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On the existence of universal covering spaces for

metric spaces and subsets of the Euclidean plane

by

G. R. Conner and J. W. Lamoreaux (Provo, UT)

Abstract. We prove several results concerning the existence of universal covering
spaces for separable metric spaces. To begin, we define several homotopy-theoretic condi-
tions which we then prove are equivalent to the existence of a universal covering space.
We use these equivalences to prove that every connected, locally path connected sepa-
rable metric space whose fundamental group is a free group admits a universal covering
space. As an application of these results, we prove the main result of this article, which
states that a connected, locally path connected subset of the Euclidean plane, E

2, admits
a universal covering space if and only if its fundamental group is free, if and only if its
fundamental group is countable.

1. Introduction. The Hawaiian earring, the one-point compactification
of a countably infinite set of disjoint open intervals, is one of the standard
examples in homotopy theory since it is a one-dimensional, planar set which
does not admit a universal covering space and whose fundamental group
is uncountable and not a free group. Guided by this example, it is natu-
ral to ask what relationships exist between the properties of freedom and
countability of the fundamental group of a space and existence of universal
covering spaces for path connected spaces. In this article we explore these
relationships, and find that, for example (Theorem 2.6), a connected, locally
path connected, separable metric space which has a free fundamental group
admits a universal covering space and that furthermore (Theorem 3.1) a
connected, locally path connected subset of the Euclidean plane admits a
universal cover if and only if it has a free fundamental group.

In [CF], Curtis and Fort show that any compact connected, locally path
connected one-dimensional metric space is either semilocally simply con-
nected, in which case it has a fundamental group which is free of countable
rank, or has an uncountable fundamental group. In [CC2] this is generalized
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in several ways. In particular, it is shown there that if X a connected, locally
path connected, one-dimensional separable metric space then X has a free
fundamental group if and only if X has a countable fundamental group, if
and only if X is locally simply connected, if and only if X has a universal
cover. In the current article we prove a similar theorem, replacing the hy-
potheses that the space be one-dimensional and separable by the hypothesis
that it be a subset of R

2.

1.1. We will now discuss the terminology of the current article. The
common thread connecting the approach of [CC2] with that of the current
article is that planar sets and one-dimensional spaces share the property of
being homotopically Hausdorff . This is a strong condition, which does not
hold for subsets of R

3, as we shall see below.

Definition 1.1. A space X is homotopically Hausdorff at x0 ∈ X if for
any essential closed curve, c, based at x0 there is an open neighborhood U of
x0 so that c is not homotopic (rel endpoints) to a curve lying entirely in U .
Furthermore, X is said to be homotopically Hausdorff if it is homotopically
Hausdorff at each of its points.

The property of being homotopically Hausdorff intuitively says that
closed curves in the space can be separated from the trivial closed curve by
an open set. This intuition can be made rigorous by noting that the space
of homotopy classes of curves in X emanating from x0, sometimes denoted
Ω(X, x0), is Hausdorff at x0 if and only if X is homotopically Hausdorff
at x0.

Example 1.2. Define the Hawaiian earring as the union H =
⋃

i∈N
ci

of planar circles, ci, tangent to the x-axis at the origin and of radius 1/i.
It is the simplest example of a one-dimensional Peano continuum which
does not have free fundamental group [CC1]. Since H is one-dimensional,
it is homotopically Hausdorff [CC2]. Let X be the cone over H, that is,
H × [0, 1]/H × {1}. Let x = ((0, 0), 0) denote the basepoint of X. Let Xi,
i ∈ {1, 2}, be two copies of X with basepoints xi. Let Y = X1∪X2/{x1 = x2}
be their amalgamated union (see Figure 1). It is shown in [CC1] that Y is a
compact, connected subset of R

3 which is not homotopically Hausdorff, and
whose fundamental group is uncountable. Another interesting feature of the
space Y is that it is a union of two contractible spaces along one point, but
it is not itself contractible.

Definition 1.3. If i : X → Y is an embedding of one path connected
space into another then we say that X is a π1-retract of Y if there exists
a homomorphism r : π1(Y ) → π1(X) so that the composition ri∗ : π1(X)
→ π1(X) is an isomorphism. We say that r is a π1-retraction for X in Y .
Note that π1(X) is indeed a group-theoretic retract of π1(Y ). We define a
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Fig. 1. The doubled cone over the Hawaiian earring

π1-retract to be tight if it induces an isomorphism of fundamental groups.
Similarly we say that X is a neighborhood π1-retract of Y if X is a π1-retract
of one of its open neighborhoods in Y .

The above notion of π1-retract is designed to be an analog of the notion
of topological retract , where the property that a retract have a correspond-
ing continuous retraction is replaced by the property that the fundamental
group of a π1-retract have an analogous group-theoretic retraction. To carry
the analogy further, we now introduce a generalization of the notion of
an ANR (an absolute neighborhood retract). Recall that a separable metric
space is an ANR if it is a neighborhood retract of every separable metric
space containing it as a closed subspace.

Definition 1.4. A separable metric space, X, is said to be an ANπ1R

(or an absolute neighborhood π1-retract) if whenever X is a subspace of a
separable metric space Y then X is a neighborhood π1-retract in Y . Note
that we do not require that X be a closed subset of Y .

We resist the temptation to define the analog of the notion of an AR
(absolute retract) since this would merely correspond to the class of all
simply connected, locally path connected, separable metric spaces.

1.2. The following is an outline of the results proven in this article. In
Section 2 we prove:

Theorem 2.1. If X is a connected , locally path connected , separable

metric space then the following are equivalent :

(1) X admits a universal covering space.

(2) X is homotopically Hausdorff and π1(X) is countable.

(3) X is an ANπ1R.

(4) X is a tight π1-retract of a Hilbert cube manifold.
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Using the tools of [CC2] along with the previous result and a number of
nerve-theoretic lemmas from Appendix A we show:

Theorem 2.6. If X is a connected , locally path connected separable

metric space with a fundamental group which is a free group then X admits

a universal covering space.

In Section 3, using standard techniques of planar topology, we prove:

Theorem 3.4. Every subset of E
2 is homotopically Hausdorff.

This combined with the previous results allows us to deduce the main
result of this paper:

Theorem 3.1. If X is a connected , locally path connected subset of E
2

then the following are equivalent :

(1) X admits a universal cover.

(2) X is locally simply connected.

(3) The fundamental group of X is countable.

(4) The fundamental group of X is a free group.

The following result is needed in the proof of Theorem 2.1. Its proof
constitutes Section 4.

Theorem 4.1. If X is a locally connected separable metric space and

X̃ is a covering space for X then X̃ is metrizable. Furthermore, if X̃ is

connected , then it is separable.

Finally, in Appendix A we prove a number of nerve-theoretic and planar
topological lemmas needed in various parts of the paper.

1.3. We now mention recent work in the field which is related to the
current article in order of decreasing generality.

In [S], Shelah proves that a connected, locally path connected, compact
metric space has a fundamental group which is either finitely generated
or uncountable. In [CC2], Cannon and Conner show that the fundamen-
tal group of a connected, locally path connected, separable one-dimensional
metric space is a free group if and only if it is countable if and only if the
space has a universal cover if and only if the space is locally simply con-
nected. The main result, Theorem 3.1, in the current article is the analogous
result for subsets of the plane. In [CCZ], we prove that any subset of R

2 is
aspherical (i.e., has trivial higher homotopy).

2. Fundamental groups of metric spaces

Theorem 2.1. If X is a connected , locally path connected , separable

metric space then the following are equivalent :
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(1) X admits a universal covering space.

(2) X is homotopically Hausdorff and π1(X) is countable.

(3) X is an ANπ1R.

(4) X is a tight π1-retract of a Hilbert cube manifold.

That (1) and (3) are equivalent is not surprising since a connected, locally
path connected space has a universal cover if and only if it is LC1 (or,
in another terminology, semilocally simply connected), and there is a well
developed theory of ANR-like extensions of maps from spaces of prescribed
dimension into spaces with LCn properties (for instance, see van Mill [vM]).
However, we are unaware of results in the literature which would imply the
equivalence of (1) and (3).

Proof. We will first prove that (1) and (2) are equivalent and then show
that (1) implies (3) implies (4) which, in turn, implies (1). We will state a
number of the more interesting implications as lemmas.

The following result proves that (1) implies (2).

Lemma 2.2. The fundamental group of a path connected , locally con-

nected , separable metric space which admits a universal cover is countable.

Proof. Let X be a topological space satisfying the hypothesis, X̃ be its
universal cover and f be the corresponding covering map. Fix x0 ∈ X. We
assume by way of contradiction that the fundamental group of X is uncount-
able. Since the preimages under f of x0 are in one-to-one correspondence

with the elements of π1(X, x0), A = f−1(x0) is an uncountable subset of X̃.

Since X̃ is a separable metric space by Theorem 4.1, there is an element of
A which is a limit point of A. However, since f is a covering map there is
an open set B in X containing x0 whose inverse image under f is a disjoint
collection of open sets each one mapped homeomorphically onto B by f .
Thus A cannot contain a limit point of itself.

Recall that X will admit a universal cover if and only if it is semilo-

cally simply connected . That (2) implies (1) follows immediately from the
following result.

Lemma 2.3. If X is a locally path connected topological space which is

first countable, homotopically Hausdorff but is not semilocally simply con-

nected , then π1(X) is uncountable.

Proof. Assume X is as in the hypothesis, fix x0 ∈ X such that X is not
semilocally simply connected at x0, and choose (Bi) to be a countable local
basis for X at x0.

Since X is not simply connected, we may choose p1 : I → X to be an
essential closed curve based at x0. Let S0 = {1}. Since X is homotopically
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Hausdorff we may choose a neighborhood U1 of x0 contained in B1 which
does not contain a closed curve based at x0 homotopic to p1.

We will inductively define a sequence (Ui) of neighborhoods of x0, and
a sequence (pi) of closed curves based at x0 so that the image of each pi is
contained in Ui and such that each Ui is a subset of Bi. We set π = π1(X, x0),
and let πi denote the image of π1(Ui, x0) in π under the map induced by
inclusion. If pj is defined for j < i, we make the following definitions:

1. If α is a subset of {1, . . . , i − 1}, define wα to be 1π if α = ∅ and
otherwise to be [pα1

] ◦ · · · ◦ [pαk
] where α = {α1, . . . , αk} and α1 <

· · · < αk. For example w{1} = [p1].

2. Define Si−1 to be the set whose elements have the form wα ◦ w−1
β or

w−1
α ◦wβ where α and β are two subsets of {1, . . . , i−1}. For example,

S1 = {1π, [p1], [p1]
−1}.

As part of the induction hypothesis we shall assume that we have chosen
(pj) and (Uj) so that wα = wβ only if α = β, and so that Si−2∩πi−1 = {1π}.

Assume inductively that pi−1 and Ui−1 have been defined. Since Si−1 is
finite and X is homotopically Hausdorff, we may choose a neighborhood Ui

about x0 such that Ui ⊂ Ui−1 ∩ Bi and Si−1 ∩ πi = {1π}. Since X is not
semilocally simply connected at x0 we may choose pi : I → X to be an
essential closed curve based at x0 such that [pi] lies in πi.

Now suppose α, β ⊂ {1, . . . , i} and wα = wβ . Then pα1
◦ · · · ◦ pαk

≈
pβ1

◦ · · · ◦ pβl
. If αk 6= i then βl 6= i, since otherwise

pi ≈ pβl
≈ (pβ1

◦ · · · ◦ pβl−1
)−1 ◦ (pα1

◦ · · · ◦ pαk
)

and so pi would be homotopic to an element of Si−1. Thus wα, wβ ∈ Si−1 and
by the inductive hypothesis α = β. On the other hand, if αk = βl = i then
pα1

◦· · ·◦pαk−1
◦pi ≈ pβ1

◦· · ·◦pβl−1
◦pi implies pα1

◦· · ·◦pαk−1
≈ pβ1

◦· · ·◦pβl−1

and since each side is an element in Si−1 we have α − {i} = β − {i}, thus
α = β. Hence the inductive step is complete.

Now for each subset, α, of the natural numbers, we define

wα = [pα1
◦ pα2

◦ . . . ] =
[ ∞∏

i=1

pαi

]
.

Since
⋂∞

i=1 Ui = {x0}, it follows that wα is a well defined element of π.
Suppose wα = wβ for α and β two distinct subsets of the natural num-
bers. Let i be the least element of (α − β) ∪ (β − α) and, without loss
of generality, assume i ∈ α. Now, α1 = β1, . . . , αk = βk, and i = αk+1

< βk+1. We let

Q = pα1
◦ · · · ◦ pαk

= pβ1
◦ · · · ◦ pβk

and note that wα = [Q ◦ pi ◦ Q1] and wβ = [Q ◦ Q2] where Q1 and Q2 can
be chosen to be closed curves based at x0 lying in Ui+1. Then wα = wβ
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implies that Q ◦ pi ◦Q1 ≈ Q ◦Q2 and thus pi ≈ Q2 ◦Q−1
1 . However, pi is not

homotopic to a curve based at x0 lying in Ui+1, yielding a contradiction.
Hence we have an injective map f from the set of subsets of the natural

numbers, ℘(N), to π given by α 7→ wα, whence π has cardinality no smaller
than that of the continuum.

We will now prove that (1) implies (3).

Lemma 2.4. If X is a connected , locally path connected , separable met-

ric space which admits a universal covering space then X is an ANπ1R.

Proof. Let X be embedded in the separable metric space Y and let Û be
a neighborhood of X in Y . Since X is semilocally simply connected we may
choose a cover C ′ of X by open sets whose images in the fundamental group

of X are trivial and are each contained in Û . Using Lemma A.3, we choose
a locally finite open refinement C whose elements are path connected and
such that π1(X) is isomorphic to π1(N(C)). By Lemma A.1, we may choose

a collection, Ĉ, of open sets in Û ⊆ Y covering X and which is compatible
with C in the sense that the elements of c are in one-to-one correspondence

with those of Ĉ in such a way that c = ĉ ∩ X for each c in C and so that
any finite collection, c1, . . . , cn, of elements of C have a common point of

intersection if and only if the corresponding elements, ĉ1, . . . , ĉn, of Ĉ have

a common intersection. Clearly N(Ĉ) and N(C), the nerves of Ĉ and C
respectively, are naturally isomorphic.

Let U =
⋃

ĉ∈C ĉ and i : X → U be the inclusion map. Now, we choose

a partition of unity F̂ = {fĉ} for the cover Ĉ. For each c ∈ C let fc = fĉ|c.
Clearly F = {fc} is a partition of unity corresponding to the cover C of X.

Let p̂ : U → N(Ĉ) and p : X → N(C) be the maps (see Definition A.2)

induced by F̂ and F respectively, and q : N(Ĉ) → N(C) be the obvious
isomorphism. By construction, p = q ◦ p̂◦ i, but, by Lemma A.3, the induced
map p∗ : π1(X) → π1(N(C)) is an isomorphism. Thus (p∗)

−1 ◦ (q ◦ p̂)∗ is a
π1-retraction for X in U .

To show that (3) implies (4), suppose X is an ANπ1R. Since every sep-
arable metric space embeds in the Hilbert cube, we may chose an open
set, U , in the Hilbert cube so that X is a π1-retract of U . Fix x0 ∈ X.
Since U is an open set in the Hilbert cube, it is semilocally simply con-
nected. Thus, by elementary covering space theory (see [M] for instance),

there is a covering space Û and a covering map c : (Û , x̂0) → (U, x0) so that

c∗(π1(Û , x̂0)) = π1(X, x0). A standard result in covering space theory (again

[M] is a good reference), states that i lifts to a map î : (X, x0) → (Û , x̂0)

so that i = c ◦ î. Now, since i is an embedding, so is î. By the choice

of Û , it is evident that X is a tight π1-retract of Û . Finally, Û is a Hilbert
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cube manifold since it is a covering space of an open set in the Hilbert
cube.

Finally, (4) implies (1) since any connected π1-retract of a semilocally
simply connected space (in this case a Hilbert cube manifold) is itself semilo-
cally simply connected and thus admits a universal cover if it is connected
and locally path connected.

To prove the next result we will need to use one of the main tools of
[CC2].

Theorem 2.5 ([CC2, Theorem 4.4]). Let X be a topological space, let

f : π1(X, x0) → L be a homomorphism to the group L, let U1 ⊇ U2 ⊇ · · · be

a countable local basis for X at x0, and let Gi be the image of the natural

map of π1(Ui, x0) into π1(X, x0). Then

(1) If L is countable then the sequence f(G1) ⊇ f(G2) ⊇ · · · is eventually

constant.

(2) If L is abelian with no infinitely divisible elements then
⋂

i∈N
f(Gi)

= {0L}.
(3) If L is countable abelian with no infinitely divisible elements then

f(Gi) = {0L} for some i ∈ N.

In [CC2] it is shown that if X is a second countable, locally path con-
nected metric space with a free abelian fundamental group then X has a
universal cover. We will use the previous theorem to prove a similar result
for free groups:

Theorem 2.6. If X is a connected , locally path connected separable

metric space with a fundamental group which is a free group then X admits

a universal covering space.

Proof. First we apply [CC2, Theorem 5.1], which states that any free fac-
tor group of the fundamental group of a second countable, connected, locally
path connected metric space has countable rank. Thus π1(X) is countable.

Let x0 be a point in X. Let U1 ⊇ U2 ⊇ · · · be a countable local basis
for X, let gi be the natural map of π1(Ui, x0) into π1(X, x0), and let Gi be
the image of gi.

Let C0 = π1(X, x0), C1 = [C0, C0], . . . , Ci+1 = [Ci, Ci], . . . be the stan-
dard commutator chain for π1(X, x0). Since π1(X, x0) is a free group,
each group Ci/Ci+1 is a free abelian group. Finally, let fn : π1(X, x0) →
π1(X, x0)/Cn be the natural homomorphism. Then by Theorem 2.5, the in-
tersection of the images of the Gi’s under f1 is eventually trivial, f1(Gi1) =
{0} for some i1. But f1(Gi1) = Gi1C1/C1, whence Gi1 ≤ C1. Then f2gi1 :
π1(Ui1 , x0) → C1/C2. Applying Theorem 2.5 again, we see that there is
a Gi2 which lies in C2. By induction, for each j there is a Gij which lies
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in Cj . However, since π1(X, x0) is a free group,
⋂

j∈N
Cj = {1} and thus⋂

j∈N
Gj = {1}. This implies that X is homotopically Hausdorff at x0. Since

x0 was generic, X is homotopically Hausdorff.
Finally, we see that X is homotopically Hausdorff and has countable

fundamental group, and so we may apply Theorem 2.1 to conclude that X
admits a universal covering space.

3. Fundamental groups of planar sets. In this section we apply
the results of the previous section to sets in the Euclidean plane to get the
following result.

Theorem 3.1. If X is a connected locally path connected subset of E
2

then the following are equivalent :

(1) X admits a universal cover.

(2) X is locally simply connected.

(3) The fundamental group of X is countable.

(4) The fundamental group of X is a free group.

This theorem is related to Theorem 5.9 in [CC2] where it is shown that a
second countable, connected, locally path connected, one-dimensional metric
space has a universal cover if and only if it is locally simply connected if
and only if it has a countable fundamental group if and only if it has a free
fundamental group. Thus, we have replaced the hypothesis of being second
countable and one-dimensional by the hypothesis of being a planar set and
have obtained the same conclusion.

Proof. Theorem 2.6 shows that (4) implies (1). Thus to show that (1)
and (4) are equivalent, we need only show that if X admits a universal
cover then the fundamental group of X is a free group. By Theorem 2.1 we
know that X is an ANπ1R. Thus the fundamental group of X embeds in the
fundamental group of an open set in the plane. Since such an open set is a
noncompact 2-manifold, it has a fundamental group which is a free group.
Since subgroups of free groups are free, the fundamental group of X is a
free group.

We need the following technical lemma.

Lemma 3.2. Let X be a subset of E
2 and N a closed disk in E

2 whose

boundary is not contained in X. If l1, l2 are closed curves in X ∩ int(N)
based at x0 which are homotopic in X then there is a homotopy F between

l1 and l2 whose image is contained in X ∩ N .

Proof. Let C denote the boundary of N , A denote the interior of N , let
and let p ∈ C \X. Let G be a homotopy (in X rel x0) between l1 and l2. Let
D be the component of I2−G−1(C) that contains (0, 0) in its boundary. Let
B be the set of boundary components of D except for the boundary of the
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square (the component containing (0, 0)). Since l1∪l2 ⊂ A and I2 is compact
it follows that

⋃
B is closed and G(

⋃
B) is a closed subset of C ∩X. Given

that p ∈ C it follows that each component of G(
⋃

B) is homeomorphic to
a closed interval in the real numbers or is a point. If w is a component of
G(

⋃
B), let Dw be the component of I2 − (G−1(w) ∩

⋃
B) that contains

(0, 0). Then G−1(w)∩
⋃

B is a closed subset of I2−Dw, hence by the Tietze
extension theorem the map G, restricted to G−1(w)∩

⋃
B, can be extended

to a continuous map Gw of I2 − Dw onto w. Note that if G−1(w) is not
a separating set for I2 then this is just the map G. Define F to be G on
the closure of D and to be Gw on each I2 − Dw where w ranges over all
components of G(

⋃
B). That F is well defined follows from Lemma A.6.

The only overlaps occur at points of
⋃

B where G = Gw, and wherever F
differs from G the image of F is an element of G(

⋃
B), hence in X∩C. Also

note the image of F lies in A ∪ C.
To show that F is continuous consider a point q in I2. If q ∈ I2 −

⋃
B,

then continuity follows either from the continuity of G or of one particu-
lar Gw. If q ∈

⋃
B, let w be the component of G(

⋃
B) containing F (q). If

F (q) is not an endpoint of w then a combination of the maps G and Gw is
used to show F is continuous at q. If F (q) is an endpoint of w then given an
open set O containing F (q) there exists an open subset N ⊂ O containing
F (q) such that any component w′ of G(

⋃
B), w′ 6= w, which intersects N is

a subset of O. Continuity follows using N together with the continuity of G
and Gw. Thus F is the desired homotopy.

Since X is connected and locally path connected, (2) obviously im-
plies (1). The next result proves that (1) implies (2).

Lemma 3.3. Let X be a subset of E
2 which is locally path connected and

semilocally simply connected. Then X is locally simply connected.

Proof. Let x0 be a point in X. If x0 is in the interior of X, then clearly
X is locally simply connected at x0. Otherwise, choose a path connected
neighborhood O of x0 in E

2 so that any closed curve in O ∩ X based at
x0 is nullhomotopic in X. We now choose a round closed Euclidean disk N
contained in O about x0 whose boundary is not contained in X (if this were
impossible then X would contain a round disk about x0 and thus x0 would
be interior to X). Since X is locally path connected, S, the path component
of int(N) ∩ X containing x0, is open in X. We will show that S is simply
connected.

Applying the previous result we find that any closed curve in S is null-
homotopic in N ∩ X by a nullhomotopy F . However we need to show that
any such closed curve is actually nullhomotopic in S. Suppose l is a closed
curve in S based at x0. We have two dichotomous cases.
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Case 1: There is a round closed subdisk N ′ of the interior of N which
contains l so that the boundary of N ′ is not contained in X. Then we may
apply the above argument to show that l is nullhomotopic in N ′ ∩ X and
thus in S.

Case 2: There is a circle C in S which separates l from the boundary
of S. In this case we project any images of F which are separated from
x0 by C radially onto C, obtaining a new nullhomotopy whose image lies
entirely inside S.

The next result and Theorem 2.1 together show that X admits a univer-
sal cover if and only if the fundamental group of X is countable, and thus
(1) and (3) of Theorem 3.1 are equivalent.

Theorem 3.4. Every subset of E
2 is homotopically Hausdorff.

Proof. Let x0 ∈ X ⊂ E
2. Let l0 be a closed curve in X based at x0 so that

given any open set U containing x0, l0 is homotopic (in X rel x0) to a closed
curve lying entirely in U . If x0 is interior to X then l0 is homotopic to a
closed curve whose image lies in an open set U ⊆ X which is homeomorphic
to a Euclidean disk and thus l0 is nullhomotopic.

If x0 is not interior to X then there is a sequence of points in E
2 − X

which converges to x0. If this is the case, let p0 be a point in E
2 − X and

for each natural number n pick a point pn in E
2 − X so that the distance

between pn and x0 is no more than the minimum of 1/n and one-half the
distance between pn−1 and x0, i.e.

pn ∈ Bx0

(
min

(
1

n
,
1

2
d(x0, pn−1)

))
∩ (E2 − X).

Let εn = d(x0, pn) and choose a closed curve ln ⊂ Bx0
(εn) based at x0

which is homotopic to l0 (and hence to ln−1). Note that ln−1 and ln are
both contained in the closed disk Bx0

(εn−1). Furthermore the boundary of
Bx0

(εn−1) is not contained in X since, by the definition of εn−1, it contains
the point pn−1 which was chosen to be an element of E

2 − X. Applying
Lemma 3.2, we may choose a homotopy Fn between ln and ln−1 so that
Fn|I×1 is ln, Fn|I×0 is ln+1 and the image of Fn is contained in the closure
of Bx0

(εn−1). We sequentially adjoin the homotopies Fi to form a homotopy

F by defining F (x, y) = Fn(x, 2n+1y − 1) when 2−(n+1) ≤ y ≤ 2−n, and
F (x, 0) = x0. We claim that F is continuous.

Case 1: If (x, y) ∈ I2 and y > 0 then continuity at (x, y) follows from
the continuity of at most two of the functions Fn−1 and Fn.

Case 2: If (x, y) ∈ I2 and y = 0 then F (x, y) = x0. Given any ε > 0
we may choose a k so that εk < ε. Now, for any n > k, the image of Fn

is contained in Bx0
(εn) and thus is a subset of Bx0

(εk). It follows that any
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point in B(x,y)(2
−(k+1)) would map to a point within εk and hence within ε

of x0.

Thus the closed curve l0 is nullhomotopic and so the set X is homotopi-
cally Hausdorff.

Thus we have completed the proof of Theorem 3.1.

4. Metrization of covering spaces

Theorem 4.1. If X is a locally connected separable metric space and

X̃ is a covering space for X then X̃ is metrizable. Furthermore, if X̃ is

connected , then it is separable.

Proof. Assume that X and X̃ are as above and f is a covering map.

Because X̃ is a covering space, for each point p of X we pick an open set
Bp containing p such that f−1(Bp) could be thought of as a collection Fp of
disjoint open sets each of which is homeomorphic to Bp using f restricted
to that open set. For each p we choose such a collection Fp, and since X is
regular, an open set Cp containing p whose closure is a subset of Bp. Since
X is a locally connected separable metric space, X has a countable basis,
D, such that each element is a connected open set. Also since if C is an
open covering of X and D is a basis for X then {g ∈ D | ∃c ∈ C such that
g ⊂ c} is a basis for X, we may choose a countable basis G1, G2, . . . for X
such that each Gi is connected and a subset of Cp for some point p of X.

For each n pick a point p such that Gn ⊂ Cp, and let

Ln = {y ∩ f−1(Gn) | y ∈ Fp}.

Bing has shown ([B, Theorem 3]) that a regular topological space is
metrizable if and only if it has a perfect screening, which we will now define.

Definition 4.2. A perfect screening of a topological space X is a count-
able collection {L1, L2, . . .} of sets each of which is a discrete collection of
open sets in X so that

⋃
i∈N

Li is a basis for X. Here a discrete collection

means one for which the following holds: every point in X is contained in
an open neighborhood which intersects at most one of the elements of the
collection.

Since regularity is a local property and X is regular, X̃ is regular. Thus
to finish the proof we need only check that {L1, L2, . . .} is a perfect screening

(or in other terminology, a σ-discrete basis) for X̃.

Given an n and a point q ∈ X̃, if f(q) is not an element of the closure
of Gn pick an open set D in X containing q which does not intersect the
closure of Gn; then f−1(D) is an open set which does not intersect any
element of Ln and contains the point q. If f(q) is in the closure of Gn, then
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f(q) ∈ Cp and q is an element of only one element y of Fp and y is an open
set intersecting only one element of Ln. Thus Ln is a discrete collection of
open sets.

Given any open set D ⊂ X̃ and a point q ∈ D, let C be the unique
element of Ff(q) which contains q. Note that f(D ∩ C) is an open set con-
taining f(q), hence there exists an n such that f(q) ∈ Gn ⊂ f(D∩C). Since
f restricted to C is a homeomorphism and Gn is a subset of f(C), we see
that f−1(Gn) ∩ C = g and f is a homeomorphism between g and Gn. If p
is the point associated with Gn, then Fp is a collection of disjoint open sets
and since g is connected it intersects only one of the elements of Fp and
hence is an element of Ln. Thus

⋃∞
n=1 Ln is a basis and {L1, L2, . . .} is a

perfect screening.

Now assume X̃ is connected. The covering map is a local homeomor-

phism. Since X is separable it follows that X̃ is locally separable. Since

a locally separable connected metric space is separable, X̃ is a separable
metric space.

Appendix A

Lemma A.1. If U is an open cover of the space X, and X is a subspace

of the metric space Y , then there exists a collection, U ′ = {u′ | u′ ∩ X = u,
u ∈ U}, of open sets in Y in one-to-one correspondence with the elements of

U so that any finite collection {u1, . . . , un} have a common point of inter-

section if and only if the corresponding elements of U ′, {u′
1, . . . , u

′
n}, have

a common point. It follows that the nerves of U and U ′ are naturally iso-

morphic.

Proof. For each u ∈ U pick an open set Ou in Y such that u = Ou ∩ X.
For each a ∈ u pick a real number δa such that the ball in Y centered at
a of radius 2δa is contained in Ou and let Ba be the ball in Y centered at
a of radius δa. Let u′ =

⋃
a∈u Ba and U ′ = {u′ | u ∈ U}. We show that

U ′ has the desired properties. If s ∈
⋂k

i=1 u′
i then, by construction, for each

u′
i we may choose ai ∈ ui such that s ∈

⋂k
i=1 Bai

(δai
). Choose j such that

δaj
= min(δa1

, . . . , δak
). For each i,

d(aj, ai) ≤ d(aj, s) + d(s, ai) < δaj
+ δai

≤ 2δai
.

Thus for all i, aj ∈ Bai
(2δai

) ⊆ Oui
. However, by definition, aj ∈ X so that

aj ∈ ui for all i, which yields aj ∈
⋂k

i=1 ui.

Definition A.2. If X is a topological space and C is a locally finite
open cover of X then a partition of unity corresponding to C is a collection
{fc}c∈C of nonnegative real-valued functions on X so that the support of
fc is contained in c for each c ∈ C and

∑
c∈C f(c) is the constant function
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with value 1. Given such a cover and a corresponding partition of unity we
get an induced map from X to N(C) (the nerve of the open cover C) in the
following way: for each point in X, let

Cx = {c ∈ C | x ∈ c},

and map x into the simplex corresponding to Cx (such a simplex obviously
exists since x is in the intersection of the Cx’s) by using the values {fc(x) |
c ∈ Cx} as barycentric coordinates.

Lemma A.3. If X is a connected , locally path connected separable metric

space then X has a universal covering space if and only if whenever C ′ is

an open cover of X, there is a locally finite refinement C of C ′ by path

connected open sets so that given any corresponding partition of unity , the

induced map from X to N(C), the nerve of C, induces an isomorphism

between fundamental groups; furthermore, if X is compact then C may be

chosen to be finite.

Proof. Clearly, if X has such a cover C then it follows that X is semilo-
cally simply connected, since any closed curve contained in any element
of the open cover must be mapped into the open star of a vertex and thus
maps trivially into the fundamental group of N(C) and so is trivial in π1(X).
Conversely, assume that X has a universal cover. Let C ′ be a cover of X
by elementary neighborhoods. Since X is a separable metric space we can
construct a cover, C, of X by connected open sets which is a star-refinement
of C ′ (i.e. given any element c of C there is an element of C ′ which contains
every element of C which intersects c), and which is locally finite (and finite
in the case that X is compact).

We remark that any closed curve which is contained in the union of
two elements of C is nullhomotopic in X. In [Ca], Cannon calls such covers
two-set simple. He shows that if X is a connected, locally path connected,
separable metric space and C is a two-set simple cover by connected open
sets then the fundamental group of X is isomorphic to the fundamental
group of N(C). However, our statement is somewhat more general than
that of Cannon, and we refer the reader to [CC2] for the necessary general-
ization.

Lemma A.4. Let D be a connected subset of a connected locally con-

nected space S, and E be a component of S − D. Then D and E are not

mutually separated and E does not separate S.

Proof. Since S is connected, two cases are possible:

Case 1: S −E contains a limit point p of E. We claim that in this case
p ∈ D. If not then E ∪{p} is a connected subset of S −D, contradicting the
assumption that E is a component of S − D.
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Case 2: E contains a limit point p of S −E. We claim that in this case
p is a limit point of D. If p is not a limit point of D, there exists an open set
O containing p but no points of D. Since S is locally connected there exists
a connected open set N such that p ∈ N ⊂ O. Then E ∪ N is a connected
subset of S −D, again contradicting the assumption that E is a component
of S − D.

We do not use the fact that E does not separate S elsewhere in this
article so we only mention that it is an easy consequence of the cases
above.

Notation. For the remainder of this article we shall denote the bound-
ary of a set S by ∂S.

Lemma A.5. If D is as in the proof of Lemma 3.2 and E is any com-

ponent of I2 − D, then ∂E is connected.

Proof. Assume that ∂E is not connected. Then it is the union of two
mutually separated sets B1 and B2. Since B1 and B2 are compact there
exists a positive distance δ between them. Cover B1 with a finite number
of neighborhoods of diameter δ/3; then there exists a simple closed curve γ
in the complement of B1 ∪B2 made up of segments of circles and segments
of ∂I2 bounding the neighborhoods which, by applying the Jordan Curve
Theorem, must separate a component of B1 from B2 in E

2. Since D and E
are both connected and each meets both B1 and B2 they must each meet γ.
Hence if x ∈ E ∩ γ and y ∈ D ∩ γ and xy is a subarc of γ from x to y then
the supremum of the set {z ∈ xy | the subarc xz of xy is a subset of E}
is a boundary point of E. However, this is a contradiction since γ meets
neither B1 nor B2 and thus cannot intersect ∂E. Note that we are making
strong use of the Jordan Curve Theorem since this result is not true on a
torus.

Lemma A.6. If D is as in the proof of Lemma 3.2 and p is any point of

I2 −D, then exactly one of the boundary components of D has the property

that it either separates p from (0, 0) in I2 or contains p.

Proof. Let E be the component of I2 − D containing p. Then either
p ∈ ∂E or ∂E separates p from (0, 0). We will now show that ∂E ⊆ ∂D.
By Lemma A.5, ∂E is connected and so Lemma A.4 applies. Now by
Lemma A.4, Case 2, we see that every point of ∂E is a limit point of D;
however, such a point is also a limit point of E ⊆ I2−D and thus is contained
in ∂D. Consequently, ∂E is a subset of a unique boundary component K
of D. Since D∪E is connected and ∂E is contained in K, no other boundary
component of D can contain p or separate p from (0, 0).
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