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Generic diffeomorphisms on compact surfaces

by

Flavio Abdenur (Rio de Janeiro), Christian Bonatti (Dijon),
Sylvain Crovisier (Paris) and Lorenzo J. Dı́az (Rio de Janeiro)

Abstract. We discuss the remaining obstacles to prove Smale’s conjecture about the
C1-density of hyperbolicity among surface diffeomorphisms. Using a C1-generic approach,
we classify the possible pathologies that may obstruct the C1-density of hyperbolicity. We
show that there are essentially two types of obstruction: (i) persistence of infinitely many
hyperbolic homoclinic classes and (ii) existence of a single homoclinic class which robustly
exhibits homoclinic tangencies. In the course of our discussion, we obtain some related re-
sults about C1-generic properties of surface diffeomorphisms involving homoclinic classes,
chain-recurrence classes, and hyperbolicity. In particular, it is shown that on a connected
surface the C1-generic diffeomorphisms whose non-wandering sets have non-empty interior
are the Anosov diffeomorphisms.

1. INTRODUCTION

1.1. Motivations. Some ideas of Mañé and new C1-perturbation lem-
mas generalizing Hayashi’s connecting lemma [H] have recently opened the
door for a global understanding of C1-generic systems (diffeomorphisms or
flows) on compact manifolds of any dimension. Many mechanisms respon-
sible for robust non-hyperbolicity are now understood. It is not known,
however, whether the best-known C2-mechanism for generating robust non-
hyperbolic behavior, the Newhouse phenomenon (of persistence of tangen-
cies and coexistence of infinitely many sinks), has some C1-equivalent in
dimension two. In fact, this seems the most important open problem for
the global understanding of the C1-generic systems on compact surfaces: it
remains unknown whether the (open) set of Axiom A diffeomorphisms is
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dense in the space of surface diffeomorphisms, for the C1-topology. We do
expect a positive answer to the following conjecture:

Conjecture 1 (Smale, [Sm]). Let S be a compact surface. The set of

diffeomorphisms satisfying Axiom A and the no-cycle condition is (open
and) dense in Diff1(S).

This conjecture is known to be false in dimension 3 or higher, for the
C1-topology, due to the co-existence of hyperbolic saddles with different
indices (dimension of the unstable bundle) in the same transitive set (see
[AS] and [Si] for counter-examples in dimension 4 and 3) and in dimension 2
or higher for the Cr-topology, r ≥ 2, due to the phenomenon of persistence
of tangencies (see [N] and [PV]).

Here we try to present an overview of the dynamics of C1-generic diffeo-
morphisms of compact surfaces far from hyperbolic systems. If one believes
in Smale’s conjecture above, one can say that this work discusses the re-
maining obstacles to proving the conjecture. The difficulty of the conjecture
comes from the fact that we do not know any local mechanism which could be
responsible for robust non-hyperbolicity in dimension 2 for the C1-topology
(in fact, we expect that such a mechanism does not exist). For diffeomor-
phisms in higher dimensions, the only local phenomenon which generates
C1-robust non-hyperbolicity is associated to the unfolding of heterodimen-
sional cycles (i.e., cycles associated to saddles having different indices); see
[D, DR]. Of course, such a cycle may not appear on surfaces and the main
candidate for such a mechanism on surfaces seems to be the presence of
homoclinic tangencies, i.e. non-transverse intersections between the invari-
ant manifolds of some hyperbolic periodic orbit: for the C2-topology, they
do imply the existence of a C2-open set of non-hyperbolic diffeomorphisms.
Moreover, Pujals and Sambarino proved in [PS] that the existence of homo-
clinic tangencies is a C1-dense phenomenon among surface diffeomorphisms

far from hyperbolicity (i.e. diffeomorphisms that cannot be approximated by
hyperbolic ones).

Since the result of [PS] gives only a description for a dense part of the
set of diffeomorphisms far from hyperbolicity and since we are interested
in robust non-hyperbolic phenomena, our aim in this paper is to study a
generic part of this set of diffeomorphims (meaning a residual subset of
Diff1(M)). By [PS], we know that surface diffeomorphisms that are far from
hyperbolicity may be perturbed to create homoclinic tangencies. However,
it is not clear whether such tangencies can be obtained in a persistent way
for the same periodic point. This motivates the following definition:

Definition 1.1. A diffeomorphism f of a compact manifold M has a
persistent homoclinic tangency associated to a hyperbolic periodic point p
if there exist a C1-neighborhood U of f and a dense subset D ⊂ U such that
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for any diffeomorphism g ∈ D the continuation pg of p exhibits a homoclinic
tangency.

The following consequence of our results explains what occurs for generic
diffeomorphisms (i.e. diffeomorphisms in a residual subset) far from hyper-
bolicity. Such a diffeomorphism may (in principle) exhibit a persistent tan-
gency, but we cannot exclude a priori another possibility: that the homoclinic
class of any periodic orbit is a hyperbolic basic set but that the global dy-
namics exhibits infinitely many different homoclinic classes accumulating on
aperiodic classes (see Section 1.2 below for the definition of aperiodic class).

Theorem 1. Let S be a closed surface. There are three disjoint open

sets H, T , and W , whose union is dense in Diff1(S), such that :

• H is the set of diffeomorphisms which satisfy Axiom A and the no-cycle

condition;
• T is the set of diffeomorphisms admitting a persistent homoclinic tan-

gency associated to some hyperbolic periodic saddle;
• W contains a residual subset GW such that every f ∈ GW has in-

finitely many homoclinic classes, all of which are hyperbolic basic sets.

Let us now discuss how homoclinic tangencies associated to a single
homoclinic class may occur persistently. Keeping in mind the classical C2-
Newhouse phenomenon (see [N]), the most intuitive way is to imagine that
some hyperbolic set has a robust tangency in the following sense:

Definition 1.2. Let Λ be a hyperbolic set of a diffeomorphism f on a
compact manifold. We say that Λ has robust tangencies if there is a constant
T > 0 and a C1-neighborhood U of f such that for any g ∈ U the local stable
manifoldW s

T (Λg) of size T of the continuation Λg of Λ is tangent to the local
unstable manifold W u

T (Λg) of size T of Λg.

In fact, if a hyperbolic set Λ has locally generically some tangency then
it has robust tangencies:

Proposition 1.3. Let f be a diffeomorphism of a compact manifold M
and Λ a hyperbolic set of f . If there exist a neighborhood U of f in Diff1(M)
and a residual subset G of U such that for every diffeomorphism g ∈ G the

stable and unstable manifolds of the continuation Λg of Λ are tangent , then

f is C1-approached by diffeomorphisms h which exhibit robust tangencies.

It is natural to ask whether a diffeomorphism in T (i.e., one that has
a persistent homoclinic tangency) admits robust tangencies. The following
proposition explains what else might happen.

Proposition 1.4. There are two C1-open disjoint subsets Trob and T∞
of T , whose union is dense in T , such that :
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• Trob is the set of diffeomorphisms admitting a robust tangency associ-

ated to some hyperbolic set ;
• there is a residual subset GT∞ in T∞ such that for every g ∈ GT∞

and for any hyperbolic set Λ of g, the invariant manifolds of Λ are

transverse (even though g has persistent tangencies in the sense of

Definition 1.1).

When trying to solve Smale’s Conjecture 1 above, one usually focuses
on whether the Newhouse phenomenon (robust tangencies) can occur. The
discussion above shows that two other phenomena may be responsible for
the non-density of Axiom A diffeomorphisms: the creation of homoclinic
tangencies either “at the infinity of some homoclinic class” (corresponding
to the set T∞) or “in the aperiodic classes” (corresponding to the set W).
We have therefore broken Smale’s conjecture into three parts:

Conjecture 1. A generic diffeomorphism (1) of a compact surface

whose homoclinic classes are all hyperbolic satisfies Axiom A.

Conjecture 2 (No robust tangencies). Let Λ be a hyperbolic set of a

diffeomorphism f of a compact surface S. Then, for any L > 0, there is a

C1-perturbation g of f such that the local invariant manifolds of size L of

the hyperbolic continuation Λg of Λ for g are transverse.

Conjecture 3 (Persistent tangencies imply robust tangencies). Any

diffeomorphism f which admits persistent tangencies associated to some hy-

perbolic periodic point may be C1-approximated by a diffeomorphism which

has robust tangencies associated to some hyperbolic set.

By Theorem 1, these three conjectures imply Smale’s conjecture: Con-
jecture 1 implies that W is empty, Conjecture 2 implies that Trob is empty,
and finally, Conjecture 3 shows that the open set Trob is dense in T , implying
that T∞ is empty.

The third conjecture is equivalent to the following (a priori) weaker state-
ment (see Proposition 6.2 at the end of the article):

Conjecture 4. Let f be a C1-generic diffeomorphism such that for any

hyperbolic set Λ of f the stable and unstable manifolds of Λ are transverse.

Then all the homoclinic classes of f are hyperbolic.

We end this discussion with another question related to the techniques
of the paper. In the context of C1-generic dynamics of diffeomorphisms in
any dimension, [ABD] formulates, and proves in some particular cases, the
following conjecture:

(1) Henceforward, “A generic diffeomorphism f satisfies. . . ” shall mean “There exists
a residual subset R of Diff1(S) such that every f ∈ R satisfies. . . ”
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Conjecture 5. For any C1-generic diffeomorphism of a compact con-

nected manifold , if the non-wandering set has non-empty interior then the

diffeomorphism is transitive, in particular , the non-wandering set coincides

with the whole manifold.

Notice that a positive answer to Smale’s Conjecture 1 would imply a
positive answer to this one in dimension two. The results proven in this
paper do imply:

Corollary 1. Let S be a connected closed surface. There is a residual

subset G0 of Diff1(S) consisting of diffeomorphisms f such that

int(Ω(f)) 6= ∅ ⇒ S is the torus T 2 and f is Anosov.

Moreover , in this case f is topologically conjugate to some linear Anosov

diffeomorphism. In particular , f is transitive.

The conjugacy to a linear Anosov system in the previous corollary is
a consequence of a result of Franks [F]. Thus in this paper we settle the
two-dimensional case of the conjecture in [ABD].

We note that the residual set G0 of Corollary 1 will be given by Theorem 2
below.

1.2. Presentation of the results. For surface diffeomorphisms, Pujals
and Sambarino have provided in [PS] a precise description of the dynamics
under the hypothesis of the existence of a dominated splitting. This notion
will be important for us since from a C1-generic viewpoint it characterizes
hyperbolicity.

Definition 1.5. A compact set K which is invariant under a diffeomor-
phism f admits a dominated splitting if the tangent bundle TKM over K
splits into two bundles, TKM = E ⊕ F , and there exists an integer l ≥ 1
such that for every point x ∈ K and every pair of unit vectors u ∈ E and
v ∈ F we have

‖Df l(x) · u‖ ≤ 2‖Df l(x) · v‖.

The next remark states the main properties of a dominated splitting we
use in this paper (see, for instance, [BDV, Section B.1.1]).

Remark 1.6 (Properties of dominated splittings). Let Λ be an f -invar-
iant set with a dominated splitting E ⊕ F .

(1) Extension to the closure. The dominated splitting E ⊕ F can be
extended in a dominated way to the closure of Λ.

(2) Extension to a neighborhood. The dominated splitting E⊕F can be
extended in a dominated way to the maximal invariant set of f in a
small neighborhood of Λ.
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(3) Robustness. Every dominated splitting persists under C1-perturba-
tions: There are a C1-neighborhood U of f and a neighborhood U of
Λ in the ambient manifold such that, for every g ∈ U , the maximal
invariant set of g in U has a dominated splitting.

Another important ingredient for what follows is the decomposition of
the dynamics into its chain-recurrence classes, given by Conley’s theory [Co].
We recall the main results of this theory and state some relevant properties
of chain-recurrence classes in Section 2.1.

Let f be a homeomorphism of a compact metric space X. For any
ε > 0, an ε-pseudo-orbit of f is a sequence (xn) in X such that, for each n,
d(f(xn), xn+1) < ε. A point x is chain-recurrent if for any ε > 0 there ex-
ists an ε-pseudo-orbit starting and ending at x. We denote by R(f) the set
of chain-recurrent points. It decomposes as the union of chain-recurrence

classes, which are pairwise invariant compact sets defined as follows: two
points x and y belong to the same chain-recurrence class if for any ε > 0,
there are ε-pseudo-orbits starting at x and ending at y, and conversely start-
ing at y and ending at x.

A third important ingredient in this paper is the notion of homoclinic
class. The homoclinic class of a hyperbolic periodic orbit p of a diffeomor-
phism f , denoted by H(p, f), is the closure of the transverse intersections
of its stable and unstable manifolds. This set coincides with the closure of
the periodic orbits q homoclinically related to p, i.e., the stable manifold of
p transversely meets the unstable one of q, and the unstable manifold of p
transversely meets the stable one of q. We observe that a homoclinic class
is always an f -invariant transitive set. An important property of homoclinic
classes of C1-generic diffeomorphisms is the following: any two homoclinic
classes either coincide or are disjoint (see [CMP]).

Quite recently, [BC] proved a perturbation lemma for pseudo-orbits and
deduced from this lemma that for C1-generic diffeomorphisms of compact
manifolds, any chain-recurrence class which contains a hyperbolic periodic
point p coincides with the homoclinic class of p (in particular, this result
generalizes the one in [CMP] above). The other chain-recurrence classes of
these generic diffeomorphisms (when they exist) are called aperiodic classes

(whose existence in some locally generic regions was proven in [BD2]).

Note that for diffeomorphisms f which satisfy Axiom A (the non-wander-
ing set Ω(f) is hyperbolic and equal to the closure of the periodic points)
Smale has proven in his spectral theorem [Sm] that the non-wandering set
is the union of finitely many pairwise disjoint homoclinic classes. These
homoclinic classes are the basic sets of the spectral decomposition of the
non-wandering set. Moreover, under the no-cycles assumption (i.e., there
are no basic sets of the spectral decomposition cyclically related by inter-
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sections of the corresponding stable and unstable manifolds), the chain-
recurrence classes are homoclinic classes. More precisely, in this case, each
chain-recurrence class E is a basic set :

• E is a hyperbolic homoclinic class;
• E is the maximal invariant set in a level of a filtration: there exist

compact sets U and V such that f(U) ⊂ int(U), f−1(V ) ⊂ int(V ) and
E is the maximal invariant set in U ∩ V , i.e. E =

⋂
n∈Z

fn(U ∩ V ).

Our next result shows that, C1-generically, a chain-recurrence class of a
surface diffeomorphism is hyperbolic if, and only if, it is isolated, and also
if, and only if, it admits a dominated splitting (this assertion does not hold
in higher dimensions, see the series of examples in [Sh, M1, BD1, BV]):

Theorem 2. Let S be a compact surface. There is a residual subset G0

of Diff1(S) such that , for any f ∈ G0 and any chain-recurrence class E of f ,
we have the following dichotomy : either

(1) E is isolated in the chain-recurrent set R(f) of f ; in this case, E is

a hyperbolic homoclinic class (and so a basic set); or

(2) E is not isolated ; in this case:

(a) E does not admit any dominated splitting ;
(b) E is contained in the closure of the set of sinks and sources of f ;
(c) for any neighborhood U of E, there is a C1-neighborhood U of f

and a dense subset D of U such that any g ∈ D has a hyperbolic

periodic point pg whose homoclinic class is contained in U and

has homoclinic tangencies.

If the chain-recurrence class E is a non-isolated homoclinic class H(p, f),
we obtain the announced tangencies inside the homoclinic class H(pg, g) of
the continuation pg of p:

Theorem 3. Let f be a diffeomorphism of a compact surface S and p be

a hyperbolic periodic saddle of f . If the homoclinic class H(p, f) of p has no

dominated splitting , then there exists a diffeomorphism g arbitrarily C1-close

to f such that the continuation pg of p admits a homoclinic tangency.

From the previous two theorems one deduces the following genericity
result:

Corollary 2. Let S be a compact surface. There is a residual subset

G1 of Diff1(S) such that , for every f ∈ G1 and every periodic point p of

f whose homoclinic class is non-isolated in the recurrent set R(f) of f ,
the diffeomorphism f exhibits a persistent homoclinic tangency associated

to p.
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2. SOME RESULTS IN ARBITRARY DIMENSION

This section collects some results that we will use later in this paper.
Most of them were obtained in previous works. In Section 2.1, we recall Con-
ley’s Fundamental Theorem of Dynamical Systems and state properties of
chain-recurrence classes and their filtrations. A general reference for Conley’s
theory is [R]. In Section 2.2, we briefly study hyperbolic chain-recurrence
classes. Finally, in Section 2.3, we state a result about generic chain-recurrent
sets (which follows from a perturbation lemma for pseudo-orbits in [BC])
and deduce properties of non-isolated chain-recurrence classes from it.

2.1. Conley’s theory and filtrating sets. We begin with Conley’s
fundamental theorem:

Theorem 2.1 (Conley’s Fundamental Theorem of Dynamical Systems,
[Co]). Let f be a homeomorphism of a compact metric space X. There exists

a continuous function ϕ : X → R such that :

(1) ϕ is a Lyapunov function: for any x ∈ X, ϕ(f(x)) ≤ ϕ(x);
(2) for any x ∈ X, ϕ(f(x)) = ϕ(x) is equivalent to x ∈ R(f);
(3) for any x, y ∈ R(f), ϕ(x) = ϕ(y) is equivalent to x and y belonging

to the same chain-recurrence class;
(4) ϕ(R(f)) is a totally disconnected compact subset of R.

Such a function ϕ will be called a Lyapunov function adapted to R(f).

Remark 2.1. If X is a smooth compact manifold, the function ϕ may
be assumed to be smooth.

A compact set A is a trapping region for f if f(A) is contained in the
interior of A. The maximal invariant set

⋂
n∈N

fn(A) of f inA is the attractor

associated to A. In the same way,
⋂

n∈N
f−n(X \ A) =

⋂
n∈N

f−n(X \A) is
the repellor associated to A. If B is a trapping region for f−1, we define its
attractor and repellor as the attractor and repellor of the trapping region
X \B for f .

We say that a compact set U is a filtrating set if there are two compact
sets A, B such that:

• U = A ∩B;
• f(A) ⊂ int(A) (that is, A is a trapping region for f);
• f−1(B) ⊂ int(B) (that is, B is a trapping region for f−1).

Let K be some invariant compact set of f . A filtrating neighborhood of K
is a neighborhood of K which is a filtrating set. An isolating filtrating neigh-

borhood U of K is a filtrating neighborhood of K whose maximal invariant
set
⋂

n∈Z
fn(U) is K.
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Remark 2.2.

(1) Let U = A ∩ B be a filtrating set (where A and B are trapping
regions for f and f−1 respectively). Then the maximal invariant set
of f in U is the intersection of the attractor of A with the repellor
of B.

(2) If U is a filtrating set for f , then U is also a filtrating set for any
homeomorphism g of X which is C0-close to f .

(3) If ϕ is a Lyapunov function adapted to R(f), then for any a, b ∈
R \ ϕ(R(f)) with a < b, the set ϕ−1([a, b]) is a filtrating set.

(4) Let U = A∩B be a filtrating set defined as above. Then any compact
set V contained in the interior of U and containing f(U) ∩ f−1(U)
is also a filtrating set. Moreover, the maximal invariant sets of f in
U and in V coincide. Indeed, V may be written as an intersection

V = A′ ∩B′ = (V ∪ f(A)) ∩ (V ∪ f−1(B)),

where A′ and B′ are trapping regions for f and f−1, respectively.
(5) By the last item, if X is a smooth compact manifold then V can

be chosen to be a smooth submanifold with boundary. Hence, we
can replace any filtrating set by a filtrating set which is a smooth
submanifold with boundary having the same maximal invariant set.

(6) By the definition of filtrating set, any chain-recurrence class which
intersects a filtrating set is contained in the interior of the filtrating
set.

(7) Let K be the maximal invariant set in a filtrating set U = A ∩B as
above. Then, for any i, j ∈ Z, f i(A)∩f j(B) is a filtrating set having
K as its maximal invariant set. Moreover, {fn(A)∩f−n(B) : n ∈ N}
is a basis of neighborhoods of K, each of which is a filtrating set.

Proposition 2.3. Let f be a homeomorphism of a compact metric space

X, E any chain-recurrent class of f , ϕ a Lyapunov function adapted to

R(f), and U a neighborhood of E. Then, for every ε > 0 small enough, the

maximal invariant set in Vε = ϕ−1([ϕ(E)− ε, ϕ(E) + ε]) is contained in U .

Proof. Note that the set of maximal invariant sets Λε in Vε is a decreasing
family as ε goes to 0. We just have to prove that the intersection Λ =

⋂
ε Λε

is contained in the interior of U : this set is an invariant compact set on
which ϕ is equal to ϕ(E). As a consequence, Λ = E.

Proposition 2.4. Let f be a homeomorphism of a compact metric space

X. Any chain-recurrence class E of f admits arbitrarily small filtrating

neighborhoods.

Proof. Let ϕ be a Lyapunov function adapted to R(f) and U a neigh-
borhood of E. By Proposition 2.3, for ε small enough, the maximal invariant
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set Λε in Vε = ϕ−1([ϕ(E)−ε, ϕ(E)+ε]) is contained in U . We choose ε such
that ϕ(E)− ε and ϕ(E) + ε do not belong to ϕ(R(f)) (this is possible since
ϕ(R(f)) has empty interior). By Remark 2.2(3), Vε is a filtrating set. By
Remark 2.2(7), we can choose a filtrating set which is an arbitrarily small
neighborhood of Λε, hence contained in U and containing E.

Proposition 2.5. Let f be a homeomorphism of a compact manifold M
such that its chain-recurrent set R(f) has non-empty interior. Then there

exists a chain-recurrence class which has non-empty interior.

Proof. Consider a connected component C of the interior of R(f) and
a Lyapunov function ϕ adapted to R(f). The image ϕ(C) is connected and
contained in ϕ(R(f)), which is totally disconnected. So, ϕ(C) is a point
and, by Theorem 2.1, C is contained in a chain-recurrence class E. Since
a manifold is locally connected, C has non-empty interior. Hence, E has
non-empty interior.

Proposition 2.6. Let X be a compact metric space. There exists a

countable family F = {Vn} of compact sets such that for any homeomor-

phism f of X and any filtrating set U of f , there exists Vn ⊂ U which is a

filtrating set of f such that the maximal invariant sets of f in U and in Vn

coincide.

Proof. Let O = {On} be a countable basis of open sets ofX. We consider
the countable family F of compact sets that are the closures of finite unions
of sets in O.

Let f be a homeomorphism of X and U a filtrating set. We consider the
compact set f(U) ∩ f−1(U), contained in the interior of U . Each point x of
f(U) ∩ f−1(U) belongs to some open set On(x), whose closure is contained
in the interior of U . Let V be the closure of the union of a finite covering of
f(U)∩f−1(U) by such On(x). The compact set V belongs to F , is contained

in the interior of U , and contains f(U) ∩ f−1(U). Thus, by Remark 2.2(4),
the set V is a filtrating set which has the same maximal invariant set as U .

Proposition 2.7. Let f be a homeomorphism of a compact metric space

X and let U be a filtrating set. Then there exist two trapping regions A for

f and B for f−1 such that U = A ∩ B and the following three equivalent

properties are satisfied :

(1) the attractor of A contains the attractor of B;
(2) the repellor of B contains the repellor of A;
(3) the repellor of A is disjoint from the attractor of B.

Proof. We first prove that the three properties are equivalent. First, no-
tice that the repellor associated to a trapping region is the largest invariant
compact set disjoint from the attractor of the trapping region. If (1) is sat-



Generic diffeomorphisms on compact surfaces 137

isfied, the repellor of A is disjoint from the attractor of A, hence of B (i.e.
(3) is satisfied). Conversely, if the repellor of A is disjoint from the attractor
of B (item (3)), then it is contained in the largest invariant compact set
disjoint from the attractor of B, that is, the repellor of B (this gives (2)).
The other implications follow similarly.

Let now U be a filtrating set. By definition, there are two trapping
regions A0 for f and B for f−1 such that U = A0 ∩ B. We define A as the
union of A0 with f(X \ int(B)). Since the union of two trapping regions is a
trapping region, A and B are trapping regions for f and f−1, respectively.
Since B is a trapping region for f−1, f(X \ int(B)) is disjoint from B so
that A ∩B = A0 ∩B = U .

Finally, the maximal invariant set in A contains the maximal invariant
set in f(X \ int(B)). Hence, the attractor of A contains the attractor of B.

2.2. Hyperbolic theory. The following result is certainly well known
and has been proven, in particular, in [ABD, Theorem 1].

Proposition 2.8. Let M be a connected compact manifold. Any hy-

perbolic set Λ of a diffeomorphism f ∈ Diff1(M), contained in the non-

wandering set Ω(f) of f and with non-empty interior , is the whole manifold.

Thus the diffeomorphism f is Anosov.

We recall that a transitive hyperbolic set which is the maximal invariant
set in a neighborhood is called a basic set. A basic set which is a chain-
recurrence class is called a basic piece.

From Theorem 2.1 and the hyperbolic theory, we get:

Proposition 2.9. Let f be a diffeomorphism of a compact manifold.

Any hyperbolic chain-recurrence class of f is an isolated homoclinic class

(hence, a basic piece of f).

Remark 2.10. In fact, any chain-recurrence class containing a hyper-
bolic set contains a periodic point.

Proof. Let E be a hyperbolic chain-recurrence class of f . From Propo-
sition 2.4, E admits arbitrarily small filtrating neighborhoods. Consider a
small filtrating neighborhood U of E. The maximal invariant set Λ in U
is a compact hyperbolic set. Moreover, the shadowing lemma (see, for in-
stance, [Y]) asserts that, for any small δ, any ε-pseudo-orbit, with ε > 0
small enough, is δ-shadowed by a unique orbit of Λ. One deduces that Λ
contains a sequence {γn} of periodic orbits converging to E in the Haus-
dorff topology. As Λ is hyperbolic, the continuity of the local stable and
unstable manifolds implies that there is µ > 0 such that any two periodic
orbits in Λ having points µ-close to each other are homoclinically related,
so they have the same homoclinic class. As a consequence, all the γn, for
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n large enough, have the same homoclinic class H. As H is compact (by
definition) it contains E. However, H is transitive so it is contained in a
unique chain-recurrence class. Hence E = H, concluding the proof.

As a consequence of the previous proposition and the persistence of hy-
perbolic sets, one has the following:

Proposition 2.11. Let f be a diffeomorphism of a compact manifold

and V a filtrating set. Suppose that R(f) ∩ V is hyperbolic. Then:

• R(f) ∩ V consists of finitely many basic pieces;
• there is a C1-neighborhood of f consisting of diffeomorphisms g such

that V is a filtrating set of g and R(g) ∩ V consists of finitely many

basic pieces which are the continuations of the basic pieces of f . In

particular , g on R(g)∩V is topologically conjugate to f on R(f)∩V .

2.3. Genericity results. [BC] states the following consequences of the
connecting lemma for pseudo-orbits:

Theorem 2.2. Let M be a compact manifold. The set of diffeomor-

phisms f for which all the periodic orbits are hyperbolic and the chain-

recurrent set R(f) is the closure of the set of periodic points is a residual

subset of Diff1(M).

This is a direct consequence of Kupka–Smale’s theorem, of Pugh’s theo-
rem on the generic density of the periodic points in the non-wandering set,
[P], and of [BC, Corollaire 1.2].

Proposition 2.12 ([BC, Remarque 1.10, 1.12 and Corollaire 1.11]).
There is a residual part G2 of Diff1(M) such that for any f ∈ G2, any

chain-recurrence class E of f containing a periodic point is a homoclinic

class.

Remark 2.13. The hypotheses of Proposition 2.12 are satisfied (for f
in G2), for instance, if E has non-empty interior or if E is isolated in R(f).

Combining this result with Proposition 2.9, we get:

Corollary 2.14. For any diffeomorphism f in the residual set G2, any

homoclinic classes which is hyperbolic is a basic piece.

Let us state a well known property of homoclinic classes which we will
use later (see for instance [CMP]).

Remark 2.15. Let M be a closed manifold. There is a residual subset of
Diff1(M) of diffeomorphisms f such that for every periodic point p of f the
homoclinic class H(p, f) varies continuously under small C1-perturbations.

[BC] shows the existence of a residual set G of Diff1(M) such that, if
f ∈ G and if p is a (hyperbolic) periodic point whose chain-recurrence class
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C(p) is isolated in R(f), then this class is robustly isolated : there are neigh-
borhoods U of C(p) in M and U of f in Diff1(M) such that, for any g ∈ U ,
R(g) ∩ U is the chain-recurrence class of the hyperbolic continuation pg of
p (in fact, the homoclinic class of pg). The following proposition gives a
converse of this property: for generic diffemorphisms, the non-isolated ho-
moclinic classes are locally generically non-isolated.

Proposition 2.16. Let M be a compact manifold. There is a residual

subset G4 of Diff1(M) such that any f ∈ G4 has the following property :

Assume that p is a hyperbolic periodic point of f such that the chain-

recurrence class of p is not isolated. Then there is a neighborhood U of f on

which the hyperbolic continuation of p is well defined and such that , for any

g ∈ G4 ∩ U , the chain-recurrence class of pg is not isolated.

Proof. It is enough to prove the property for periodic orbits of period
less than n, for any integer n (that is, we will build a residual subset Rn

and define the residual set G4 as the countable intersection of the Rn). Now
fix some n ∈ N. There is a dense open subset O of Diff1(M) such that, for
any connected component O0 of O, the periodic orbits of period less than
n are all hyperbolic and have a hyperbolic continuation onto the whole O0.
As O has countably many connected components, it is enough to build, for
any component O0, a residual set Rn,O0

such that the announced properties
hold in Rn,O0

∩O0.

So, on O0, the periodic orbits of period less than n are given by finitely
many continuous functions f 7→ p(f). Thus it is sufficient to build, for any
of these periodic orbits p, a residual set Rn,O0,p such that the property is
satisfied on the periodic orbit p for f ∈ Rn,O0,p ∩ O0.

Let I be the set of diffeomorphisms f ∈ O0 for which the chain-recurrence
class C(p(f)) is robustly isolated. By definition of being robustly isolated, I

is an open subset of O0. Write Ĩ = O \ I. Then I ∪ Ĩ is a dense open subset
of O and therefore of Diff1(M).

Denote by G the residual subset of Diff1(M), built in [BC], on which the
isolated chain-recurrence classes are robustly isolated. We define Rn,O0,p =

G ∩ (I ∪ Ĩ). Consider f ∈ Rn,O0,p ∩O0 and assume that the chain-recurrence
class of p(f) is not isolated. Then f does not belong to I; consequently, f be-

longs to Ĩ. By definition, Ĩ is open and so it contains a neighborhood U of f .
Therefore, for every g ∈ Rn,O0,p∩U , the chain-recurrence class C(p(g)) is not

robustly isolated (by definition of Ĩ), so it is not isolated, by definition of G.

Now, Rn,O0
is the (finite) intersection over the periodic orbits p of period

less than n of the residual sets Rn,O0,p and is therefore residual. Finally, Rn

is the intersection, over all the connected components O0, of Rn,O0
. The

announced residual set G4 is the intersection of all the Rn, n ∈ N.
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3. DOMINATED SPLITTING/HOMOCLINIC TANGENCIES:
A LOCAL VERSION ON SURFACES

The aim of this section is to obtain a local version of the following the-
orem of [PS] and to derive some consequences of such an extension.

Theorem 3.1 (Pujals–Sambarino, [PS]). Let S be a compact surface.

Then there is a dense subset D of Diff1(S) such that any f in D either is

Axiom A or else exhibits a homoclinic tangency.

In order to obtain a similar local result around a chain-recurrence class,
we build in the next section some geometrical filtrating neighborhoods.
Using such neighborhoods we complete the dynamics outside them by adding
sinks and sources; this allows us to apply Theorem 3.1 to the resulting global
dynamics.

3.1. Geometrically simple filtrating neighborhoods

Definition 3.1. Let f be a homeomorphism of a compact surface S.
A trapping region A of f is said to be geometrically simple if A is a compact
surface with boundary and A\int(f(A)) is the finite union of disjoint annuli.

A filtrating set U for f is said to be geometrically simple if it is a compact
surface with boundary and if there are two geometrically simple trapping
regions A for f and B for f−1 such that:

(1) U = A ∩B;
(2) E = A \ int(f(A)) and S = B \ int(f−1(B)) are disjoint.

A B U

f

Theorem 4. Given any homeomorphism f of a compact surface S,
any compact f -invariant set Λ, and any compact filtrating neighborhood V
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of Λ, there is a geometrically simple filtrating set U ⊂ S whose maximal

f -invariant set coincides with Λ.

The proof uses the following lemma which is essentially proven in [BL,
Lemme 1.3.2].

Lemma 3.2. Let f be a homeomorphism of a compact surface S and W
a trapping region for f . Then there is a geometrically simple trapping region

U such that the attractors and repellors (for f) of U and W coincide.

Proof. Let Λ+ and Λ− be the attractor and repellor associated to W .
We define the open surface S̃ = S \ (Λ+ ∪ Λ−). By Remark 2.2(5), there

exists a trapping region W̃ which is a compact surface with boundary whose
attractor and repellor are also Λ+ and Λ−. Notice that any orbit of f in S̃

contains a unique point in W̃ \ f(W̃ ) and that W̃ \ int(f(W̃ )) is a compact

surface with boundary whose boundary consists of the disjoint sets ∂W̃ and
f(∂W̃ ).

The orbit space of S̃ is canonically identified with the closed surface O

obtained from W̃ \int(f(W̃ )) by gluing ∂W̃ to f(∂W̃ ) by f . Note that O has

finitely many connected components. The canonical projection π : S̃ → O,
which associates to each point its orbit, is a covering and f is an automor-
phism of the covering acting transitively on the fibers: for each connected
component O0 of O, f generates the group of covering automorphisms (deck
transformations) for π−1(O0) → O0.

Let S0 be a connected component of S̃ and O0 = π(S0) be the asso-
ciated connected component of O. We claim that there exists k such that
fk(S0) = S0: Otherwise S0 would be disjoint from f i(S0) for each i and
homeomorphic to the compact surface O0. This would imply that S contains
infinitely many compact surfaces, hence connected components, which is a

contradiction. As a consequence, S̃ has finitely many connected components.
The projection S0 → O0 is an infinite cyclic covering whose automorphism
group is generated by an iterate f l of f , where l is the period of S0 under
the action of f . As the genus of S0 is bounded (by the genus of S), S0 is
homeomorphic to the open annulus S

1 × R and O0 to the torus or to the
Klein bottle. Moreover, f l (the automorphism of the covering) is conjugate
to the translation (x, y) 7→ (x, y + 1) or else to the translation composed
with the symmetry: (x, y) 7→ (−x, y + 1).

Summing up this argument, one sees that S̃ is a finite union of disjoint
cylinders Si homeomorphic to S1 × R1 which are permuted by f and such
that in these coordinates f : Si → Sj expresses as (x, y) 7→ (±x, y + 1).
As a consequence, there is a family of essential circles S

1 × {ti} in each Si

such that the union Ũ of the half-cylinders S
1 × [ti,∞[ is mapped into its

interior by f . Furthermore, the difference Ũ \ int(f(Ũ)) is a finite union of
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disjoint annuli. Notice that the intersection of W̃ with any component Si

contains a half-cylinder S
1×]ai,∞[ and is disjoint from another half-cylinder

S
1 × ]−∞, bi[.

From the previous arguments, we deduce that U = Ũ ∪Λ+ is a compact
neighborhood of Λ+ and hence a trapping region which is geometrically
simple. Finally, the fact that the repellors of U and W coincide follows by
construction.

Proof of Theorem 4. By Proposition 2.7, one can write the filtrating
neighborhood V as the intersection A ∩ B, where A and B are trapping
regions for f and f−1, respectively, such that the repellor associated to A is
disjoint from the attractor ofB. By Lemma 3.2, there exist two geometrically
simple trapping regions Ã and B̃ for f and f−1, respectively, such that A and
Ã (resp., B and B̃) have the same attractor and repellor. As a consequence,
for any i, j ∈ Z, the maximal invariant sets in the filtrating sets V = A ∩B

and f−i(Ã) ∩ f j(B̃) coincide (see Remark 2.2(1), (7)).

For i large enough, the fundamental domain f−i(Ã) \ int(f−i+1(Ã)) is

contained in an arbitrarily small neighborhood of the repellor of Ã, and
hence of the repellor of A. Similarly, for j large enough, the fundamental
domain f j(B̃) \ int(f j−1(B̃)) is contained in an arbitrarily small neighbor-

hood of the attractor of B̃, and hence of the attractor of B. Thus, if we
define A0 = f−i(Ã) and B0 = f j(B̃), the sets A0 \ f(A0) and B0 \ f

−1(B0)

are disjoint. Since, by our choice, Ã and B̃ are geometrically simple, each of
the sets A0 \ int(f(A0)) and B0 \ int(f−1(B0)) is a finite union of disjoint

annuli (these sets are homeomorphic to Ã \ int(f(Ã)) and B̃ \ int(f−1(B̃))).

Consequently, U = A0∩B0 is a geometrically simple filtrating set having
the same maximal invariant set as V .

Proposition 3.3. Let S be a compact surface and U a geometrically

simple filtrating set of a diffeomorphism f ∈ Diff1(S). Then there exist

a compact surface S0, a diffeomorphism f0 of S0, and a diffeomorphism

ϕ : U → U0 ⊂ S0 such that :

• for any x ∈ U ∩ f−1(U), we have ϕ ◦ f(x) = f0 ◦ ϕ(x);
• the connected components of S0 \ int(U0) are diffeomorphic to the

disk D
2;

• the intersection of the chain-recurrent set R(f0) of f0 with any con-

nected component of S0 \ int(U0) is a periodic point (attracting or re-

pelling).

Proof. Write U = A∩B, where A and B are trapping regions for f and
f−1, and consider the disjoint sets E = A\int(f(A)) and S = B\int(f−1(B)),
which are finite unions of disjoint annuli.
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Notice that U ∪ f(U) is equal to U ∪ f(S) and is obtained by gluing
annuli along the boundary ∂B ⊂ ∂U . Consider the compact surface S0

obtained by gluing disks on each boundary component of U ∪f(U). There is
a diffeomorphism f ′ of S0 coinciding with f on U and satisfying the following
properties:

(1) each disk attached to the boundary of A (resp. f(B)) contains a
unique periodic point, which is a source (resp. a sink);

(2) R(f0) is the union of these periodic points and R(f)∩f(U)∩f−1(U).

The proof of this fact is analogous to the argument in [BL, Lemme 1.3.4].
Finally, the proposition follows using the previous fact.

Consider the setting and the notations of Proposition 3.3. For the sake
of simplicity, let us identify U with U0 = ϕ(U). The next proposition allows
us to use the perturbations of f0 for understanding the perturbations of f .

Proposition 3.4. Given any compact set K ⊂ int(U) there is a neigh-

borhood V ⊂ Diff1(S0) of the identity map of S0 and a continuous map

χ : V → Diff1(S) sending the identity map to the identity map, such that g
and χ(g) coincide on K for any g ∈ V.

The construction uses the next lemma.

Lemma 3.5. Let M be a compact manifold , U ⊂ M an open set and

K ⊂ U a compact set. Denote by Diff1
U (M) ⊂ Diff1(M) the set of diffeomor-

phisms which are the identity outside U . Then there is a C1-neighborhood

V ⊂ Diff1(M) of the identity of M and a continuous map ψ : V → Diff1
U (M)

which sends the identity map to the identity map such that for any f ∈ V
the diffeomorphisms f and ψ(f) coincide on K.

Proof. We consider an arbitrary smooth Riemannian metric on M and
denote by exp: TM →M the associated exponential map. There is a small
neighborhood Ṽ of the identity of M such that any f ∈ Ṽ is the image under
exp of a C1-vector field Xf . Furthermore, the map f 7→ Xf is a homeomor-

phism from Ṽ to a C1-neighborhood X̃ of the zero vector field of M .
Let θ : M → [0, 1] be a smooth map which takes the value 0 on the

complement of U and the value 1 on K. The map Xθ : f 7→ θ ·Xf , defined on

Ṽ, is continuous for the C1-topology and sends the identity diffeomorphism
to the zero vector field. Hence there exists a neighborhood V ⊂ Ṽ of the

identity whose image under Xθ is contained in X̃ . We define ψ on V as
f 7→ exp ◦ Xθ(f).

Since θ is 1 on K and 0 outside U , the diffeomorphism ψ(f) coincides
with f on K and with the identity outside U . Clearly, ψ(Id) = Id.

Proof of Proposition 3.4. We apply Lemma 3.5 to the sets K ⊂ U ⊂ S,
obtaining a neighborhood V of the identity of S0 and a map ψ : V →



144 F. Abdenur et al.

Diff1
U (S0). For each g ∈ V we define the diffeomorphism χ(g) ∈ Diff1(S)

coinciding with ψ(g) on U (using the identification of U and U0 by ϕ) and
with the identity map outside U .

3.2. Dominated splitting/homoclinic tangencies: a local version.
Here is the announced local version of Theorem 3.1.

Theorem 5. Let S be a compact surface. Given any open set U in

Diff1(S) and any set V which is a filtrating set for every f ∈ U , there

is a dense subset D = H ∪ T of U such that :

(1) H is a C1-open set such that for any g ∈ H the intersection R(g)∩V
is the union of finitely many (disjoint) hyperbolic homoclinic classes

(which are basic sets);
(2) for any g ∈ T there is a homoclinic class contained in V which

exhibits a homoclinic tangency (whose orbit is contained in V ).

Proof. Let V and U be as in the assumptions of the theorem. Let H be
the set of diffeomorphisms f ∈ U such that V ∩ R(f) is hyperbolic. The
set H is open (see Proposition 2.11). Let T be the set of diffeomorphisms
exhibiting a homoclinic tangency in V . We have to show that H∪T is dense
in U .

Consider any f in U . Using Theorem 4, one obtains a geometrically
simple filtrating neighborhood U whose maximal invariant set coincides with
the maximal invariant set of f in V . So, by Remark 2.2(2), for any g suffi-
ciently close to f the maximal invariant sets of g in U and in V coincide.
So it is sufficient to prove the theorem for the set U .

Proposition 3.3 introduces a compact surface S0, a diffeomorphism f0

of S0, and a conjugation ϕ. For the sake of simplicity, as above, we identify
U ⊂ S with its image ϕ(U) = U0 ⊂ S0. We consider the compact set
K = f(U) ∩ f−1(U), which is contained in the interior of U since U is a
filtrating set. We denote by V the neighborhood of the identity of S0 and
by χ : V → Diff1(S) the map given by Proposition 3.4.

Any diffeomorphism g0 ∈ Diff1(S0) close enough to f0 can be written in
the form g0 = h0 ◦ f0 for some h0 ∈ V. Define Θ(g0) by Θ(g0) = χ(h0) ◦ f .
This map is continuous and sends f0 to f .

By Theorem 3.1, there exists g0 ∈ Diff1(S0) arbitrarily C1-close to f0

such that g0 either is Axiom A or else exhibits a homoclinic tangency. Let
us show that g = Θ(g0) belongs to H ∪ T .

By continuity of Θ and Remark 2.2(2), for every g0 sufficiently close
to f0, U is a filtrating set of g = Θ(g0). Moreover, by Remark 2.2(4), the
maximal invariant sets of g in U and K coincide. As a consequence, the
intersection R(g)∩U is the union of the chain-recurrence classes contained
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in K (see Remark 2.2(6)). Finally, by construction, the dynamics of g and
g0 in K coincide (i.e. they are conjugate by the identification ϕ).

We first consider the case where g0 is Axiom A. Then R(g) ∩ U is hy-
perbolic since R(g0) ∩ U is hyperbolic. Thus, by Proposition 2.11, we get
g ∈ H.

In the case where g0 exhibits a homoclinic tangency at some point q
one sees that the whole orbit of q is contained in K: note first that q is
non-periodic and chain-recurrent, and the chain-recurrent set of f0 (thus of
g0) outside K is a finite union of hyperbolic sinks and sources. Since K is a
filtrating set of f0, this remains true for g0 close enough to f0. Therefore the
orbit of q under g0 is contained in K. Consequently, g = Θ(g0) also exhibits
a homoclinic tangency at q and its orbit remains in U , hence in V , that is,
g ∈ T .

3.3. Consequences of the local dichotomy

Corollary 3. For any compact surface S there is a residual part G5

of Diff1(S) such that every chain-recurrence class E of any f ∈ G5 has the

following property :

• if E admits a dominated splitting then it is a hyperbolic basic piece;
• if E has no dominated splitting then it is accumulated by homoclinic

tangencies: for any neighborhoods U of E in S and U of f in Diff1(S)
there exist a diffeomorphism g ∈ U and a homoclinic class H(P, g) of

g which is contained in U and exhibits a homoclinic tangency.

The proof will use the following lemma:

Lemma 3.6. Let V be a compact subset of a compact surface S. Then

there exists a dense open subset O(V ) ⊂ Diff1(S) which decomposes as

O(V ) = H(V ) ∪W(V ) ∪ S(V ) such that :

(1) the sets H(V ), W(V ) and S(V ) are open and pairwise disjoint ;
(2) for any f in H(V ), the set V is a filtrating set of f and the inter-

section of R(f) with V is hyperbolic;
(3) for any f ∈ W(V ), the set V is a filtrating set of f and there ex-

ists g arbitrarily C1-close to f which exhibits a homoclinic tangency

inside V ;
(4) for any f in S(V ), the set V is not a filtrating set of f .

Proof. Let U(V ) be the set of f ∈ Diff1(S) such that V is a filtrating
set of f . By Remark 2.2(2), the set U(V ) is open in Diff1(S). The set S(V )
is the interior of Diff1(S) \ U(V ).

Let H(V ) be the set of diffeomorphisms f ∈ U(V ) such that the inter-
section of R(f) with V is hyperbolic. This set is open by Proposition 2.11.
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We define W(V ) as U(V ) \H(V ). By construction, the three sets H(V ),
W(V ), and S(V ) are open and pairwise disjoint. Moreover, their union is
dense in Diff1(S). It remains to show that any diffeomorphism in W(V ) may
be approximated by a diffeomorphism which exhibits a homoclinic tangency
inside V .

We apply Theorem 5 to V and the open set of diffeomorphisms W(V ).
Since for any diffeomorphism f in W(V ) the intersection R(f) ∩ V is not
hyperbolic, Theorem 5 ensures the existence of a dense subset of diffeomor-
phisms of W(V ) which exhibit a homoclinic tangency inside V .

Proof of Corollary 3. We consider the countable family {Vn} of compact
sets of S given by Proposition 2.6. Using Lemma 3.6 we get the residual set
G5 =

⋂
n O(Vn). Let E be a chain-recurrence class of f ∈ G5.

First, assume that E has a dominated splitting. Since a dominated split-
ting always extends to a neighborhood (see Remark 1.6(2)), there exists a
neighborhood U of E such that the maximal invariant set of f in U admits a
dominated splitting. By Proposition 2.4, E admits a filtrating neighborhood
V contained in U . By Proposition 2.6, there exists a filtrating neighborhood
Vn of E contained in U . Since the existence of a dominated splitting is
a robust property (see Remark 1.6(3)), by Remark 2.2(2), there exists a
neighborhood U of f in Diff1(S) such that, for any g ∈ U , the set Vn is a
filtrating set for g and the maximal invariant set Λg of g in Vn has a dom-
inated splitting. Consequently, g does not exhibit any homoclinic tangency
in Vn. This shows that f belongs neither to S(Vn) nor to W(Vn). Hence f
belongs to H(Vn) and E is hyperbolic. Finally, by Proposition 2.9, it is a
basic piece.

Let us now analyze the case where E has no dominated splitting. Con-
sider neighborhoods U of E and U of f . As above, there exists a neigh-
borhood Vn ⊂ U of E which is a filtrating set. By construction, f does
not belong to S(Vn). Since E has no dominated splitting, f does not be-
long to H(Vn). Hence f belongs to W(Vn) and may be approximated by a
diffeomorphism g ∈ U which exhibits a homoclinic tangency in Vn ⊂ U .

4. PROOF OF THEOREM 2 AND COROLLARY 1

Proof of Theorem 2. We need the following dichotomy for chain-recur-
rence classes of C1-generic diffeomorphisms which generalizes a similar di-
chotomy for homoclinic classes in [BDP].

Theorem 4.1 ([ABC]). There is a residual part G3 of Diff1(M) such

that for any f ∈ G3 and any chain-recurrence class E of f , the following

dichotomy holds: either

(1) E admits a dominated splitting , or
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(2) E is the limit of a sequence of sinks or sources for the Hausdorff

topology (Newhouse phenomenon).

Let G3 and G5 be the residual subsets of Diff1(S) given by Theorem 4.1
and Corollary 3. Let G0 be the intersection G0 = G3∩G5. We consider f ∈ G0

and a chain-recurrence class E of f .

First, if E has a dominated splitting then, by Corollary 3, it is a hyper-
bolic basic piece and hence it is isolated. If E has no dominated splitting
then the same corollary implies that it is accumulated by homoclinic tan-
gencies and Theorem 4.1 shows that E is the Hausdorff limit of a sequence
of sinks or sources, hence E is not isolated in R(f). This concludes the proof
of Theorem 2.

Proof of Corollary 1. Suppose that R(f) has non-empty interior for some
f ∈ G0. By Proposition 2.5, there is a chain-recurrence class E of f which
has non-empty interior. Note that this interior cannot contain any sink or
source, so that E is not contained in the closure of sinks nor sources. By
Theorem 2, this implies that E is a hyperbolic basic set (with non-empty
interior). Proposition 2.8 shows that f is an Anosov diffeomorphism. By [F],
the surface S is the torus T

2 and f is conjugate to a linear Anosov map of
T

2, finishing the proof of Corollary 1.

5. HOMOCLINIC TANGENCIES INSIDE A PRESCRIBED
HOMOCLINIC CLASS

5.1. Homoclinic classes with small angles. The aim of this sec-
tion is to create (by C1-perturbations) homoclinic tangencies in any homo-
clinic class containing saddles whose stable and unstable bundles form small
angles.

Proposition 5.1. Let g be a diffeomorphism of a closed Riemannian

surface S and H(p, g) a non-trivial homoclinic class. For any ε ∈ ]0, 2π[, if

there exists a periodic point q ∈ H(p, g) homoclinically related to the orbit

of p and such that the angle between the stable and unstable spaces at q is

smaller than ε/8 then there exists a C1-perturbation ϕ of the identity of S
such that :

• the support of ϕ is contained in an arbitrarily small neighborhood of q;
• the diffeomorphism ϕ is ε-close to the identity in the C1-norm;
• the diffeomorphism h = ϕ ◦ g has a homoclinic tangency associated to

p (thus the homoclinic class H(p, h) contains a homoclinic tangency).

The main ingredient of the proof is the following lemma.

Lemma 5.2. Let ε > 0 be small enough (smaller than 2π) and A a

hyperbolic automorphism of R
2 such that
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• the eigenvalues λs, λu of A satisfy |λs|−1 , |λu| > 5;
• the angle between the stable space Es and the unstable space Eu of A

is smaller than ε/8.

Then for every pair of orbits Os in the stable space Es and Ou in the unstable

space Eu of A there exists a perturbation ϕ of the identity of R
2 such that

• ϕ has compact support contained in an arbitrarily small neighborhood

of 0 and coincides with the identity on a neighborhood of 0 and of the

orbits Os and Ou;
• ϕ is ε-close to the identity in the C1-norm;
• the diffeomorphism ϕ ◦ A of R

2 exhibits a homoclinic tangency asso-

ciated to the saddle fixed point 0.

Let us first prove the following lemma:

Lemma 5.3. Let A be a hyperbolic automorphism of R
2 such that the

eigenvalues λs, λu of A satisfy |λs|−1 , |λu| > 5. Given any pair of points x
in the stable space Es of A and y in the unstable space Eu of A there exists

an arbitrarily small t > 0 such that the strip [t/2, t]×R is disjoint from the

orbits of x and y under A.

Proof. We consider the sequences {ri} and {si} of the first coordinates
of Ai(x) and Ai(y). We choose some arbitrarily small ri and assume, for
instance, that ri > 0 (the argument is analogous in the other case).

By our assumption on the eigenvalues, the strip ]ri, 5ri[ × R does not
contain any point of the orbit of x and contains at most one point of the
orbit of y. If it does not contain any point of the orbit of y then the lemma
follows for t = 2ri. Otherwise, ]ri, 5ri[ contains some sj ; then one of the
ratios sj/ri and 5ri/sj is strictly larger than 2. We can hence choose t such
that [t, 2t] is contained in ]ri, sj [∪ ]sj , 5ri[.

Proof of Lemma 5.2. We fix a smooth function ψ : R → [0, 1] such that ψ
is equal to 0 outside ]1/2, 1[, its graph is tangent to the graph of the identity
at the point (3/4, 3/4), and |Dψ| is bounded by 4. (One may easily build
such a function by smoothing a piecewise affine function.)

We choose orthonormal coordinates of R
2 such that in these coordinates

the unstable space of A is the axis R × {0} and the stable space is the line
y = σx, with σ > 0. By Lemma 5.3, there exists some arbitrarily small t > 0
such that the strip [t/2, t] × R is disjoint from the orbits Os and Ou.

Consider the map Ψ̃σ : R
2 → R

2 defined by (x, y) 7→ (x, y + σψ(x)).
By construction, this is a diffeomorphism of R

2 which coincides with the
identity outside the strip [1/2, 1] × R. Both ‖DΨ̃σ − Id‖ and ‖DΨ̃−1

σ − Id‖
are strictly uniformly bounded by 4σ on R

2. There exists a diffeomorphism
Ψσ of R

2 with compact support contained in the strip [1/2, 1] × R such
that ‖DΨσ − Id‖ and ‖DΨ−1

σ − Id‖ are strictly uniformly bounded by 4σ
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on R
2 and such that Ψσ and Ψ̃σ coincide on a neighborhood of the segment

[1/2, 1] × {0}.
The map ϕ in the proposition is now defined by (x, y) 7→ tΨσ(x/t, y/t).

This is a diffeomorphism of R
2 which coincides with the identity outside

an arbitrarily small (for t small) neighborhood of 0 contained in the strip
[t/2, t] × R. By construction, ϕ is the identity on a neighborhood of 0 and
of the orbits Os and Ou. Finally, the image ϕ(Eu) is tangent to the space
Es at the point z = ϕ(3

4t, 0) =
(

3
4 t, σ

3
4t
)
.

Since the C1-norm is invariant under homotheties, both ‖Dϕ− Id‖ and
‖Dϕ−1 − Id‖ are strictly uniformly bounded by 4σ on R

2. Notice that σ is
the tangent of the angle α between the eigenspaces of A. By assumption,
the angle α is less than ε/8 < π/4 so that σ is bounded by 2α, which is less
than ε/4. Hence ϕ is an ε-perturbation of the identity for the C1-distance.

Set Is = {(x, σx) : x ∈ [t/2, t]}. Since, by construction (Lemma 5.3),
for any n > 0, An(Is) is disjoint from the strip [t/2, t] × R, we see that
(ϕ ◦A)n(Is) = An(Is), so that Is is contained in the stable manifold of 0
for ϕ ◦ A. Similarly, we set Iu = [t/2, t] × {0}. For every n > 0, we have
(ϕ ◦ A)−n(ϕ(Iu)) = A−n(Iu), so that ϕ(Iu) is contained in the unstable
manifold of 0 for ϕ ◦A. It follows that the stable and unstable manifolds of
0 for ϕ ◦ A have a tangency at z (in a small neighborhood of 0).

Proof of Proposition 5.1. Since H(p, g) is a non-trivial homoclinic class
there exists some non-trivial hyperbolic basic set K contained in H(p, g)
that contains q. Hence there is a family {γn : n ∈ N} of distinct periodic
orbits contained in K such that for each n there is a point qn ∈ γn such that
the sequence {qn} converges to q. This implies that

• the periods πn of the orbits γn go to ∞; hence, for n large enough,
the stable eigenvalue λs

n and the unstable eigenvalue λu
n of γn satisfy

|λs
n|

−1, |λu
n| > 5;

• the angle between the stable and unstable manifolds of γn at qn is
smaller than ε/8 for n large enough.

We consider one qn with n large enough. By an arbitrarily small perturbation
in an arbitrarily small neighborhood of qn, we can assume that gπn is linear
in a neighborhood of qn. After this small perturbation, qn and p remain
homoclinically related. We choose x ∈ W s(γn) ⋔ W u(p) and y ∈ W u(γn) ⋔

W s(p). Notice that there is a small neighborhood U of qn on which gπn is
linear such that the intersection of the orbit of x with U is contained in the
local stable manifold of qn and has the form {gkπn(x0) : k ∈ N}. Similarly,
the intersection of the orbit of y with U is contained in the local unstable
manifold of qn and has the form {g−kπn(y0) : k ∈ N}.

By Lemma 5.2, there exists a perturbation ϕ0 of the identity of S, with
support in U , disjoint from the forward orbit of x0 and the backward orbit



150 F. Abdenur et al.

of y0 and such that ϕ0 ◦ g
πn has a homoclinic tangency z in U associated

to the point qn. As the support of this perturbation is disjoint from the
forward orbit of x, from the backward orbit of y, and from the whole orbits
of p and qn, the points p and qn remain homoclinically related for the dif-
feomorphism ϕ0 ◦ g. By a classical argument, an unfolding of a homoclinic
tangency associated to qn (that is, a small perturbation in a neighborhood
of z) creates a homoclinic tangency associated to p.

The C1-norm of the perturbation ϕ0 was strictly smaller than ε so that
the perturbation remains ε-close to the identity. Finally, by construction,
the support of the perturbation is arbitrarily close to q.

5.2. Homoclinic classes with no dominated splitting

Proposition 5.4. Let f be a diffeomorphism of a compact surface S
and p a hyperbolic periodic point of f whose homoclinic class H(p, f) does

not admit any dominated splitting. Fix a C1-neighborhood U of f and any

α > 0. Then there exists a periodic point q ∈ H(p, f) whose orbit under f
is homoclinically related to p such that for any neighborhood U of the orbit

of q there exists a perturbation g ∈ U of f , with support in U , such that

• the orbit of q remains homoclinically related to p;
• the angle between the stable and unstable spaces of q is bounded by α.

Proof. One fixes some constant η > 0 such that for any two diffeomor-
phisms h, h′ which are η-C1-close to the identity the composed diffeomor-
phism h ◦ f ◦ h′ is in U .

Since p is hyperbolic and H(p, f) has no dominated splitting, the homo-
clinic class of p is non-trivial. If the angles between the stable and unstable
spaces of the periodic points whose orbits are homoclinically related to p are
not (uniformly) bounded from below then the proposition follows by taking
g = f . Thus, from now on, we can assume that all these angles are greater
than some δ > 0.

Consider a sequence {γn} of periodic orbits in H(p, f) which are homo-
clinically related to p, whose periods πn go to infinity, and which are dense in
H(p, f). Since dominated splittings extend to closures (see Remark 1.6(1)),
there is no dominated splitting on the union of the orbits γn. Thus, for any
N > 0 there are a periodic orbit γn with arbitrarily large period πn and a
point x ∈ γn such that for any unit vectors u ∈ Es(x) and v ∈ Eu(x) we have

2‖DfN (x) · u‖ > ‖DfN (x) · v‖.

At each point y ∈ γn, n ∈ N, one chooses unit vectors uy ∈ Es(y) and
vy ∈ Eu(y). Recall that the angle between the invariant spaces at each
point y ∈ γn, n ∈ N, is greater than δ. Hence the basis transformation maps
from an orthonormal basis to the basis (uy, vy), as well as their inverses, are
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uniformly bounded in y ∈ γn and n ∈ N by some constant K > 0. If one
writes Df(y) in the basis (uy, vy) of TyM and (uf(y), vf(y)) of Tf(y)M one
obtains a diagonal matrix (

ay 0

0 by

)
.

In order to work in the basis (uy, vy) one needs to adapt the constants
η and α as follows: For ε > 0 small enough, any pair of linear maps P,H ∈
GL(2,R) with ‖P‖ < K, ‖P−1‖ < K, and ‖H − Id‖ < ε satisfies the
inequality ‖P ◦H ◦P−1−Id‖ < η. For β > 0 small enough and P ∈ GL(2,R)
with ‖P‖ < K, ‖P−1‖ < K, if u, v are non-zero vectors whose angle is less
than β, then the angle between P (u) and P (v) is less than α.

We will use the following lemma, which explains how to perturb linear
maps (and indeed diagonal linear maps) of R

2 by diffeomorphisms in order to
create small angles between the invariant manifolds while keeping control of
the invariant manifolds outside a small neighborhood of 0. The proof of this
lemma will be postponed until after the end of the proof of the proposition:

Lemma 5.5. For any ε > 0 and any β > 0 there exists L > 0 such that

for any integers N ≥ L and M ≥ N + 2L we have the following property :

Let (ai) and (bi) be two sequences of non-zero real numbers such that

• 2|
∏N

i=1 ai| > |
∏N

i=1 bi|;

• |
∏M

i=1 ai| < |
∏M

i=1 bi|.

For each i, let Ai be the matrix given by
(

ai 0
0 bi

)
.

Then there exists a sequence (ϕi)i∈{1,...,M} of diffeomorphisms of R
2 with

compact support such that , denoting by Bi the diffeomorphism Ai ◦ ϕi for

i ∈ {1, . . . ,M − 1} and by BM the diffeomorphism ϕM ◦ AM , we have the

following properties:

(1) for each i the diffeomorphism ϕi is a perturbation of the identity

which sends 0 to 0 and whose derivative is ε-close to the identity ;
(2) the point 0 is a hyperbolic fixed point of BM ◦· · ·◦B1 whose stable and

unstable manifolds are the lines R × {0} and {0} × R, respectively ;
(3) the angle between the stable and unstable spaces of 0 for BN ◦ · · · ◦

B1 ◦BM ◦ · · · ◦BN+1 is less than β.

We fix ε > 0 and β > 0 associated to η and α, and let K be the constant
which bounds the basis transformation maps, as discussed above. We choose
L given by Lemma 5.5, N = L, a periodic orbit γn with period πn larger
that N +L, and a point x ∈ γn such that 2 ‖DfN (x) ·ux‖ > ‖DfN(x) · vx‖.
Finally, we fix M = πn > N + L.
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By an arbitrarily small C1-perturbation of f in a small neighborhood of
γn, one can assume that f is linear in a neighborhood of each point of γn.
One defines ai = af i−1(x) and bi = bf i−1(x), for i ∈ {1, . . . ,M}. By construc-
tion, these numbers satisfy the hypotheses of Lemma 5.5. The lemma yields
some diffeomorphisms ϕi of R

2. Notice that the conclusions of the lemma
remain true if we conjugate all the diffeomorphisms ϕi by a common homo-
thety. Hence we can assume that the supports of the ϕi’s are contained in an
arbitrarily small neighborhood of 0 ∈ R

2. Consequently, using the local coor-
dinates around the points of γn, one can consider each ϕi as a diffeomorphism
of S coinciding with the identity outside a small neighborhood of f i−1(x).
Denote by g the diffeomorphism coinciding with f outside the neighborhood
of γn, with f ◦ϕi in the neighborhood of f i−1(x) for i ∈ {1, . . . ,M −1}, and
with ϕM ◦ f in the neighborhood of fM−1(x) = f−1(x).

We now verify that g has the properties in the proposition with q =
fN (x), provided that we choose the support of the ϕi small enough:

• g coincides with f on the orbit γn;
• by the choice of ε, the diffeomorphism g belongs to U ;
• by the choice of β, the angle between the invariant spaces of DgM at
fN (x) is smaller than α: just note that in the basis (ufN (x), vfN (x))
this differential has the expression BN ◦ · · · ◦B1 ◦BM ◦ · · · ◦BN+1, and
the assertion follows from Lemma 5.5(3);

• recall that one can take the support of the ϕi arbitrarily small; Lemma
5.5(2) asserts that the local invariant manifolds at x of g coincide with
those of f (after linearization of f along γn), in a neighborhood of x
whose size does not depend on the support of the ϕi;

• consider two points xs, xu such that xs (resp. xu) is a transverse inter-
section point of the local stable (resp. unstable) manifold of x for f
with the unstable (resp. stable) manifold of the orbit of p for f . If the
support of the perturbation ϕi of the identity is small enough, the posi-
tive orbits of xu (resp. the negative orbits of xs) for f and for g coincide.
As a consequence, x (and then q) is homoclinically related to p for g.

This completes the proof of the proposition.

Proof of Lemma 5.5. In order to get small angles between the stable
and unstable bundles we follow Mañé’s arguments (see [M2]) which deal
with matrices. However, in order to control the local invariant manifolds, we
need to adapt these arguments using perturbations with compact support.

Let Φ be the matrix

Φ =

(
1

1+ε/2 0

0 1 + ε/2

)
.

This matrix is ε-close to the identity.
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Denote by Di, i ∈ {1, . . . ,M − 1}, the matrix defined by Di = Ai ◦ Φ
−1

if i ∈ {2, . . . , L− 1}, Di = Ai ◦ Φ for i ∈ {N + 1, . . . ,M − 2}, and Di = Ai

in the other cases. The Di’s are diagonal matrices
(

αi 0
0 βi

)
satisfying:

• 2|
∏N

i=1 αi| > (1 + ε/2)2(L−2)|
∏N

i=1 βi|;

• |α| < |β|, where α =
∏M

i=1 αi and β =
∏M

i=1 βi.

One defines ϕ1 as a diffeomorphism of the form (x, y) 7→ (x+ψ(x, y), y),
where ψ : R

2 → R has support in the unit ball, ψ(0, 0) = 0, ‖Dψ(x, y)‖ < ε
at each point (x, y), and (∂/∂y)ψ(0, 0) = ε.

Consider the image of the vertical axis {0}×R under DM ◦ · · · ◦D1 ◦ϕ1.
This is a graph over the second coordinate, which is mapped onto the vertical
axis {0}×R by a diffeomorphism ϕ̃M of the form (x, y) 7→ (x+θ(y), y), where
θ(y) = −αψ(0, y/β). The function θ has support in the interval [−|β|, |β|]
and the modulus of its derivative |Dθ(y)| is less than |α/β|ε ≤ ε.

This allows us to build a diffeomorphism ϕM , coinciding with the identity
outside some compact set and with ϕ̃M on DM ◦· · ·◦D1◦ϕ1({0}×R), which
is ε-C1-close to the identity.

We define B1 = A1◦ϕ1 and BM = ϕM◦AM . Notice that, by construction,
0 is a hyperbolic fixed point of BM ◦DM−1 ◦ · · · ◦D2 ◦B1, whose stable and
unstable manifolds are the horizontal and vertical axes, respectively. As
a consequence, 0 is a hyperbolic fixed point of DN ◦ · · · ◦ D2 ◦ B1 ◦ BM ◦
DM−1◦· · ·◦DN+1 whose invariant manifolds are the images of the axes under
DN ◦ · · · ◦D2 ◦ B1. It follows that its invariant directions are generated by
the vectors

u = (1, 0) and v = (1, vy) =

(
1,

∏N
i=1 βi

ε
∏N

i=1 αi

)
.

Note that the modulus of vy is bounded by (2/ε)(1 + ε/2)−2(L−2), which is
arbitrarily small for large L; the angle between u and v is therefore smaller
than β.

The family B1, D2, . . . , DM−1, BM has all the properties announced in
the lemma, except that the Di are linear maps and their supports are
not compact. For i ∈ {2, . . . ,M − 1}, we choose ϕi with compact sup-
port, of the form (x, y) 7→ (λ(x)x, λ−1(y) y), coinciding with Φ (for i ∈
{N + 1, . . . ,M − 1}) or Φ−1 (for i ∈ {2, . . . , N}) on a very large ball Γ
centered at the origin, and whose derivative at each point is ε-close to the
identity. We now let Bi = Ai ◦ ϕi for i = 2, . . . ,M − 1.

Taking the ball Γ large enough, one verifies that 0 is a hyperbolic fixed
point of BM ◦ · · · ◦ B1 whose stable and unstable manifolds are the lines
R×{0} and {0}×R, respectively: the images B1({0}×R), D2◦B1({0}×R),
. . . , DM−1 ◦ · · · ◦ D2 ◦ B1({0} × R) of the vertical axis coincide with the
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vertical axis outside a compact domain; one simply chooses Γ large enough
to contain this compact domain.

Now the family ϕi, i ∈ {1, . . . ,M}, has all the announced properties.

5.3. Proof of Theorem 3. Let f be a diffeomorphism of a compact
surface and p a hyperbolic periodic saddle whose homoclinic class H(p, f)
admits no dominated splitting. Fix some ε > 0 and α = ε/8. By Proposi-
tion 5.4, there is an ε-perturbation g1 of f (coinciding with f in a neighbor-
hood of the orbit of p) such that there is a periodic saddle q of g1 homo-
clinically related to p such that the angle between the invariant manifolds
of q is smaller than α. Proposition 5.1 now yields an ε-perturbation g of g1
(coinciding with g1, therefore with f , in a neighborhood of the orbit of p)
with a homoclinic tangency associated to p. So we obtain an arbitrarily
small C1-perturbation g of f with a homoclinic tangency associated to p,
concluding the proof of Theorem 3.

6. PROOF OF THE OTHER RESULTS

Proof of Proposition 1.3. Let f be a diffeomorphism of a compact sur-
face. Assume that there is some hyperbolic set Λ of f which locally generi-
cally exhibits some tangency: there is a C1-open neighborhood U of f such
that for every g in a residual subset of U the stable and unstable man-
ifolds of the continuation Λg of Λ are tangent at some point x. Notice
that x belongs to W s

T (Λg) ∩ W u
T (Λg) for some integer T > 0. Consider,

for T ∈ N, the set FT of diffeomorphisms g ∈ U having a tangency be-
tween the local invariant manifolds of size T of Λg. These sets FT are
closed and their union, for T ∈ N, is a residual subset in U . One de-
duces that the union of the interiors of the sets FT is a dense open sub-
set of U : that is, there are robust tangencies for diffeomorphisms close
to f .

Proof of Proposition 1.4. Recall that T is the C1-open set of diffeo-
morphisms admitting a persistent tangency associated to some hyperbolic
periodic saddle and that Trob ⊂ T is the open subset of diffeomorphisms
admitting a robust tangency associated to some hyperbolic set. We denote
by T∞ the set T \ T rob.

Let O = {On} be a countable basis of open sets of S and F the (count-
able) family of the closures of finite unions of sets in O. For each V ∈ F ,
one defines UV as the set of diffeomorphisms f for which the maximal in-
variant set Λ(V, f) of f in V is hyperbolic. This set is open: let f be in
UV and g a diffeomorphism C1-close to f . Then Λ(V, g) is contained in a
small neighborhood of Λ(V, f) and hence it is hyperbolic. Let VV be the
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C1-interior of the complement of UV . The open set UV ∪ VV is dense in
Diff1(S).

For each V ∈ F and each integer L > 0, we denote by U trans
V,L the set of

diffeomorphisms f ∈ UV such that the local stable and unstable manifolds
of Λ(V, f) of size L are transverse. We will use the following lemma whose
proof we postpone.

Lemma 6.1. Each U trans
V,L is open and dense in UV \ T rob.

By this lemma, each set U trans
V,L ∪VV is open and dense in Diff1(S) \T rob.

Thus the intersection of this countable family (for V ∈ F and L ∈ N) is a
residual subset G of Diff1(S) \ T rob. We define GT∞ as the residual subset
of T∞ obtained as the intersection of G with T∞.

Let f ∈ GT∞ and Λ be a hyperbolic set of f . There exists V ∈ F
such that the maximal invariant set Λ(V, f) contains Λ and is hyperbolic.
Thus the diffeomorphism f belongs to UV . Moreover, by our choice of GT∞,
for each L, the local invariant manifolds of Λ(V, f) of size L are transverse.
Consequently, the (global) invariant manifolds of Λ ⊂ Λ(V, f) are transverse.
This completes the proof of the proposition.

Proof of Lemma 6.1. Let f be a diffeomorphism, Λ a hyperbolic set
of f , and U a neighborhood of f consisting of diffeomorphisms g such that
the hyperbolic continuation Λg of Λ is defined. For each integer L > 0, we
denote by U trans

Λ,L the set of diffeomorphisms g ∈ U such that the local stable
and unstable manifolds of Λg of size L are transverse. This set is open in U
(by continuity of the local invariant manifolds). Moreover, it is also dense in
U \ T rob: any diffeomorphism g in the interior of U \ U trans

Λ,L admits a robust
tangency associated to Λg (thus it belongs to Trob).

Let us turn to the proof of the lemma: we consider V ∈ F , an integer
L > 0, and some f ∈ UV \ T rob. We choose a small neighborhood V ′ ∈ F of
Λ(V, f) such that the maximal invariant set Λ = Λ(V ′, f) is contained in a
small neighborhood of Λ(V, f), and hence it is hyperbolic. There is a small
neighborhood U0 of f such that for any g ∈ U0 the hyperbolic continuation
Λg of Λ is defined.

We claim that there exists a small neighborhood U ⊂ U0 of f such that
for any g ∈ U the set Λ(V, g) is contained in Λg. By upper semicontinuity
of Λ(V, f), any orbit O in Λ(V, g) is a pseudo-orbit (with arbitrarily small
jumps if g is close enough to f) of Λ(V, f). Now, by the shadowing lemma
(see for example [Y]), this orbit is shadowed by a (unique) orbit O′ of f
contained in V ′, that is, an orbit of Λ. The orbit O ∈ Λ(V, g) is shadowed
by the orbit O′ ∈ Λ and so, by definition and unicity of the continuation of
Λ (see [Y]), it is an orbit of the continuation Λg of Λ. We have proved that
Λ(V, g) ⊂ Λg for g close to f .
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By the argument above, for each integer L > 0, the set U trans
Λ,L is dense in

U \ T rob. For each diffeomorphism g ∈ U trans
Λ,L , since Λ(V, g) is contained in

Λg, the local invariant manifolds of Λ(V, g) of size L are transverse, so that
g also belongs to U trans

V,L . This proves the density of U trans
V,L in UV \ T rob.

Let us now prove the openness. We consider f in U trans
V,L \T rob and choose

a small neighborhood V ′ ∈ F of V such that the maximal invariant set
Λ = Λ(V ′, f) is contained in a small neighborhood of Λ(V, f). Hence Λ is
hyperbolic and its local invariant manifolds of size L are transverse (each
local manifold of Λ is C1-close to a local manifold of Λ(V, f)). Thus there
exists a small neighborhood U of f such that for each g ∈ U the hyperbolic
continuation Λg of Λ is defined, contains the maximal invariant set Λ(V, g)
(see the arguments above), and the local invariant manifolds of size L of Λg

are transverse. As a consequence, U is contained in U trans
V,L , which proves the

openness and ends the proof of the lemma.

Proof of Corollary 2. Consider the residual set G1 of Diff1(S) obtained
as the intersection of the following residual sets of Diff1(S): G0 given by
Theorem 2, G4 given by Proposition 2.16, G2 given by Proposition 2.12, and
the residual set of Kupka–Smale diffeomorphisms.

Consider f ∈ G1 and a (hyperbolic) periodic point p of f whose ho-
moclinic class H(p, f) is non-isolated in R(f). This homoclinic class coin-
cides with the chain-recurrence class of p, by Proposition 2.12. By Proposi-
tion 2.16, there exists a neighborhood U of f such that for any g ∈ G1 ∩ U
the homoclinic class of pg coincides with the chain-recurrence class of pg and
is not isolated. By Theorem 2, for any g ∈ G1 ∩ U the homoclinic class of
pg has no dominated splitting. By Theorem 3, there are diffeomorphisms g̃
arbitrarily C1-close to g such that pg̃ admits a homoclinic tangency. This
yields the density in U of diffeomorphisms exhibiting a homoclinic tangency
associated to the continuation of p, thus concluding the proof.

Proof of Theorem 1. Consider the open set W = Diff1(S) \ H ∪ T and
let G0 and G1 be the residual subsets built in Theorem 2 and Corollary 2.
Consider f ∈ W ∩ G0 ∩ G1 and a hyperbolic periodic point p of f . If the
homoclinic class of p is non-isolated then, by the definition of G1, f exhibits
a persistent homoclinic tangency associated to p, contradicting f /∈ T . Con-
sequently, the homoclinic class of p is isolated and is thus a hyperbolic basic
piece, by the definition of G0.

We denote by GW the set of diffeomorphisms f ∈ W ∩ G0 ∩ G1 for
which each periodic point is hyperbolic and the set of periodic points is
dense in the chain-recurrent set R(f). This set is residual in W by Theo-
rem 2.2. Assume that the number of homoclinic classes of such a diffeomor-
phism f ∈ GW is finite. As the homoclinic classes are compact and dense
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in R(f), one finds that R(f) is the union of these homoclinic classes, hence
of finitely many basic sets. This shows that f satisfies Axiom A and the
no-cycle condition, contradicting f /∈ H. So for f in GW the number of
homoclinic classes is infinite and each homoclinic class is a hyperbolic basic
piece.

We conclude this paper with a discussion of the conjectures formulated
in the introduction.

Proposition 6.2. Conjectures 3 and 4 are equivalent.

Proof. We first assume that Conjecture 3 is satisfied so that the open
set Trob is dense in T . By Theorem 1, the open set H∪W ∪ Trob is dense in
Diff1(S). We consider a diffeomorphism f in this dense open set such that
for any hyperbolic set the stable and unstable manifolds are transverse. By
definition, f does not belong to Trob so that f ∈ H ∪ W. In either case all
homoclinic classes of f are hyperbolic.

We now assume that Conjecture 4 is satisfied: there exists a residual
subset G ⊂ Diff1(S) of diffeomorphisms f such that, if for any hyperbolic
set of f its invariant manifolds are transverse, then all homoclinic classes
of f are hyperbolic. We can assume that this set G is contained in the
residual set G0 given by Theorem 2: that is, hyperbolic homoclinic classes
of diffeomorphisms in G are (robustly) isolated.

We can also assume that the generic diffeomorphism f is such that, for
every (hyperbolic) periodic point p of f , the continuation H(pg, g) of the
homoclinic class H(p, f) varies continuously under small C1-perturbations
g of f (see Remark 2.15).

We shall prove that GT∞ ∩ G is empty. Suppose, by contradiction, that
there is f ∈ GT∞ ∩ G. By definition of GT∞, for each hyperbolic set of f its
invariant manifolds are transverse, so every homoclinic class is hyperbolic,
by definition of G. This also implies that every homoclinic class H(p, f) is
isolated. Therefore, there are a C1-neighborhood W of f and a neighborhood
U of H(p, f) such that the map g 7→ H(pg, g) is continuous and H(pg, g) is
hyperbolic and equal to the maximal invariant set of g in U .

We claim that this implies that no diffeomorphism g ∈ W exhibits tan-
gencies associated to pg. Arguing by contradiction, assume that there is
g ∈ W such that pg has a homoclinic tangency at x. First, due to the hy-
perbolicity, the point x does not belong to the homoclinic class H(pg, g).
As this set is the maximal invariant set in U , this implies that we can take
x 6∈ U . Unfolding this tangency, we obtain an explosion of the homoclinic
class of pg, contradicting the fact that this class is contained in U .

This contradicts the existence of a persistent tangency for some hyper-
bolic periodic point of f . We deduce that T∞ is empty (since G ∩ GT∞ is
residual in T∞) so that Trob is dense in T , which is Conjecture 3.
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