm)m is weakly null there is an n0 ∈ N such that
|fm(t)| < εn/2 for all t ⊆ [1, ln−1), t ∈ F and all m ≥ n0. Moreover, if
β ≥ 1 then notice that limm ‖fm|F∩(Sβi

∗2ln−1)‖ = 0 for all i ≤ ln−1, by Defi-
nition 7. Therefore there exists n1 ∈ N such that for all m ≥ n1 and i ≤ ln−1

we have ‖fm|F∩(Sβi
∗2ln−1)‖ < εn/2. Hence we can clearly choose mn > ln−1

satisfying (c), and if β ≥ 1, condition (d) as well. Finally, by the uniform
continuity of fmn , there exists ln > mn satisfying condition (e).

3.3. The main results. Let us start with the following definition extend-
ing the one of Schreier spaces in [AA].

Definition 9. Let X be a Banach space, (xn)n be a basic sequence in
X and A be a hereditary family of subsets of N. For every (an)n ∈ c00(N)
we set

∥

∥

∥

∑

n

anxn

∥

∥

∥

A
= sup

{
∥

∥

∥

∑

n∈F

anxn

∥

∥

∥
: F ∈ A

}

.

The quantity ‖ · ‖A is in general a seminorm on the linear span of (xn)n

unless the family A covers N. In general notice that for an M ∈ [N], M =
(mn)n, we have

∥

∥

∥

∑

n

anxmn

∥

∥

∥

A
= sup

{∥

∥

∥

∑

n∈F

anxmn

∥

∥

∥
: F ⊆ N and {mn : n ∈ F} ∈ A

}

and if A covers M then (xmn)n under this norm is an 1-unconditional basic
sequence.

Theorem 10. Let γ < ω1 and F be a compact and hereditary family

of finite subsets of N such that F ⊆ Sγ ∗ k for some k ∈ N. Let (fn)n be

a seminormalized weakly null sequence in C(F) and β = β((fn)n) be the

Schreier norming index of (fn)n. Set

Q = F/Sβ

and let δ be the unique ordinal so that

β + δ = γ.
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Then given 0 < ε < 1, there exists M ∈ [N] covered by Q, M = (mn)n, such

that (fmn)n is a basic sequence in C(F) and for every (an)n ∈ c00(N), the

following is satisfied :

(7)
∥

∥

∥

∑

n

anfmn

∥

∥

∥
≤

2

1 − ε

∥

∥

∥

∑

n

anfmn

∥

∥

∥

Q
≤

2k + 2

1 − ε

∥

∥

∥

∑

n

anfmn

∥

∥

∥

Sδ

.

Remark 1. If F is regular then Q ⊆ F and so by (7) we obtain the
upper estimate of Proposition 3.4 in [GOW]:

(8)
∥

∥

∥

∑

n

anfmn

∥

∥

∥
≤

2

1 − ε

∥

∥

∥

∑

n

anfmn

∥

∥

∥

F
.

As mentioned in [GOW], an upper bound similar to (8) has also been ob-
tained in [L].

Proof. Let c > 0 be such that infn ‖fn‖ ≥ c and let (εn)n be a sequence
of positive scalars such that

∑

n εn < εc/4. Clearly F contains infinitely
many members and so we can choose N ∈ [N] such that N is covered by F .
We may also assume that (fn)n∈N is a 2-basic sequence.

Let (mn)∞n=0, (ln)∞n=0 be the sequences from Proposition 8. We will show
that M = (mn)∞n=1 satisfies the conclusion of the theorem. For every t ∈ F
we set

Ft = {n ∈ N : |fmn(t)| ≥ εn} and Gt = {mn : n ∈ Ft}.

It is easy to verify that for every (an)n ∈ c00(N),

(9)
∥

∥

∥

∑

n

anfmn

∥

∥

∥
≤

1

1 − ε
sup

{∣

∣

∣

∑

n∈Ft

anfmn(t)
∣

∣

∣
: t ∈ F

}

.

For every n ∈ N and every t ∈ F set

tn = t ∩ [ln−1, ln).

Claim 1. For every t ∈ F and every n ∈ Ft the set tn is a nonempty

member of F . In particular if β ≥ 1 and (βi)i is the sequence associated to

β then tn /∈ Sβi
∗ ln−1 for all i ≤ ln−1.

Proof. Fix a t ∈ F and an n ∈ Ft. Since F is hereditary it is clear that
tn belongs to F . Set t′ = t ∩ [1, ln−1). By part (c) of Proposition 8 we get

(10) |fmn(t′)| < εn/2

and by part (e) of the same proposition we conclude that

(11) |fmn(t′ ∪ tn) − fmn(t)| < εn/2.

Suppose that tn = ∅. Then t′ = t′ ∪ tn and by (10) and (11) we infer that
|fmn(t)| < εn, which is a contradiction since n ∈ Ft. Therefore tn 6= ∅.

Let β ≥ 1 and assume that tn ∈ Sβi
∗ ln−1 for some i ≤ ln−1. Since

|t′| < ln−1 we have t′ ∈ Sβi
∗ ln−1. Hence t′ ∪ tn ∈ Sβi

∗ 2ln−1 and therefore
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by Proposition 8(d) we get

(12) |fmn(t′ ∪ tn)| < εn/2.

By (11) and (12) we find that again |fmn(t)| < εn, which is a contradiction.

Claim 2. Suppose that β ≥ 1 and let t ∈ F and n ∈ Ft. Then for every

1 ≤ l ≤ ln−1 there exists a maximal element s of Sβ such that s is a proper

initial segment of {l} ∪ tn.

Proof. Assume that the conclusion is false. Then by the stability prop-
erties of the Schreier families we obtain {l} ∪ tn ∈ Sβ.

Suppose first that β is a successor ordinal and let β = β′ + 1. Since
l ≤ ln−1, we have {l} ∪ tn ∈ Sβ′ ∗ ln−1. But then tn ∈ Sβ′ ∗ ln−1, which
contradicts Claim 1.

On the other hand, if β is a limit ordinal then there is an i ≤ ln−1 such
that {l} ∪ tn ∈ Sβi

and therefore tn ∈ Sβi
, which is again a contradiction.

Claim 3. For every t ∈ F with Gt 6= ∅, Gt \ {minGt} ∈ Q.

Proof. Fix t ∈ F with Gt 6= ∅. By Claim 1, we have Ft ⊆ {n ∈ N :
tn 6= ∅} and therefore Ft is a finite subset of N. Set

Ft = {n1 < · · · < nd} and Gt = {mn1
< · · · < mnd

}.

Suppose first that β = 0. For each 1≤ i < d, we set m′
ni

= min tni
. Then ob-

serve that m′
ni

< mni+1
for all 1 ≤ i < d and therefore {m′

ni
: 1 ≤ i < d} �

Gt \ {minGt}. Since {m′
ni

: 1 ≤ i < d} ∈ F and Q = F/S0 is clearly the
spreadification of F , the conclusion of the claim follows.

Assume now that β ≥ 1. Applying successively Claim 2 we can choose
maximal members s1 < · · · < sd−1 of Sβ such that for every 1 ≤ i < d,
min si ∈ tni

and si \{min si} is a proper initial segment of tni+1
. Setting s =

⋃

1≤i<d si we find that qSβ
(s) = {min si : 1 ≤ i < d}. Since min si < mni+1

for each 1 ≤ i < d, we have qSβ
(s) � Gt \ {minGt}, and as s ∈ F , it follows

that Gt \ {minGt} ∈ Q.

Since F covers N and M ∈ [N ] we see that Q covers M = {mn : n ∈ N}
and so by Claim 3 we have Gt ∈ Q ∗ 2 for all t ∈ F . Therefore for every
(an)n ∈ c00(N), and every t ∈ F ,

(13)
∣

∣

∣

∑

n∈Ft

anfmn(t)
∣

∣

∣
≤ 2

∥

∥

∥

∑

anfmn

∥

∥

∥

Q
.

By (9) and (13) we obtain

(14)
∥

∥

∥

∑

n

anfmn

∥

∥

∥
≤

2

1 − ε

∥

∥

∥

∑

n

anfmn

∥

∥

∥

Q
.

To complete the proof let P = (Sγ ∗k)/Sβ. Then Q ⊆ P and by Corollary 6,
we may assume that Q[M ] ⊆ P[M ] ⊆ Sδ ∗ (k +1). Hence every finite subset
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of M which belongs to Q is the union of at most k + 1 members of Sδ and
therefore

(15)
∥

∥

∥

∑

n

anfmn

∥

∥

∥

Q
≤

2k + 2

1 − ε

∥

∥

∥

∑

n

anfmn

∥

∥

∥

Sδ

.

By (14) and (15) the proof of the theorem is complete.

Corollary 11. Let γ < ω1 and F be a compact and hereditary family

of finite subsets of N such that F ⊆ Sγ ∗ k for some k ∈ N. Let (fn)n be a

seminormalized weakly null sequence in C(F) and β((fn)) be the Schreier

norming index of (fn)n. If β((fn)n) = γ, then (fn)n contains a subsequence

equivalent to the usual basis of c0.

Proof. Since β((fn)n) = γ we see that δ = 0. Hence Theorem 10 shows
that there exists a subsequence (fmn)n of (fn)n which is a basic sequence
and a constant C > 0 such that ‖

∑

n anfmn‖ ≤ C maxn |an| for every
(an)n ∈ c00(N). Therefore (fmn)n is equivalent to the usual basis of c0.

Before we continue with the presentation of our results let us recall the
definition of the cδ

0 (resp. lδ1)-spreading models.

Definition 12. Let (xn)n be a basic sequence in a Banach space X and
let δ be a countable ordinal. Then a seminormalized block subsequence (zn)n

of (xn)n is called a cδ
0 (resp. an lδ1)-spreading model if there is a constant

C > 0 such that
∥

∥

∥

∑

i∈F

aizi

∥

∥

∥
≤ C max

i∈F
|ai| (resp.

∥

∥

∥

∑

i∈F

aizi

∥

∥

∥
≥ C

∑

i∈F

|ai|)

for every finite sequence (ai)i∈F of scalars and every finite subset F of N

such that {min supp zi : i ∈ F} is a member of Sδ.

The next result is an extension of Corollary 11; it follows easily from
Theorem 10.

Corollary 13. Let γ < ω1 and F be a compact and hereditary family

of finite subsets of N such that F ⊆ Sγ ∗ k for some k ∈ N. Let (fn)n be

a seminormalized weakly null sequence in C(F) and β = β((fn)n) be the

Schreier norming index of (fn)n. If (fn)n is a cδ
0-spreading model where

β + δ = γ then (fn)n contains a subsequence equivalent to the usual basis

of c0.

Corollary 14. Let γ < ω1 and F be a compact and hereditary family

of finite subsets of N such that F ⊆ Sγ ∗ k for some k ∈ N. Let (fn)n be

a seminormalized weakly null sequence in C(F) and β = β((fn)n) be the

Schreier norming index of (fn)n. Let l0 ∈ N be such that lim ‖fn|F∩(Sβ∗l0)‖
> 0. Then there exists a subsequence (gn)n of (fn)n such that if G = F ∩
(Sβ ∗ l0) then (gn|G)n is equivalent to the usual basis of c0.
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Proof. For each n ∈ N, set hn = fn|G . Without loss of generality we may
assume that (hn)n is seminormalized. Since G is a compact and hereditary
family in N and G ⊆ Sβ ∗ l0 the Schreier norming index β((hn)n) is defined
and β((hn)n) ≤ β. By Corollary 13, it suffices to show that β((hn)n) = β.
Indeed, choose ξ < β and l ∈ N. Then G∩(Sξ ∗ l) ⊆ F∩(Sξ ∗ l) and therefore

lim ‖hn|G∩(Sξ∗l)‖ ≤ lim ‖fn|F∩(Sξ∗l)‖ = 0,

which yields our claim.

4. c0-Hierarchies generated by basic sequences. In this section
we proceed to the definition of c0-hierarchies generated by a normalized
basic sequence ~x = (xn)n. The three axioms that any such hierarchy must
fulfill have been extracted from the fundamental properties of the hierarchy
of normalized averages defined in [GOW]. However, as examples indicate,
there are many other hierarchies which could appear useful in applications.
Moreover, the present approach gives a more transparent access to the proofs
of the final results.

Let ~x = (xn)n be a normalized basic sequence in a Banach space X. With
every countable ordinal and every L ∈ [N] we associate a block subsequence
of (xn)n denoted by (ζL

n )n. The collection

H = {(ζL
n )n : ζ < ω1, L ∈ [N]}

of all these sequences will be called a c0-hierarchy generated by ~x if it satisfies
the following axioms.

Axiom 1. There exist constants 0 < C1 ≤ C2 such that for all ζ < ω1,
L ∈ [N] and n ∈ N,

C1 ≤ ‖ζL
n ‖ ≤ C2.

A block of (xn)n of the form ζL
n will be called a ζ-block.

Axiom 2 (Ramsey axiom). For each ζ < ω1 the following are satisfied.

(i) For every L ∈ [N],
⋃

n supp ζL
n = L.

(ii) For every ζ-block u and every L ∈ [N] such that suppu ⊑ L, ζL
1 = u.

As we will see in the next section Axiom 2 will provide certain strong
Ramsey properties of the ζ-blocks.

Notation. Let ζ < ω1 and N ∈ [N]. A ζ-block u is said to be supported

by N if suppu ⊆ N . We set

Aζ,N = {suppu : u is a ζ-block supported by N}

and let Bζ,N be the downward closure of Aζ,N relative to inclusion, that is,

Bζ,N = {t ⊆ N : there exists s ∈ Aζ,N such that t ⊆ s}.
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It is clear that for N ′, N ∈ [N], if N ′ ⊆ N then for all ζ < ω1,

(16) Aζ,N ′

⊆ Aζ,N and Bζ,N ′

⊆ Bζ,N .

Proposition 15. For every ζ < ω1 and every N ∈ [N], the family Bζ,N

is a compact family of finite subsets of N.

Proof. Let ζ < ω1. By (16) it suffices to show the assertion for N = N.
Assume on the contrary that Bζ,N is not compact. Then since it is a hered-
itary family there exists an infinite subset M of N such that every finite
subset of M belongs to Bζ,N. Let t1 ⊏ t2 ⊏ · · · be a strictly increasing
sequence of initial segments of M . Then there exists a sequence (sn)n of
members of Aζ,N such that tn ⊆ sn for all n ∈ N. By Axiom 2(ii), for each
n we can choose Ln ∈ [N] such that sn = supp ζLn

1 . By passing to a subse-
quence we may assume that (Ln)n converges to a subset L of N. Observe
that tk ⊆ Ln for every k ≤ n, and therefore M ⊆ L. In particular L is an
infinite subset of N. Set s = supp ζL

1 . Then by Axiom 2(i), s ⊑ L and so
there exists n0 such that s ⊑ Ln for all n ≥ n0. Hence by Axiom 2(ii), for
all n ≥ n0, ζLn

1 = ζL
1 and so sn = s. But then tn ⊆ s for all n, which is

impossible since (tn)n is strictly increasing.

Remark 2. The above proposition is actually a consequence of the fact
that Aζ,N is a maximal thin family of finite subsets of N. Recall that a family
F is called thin if for every pair s, t of distinct members of F , s 6⊑ t (this def-
inition is due to Nash-Williams [NW]; for transfinite analogs see [PR]). We
refer the reader to the survey paper by S. Todorcevic [T] for a detailed expo-
sition of related results. Observe also that Axiom 2 implies that the family
of all ζ-blocks is countable as it is in one-to-one correspondence to Aζ,N.

Terminology. Let ζ < ω1 and N ∈ [N]. Then by a (ζ, [N ])-sequence we
will mean every block subsequence of (xn)n of the form (ζL

n )n with L ∈ [N ].

By Axiom 2 and by induction we easily obtain the following. For every
n ∈ N, every block sequence u1 < · · · < un of ζ-blocks and every L ∈ [N]
such that

⋃n
i=1 suppui is an initial segment of L, we have ζL

i = ui, for all
i = 1, . . . , n. Hence if (un)n is a block subsequence of (xn)n such that every
un is a ζ-block then setting L =

⋃

n suppun, we have ζL
n = un for all n ∈ N.

In particular, every subsequence of a (ζ, [N ])-sequence is also a (ζ, [N ])-
sequence. More precisely, if (mn)n is a strictly increasing sequence of natural
numbers then for all L ∈ [N] and n, ζL

mn
= ζL′

n where L′ =
⋃

n supp ζL
mn

.

Definition 16. Let β < ω1 and ε > 0. A block u of (xn)n will be said
to admit an (ε, β)-analysis if there exist β-blocks b1 < · · · < bn and scalars
λ1, . . . , λn such that the following are satisfied:

(i)
⋃n

i=1 supp bi ⊆ suppu.
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(ii) ‖u −
∑n

i=1 λibi‖ < ε.

(iii)
∣

∣|λi| − |λj |
∣

∣ < ε for all i, j ∈ {1, . . . , n}.

The quantity max{|λi| : i = 1, . . . , n} will be called the weight of the (ε, β)-
analysis of u. Also every subset of the set {min supp bi : i = 1, . . . , n} will
be called an (ε, β)-admissible set resulting from u.

Notation. Given ε > 0, β < ζ < ω1 and N ∈ [N], we let Aζ,N
ε,β be the

family of all (ε, β)-admissible sets resulting from ζ-blocks supported by N .

It is clear that Aζ,N
ε,β is a hereditary family and

(17) Aζ,N
ε,β ⊆ Bζ,N .

Also for N ′, N ∈ [N], if N ′ ⊆ N then

(18) Aζ,N ′

ε,β ⊆ Aζ,N
ε,β .

By (17) and Proposition 15 we immediately obtain the following.

Proposition 17. For all ε > 0, β < ζ < ω1 and N ∈ [N], Aζ,N
ε,β is a

compact family of finite subsets of N.

Axiom 3 (Reduction axiom). Let β < ζ be countable ordinals and let
δ ≥ 1 be the unique ordinal so that β + δ = ζ. Then for every ε > 0 and
every N ∈ [N] the following are satisfied:

(i) The family Aζ,N
ε,β of all (ε, β)-admissible sets resulting from ζ-blocks

supported by N has order at least ωδ.
(ii) There exists M ∈ [N ] such that every ζ-block supported by M

admits an (ε, β)-analysis.

Remark 3. Let ζ < ω1 and N ∈ [N]. Notice that by Axiom 2(i) we
simply had o(Bζ,N ) ≥ 1. But by Axiom 3(i) (setting β = 0) and (17) we
now have

(19) o(Bζ,N ) ≥ ωζ .

Therefore for every ζ < ω1 and N ∈ [N] the complexity of the ζ-blocks
supported by N is strictly increasing.

Proposition 18. Let ζ = β + δ, δ ≥ 1, be countable ordinals, N ∈ [N]

and ε > 0. Then there exists L ∈ [N ] such that F \ {minF} ∈ Aζ,N
ε,β for

every F ∈ Sδ[L].

Proof. First notice that for every L ∈ [N ],

(20) Aζ,L
ε,β ⊆ Aζ,N

ε,β [L].
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Indeed, by (18), Aζ,L
ε,β ⊆ Aζ,N

ε,β ∩ [L]<ω = Aζ,N
ε,β [L]. Therefore by (20) and

Axiom 3(i), we deduce that for all L ∈ [N ],

(21) o
(

Aζ,N
ε,β [L]

)

≥ ωδ.

By (21) and Corollary 3.3 of [G] the conclusion of the proposition follows.

The hierarchy of normalized averages of a basic sequence (xn)n con-
structed by I. Gasparis, E. Odell and B. Wahl satisfies the above three ax-
ioms and so it is an example of a c0-hierarchy. This follows from Lemma 4.3
and Proposition 5.9 in [GOW] (yielding Axiom 2 and Axiom 3 respectively).
In what follows, this specific c0-hierarchy will be called the standard c0-
hierarchy generated by ~x.

Finally, let us mention some stability properties of c0-hierarchies. Fix
a normalized basic sequence ~x = (xn)n and a c0-hierarchy H = {(ζL

n )n :
ζ < ω1, L ∈ [N]} generated by ~x. Let (pn)n be a strictly increasing sequence
of positive integers. Set ~y = (yn)n where yn = xpn for all n, and identify
the linear span of (xpn)n with the linear span of (yn)n. Then for all ζ < ω1,
n ∈ N and L ∈ [N], we define

ζL,~y
n = ζp(L)

n

where p(L) = {pn : n ∈ L} for every L ∈ [N]. The family

H~y = {(ζL,~y
n )n : ζ < ω1, L ∈ [N]}

will be called the ~y-subhierarchy of H. It is easy to verify that H~y satis-
fies Axioms 1–3 and therefore H~y is a c0-hierarchy generated by the basic
sequence ~y.

For a given ordinal ξ < ω1, we may also define the ξ-shift of H to be the
set

Hξ = {(ζξ,L
n )n : ζ < ω1, L ∈ [N]}

where ζξ,L
n = [ξ + ζ]Ln for all ζ < ω1, n ∈ N and L ∈ [N]. Again it is easily

checked that Hξ is a c0-hierarchy generated by ~x.

5. Properties of c0-hierarchies in C(K) spaces. Fix a compact
Hausdorff space K, a normalized basic sequence (fn)n in C(K) and a c0-
hierarchy H = {(ζL

n )n : ζ < ω1, L ∈ [N]} generated by (fn)n.

Definition 19. Let L be a closed subset of K, N ∈ [N] and ζ < ω1.
Then L will be called (ζ, [N ])-norming if there is a constant c > 0 such that
‖u|L‖ ≥ c for every ζ-block u with suppu ⊆ N .

Notice that if L is (ζ, [N ])-norming then it is (ζ, [M ])-norming for all
M ∈ [N ].

In the next series of lemmas, L will denote a closed subset of K.
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Lemma 20. Let ζ < ω1 and N ∈ [N]. Suppose that there is no N ′ ∈ [N ]
such that L is (ζ, [N ′])-norming. Then given ε > 0 there exists M ∈ [N ]
such that

∑

n ‖un|L‖ < ε for every (ζ, [M ])-sequence (un)n.

Proof. Let ε > 0 and choose a summable sequence (εn)n of positive
scalars such that

∑

n εn < ε. For each n ∈ N, set Xn = {L ∈ [N] : ‖ζL
1 |L‖

< εn}. Fix n ∈ N. By Axiom 2 we know that Xn is a clopen subset of [N]
and therefore it has the Ramsey property. Also by our assumption there is
no N ′ ∈ [N ] such that [N ′] ∩ Xn = ∅ and so for every N ′ ∈ [N ] there is
N ′′ ∈ [N ′] such that [N ′′] ⊆ Xn. Using this we construct by induction a
decreasing sequence N ⊇ N1 ⊇ N2 ⊇ · · · of infinite subsets of N such that
[Nn] ⊆ Xn for every n ∈ N. It is now easy to see that every diagonalization
M of (Nn)n satisfies the conclusion of the lemma.

Lemma 21. Let β < γ be countable ordinals and N ∈ [N]. Suppose that

L is (γ, [N ])-norming. Then there exists M ∈ [N ] such that L is (β, [M ])-
norming.

Proof. Assume on the contrary that there is no such M ∈ [N ]. Let c > 0
be such that ‖u|L‖ ≥ c for every γ-block u supported by N and choose ε > 0.
By Lemma 20 and Axiom 3, there is an N1 ∈ [N ] satisfying the following:

(i) For every (β, [N1])-sequence (bn)n,
∑

n ‖bn|L‖ < ε.
(ii) Every γ-block supported by N1 admits an (ε, β)-analysis.

Pick a γ-block u supported by N1. Then by (ii) there exist β-blocks b1 <
· · · < bn supported by N1 and scalars λ1, . . . , λn such that

∥

∥

∥
u −

n
∑

i=1

λibi

∥

∥

∥
< ε.

Let C1, C2 be the constants of Axiom 1. We may assume that (fn)n∈N1
(and

therefore (bi)
n
i=1) is 2-basic. If ε < C2 then ‖

∑n
i=1 λibi‖ < 2C2 and so

max{|λi| : 1 ≤ i ≤ n} < 8C2/C1.

Since
∥

∥

∥
u|L −

n
∑

i=1

λibi|L

∥

∥

∥
≤

∥

∥

∥
u −

n
∑

i=1

λibi

∥

∥

∥
< ε

we have

c ≤ ‖u|L‖ < ε +
n

∑

i=1

|λi| ‖bi|L‖ < (1 + 8C2/C1)ε,

which is a contradiction for ε small enough.

Lemma 22. Suppose that (fn)n is in addition shrinking. Let β < γ be

countable ordinals and N ∈ [N]. Assume the following :
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(i) L is (β, [N ])-norming.

(ii) There is no N ′ ∈ [N ] such that L is (γ, [N ′])-norming.

Then given ε > 0 there exists M ∈ [N ] such that every γ-block supported by

M admits an (ε, β)-analysis of weight smaller than ε.

Proof. Since L is assumed to be (β, [N ])-norming there is a constant
c > 0 such that ‖b|L‖ ≥ c for every β-block b supported by N . We set

X = {L ∈ [N] : (βL
n |L)n is a 2-basic sequence}.

Clearly X is a closed subset of [N] and hence it has the Ramsey property. Also
since (fn)n is shrinking, (βL

n |L)n is a seminormalized weakly null sequence
for every L ∈ [N]. Therefore by Axiom 2, X is cofinal in [N ] and so there
exists N ′ ∈ [N ] such that [N ′] ⊆ X .

By Lemma 20 and Axiom 3, we can choose M ∈ [N ′] such that for every
γ-block u supported by M ,

‖u|L‖ < εc/8 and u admits an (εc/8, β)-analysis.

We claim that M satisfies the conclusion of the lemma. Indeed, let u be a
γ-block supported by M . Then there exist β-blocks b1 < · · · < bn supported
by M and scalars λ1, . . . , λn such that

∥

∥

∥
u|L −

n
∑

i=1

λibi|L

∥

∥

∥
≤

∥

∥

∥
u −

n
∑

i=1

λibi

∥

∥

∥
< εc/8.

Hence
∥

∥

∥

n
∑

i=1

λibi|L

∥

∥

∥
≤ ‖u|L‖ + εc/8 < εc/4.

Since (bi|L)n
i=1 is 2-basic we deduce that max{|λi|}

n
i=1 < ε, and the proof is

complete.

Definition 23. Let L be a closed subset of K, N ∈ [N] and ζ < ω1.
Then L will be called (ζ, [N ], c0)-norming if there is a constant C > 0 such
that for every (ζ, [N ])-sequence (un)n, (un|L)n is C-equivalent to the usual
basis of c0.

Proposition 24. Let L be a closed subset of K, N ∈ [N] and ζ < ω1.
Then there exists M ∈ [N] such that one of the following mutually exclusive

conditions holds:

(i) L is (ζ, [M ], c0)-norming.

(ii) There is no (ζ, [M ])-sequence (un)n such that (un|L)n is equivalent

to the usual basis of c0.

Proof. For each k ∈ N, set

Xk = {L ∈ [N] : (ζL
n |L)n is k-equivalent to the usual basis of c0}.
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By Axiom 2, Xk is a closed subset of [N] and therefore it has the Ramsey
property. If there exist M ∈ [N ] and k ∈ N such that [M ] ⊆ Xk then we
obtain the first alternative of the proposition. Otherwise we can construct
by induction a decreasing sequence N ⊇ M1 ⊇ M2 ⊇ · · · of infinite subsets
of N such that [Mk] ∩Xk = ∅ for every k. Then it is easily checked that for
every diagonalization M of (Mk)k, the second alternative of the proposition
is satisfied.

Lemma 25. Let β < γ be countable ordinals and N ∈ [N]. Assume

that L is both (β, [N ], c0)-norming and (γ, [N ])-norming. Then there exists

M ∈ [N ] such that L is (γ, [M ], c0)-norming.

Proof. Since L is (β, [N ], c0)-norming there is a constant C > 0 such
that for every (β, [N ])-sequence (bn)n,

(22) (bn|L)n is C-equivalent to the usual basis of c0,

and therefore (bn|L)n is a C2-basic sequence. Also since L is (γ, [N ])-norming
there is a constant c > 0 such that for every γ-block u supported by N ,

(23) ‖u|L‖ ≥ c.

For every n ∈ N, we set εn = c/2n+2C2. Applying Axiom 3 we construct by
induction a decreasing sequence N ⊇ N1 ⊇ N2 ⊇ · · · of infinite subsets of
N such that for every n ∈ N and every γ-block u supported by Nn, u admits
an (εn, β)-analysis. Let M be a diagonalization of (Nn)n. We claim that L
is (γ, [M ], c0)-norming.

Indeed, let (un)n be a (γ, [M ])-sequence. By the construction of M it
is easy to see that there exist a (β, [M ])-sequence (bn)n, a sequence (λn)n

of scalars, a sequence F1 < F2 < · · · of finite subsets of N and a block
subsequence (wn)n of (bn)n such that for every n ∈ N,

(24) wn =
∑

i∈Fn

λibi and ‖un − wn‖ < εn.

Therefore for every n,

(25) ‖un|L − wn|L‖ < εn

and so

(26)
∑

n

‖un|L − wn|L‖ <
c

4C2
.

Fix n ∈ N. Then by (23) and (25),

(27) c/2 < ‖wn|L‖ < 3c/2.

Set µn = max{|λi| : i ∈ Fn}. By (22) we get

1

C
µn ≤ ‖wn|L‖ ≤ Cµn
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and therefore (27) gives

(28)
c

2C
< µn <

3cC

2
.

Let (an)n ∈ c00(N). Then by (24) and (28),

c

2C2
max

n
|an| <

∥

∥

∥

∑

anwn|L

∥

∥

∥
<

3cC2

2
max

n
|an|

and so by (26) we conclude that

c

4C2
max

n
|an| <

∥

∥

∥

∑

anun|L

∥

∥

∥
< 2cC2 max

n
|an|.

Therefore setting C ′ = max{4C2/c, 2cC2} we find that every (γ, [M ])-
sequence is C ′-equivalent to the usual basis of c0, and the proof is com-
plete.

The next two propositions are essentially from [GOW] (Lemma 4.6 and
Theorem 5.1 respectively). The first is proved similarly to Proposition 24
above. Since the proof of the second one is nontrivial, for the sake of com-
pleteness we reproduce it here.

Proposition 26. Let ~x = (xn)n be a normalized basic sequence in a

Banach space X and H = {(ζL
n )n : ζ < ω1, L ∈ [N]} be a c0-hierarchy

generated by ~x. Let ζ, δ be countable ordinals with δ ≥ 1 and N ∈ [N]. Then

there exists M ∈ [N] such that one of the following two mutually exclusive

alternatives holds:

(i) There exists a constant C > 0 such that every (ζ, [M ])-sequence is a

cδ
0-spreading model with constant C.

(ii) There is no (ζ, [M ])-sequence which is a cδ
0-spreading model.

Proposition 27. Let ~x = (xn)n be a normalized shrinking basic se-

quence in a Banach space X and H = {(ζL
n )n : ζ < ω1, L ∈ [N]} be a

c0-hierarchy generated by ~x. Let γ = β + δ be countable ordinals with δ ≥ 1
and N ∈ [N] be such that there is no (β, [N ])-sequence which is a cδ

0-spreading

model. Then given ε > 0 there exists M ∈ [N ] such that every γ-block sup-

ported by M admits an (ε, β)-analysis of weight smaller than ε.

Proof. Let ε > 0 and define

X = {L ∈ [N] : γL
1 admits an (ε, β)-analysis of weight smaller than ε}.

By Axiom 2 the set X is a closed subset of [N] and hence it has the Ramsey
property. Therefore there exists M ∈ [N ] such that either [M ] ⊆ X or
[M ]∩X = ∅. Since by Axiom 2 every γ-block supported by M is of the form
γL
1 for some L ∈ [M ], if [M ] ⊆ X the conclusion of the proposition follows

immediately. So we must show that the other case is impossible. Therefore,
suppose that [M ] ∩ X = ∅.
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For every L ∈ [N], we will denote by nL the unique integer such that
{min suppβL

i : i = 1, . . . , nL} is a maximal member of Sδ. We may assume
that (xn)n∈M is 2-basic and that ε < min{1, C2} (where C1, C2 are the
constants defined in Axiom 1). We define Y ⊆ [N] to be the set of all L ∈ [N]
for which there exist scalars µL

1 , . . . , µL
nL

such that:

(1) for every i = 1, . . . , nL, |µL
i | ∈ [ε/2, 8C2/C1],

(2) ‖
∑nL

i=1 µL
i βL

i ‖ ≤ 5C2.

Claim. The set Y is cofinal in [M ].

Proof. Let M ′ ∈ [M ]. By Axiom 3 and Proposition 18, we may assume
the following:

(i) Every γ-block supported by M ′ admits an (ε/2, β)-analysis.
(ii) There exists L′ ∈ [M ′] such that for every G ∈ Sδ[L

′] the set
G \ {minG} is an (ε/2, β)-admissible set resulting from a γ-block
supported by M ′.

Set m1 = min suppβL′

1 and choose a maximal member G of Sδ[L
′] such that

m1 = minG and suppβL′

1 < G \ {m1}. Notice that the stability properties
of Sδ imply that G is a maximal member of Sδ. By the property of L′ there
is a γ-block u supported by M ′, β-blocks b1 < · · · < bn of ~x and scalars
λ1, . . . , λn such that

(a)
⋃n

i=1 supp bi ⊆ suppu.
(b) G \ {m1} ⊆ {min supp bi : 1 ≤ i ≤ n}.
(c) ‖u −

∑n
i=1 λibi‖ < ε/2.

(d)
∣

∣|λi| − |λj |
∣

∣ < ε/2 for all 1 ≤ i, j ≤ n.

Since M ′ /∈ X , it follows that max{|λi| : 1 ≤ i ≤ n} ≥ ε and so by condition
(d) we obtain

(29) |λi| > ε/2 for all i = 1, . . . , n.

We also observe that there exists a k ≤ n such that {m1} ∪ {min supp bi :
1 ≤ i ≤ k} is a maximal member of Sδ. Indeed, if this does not happen then
the stability properties of Sδ would imply that {m1} ∪ {min supp bi : 1 ≤
i ≤ n} is a proper initial segment of a maximal member G′ of Sδ. But then
G ⊆ {m1} ∪ {min supp bi : 1 ≤ i ≤ n} ( G′, which is impossible since both
G and G′ are maximal members of Sδ.

By (c) we get
∥

∥

∥

n
∑

i=1

λibi

∥

∥

∥
< 2C2,

and so since (bi)
n
i=1 is a block subsequence of the 2-basic sequence ~x we

conclude that

(30) |λi| ≤ 8C2/C1 for all i = 1, . . . , n
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and

(31)
∥

∥

∥

k
∑

i=1

λibi

∥

∥

∥
< 4C2.

Choose an L ∈ [M ′] such that suppβL′

1 ∪
⋃k

i=1 supp bi is an initial segment
of L. We set mi+1 = min supp bi for all i = 1, . . . , k. Then by (b) and
Axiom 2, we obtain βL

1 = βL′

1 and βL
i+1 = bi for all i = 1, . . . , k. Furthermore

{m1, . . . , mk+1} is a maximal member of Sδ and so k + 1 = nL. Setting
µL

1 = ε/2 and µL
i+1 = λi for all i = 1, . . . , k, it is easy to check using

(29), (30) and (31) above that conditions (1) and (2) of the definition of Y
are fulfilled and therefore L ∈ Y . Hence for every M ′ ∈ [M ] there exists
L ∈ [M ′] ∩ Y , and the proof of the claim is complete.

Clearly Y is a clopen subset of [N] and therefore it has the Ramsey
property. By the above claim there exists L ∈ [M ] such that [L] ⊆ Y .
Since (xn)n is shrinking, the seminormalized sequence (βL

n )n is weakly null.
By Elton’s theorem [E] (see also [AG], [AGR], [O1]), we may assume that
(βL

n )n is a nearly unconditional sequence. Hence there is a constant C > 0
such that for every (an)n ∈ c00(N) with maxn |an| ≤ 8C2/C1 and every
G ⊆ {n ∈ N : |an| ≥ ε/2},

(32)
∥

∥

∥

∑

n∈G

anβL
n

∥

∥

∥
≤ C

∥

∥

∥

∑

n

anβL
n

∥

∥

∥
.

We now claim that the block sequence (βL
n )n is a cδ

0-spreading model, which
of course yields a contradiction.

Indeed, let F ⊆ N be such that {min suppβL
n : n ∈ F} is a maximal

member of Sδ. Let L1 ∈ [L] be such that
⋃

n∈F suppβL
n is an initial segment

of L1. Set F = {n1, . . . , nk}. Then by Axiom 2, we have βL1

i = βL
ni

for all i =
1, . . . , k and so k = nL1

. Since L1 ∈ [L] ⊆ Y , there are scalars µ1, . . . , µk such

that |µi| ∈ [ε/2, 8C2/C1] for every i = 1, . . . , k and ‖
∑k

i=1 µiβ
L1

i ‖ ≤ 5C2.

Let (an)n ∈ c00(N) be defined by ani
= µi for all i = 1, . . . , k and an = 0

for n /∈ F . Then by the above,

(33)
∥

∥

∥

∑

n

anβL
n

∥

∥

∥
=

∥

∥

∥

k
∑

i=1

ani
βL

ni

∥

∥

∥
=

∥

∥

∥

k
∑

i=1

µiβ
L1

i

∥

∥

∥
≤ 5C2,

and so by (32), for every sequence (σn)n of signs,

(34)
∥

∥

∥

∑

n∈F

σnanβL
n

∥

∥

∥
≤ 10CC2.

It follows that for every x∗ ∈ X∗ with ‖x∗‖ ≤ 1, we have
∑

n∈F |x∗(βL
n )| ≤ C ′

where C ′ = 20CC2/ε, and so (βL
n )n is a cδ

0-spreading model with constant C ′.
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Therefore the only possible case is that [M ] ⊆ X , and the proof of the
proposition is complete.

Lemma 28. Suppose that (fn)n is in addition shrinking. Let γ = β + δ
be countable ordinals with δ ≥ 1 and N ∈ [N]. Assume that L is both

(β, [N ], c0)-norming and (γ, [N ])-norming. Then there exists M ∈ [N ] such

that every (β, [M ])-sequence is a cδ
0-spreading model.

Proof. Assume on the contrary that there is no such M . Then by Propo-
sition 26 there exists N1 ∈ [N ] such that there is no (β, [N1])-sequence which
is a cδ

0-spreading model. By our assumptions there are constants c, C > 0
such that for every γ-block u supported by N1, ‖u|L‖ ≥ c, and for every
(β, [N1])-sequence (bn)n, (bn|L)n)n is C-equivalent to the usual basis of c0.

Let ε > 0. By Proposition 27 we may suppose that every γ-block sup-
ported by N1 admits an (ε, β)-analysis of weight smaller than ε. Let u be
a γ-block supported by N1. Then there exist β-blocks b1 < · · · < bn sup-
ported by N1 and scalars λ1, . . . , λn such that ‖u −

∑n
i=1 λibi‖ < ε and

max{|λi| : 1 ≤ i ≤ n} < ε. Therefore

c ≤ ‖u|L‖ <
∥

∥

∥
u|L −

n
∑

i=1

λibi|L

∥

∥

∥
+

∥

∥

∥

n
∑

i=1

λibi|L

∥

∥

∥
< (1 + C)ε,

which is a contradiction for small enough ε > 0.

6. The main theorem. Fix a compact Hausdorff space K, a normalized
shrinking basic sequence ~f = (fn)n in C(K) and a c0-hierarchy H = {(ζL

n )n :

L ∈ [N], ζ < ω1} generated by ~f .

Let L be a countable compact metric space and F be a compact and
hereditary family of finite subsets of N. We will say that L is representable

by F if L is homeomorphic to F .

Recall that every countable compact metric space is homeomorphic to
the ordinal (ωξ · n) + 1 for some ξ < ω1 and n ∈ N (see [MS]). Hence, using
standard constructions of compact and hereditary families of transfinite or-
der, it follows that for every countable compact metric space L there exists
a compact and hereditary family F of finite subsets of N such that L is
representable by F .

Theorem 29. Let L be a countable closed subset of K, γ be a countable

ordinal and N0 ∈ [N]. Assume that :

(i) L is representable by a compact and hereditary family F such that

F ⊆ Sγ ∗ k for some k ∈ N.

(ii) There is a constant c > 0 such that ‖u|L‖ ≥ c for every γ-block u
supported by N0.
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Then there exist β ≤ γ, M ∈ [N0] and C > 0 such that for all L ∈ [M ],
(βL

n |L)n is C-equivalent to the usual basis of c0.

In order to estimate the ordinal β in the above theorem, we define an in-
dex (which is actually the Schreier norming index for (ζ, [N ])-sequences) as
follows. IdentifyingF with L we may assume that F ⊆ K. Under this conven-
tion and using the terminology of the previous section, for every countable
ordinal ζ ≤ γ and every N ∈ [N0] we define

b(ζ, [N ]) = min{ξ ≤ γ : there exist N ′ ∈ [N ] and l ∈ N

such that F ∩ (Sξ ∗ l) is (ζ, [N ′])-norming}.

By our assumptions F is (γ, N0)-norming and so by Lemma 21, for all ζ ≤ γ
and N ∈ [N0], there exists N ′ ∈ [N ] such that F is (ζ, [N ′])-norming.
Therefore b(ζ, [N ]) is a well defined ordinal (which is of course smaller than
or equal to γ).

We will prove that the ordinal β of Theorem 29 can be chosen to be
b(γ, N0). For this we need two propositions.

Proposition 30. Let ζ ≤ γ, N ∈ [N0] and set β = b(ζ, [N ]). Then

there exists M ∈ [N ] such that for every (ζ, [M ])-sequence (un)n, (un|F)n is

a seminormalized weakly null sequence in C(F) with β((un|F )n) = β.

Proof. By the definition of b(ζ, [N ]), there is an infinite subset of N ,
which for simplicity we denote again by N , such that F∩(Sβ ∗ l0) is (ζ, [N ])-
norming for some l0 ∈ N. Let (un)n be a (ζ, [N ])-sequence. Since (fn)n is
shrinking it is clear that (un|F)n is a seminormalized weakly null sequence
in C(F). If β = 0 then trivially β((un|F )n) = 0. If β ≥ 1 then let ((ξn, ln))n

be an enumeration of all pairs (ξ, l) with ξ < β. Applying Lemma 20 we
construct by induction a decreasing sequence N ⊇ N1 ⊇ N2 ⊇ · · · of infinite
subsets of N such that limm ‖ζL

m|F∩(Sξn∗ln)‖ = 0 for every n ∈ N and L ∈

[Nn]. If M is a diagonalization of (Nn)n then it is easy to see by Axiom 2
that M satisfies the conclusion of the proposition.

Proposition 31. Let ζ ≤ γ, N ∈ [N0] and set β = b(ζ, [N ]). Suppose

that every (ζ, [N ])-sequence is a cδ
0-spreading model , where β + δ = γ. Then

there exists M ∈ [N ] such that F is (ζ, [M ], c0)-norming.

Proof. By the preceding proposition we may assume that β((un|F)n) = β
for every (ζ, [N ])-sequence (un)n. Moreover (since F ⊆ K) we notice that
(un|F )n is also a cδ

0-spreading model in C(F). Corollary 13 shows that for ev-
ery (ζ, [N ])-sequence (un)n there exists a subsequence of (un|F )n equivalent
to the usual basis of c0. Hence for every L ∈ [N ] there exists L′ ∈ [L] such
that (ζL′

n |F )n is equivalent to the usual basis of c0, and so by Proposition
24 the proof is complete.

The following is an immediate consequence of the above proposition.
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Corollary 32. Let ζ ≤ γ and N ∈ [N0]. If b(ζ, [N ]) = γ then there

exists M ∈ [N ] such that F is (ζ, [M ], c0)-norming.

We are now ready to prove Theorem 29.

Proof of Theorem 29. We identify L with F and we assume that F ⊆ K.
The proof will be done by induction on the ordinal γ and with inductive
hypothesis the following restatement of the theorem:

Inductive hypothesis. Let γ < ω1. Then for every N0 ∈ [N] and every
compact and hereditary family F such that (i) F ⊆ Sγ ∗ k for some k ∈ N

and (ii) F is (γ, [N0])-norming, there exist β ≤ γ and M ∈ [N0] such that
F is (β, [M ], c0)-norming.

So fix a countable ordinal γ and suppose that our inductive hypothesis
is true for all ordinals smaller than γ. We set

β = b(γ, [N0])

and we will show that there exists M ∈ [N0] such that F is (β, [M ], c0)-
norming.

Notice that if β = γ then the result follows immediately from Corol-
lary 32 (this in particular establishes the case of γ = 0).

So suppose that β < γ. By the definition of b(γ, [N0]) there exist l0 ∈ N

and N ′
0 ∈ [N0] such that

(35) F ′ = F ∩ (Sβ ∗ l0) is (γ, [N ′
0])-norming.

By Lemma 21, we may assume that F ′ is (β, [N ′
0])-norming. Since F ′ is a

compact and hereditary family with F ′ ⊆ Sβ ∗ l0 and β < γ, our inductive
hypothesis can be applied. Therefore there exist β′ ≤ β and N ∈ [N ′

0]
such that F ′ is (β′, [N ], c0)-norming. Since N ∈ [N ′

0], we find that F ′ is
(β, [N ])-norming and so by Lemma 25 we may assume that

(36) F ′ is (β, [N ], c0)-norming.

Let δ < ω1 be such that β + δ = γ. Since N ∈ [N ′
0] and F ′ is (γ, [N ′

0])-
norming, by Lemma 28 we may also suppose that

(37) every (β, [N ])-sequence is a cδ
0-spreading model.

We now claim that

(38) b(β, [N ]) = β.

Indeed, recall that

b(β, [N ]) = min{ξ ≤ γ : there exist N ′ ∈ [N ] and l ∈ N

such that F ∩ (Sξ ∗ l) is (β, [N ′])-norming}.

Since F ′ = F ∩ (Sβ ∗ l0) is (β, [N ])-norming, we have b(β, [N ]) ≤ β. So it
remains to show the reverse inequality.



86 S. A. Argyros and V. Kanellopoulos

Assume on the contrary that b(β, [N ]) < β. Then there exist ξ < β,
N ′ ∈ [N ] and l ∈ N such that F ∩ (Sξ ∗ l) is (β, [N ′])-norming. On the other
hand, observe that N ′ ∈ [N0] and since ξ < β = b(γ, [N0]), we conclude
that there is no N ′′ ∈ [N ′] such that F ∩ (Sξ ∗ l) is (γ, [N ′′])-norming.
Therefore by Lemma 22, for every ε > 0 there exists M ′ ∈ [N ′] such that
every γ-block supported by M ′ admits an (ε, β)-analysis of weight smaller
than ε. Furthermore by (36) there is a constant C > 0 such that for every
(β, [N ])-sequence (bn)n, (bn|F ′)n is C-equivalent to the usual basis of c0.

Using the above and arguing as we did in the second part of the proof of
Lemma 28 it follows easily that for every ε > 0 there exists M ′ ∈ [N ′] such
that ‖u|F ′‖ ≤ ε for every γ-block u supported by M ′, which is impossible
by (35).

By (37), (38) and Proposition 31 (with β in place of ζ) we obtain an
M ∈ [N ] such that F is (β, [M ], c0)-norming, and the proof of the theorem
is complete.

7. Consequences of the main theorem. The next theorem proved in
[GOW] for the standard c0-hierarchy is the main consequence of Theorem 29.

Theorem 33. Let ξ < ω1, (fn)n be a weakly null normalized basic se-

quence in C(ωωξ
) and H = {(ζL

n )n : L ∈ N, ζ < ω1} be a c0-hierarchy

generated by (fn)n. Then for every N ∈ [N] there exist β ≤ ξ, M ∈ [N ] and

C > 0 such that for every L ∈ [M ], the sequence (βL
n )n is C-equivalent to

the usual basis of c0.

Proof. A standard diagonal argument gives a P ∈ [N ], P = (pn)n, such
that for all t ∈ K the series

∑

n |fpn(t)| is summable. Let gn = fpn for n ∈ N

and set ~g = (gn)n. By the above ~g is a shrinking basic sequence in C(ωωξ
).

Let H~g = {(ζL,~g
n )n : L ∈ [N], ζ < ω1} be the ~g-subhierarchy of H (recall

that for all L ∈ N, n ∈ N and ζ < ω1, we have ζL,~g
n = ζ

p(L)
n where p(L) =

{pn : n ∈ L}). Applying Theorem 29 (for γ = ξ, K = L = Sξ, N0 = N and

for the sequence ~g and the c0-hierarchy H~g in place of ~f and H) we find
that there exist β ≤ γ, M ′ ∈ [N] and a constant C > 0 such that for every

L′ ∈ [M ′], the sequence (βL′,~g
n )n is C-equivalent to the usual basis of c0. We

set M = p(M ′) and it is easy to see that M satisfies the conclusion of the
theorem.

As an application of Theorem 33 we obtain

Corollary 34. Let ξ < ω1 and X be a quotient of C(ωωξ
) such that X

contains a sequence (xn)n which is an lξ1-spreading model. Then there is a

block subsequence of (xn)n equivalent to the usual basis of c0.
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Proof. Let Q : C(ωωξ
) → X be a continuous onto linear map. By the

open mapping theorem we can choose a bounded sequence ~g = (gn)n in

C(ωωξ
) such that Q(gn) = xn for all n ∈ N. Since ωωξ

is countable, we may

suppose that (gn)n is pointwise convergent. Let ~f = (fn)n, where for every
n ∈ N,

(39) fn =
g2n − g2n+1

‖g2n − g2n+1‖
.

Notice that ~f is a normalized weakly null sequence in C(ωωξ
). Hence by

passing to a subsequence, we may assume that ~f is in addition a basic
sequence.

Let yn = Q(fn) for all n ∈ N and set ~y = (yn)n. It is clear that ~y is a block

subsequence of ~x and it is easy to check that (yn)n is also an lξ1-spreading
model. Hence there is a constant c > 0 such that for all F ∈ Sξ and scalars
(λi)i∈F ,

(40) c
∑

i∈F

|λi| ≤
∥

∥

∥

∑

i∈F

λiyi

∥

∥

∥
.

Let H = {(ζL
n )n : L ∈ N, ζ < ω1} be a c0-hierarchy generated by ~f such

that suppu ∈ Sζ for every ζ-block u (for example the standard c0-hierarchy

generated by ~f has this property). By Theorem 33, there exist M ∈ [N],
β ≤ ξ and C > 0 such that (βM

n )n is C-equivalent to the usual basis of c0.

Define ~w = (wn)n where wn = Q(βM
n ) for all n. Then (wn)n is a block

subsequence of (xn)n and for all (an)n ∈ c00(N), we have

(41)
∥

∥

∥

∑

n

anwn

∥

∥

∥
≤ ‖Q‖

∥

∥

∥

∑

n

anβM
n

∥

∥

∥
≤ ‖Q‖C max

n
|an|.

Therefore to complete the proof it suffices to show that (wn)n contains a
basic subsequence. By the properties of Schreier families there exists n0 ∈ N

such that F ∈ Sξ for all F ∈ Sβ with n0 ≤ F . Fix n ≥ n0 and set F =
suppβM

n . Then n0 ≤ F and so F ∈ Sξ. Let (λi)i∈F be scalars such that
βM

n =
∑

i∈F λifi. Then wn = Q(βM
n ) =

∑

i∈F λiyi and so by (40) we have

(42) ‖wn‖ =
∥

∥

∥

∑

i∈F

λiyi

∥

∥

∥
≥ c

∑

i∈F

|λi| ≥ c‖βM
n ‖.

Hence (wn)n≥n0
is seminormalized. Since it is also weakly null, it contains

a basic subsequence, and the proof is complete.

Remark 4. The above result is related to a well known open problem,
namely whether every quotient of C(K), with K a countable compact metric
space, is c0-saturated. In [O2] (Theorem B) it has been shown that every
quotient of the Schreier space is c0-saturated.
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Let us also notice that since Tsirelson’s space contains ln1 -spreading mod-
els for all n ∈ N, by Corollary 34 it follows that Tsirelson’s space is not a
subspace of a quotient of any C(ωωn

). However, it is open if it is a subspace
of a quotient of C(ωωω

).

Fix a compact Hausdorff space K, a normalized shrinking basic sequence
(fn)n in C(K) and a c0-hierarchy H = {(ζL

n )n : L ∈ [N], ζ < ω1} generated
by (fn)n. In the following, for a countable compact metric space L, we denote
by |L|∗CB the immediate predecessor of the Cantor–Bendixson rank of L (i.e.

the greatest ordinal ξ < ω1 with L(ξ) 6= ∅).

Corollary 35. Let L be a countable closed subset of K and γ be a

countable ordinal such that |L|∗CB < ωγ+1. Then for every ξ ≥ γ and every

N ∈ [N] there exists M ∈ [N ] such that one of the following two mutually

exclusive alternatives holds:

(1) For all L ∈ [M ], the sequence (ξL
n |L)n is equivalent to the usual basis

of c0.

(2) For all L ∈ [M ], lim ‖ξL
n |L‖ = 0.

Proof. By [MS], L may be identified with an initial segment of ωωγ ·k for
some k ∈ N. Set D = ωωγ ·k \ L. Replacing K and L with the direct sums
K⊕D and L⊕D respectively and considering the trivial extension of each
fn (that is, fn(ζ) = 0 for all ζ ∈ D) we may assume that L = ωωγ ·k for
some k ∈ N. Since F = Sγ ∗ k is homeomorphic to [0, ωωγ ·k], we see that L
is representable by the regular family Sγ ∗ k.

Fix ξ ≥ γ and N ∈ [N]. Then either L is (ξ, [N ′])-norming for some
N ′ ∈ [N ], or there is no such N ′. In the first case, by Lemma 21 there is N0 ∈
[N ′] such that L is (γ, [N0])-norming. Applying successively Theorem 29 and
Lemma 25 yields statement (1). In the second case Lemma 20 immediately
gives statement (2).

Corollary 36. Let L be a countable closed subset of K and γ be a

countable ordinal such that |L|∗CB < ωγ+1. Let ξ be a countable ordinal with

ξ ≥ γ and N0 ∈ [N] be such that L is (ξ, [N0])-norming. Then there exists a

countable ordinal β ≤ γ such that for every ζ ∈ [β, ξ] there is an M ∈ [N0]
such that for all L ∈ [M ] the following are satisfied :

(1) The sequence (ζL
n |L)n is equivalent to the usual basis of c0.

(2) The sequence (ζL
n )n is a cδ

0-spreading model , where ζ + δ = ξ.

Proof. Since γ ≤ ξ, by Lemma 21 we may suppose that L is (γ, [N0])-
norming. As in Corollary 35, we may suppose that L is representable by
the regular family Sγ ∗ k. Therefore by Theorem 29 there exist β ≤ γ and
N ∈ [N0] such that L is (β, [N ], c0)-norming.
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Let ζ ∈ [β, ξ]. Clearly L is (γ, [N ])-norming and so by Lemma 21, we
may assume that L is (ζ, [N ])-norming. Applying successively Lemma 25
and Lemma 28 yields the result.

Corollary 37. Let Λ be an uncountable subset of ω1 satisfying the

following :

(i) For every ξ ∈ Λ there exist a countable closed subset Lξ of K and

Nξ ∈ [N] such that Lξ is (ξ, [Nξ])-norming.

(ii) sup{|Lξ|
∗
CB : ξ ∈ Λ} < ω1.

Then there exists a countable ordinal γ0 such that for each γ ≥ γ0 there

exists L ∈ [N] such that the sequence (γL
n )n is equivalent to the usual basis

of c0.

Proof. Let γ0 be the least countable ordinal such that sup{|Lξ|
∗
CB :

ξ ∈ Λ} < ωγ0+1. Fix γ ≥ γ0 and for each k ∈ N define the tree

T k
γ = {(γL

i )n
i=1 : L ∈ [N], n ∈ N and (γL

i )n
i=1 is k-equivalent to (ei)

n
i=1}

where (ei)i denotes the usual basis of c0. We have to show that there is a
k ∈ N such that T k

γ is not well founded.

Assume on the contrary that T k
γ is well founded for every k. By Ax-

iom 2 of the definition of c0-hierarchies the family {γL
i : L ∈ [N], i ∈ N} is

countable. Hence for every k, T k
γ is a countable tree and therefore its order,

o(T k
γ ), must be a countable ordinal.

Set Λγ = {ξ : ξ ∈ Λ, ξ ≥ γ}. Let ξ ∈ Λγ and set ξ = γ + δξ. Since
|Lξ|

∗
CB < ωγ+1 and Lξ is (ξ, [Nξ])-norming, Corollary 36 shows that there

exists L ∈ [Nξ] such that the sequence (γL
n )n is a c

δξ

0 -spreading model. This
implies that there exists a k ∈ N and a strictly monotone map from the tree
(Sξ,⊑) to T k

γ , and so o(T k
γ ) ≥ ωδξ (see [K]). Since Λγ is uncountable, there

exists a k ∈ N such that o(T k
γ ) ≥ ω1, which is a contradiction.

8. Appendix. This section is devoted to the proof of Proposition 5,
namely that for all countable ordinals ξ = β + δ and all k ∈ N, the following
equality holds:

(43) o((Sξ ∗ k)/Sβ) = ωδ · k.

Before starting the proof let us show that in certain cases the order of a
quotient family of the form F/Sβ may be equal to the order of the family F .

We will need the following definition from [AMT]. Consider an increasing

map f : N → N and set Sf
1 = {t ⊆ N : |t| ≤ f(min t)}. It is clear that for

constant maps f we get the families [N]≤k, whereas if f is the identity
then we obtain the first Schreier family S1. It is easy to see that for an
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increasing map f with infinite range, Sf
1 is a regular family of order ω and

so homeomorphic to S1.
Now it is not difficult to show that choosing f appropriately, for example

f(n) = n2, we obtain o(Sf
1 /S1) = ω. Furthermore one can define transfinite

analogs of Sf
1 , {Sf

ξ }ξ<ω1
, in the way the Schreier families are constructed,

and show by induction that o(Sf
β/Sβ) = o(Sf

β ) = ωβ for every β < ω1.
We now pass to the proof of Proposition 5. We start with some prepara-

tory lemmas. We will denote by G a regular family of finite subsets of N that
covers N.

Lemma 38. Let M ∈ [N] and ∅ 6= s ⊑ M . Set L = M \ s, qG(M) =
(mn)n and qG(L) = (ln)n. Let d be such that md < minL ≤ md+1. Then

md+n−1 < ln ≤ md+n for all n.

Proof. Since minL = l1 our assumption gives md < l1 ≤ md+1. If l1 =
md+1, then it is easy to see from the definitions that ln = md+n for all n ∈ N.
So assume that md < l1 < md+1. We show that md+1 < l2 < md+2. Note
first that [mi, mi+1)∩M and [li, li+1)∩M are maximal members of G, for all
i ∈ N. If l2 ≤ md+1, then [l1, l2) ∩ M is a proper subset of [md, md+1) ∩ M .
When md+2 ≤ l2, [md+1, md+2) ∩ M is a proper subset of [l1, l2) ∩ M . In
either case, maximality is violated. Repeat the same argument for L\ [l1, l2)
to show that md+2 < l3 < md+3 and continue inductively.

Lemma 39. Let k ∈ N and s1 < · · · < sk be finite subsets of N. Then

qG(
⋃k

i=1 si) =
⋃k

i=1 s′i where s′1 < · · · < s′k, s′1 = qG(s1) and for every

1 < i ≤ k either

(1) qG(si) � s′i, or

(2) qG(si) \ {max qG(si)} � s′i.

Proof. Let k = 2. We assume that both s1, s2 are nonempty; otherwise
the result follows trivially. We choose M ∈ [N] such that s1 ∪ s2 ⊑ M and
let qG(M) = (mn)n. Then

qG(s1 ∪ s2) = (s1 ∪ s2) ∩ qG(M) = (s1 ∩ qG(M)) ∪ (s2 ∩ qG(M))

= qG(s1) ∪ (s2 ∩ qG(M)).

Let d ∈ N be such that qG(s1) = (mn)d
n=1. Let L = M \ s1 and qG(L) =

(ln)n. Then s2 ⊑ L, qG(s2) = s2 ∩ qG(L) and md < l1 ≤ md+1. We set
s′2 = s2 ∩ qG(M) and we distinguish the following cases.

Case 1: s′2 = ∅. Then qG(s2) = {l1}. Indeed, otherwise l2 ∈ qG(s2). But
then by Lemma 38 we have l1 ≤ md+1 < l2 and so md+1 ∈ s′2, which is a
contradiction.

Case 2: s′2 6= ∅. Let k ∈ N be such that s′2 = {md+1, . . . , md+k}. Then
again by Lemma 38 we obtain
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{l1, . . . , lk} ⊑ qG(s2) ⊑ {l1, . . . , lk+1}, {l1, . . . , lk} � {md+1, . . . , md+k}.

The above yields the assertion for k = 2 and an easy induction completes
the proof for every k.

Lemma 40. Let F be a regular family in N.

(i) For every k ∈ N, (F ∗ k)/G ⊆ (F/G) ∗ k.

(ii) (F ∗ S1)/G ⊆ (F/G) ∗ S1.

Proof. (i) Since (F/G) ∗ k is spreading it is enough to show that qG(s) ∈
(F/G) ∗ k for every s ∈ F ∗ k. So let s ∈ F ∗ k. Then there exist d ≤ k and

members s1 < · · · < sd of F such that s =
⋃d

i=1 si. By Lemma 39 and since
F/G is hereditary and spreading, we conclude that qG(s) ∈ (F/G) ∗ k, and
the proof of part (i) is complete.

(ii) As above it suffices to show that qG(s) ∈ (F/G) ∗ S1 for every s ∈
F ∗ S1. Indeed, let s ∈ F ∗ S1. Then there is k ∈ N such that s ∈ F ∗ k
and k ≤ s. Then by part (i), qG(s) ∈ (F/G) ∗ k and k ≤ qG(s) and therefore
qG(s) ∈ (F/G) ∗ S1.

We will also need the following general proposition. The proof of part (i)
is essentially contained in [AT], whereas (ii) follows by standard arguments.

Proposition 41. (i) Let F , G be regular families in N. Then o(G ∗F) =
o(G) · o(F).

(ii) Let (Fn)n be a sequence of regular families in N such that n ≤ t for

every n ∈ N and every t ∈ Fn. Then the family F =
⋃

n Fn is also

regular and o(F) = supn o(Fn).

Lemma 42. For all countable ordinals ξ = β + δ and all k ∈ N,

(44) ωδ · k ≤ o((Sξ ∗ k)/Sβ).

Proof. It is clear that Sξ ∗ k ⊆ Sβ ∗ ((Sξ ∗ k)/Sβ) and so by the first part
of the above proposition we infer that ωξ · k ≤ ωβ · o((Sξ ∗ k)/Sβ), which
yields the conclusion.

Lemma 43. Let β, ξ be countable ordinals.

(i) If ξ < β then o(Sξ/Sβ) < ω.

(ii) If ξ ≥ β then o(Sξ/Sβ) = ωδ, where β + δ = ξ.

Proof. (i) Let ξ < β. Then by the properties of the Schreier families
there is an n = n(ξ, β) such that t ∈ Sβ for all s ∈ Sξ with n ≤ s. This
shows that for every s ∈ Sξ, qSβ

(s) has cardinality at most n and therefore
o(Sξ/Sβ) < n.

(ii) Let ξ ≥ β and denote by δξ the unique ordinal such that ξ = β + δξ.
By (44) it suffices to show

o(Sξ/Sβ) ≤ ωδξ .
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If ξ = β, then Sξ/Sβ = Sβ/Sβ = S0 and the result follows trivially. Let
ζ > β and assume that o(Sξ/Sβ) ≤ ωδξ for all ξ < ζ.

Suppose first that ζ is a successor ordinal and let ξ < ω1 be such that
ζ = ξ + 1. Then δζ = δξ + 1 and Sζ = Sξ ∗ S1. By Lemma 40,

Sζ/Sβ ⊆ (Sξ/Sβ) ∗ S1.

Hence by Proposition 41(i) and our inductive assumption we get

(45) o(Sζ/Sβ) ≤ o(Sξ/Sβ) · o(S1) ≤ ωδξ · ω = ωδζ .

Suppose now that ζ is a limit ordinal and let (ζn)n be the increasing sequence
of ordinals associated to ζ by the definition of Sζ . For each n ∈ N we set

Fn = {t ∈ Sζn
: n ≤ t}.

Then Sζ/Sβ =
⋃

n(Fn/Sβ), and therefore by Proposition 41(ii),

(46) o(Sζ/Sβ) = sup
n

o(Fn/Sβ) ≤ sup
n

o(Sζn
/Sβ).

Let n0 be the least such that ζn ≥ β for all n ≥ n0. Then by part (i),

(47) max
n<n0

o(Sζn
/Sβ) < ω.

By our inductive assumption o(Sζn
/Sβ) ≤ ωδζn for each n ≥ n0. Since

supn ζn = ζ, we see that supn≥n0
δζn

= δζ and therefore

(48) sup
n≥n0

o(Sζn
/Sβ) ≤ sup

n≥n0

ωδζn = ωδζ .

By (46)–(48) we obtain o(Sζ/Sβ) ≤ ωδζ , and the proof of the inductive step
and of the lemma is complete.

Proof of Proposition 5. Let ξ = β + δ be countable ordinals and k ∈ N.
By Lemma 40, (Sξ ∗ k)/Sβ ⊆ (Sξ/Sβ) ∗ k and therefore by Proposition 41(i)
and Lemma 43, we have

o((Sξ ∗ k)/Sβ) ≤ ωδ · k,

which in conjunction to (44) gives o((Sξ ∗ k)/Sβ) = ωδ · k and completess
the proof.
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