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On the non-existence of certain group topologies

by

Christian Rosendal (Pasadena, CA, and Urbana, IL)

Abstract. Minimal Hausdorff (Baire) group topologies of certain groups of transfor-
mations naturally occurring in analysis are studied. The results obtained are subsequently
applied to show that, e.g., the homeomorphism groups of the rational and of the irrational
numbers carry no Polish group topology. In answer to a question of A. S. Kechris it is
shown that the group of Borel automorphisms of R cannot be a Polish group either.

1. Introduction. The question of which group topologies different
groups can have is of course of interest to many branches of mathemat-
ics, but for descriptive set theory this question usually takes a specific form,
namely, can a particular group be equipped with a Polish, i.e., a separable
completely metrisable, group topology? This question is also tightly con-
nected with the possible “uniqueness” of a given Polish group topology. Of
course the fundamental results by R. M. Solovay [19] and their refinements
by S. Shelah [16] show that it is consistent with the axioms of set theory
minus the axiom of choice that any Polish group has a unique Polish group
topology. On the other hand, using a Hamel basis (and thus some amount of
AC) one easily constructs a multitude of Polish group topologies on (R, +).
Actually, the situation is even worse, for the abstract groups (R, +) and
(R2, +) are isomorphic and thus (R, +) can be retopologised as (R2, +), and
thus as a Polish group non-isomorphic to itself. The question then boils down
to: When does the group structure exclude these constructions involving the
axiom of choice?

One basic result in this area is the fundamental result on automatic
continuity of homomorphisms by R. M. Dudley [3]. It apparently passed
rather unnoticed, despite the fact that since its publication a number of
questions and answers have appeared covering only specific subcases of his
theorem. We can do no better than refer to the original article, but let us
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just mention the special case of his theorem stating that any homomorphism
from a complete metric group into a free group is necessarily continuous with
respect to the discrete topology on the free group. Thus, by consequence,
the free group on a continuum of generators carries no Polish group topology
and, e.g., any homomorphism from a Polish group into (Zn, +) is continuous.

A problem of Ulam, number 96 in the Scottish Book [13], asks whether
S∞, the group of all permutations of the natural numbers, can be made
into a locally compact Polish group. This was solved in the negative by
E. Gaughan [5], who actually showed that any Hausdorff group topology on
S∞ extends the usual Polish group topology of pointwise convergence on the
discrete space N. Recently, A. S. Kechris and the author proved in [12] that
any homomorphism from S∞ into a separable group is continuous, which, in
combination with Gaughan’s result, implies that S∞ has only one non-trivial
separable group topology. Actually, we shall see that the answer to Ulam’s
problem is even more striking, namely, there is no non-trivial homomorphism
from S∞ into a locally compact Polish group, and, moreover, this also holds
for many other groups of countable structures.

We classify minimal Hausdorff group topologies of some automorphism
groups of boolean algebras, using quite standard methods, and apply these
results to prove the non-existence of Polish group topologies of several groups
occurring in descriptive set theory and analysis, e.g., the homeomorphism
groups of the irrational and of the rational numbers. We should mention
that in a series of papers R. Kallman (see [10]) has proved that a number
of, in particular, homeomorphism groups have a unique, if any, Polish group
topology.

We also prove that the group of Borel automorphisms of R cannot have a
second countable Hausdorff group topology. For a detailed study of a number
of different topologies on this group one can consult the recent article by
S. Bezugly̆ı, A. H. Dooley and J. Kwiatkowski [1].

I would like to thank Alekos Kechris for initially getting me interested
in the subject and Ben Miller for many discussions on this and other mat-
ters. But mostly I am indebted to the anonymous referee for making this a
hopefully more readable paper.

2. Polish group topologies. Let us begin with something simple. By
the Borel isomorphism theorem all uncountable standard Borel spaces are
isomorphic to R, so all groups of Borel automorphisms of uncountable stan-
dard Borel spaces are naturally isomorphic. The following answers a question
posed to the author by A. Kechris:

Theorem 1. There is no second countable Hausdorff topology on the

group of Borel automorphisms of R.
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Proof. Assume G = Aut(R,∆1
1) is given a Hausdorff group topology.

Suppose A ⊆ R, |A| > 2 and let G(A) = {g ∈ G | supp(g) ∩ A = ∅}. We
claim that G(A) is closed in G. For x, y ∈ R, denote by (xy) the transposition
of x with y.

Obviously, if g ∈ G(A) and x, y ∈ A, then (xy) · g = g · (xy).

Conversely, suppose that g.x 6= x for some x ∈ A. Then there is y ∈ A
such that y 6= g.x, x, whereby g · (xy).x = g.y 6= g.x = (xy) · g.x and thus
(xy) · g 6= g · (xy). So

G(A) =
⋂

x,y∈A

{g ∈ G | (xy) · g = g · (xy)},

and, as the topology on G is Hausdorff, this is an intersection of closed sets,
so closed.

Now fix x ∈ R and suppose that A 6= B ⊆ R are sets of cardinality > 2
with x /∈ A, x /∈ B. Find, e.g., y ∈ A\B and notice that (xy) ∈ G(B) \G(A),

i.e., G(A) 6= G(B). So we see that there are 22ℵ0 distinct closed subgroups of
G and hence the topology cannot be second countable.

The same proof shows that if we identify two Borel automorphisms if
they agree on a co-countable set, then we still have the same conclusion. For
instead of using transpositions, we can use Borel automorphisms switching
uncountable Borel sets, noting that R is Borel isomorphic to R × R.

For B a boolean algebra and g ∈ Aut(B), we let stab(g) = {a ∈ B |
∀b ≤ a (g(b) = b)}.

Suppose M is any structure and H = Aut(M) is its group of auto-
morphisms. Then H is naturally equipped with a group topology having as
subbasis the sets {h ∈ H | h(a) = b}, where a and b run over the elements
of M. We call this the topology of pointwise convergence on M (think of M
as a discrete topological space).

We are now ready for our main result from which more interesting corol-
laries will follow:

Proposition 2. Suppose B is a boolean algebra and G ≤ Aut(B) sat-

isfies

(i) ∀a > 0 ∃a0, a1 > 0 ∃k ∈ G (a0 ∧ a1 = 0 & a0, a1 ≤ a & ¬a ∈
stab(k) & k(ai) = a1−i).

(ii) ∀a ≤ b < 1 ∃k ∈ G (k(a) = a & k(b ∧ ¬a) ∧ b = 0).
(iii) G acts transitively on B \ {0, 1}.

Assume moreover that B has a countable dense subalgebra A and G is a

Hausdorff , Baire, topological group. Then the topology on G extends the

topology of pointwise convergence on B.
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We mention that if B is a homogeneous (non-trivial) boolean algebra
having a countable dense subalgebra and G = Aut(B), then the conditions
of Proposition 2 are satisfied.

Let us list the corollaries:

Corollary 3. There is no Polish group topology on the homeomor-

phism group of the rational numbers nor on the homeomorphism group of

the irrational numbers.

Corollary 4. The pointwise topology on the automorphism group of

the countable atomless boolean algebra is the coarsest Hausdorff , Baire,
group topology.

Corollary 4 is certainly imminent from Proposition 2, as we can take B

to be the countable atomless boolean algebra and G to be its automorphism
group.

Proof of Corollary 3. We first prove it for the homeomorphism group
H(N ) of the irrationals. Let B = CO(N ) be the algebra of clopen subsets of
N and notice that there is a canonical representation of H(N ) in Aut(B): an
element of H(N ) acts by translation on the clopen subsets of N and thus acts
on B by automorphisms. We claim that the representation is faithful, i.e.,
that different homeomorphisms have different representations. So suppose
f 6= g ∈ H(N ). Then for some x ∈ N , g(x) 6= f(x) and we can find a clopen
set C ⊆ N with x ∈ C such that g”C ∩ f”C = ∅. Hence f and g have
distinct representations in Aut(B).

We now claim that G = H(N ) ≤ Aut(B) satisfies (i)–(iii) in Proposi-
tion 2. This is essentially a consequence of the Aleksandrov–Urysohn the-
orem (see (7.7) in [11]). In particular, this theorem implies that any two
non-empty clopen subsets of the irrationals are homeomorphic. So given
any two clopen subsets ∅ 6= A, B ( N there is a homeomorphism k of N
such that k”A = B, thus proving (iii). Now, notice that given a non-empty
clopen set A ⊆ N there is a non-trivial partition of A into clopen A0, A1

and there is a k ∈ H(N ) such that k is the identity on ∁A and k”A0 = A1,
k”A1 = A0, hence proving (i). Similar reasoning verifies (ii).

Since N is second countable and zero-dimensional, we also see that B

has a countable dense subalgebra generated by a countable basis of clopen
sets. So by the proposition, any Polish group topology on H(N ) extends the
topology of pointwise convergence on B, i.e., for any clopen C ⊆ N , the
subgroup {g ∈ H(N ) | g”C = C} is open. Now take a countable partition
of N into non-empty clopen subsets Nn ⊆ N and find for each α ∈ 2N a
gα ∈ H(N ) such that

gα”N0 =
⋃

α(n)=1

Nn+2 ∪ N0.
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Then gα”N0 6= gβ”N0 for all α 6= β and the non-empty open subsets

{f ∈ H(N ) | f”N0 = gα”N0} = gα · {f ∈ H(N ) | f”N0 = N0}

are all disjoint, contradicting the separability of H(N ).
For H(Q) the argument is essentially identical. Again we let B = CO(Q)

and G = H(Q) ≤ Aut(B). Since Q is zero-dimensional we see that the
representation is faithful and (i)–(iii) follow as before, using the Fréchet–
Sierpiński theorem (see (7.12) in [11]) instead of the Aleksandrov–Urysohn
theorem. Again this implies that all clopen subsets of Q are homeomorphic
and as Q is second countable, B has a countable dense subalgebra. Finally,
notice that Q has a countable partition into non-empty clopen pieces using,
e.g., irrational Dedekind cuts. So we can end the proof as before.

Definition 5. The uniform Suslin number of a topological group is the
least infinite cardinal κ such that there are not κ disjoint left translates of
any non-empty open set. This is equivalent to saying that any non-empty
open set covers the group by < κ left translates.

We then see that in Corollary 3, we actually have the stronger conclu-
sion that any Hausdorff, Baire, group topology cannot have uniform Suslin
number ≤ 2ℵ0 .

Proof of Proposition 2. The proof has three main steps: We first show
that if c ∈ B, the set {g ∈ G | c ∈ stab(g)} is closed. Secondly, we prove
that if a, b ∈ B, then the set {g ∈ G | b ≤ g(a)} is closed. And thirdly, using
the existence of a countable dense subalgebra, we find some c ∈ B \ {0, 1}
such that G(c) = {g ∈ G | g(c) = c} is an open subgroup.

We can assume that B 6= {0, 1}. Suppose first that c ∈ B, g ∈ G
and c /∈ stab(g). Then we can find b ≤ c such that g(b) 6= b, whereby
either b ∧ ¬g(b) 6= 0 or g(b) ∧ ¬b 6= 0. Obviously, if b ∧ ¬g(b) 6= 0, there
is 0 < a ≤ c such that a ∧ g(a) = 0. And if g(b) ∧ ¬b 6= 0, then for
a = g−1(g(b) ∧ ¬b) ≤ b ≤ c we also have a ∧ g(a) ≤ b ∧ (g(b) ∧ ¬b) = 0.
So by (i), we can find a0, a1 > 0, a0 ∧ a1 = 0, a0, a1 ≤ a and k ∈ G
such that ¬c ≤ ¬a ∈ stab(k) and k(ai) = a1−i. Since a ∧ g(a) = 0, also
g(a0) ≤ g(a) ≤ ¬a ∈ stab(k) and thus k · g(a0) = g(a0) 6= g(a1) = g · k(a0),
whence g and k do not commute.

Conversely, if c ∈ stab(g) and ¬c ∈ stab(k), then clearly g and k com-
mute. Thus

c ∈ stab(g) ⇔ g ∈
⋂

¬c∈stab(k)
k∈G

{f ∈ G | fk = kf}.

Hence as G is Hausdorff, for each k ∈ G the set {f ∈ G | fk = kf} is closed
and thus for each c ∈ B the set {g ∈ G | c ∈ stab(g)} is an intersection of
closed sets and therefore closed itself.
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Notice now that for any g, k ∈ G, we have stab(gkg−1) = g · stab(k).
Suppose b ≤ g(a) and a ∈ stab(k). Then g(a) ∈ g · stab(k) = stab(gkg−1)
and b ∈ stab(gkg−1). Conversely, if b 6≤ g(a), then g−1(b) 6≤ a and there
are by (i) some 0 < b0, b1 ≤ g−1(b) ∧ ¬a, b0 ∧ b1 = 0 and k ∈ G such that
k(bi) = b1−i and a ∈ stab(k). That is, g−1(b) /∈ stab(k) and a ∈ stab(k),
whereby b /∈ g · stab(k) = stab(gkg−1). Therefore,

b ≤ g(a) ⇔ g ∈
⋂

a∈stab(k)

{f ∈ G | b ∈ stab(fkf−1)}.

Thus for each a and b the set {g ∈ G | b ≤ g(a)} is again an intersection of
closed sets, so closed itself.

We suppose now that 0 < a, b < 1 are some arbitrary fixed elements of
B and notice that

b 6≤ g(a) ⇔ g−1(b) 6≤ a ⇔ ∃c ∈ A \ {0, 1} (c ≤ g−1(b) & c ∧ a = 0).

So the open set {g ∈ G | b 6≤ g(a)} is the countable union of the closed sets
{g ∈ G | c ≤ g−1(b)}, where c ∈ A \ {0, 1} and c ∧ a = 0. Thus, as G is
Baire, one of these sets must have non-empty interior, say V = int{g ∈ G |
c ≤ g−1(b)} 6= ∅ for some fixed c.

Choose some f ∈ V , let d = f−1(b), and notice that c ≤ f−1(b) = d < 1
and that f−1 ·V is an open neighbourhood of the identity 1G in G. Moreover,
for any h = f−1g ∈ f−1 · V , h(c) = f−1g(c) ≤ f−1(b) = d. Using (ii), we
choose k ∈ G such that k(c) = c and k(d ∧ ¬c) ∧ d = 0. Then for any
h ∈ f−1 · V ,

khk−1(c) = kh(c) ≤ k(d) ≤ c ∨ ¬d.

Therefore, if h ∈ W := (f−1 ·V )∩(kf−1 ·V ·k−1), we have h(c) ≤ d∧(c ∨ ¬d)
= c. But W is easily seen to be an open neighbourhood of 1G and if h ∈
W ∩ W−1, then h(c) = c, which shows that the subgroup G(c) = {g ∈ G |

g(c) = c} contains the open set W ∩ W−1, so must be open in G.

Assume now that 0 < e < 1 is any other element of B. Then as G
acts transitively on B \ {0, 1}, there is an h ∈ G with h(c) = e and thus
G(e) = h · G(c) · h

−1 is open in G.

This shows that for any element e ∈ B the pointwise stabiliser, G(e), is
open in G and therefore, as any open subgroup is closed, also clopen, whence
the topology on G extends the pointwise topology induced by B.

For a set A we let A<N be the descriptive set-theoretic tree of all finite
sequences of elements of A under the relation of end-extension. Aut(A<N)
is the group of permutations of the tree preserving the relation of end-
extension and therefore also the root (the empty sequence). Aut(A<N) is
naturally isomorphic to the group of isometries of AN, when the latter is
equipped with its usual ultra-metric.
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By methods very similar to the proof of Proposition 2 one can show
that any Hausdorff, Baire topology on Aut(N<N) must extend the topol-
ogy of pointwise convergence on N<N. Moreover, any Hausdorff topology
on Aut(2<N) must likewise extend the topology of pointwise convergence
on 2<N.

In both cases one notices first that for any s, t ∈ N<N the following set
is closed:

{g ∈ Aut(N<N) | g(s) = t}.

Therefore as g(s) 6= s ⇔ ∃t (length(t) = length(s) & g(s) = t), by Baire
one of the sets {g ∈ Aut(N<N) | g(s) = t} must have non-empty interior
and we continue as before. But in the case of Aut(2<N), we do not need the
group to be Baire, as the existential quantifier above is over a finite set and
any finite union of nowhere dense sets is nowhere dense in any topological
space.

Theorem 6. The group Aut(N<N) has a unique separable Hausdorff ,
Baire topology.

Proof. We know that any such topology must necessarily extend the
pointwise topology. On the other hand, it was shown by Kechris and the
author in [12] that any homomorphism from Aut(N<N) with the pointwise
topology into a separable group is automatically continuous, so this gives us
the result.

Theorem 7. Any Hausdorff topology on Aut(2<N) extends the topology

of pointwise convergence.

3. Automorphism groups of the category algebra. We shall now
see that certain groups of automorphisms of the category algebra of a perfect
Polish space cannot be made into Polish groups. So let us first recall some
basic facts about the category algebra.

Let X be a Polish space. By CAT(X) we denote the boolean algebras of
Borel sets modulo meagre sets. This algebra is called the category algebra

of the space, and we notice that, as any Borel set is equivalent modulo a
meagre set to a regular open set, the category algebra is canonically iso-
morphic to the complete boolean algebra of regular open sets RO(X) (recall
that a set U is called regular open in case it is equal to the interior of its
closure). So in particular, any countable basis for the topology on the space,
consisting of regular open sets, will generate a countable dense subalgebra
of CAT(X) = RO(X). It is easy to see that any two perfect Polish spaces
have homeomorphic dense Gδ subsets, so the category algebras of perfect
Polish spaces are all isomorphic. Thus, as non-empty regular open sets of
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perfect Polish spaces are perfect in themselves, we also see that the category
algebra of a perfect Polish space is homogeneous.

A theorem due to Sikorski (see [11, 15.12]) implies that any isomorphism
between the category algebras of two uncountable Polish spaces is induced
by a Borel isomorphism between the underlying spaces. So the automor-
phism group of the category algebra of an uncountable Polish space can be
identified with the group of Borel automorphisms preserving meagre sets,
where two Borel automorphisms are identified if they agree on a comeagre
set.

The theory of full groups was introduced by Henry Dye [4] in order to
understand the orbit equivalence relation of a countable group of trans-
formations on a Lebesgue space. This project has met with considerable
success in different settings and it therefore seems natural to investigate the
category analogue.

Let us first fix some notation. If E is an equivalence relation on a set X, x
is an element of X and A a subset of X, we let [x]E be the equivalence class
of x, ∁A = X \ A and [A]E the E-saturation of A, [A]E = {y ∈ X | ∃z ∈ A
(yEz)}.

Definition 8. Suppose X is a Polish space and E is a countable Borel
equivalence relation on X, i.e., E is Borel and all its classes are countable.

• E is said to be generically ergodic if every E-invariant Borel set of X
is either meagre or comeagre.

• E is non-singular if the E-saturation of a meagre set is meagre.

Definition 9. Let E be a non-singular countable Borel equivalence re-
lation on a Polish space X. We let the Borel full group of E be defined
by

[E] = {g | g is a Borel automorphism of X & ∀x ∈ X (g(x)Ex)}.

Let N = {g ∈ [E] | ∀∗x ∈ X (g(x) = x)}, where ∀∗x ∈ X means “for a
comeagre set of x ∈ X”. Then N is a normal subgroup of [E] and we let the
category full group of E be [E]∗ = [E]/N .

As usual we will confuse cosets of N with their representatives in [E]. No-
tice that by non-singularity, [E]∗ is naturally a subgroup of Aut(CAT(X)) =
Aut(RO(X)).

The following couple of basic lemmas will elucidate the structure of these
groups.

Lemma 10. Let E be a non-singular countable Borel equivalence relation

on a Polish space X and assume that A ⊆ X is comeagre. Then there is an

E-invariant dense Gδ set B ⊆ A.
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Proof. Define by induction An and Bn by

• A0 = A.
• If An is defined and comeagre, let Bn ⊆ An be some dense Gδ subset.
• If Bn is defined, let An+1 = ∁[∁Bn]E ⊆ Bn.

Then A0 ⊇ B0 ⊇ A1 ⊇ B1 ⊇ · · · and B =
⋂

Bn =
⋂

An is both E-invariant
and dense Gδ.

Lemma 11. Let E be a non-singular countable Borel equivalence relation

on a Polish space X and let {gn}N be a countable set of elements of the

Borel full group [E]. Then there is an E-invariant dense Gδ set B ⊆ X such

that each gn is a homeomorphism of B. Moreover , B can be taken to be a

subset of any prescribed comeagre set Y ⊆ X.

Proof. Let p be the Polish topology of X. Since the gn are Borel auto-
morphisms, there is a finer Polish topology τ on X, generating the same
algebra of Borel sets, such that each gn is a homeomorphism of (X, τ).
This follows quite trivially from Kuratowski’s method of changing topolo-
gies (see, e.g., Chapter 13 in Kechris [11]), though I have not been able to
locate an explicit proof other than in the case of a single automorphism (see
Chapter 8 in Nadkarni [14], where the result is attributed to Mackey and
Ramsay). Choose now a p-dense Gδ set A ⊆ X on which the two topologies
p and τ coincide (this can be done by (8.38) in Kechris [11]). Then by going
to a smaller E-invariant p-dense Gδ set B ⊂ A ∩ Y , we observe that B is
gn-invariant for each n, so gn is a homeomorphism of B.

Lemma 12. Let G be a countable group of homeomorphisms of a per-

fect Polish space X such that the induced equivalence relation E = EG is

generically ergodic. Then there is a dense G-orbit.

Proof. Notice that the orbit of x is dense iff G.x intersects every non-
empty open set iff x ∈ G.U for every non-empty open set U . But as E is
generically ergodic, [U ]E = G.U is open dense for every non-empty open U .
Therefore, if x ∈

⋂

n G.Un, where {Un}N is a basis of non-empty open sets,
the orbit of x is dense.

We can now state our theorem.

Theorem 13. Let E be a non-singular , generically ergodic countable

Borel equivalence relation on a perfect Polish space X and let H be a group

such that [E]∗ ≤ H ≤ Aut(CAT(X)). Then H carries no Polish group topol-

ogy.

Corollary 14 (G. Hjorth [6, p. 153]). There is no Polish group topology

on the automorphism group of the category algebra of R.

We will need the following elementary lemma.
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Lemma 15. Let E be a non-singular , generically ergodic countable Borel

equivalence relation on a perfect Polish space X and suppose A, B are ele-

ments of CAT(X) different from ∅ and X. Then there is an element g ∈ [E]∗

such that g(A) = B and ¬(A ∨ B) ∈ stab(g).

Let us prove the theorem given the lemma.

Proof of Theorem 13. By the remarks above, we know that CAT(X)
is a homogeneous complete boolean algebra containing a countable dense
subalgebra. It is also clear by the lemma that G = [E]∗ satisfies conditions
(i)–(iii) of Proposition 2, whence the same holds for H. So any Hausdorff,
Baire topology on H must extend the topology of pointwise convergence on
CAT(X). That is, for any A, B ∈ CAT(X), the set {h ∈ H | h(A) = B}
is open. But as H acts transitively on CAT(X) and the latter is uncount-
able, we get a continuum of disjoint translates of some non-empty open set,
whence the uniform Suslin number of H is (2ℵ0)+. So no topology on H can
be Polish.

Proof of Lemma 15. We can suppose that A and B are non-meagre,
non-comeagre Borel subsets of X and we want to construct some g ∈ [E]
such that g(A) differs from B only in a meagre set.

Let G be a countable group of Borel automorphisms of X inducing E.
Find an invariant dense Gδ subset X0 ⊂ X such that

• X0 is zero-dimensional.
• G acts by homeomorphisms on X0.
• A0 = A ∩ X0 and B0 = B ∩ X0 are clopen in X0.
• Every G-orbit is dense.

Moreover, let Y0 = A0 ∪ B0 and {xn} be some dense subset of Y0. We let P
be the set of all homeomorphisms f such that dom(f) and rg(f) are clopen
subsets of Y0,

∀x ∈ dom(f) [xEf(x) & (x ∈ A0 ↔ f(x) ∈ B0)]

and A0 * dom(f), Y0 \A0 * dom(f), B0 * rg(f), Y0 \B0 * rg(f). Order P
by reverse inclusion, i.e., g ≤ f ⇔ g extends f as a function. Now put

Dn = {f ∈ P | xn ∈ dom(f)}, Tn = {f ∈ P | xn ∈ rg(f)}.

We claim that Dn and Tn are dense in P for each n ∈ N. Let us just show
this for Dn. So suppose f ∈ P is given such that xn /∈ dom(f). Then we
can find some γ ∈ G such that γ(xn) /∈ rg(f) and xn ∈ A0 ↔ γ(xn) ∈ B0.
For if xn ∈ A0, notice that B0 \ rg(f) is a non-empty clopen set, so as the
orbit of xn is dense, there is a γ such that γ(xn) ∈ B0 \ rg(f). Similarly if
xn /∈ A0. So using the continuity of γ, we can find clopen U, V ⊆ Y0 such that
xn ∈ U , U ∩ dom(f) = ∅, V ∩ rg(f) = ∅, γ(U) = V , and A0 * U ∪ dom(f),
Y0\A0 * U∪dom(f), B0 * V ∪rg(f), Y0\B0 * V ∪rg(f). Then f∪γ↾U ∈ Dn.
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Let now F be a {Dn}N, {Tn}N-generic filter on P and put h =
⋃

g∈F g.
Then h is easily seen to be a homeomorphism of dense open subsets U =
dom(h) and V = rg(h) of Y0. Moreover,

∀x ∈ U [h(x)Ex & (x ∈ A0 ↔ h(x) ∈ B0)].

Then g = h ∪ id↾X0\Y0
is defined on a dense Gδ subset of X such that

∀∗x ∈ X [g(x)Ex & (x ∈ A ↔ g(x) ∈ B)].

Now, using the fact that any comeagre subset of X contains an E-invariant
dense Gδ subset we see that g can be modified on an invariant meagre set
so as to be in [E], which finishes the proof.

A theorem due to Sullivan, Weiss and Wright [20] says that if E and F

are non-singular, generically ergodic countable Borel equivalence relations
on perfect Polish spaces X and Y respectively, then there are invariant
dense Gδ subsets X0 ⊆ X and Y0 ⊆ Y and a homeomorphism φ : X0 ↔ Y0

such that ∀x, x′ ∈ X0 (xEx′ ↔ φ(x)Fφ(x′)). So in particular φ induces an
isomorphism of [E]∗ with [F]∗. But another natural question is whether any
isomorphism between [E]∗ and [F]∗ lifts to such a point map. The answer to
this question turns out to be contained in a very general result of M. Rubin
on the reconstruction of boolean algebras from their automorphism groups.

Definition 16. Let K be a class of pairs (B, G), where B is a boolean
algebra and G ≤ Aut(B). Then K is said to be faithful if for all (B0, G0),
(B1, G1) ∈ K and isomorphisms Θ : G0

∼= G1 there is an isomorphism
φ : B0

∼= B1 such that Θ(g) = φ ◦ g ◦ φ−1 for all g ∈ G0.

Definition 17. Let B be a complete atomless boolean algebra and
G ≤ Aut(B). The pair (B, G) is said to be a local movement system if the
set {SUPP(g) | g ∈ G} is dense in B, where we define SUPP(g) =

∨

{a ∈ B |
g(a)∧ a = 0} (notice that this makes sense as we are working in a complete
boolean algebra).

Theorem 18 (M. Rubin [15]). The class of local movement systems is

faithful.

Lemma 19. Let (X, pX) and (Y, pY ) be Polish spaces and φ : X ↔ Y a

Borel isomorphism preserving meagre sets. Then there are dense Gδ subsets

X0 ⊆ X and Y0 ⊆ Y such that φ is a homeomorphism of X0 with Y0.

Proof. Find finer Polish topologies τX and τY such that φ is a homeo-
morphism of (X, τX) with (Y, τY ). Then there are pX-dense Gδ and pY -dense
Gδ sets A ⊆ X and B ⊆ Y such that pX↾A = τX↾A and pY ↾B = τY ↾B. But
as pX ⊆ τX and pY ⊆ τY , A and B are also Gδ in τX and τY . Moreover,
φ(A) and φ−1(B) are τY -Gδ and τX -Gδ respectively, as φ is a homeomor-
phism with respect to these topologies. Therefore, X0 = A ∩ φ−1(B) is Gδ
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in (A, pX) = (A, τX) and Y0 = B ∩ φ(A) is Gδ in (B, pY ) = (B, τY ). But
as φ also preserves meagre sets, they are comeagre in (X, pX) and (Y, pY )
respectively and hence dense Gδ in (X, pX) and (Y, pY ).

Corollary 20. Suppose E and F are non-singular , generically ergodic

countable Borel equivalence relations on perfect Polish spaces X and Y re-

spectively. Then

(i) Aut([E]∗) is equal to the normaliser of [E]∗ in Aut(CAT(X)).
(ii) If Θ : [E]∗ ∼= [F]∗ is an isomorphism, then there are invariant dense

Gδ subsets X0 ⊆ X and Y0 ⊆ Y and a homeomorphism φ : X0 ↔ Y0

such that Θ(g) = φ ◦ g ◦ φ−1.

Proof. Again we consider [E]∗ to be a subgroup of Aut(CAT(X)), and we
claim that (CAT(X), [E]∗) is a local movement system. So suppose C ⊆ X
is a non-meagre Borel set; we need to find g ∈ [E]∗ such that SUPP(g) ≤ C.
But for this let A ⊻ B = C be a partition of C into non-meagre Borel sets
and find by Lemma 15 some g ∈ [E]∗ such that g(A) = B and ¬C ∈ stab(g).
That is, SUPP(g) = C. This shows (CAT(X), [E]∗) to be a local movement
system, whence any automorphism of [E]∗ is induced by an automorphism
of CAT(X). So Aut([E]∗) is equal to the normaliser, N([E]∗), of [E]∗ in
Aut(CAT(X)).

For (ii) we can apply the same reasoning and then notice that any iso-
morphism between the category algebras of two Polish spaces is induced by
a homeomorphism between dense Gδ subsets (this follows from Lemma 19
and from (15.10) in [11]).

We should in this connection give an explicit description of the normaliser
of [E]∗ in Aut(CAT(X)):

N([E]∗) = {g ∈ Aut(CAT(X)) |

∀∗x ∀y ∈ [x]E (g(x)Eg(y) & g−1(x)Eg−1(y))}.

To see this, notice first that if

∀∗x ∀y ∈ [x]E (g(x)Eg(y) & g−1(x)Eg−1(y))

and f ∈ [E]∗, then

∀∗y (g−1f(y)Eg−1(y))

and hence

∀∗x (g−1fg(x)Eg−1g(x) = x),

whereby g−1fg ∈ [E]∗. Similarly, gfg−1 ∈ [E]∗, whence g ∈ N([E]∗).
Conversely, fix a countable group G of Borel automorphisms of X induc-

ing E. Now, suppose, e.g., ∃∗x ∃y ∈ [x]E (g(x)¬Eg(y)). Then for some γ ∈ G,
there is a non-meagre Borel set A ⊆ X such that ∀x ∈ A (g(x)¬Eg(γ.x)). By
going to some smaller non-meagre Borel set, we can suppose that γ.A∩A=∅.
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We define f ∈ [E]∗ by

f(x) =







γ.x if x ∈ A,

γ−1.x if x ∈ γ.A,

x otherwise.
Then for y = g(x) ∈ g(A),

gfg−1(y) = gfg−1(g(x)) = gf(x) = g(γ.x)¬Eg(x) = y.

So for a non-meagre set of y ∈ X, gfg−1(y)¬Ey, whence gfg−1 /∈ [E]∗ and
g /∈ N([E]∗).

One might wonder what happens if in Theorem 13 we consider the au-
tomorphism group of the measure algebra of a Lebesgue probability space,
i.e., the group of non-singular Borel automorphisms, where two automor-
phisms are identified if they agree on a conull set. It turns out that in this
case there is indeed a Polish group topology (see [11, 17.46]). So what goes
wrong here? The answer is of course that the measure algebra, in contradis-
tinction to the category algebra, does not have a countable dense subalgebra,
so Proposition 2 does not apply.

We should also mention that H. Woodin has proved that there is no
Polish topology on the category algebra of R that renders the boolean oper-
ations continuous (see [17] for a simple proof of this fact). For the measure
algebra of a Lebesgue probability space the situation is again different (see
[11, 17.43]).

4. Homomorphisms into locally compact groups. The above-men-
tioned paper by Gaughan [5] was in answer to a question of Ulam on whether
S∞ could be made into a locally compact Polish group (and therefore carry
a Haar measure). Since S∞ has a unique Polish group topology this is not
the case. But, as we shall see, it does not even embed into such a group, and
in fact any (abstract) homomorphism of S∞ into a locally compact Polish
group is trivial.

Proposition 21. Let π : S∞ → H be a non-trivial abstract homomor-

phism into a separable Hausdorff group. Then π is a homeomorphism onto

a closed subgroup of H.

Proof. A result of [12] implies that any homomorphism from S∞ into a
separable group is automatically continuous, so as H is Hausdorff, kerπ is
a closed normal subgroup of S∞. Thus as S∞ is topologically simple this
means that π is either trivial, contradicting our assumption, or an embed-
ding. Therefore, as H is Hausdorff, so is the induced topology on π”S∞.
But by results of Gaughan [5], the Polish topology on S∞ is the minimal
Hausdorff group topology, whence π is also an open map, and hence π is
a homeomorphism onto the subgroup π”S∞ of H. We now only need to
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check that π”S∞ is also closed in H. So suppose that (gλ) is a net in π”S∞

converging to a point h ∈ H. Then (gλ) is both left and right Cauchy, so by
the completeness of π”S∞ must also converge in π”S∞, i.e. h ∈ π”S∞. So
π”S∞ is closed.

We shall see that a weaker result actually holds for a much larger class of
permutation groups. Before we begin we need to consider some new concepts.

Let G be any group and consider its action on Gn (n ≥ 1) given by

g · (h1, . . . , hn) = (gh1g
−1, . . . , ghng−1).

So when n = 1 this is just the usual action by conjugation. A Polish group
is said to have ample generics in case there is a comeagre orbit for the above
action of G on Gn for each n ≥ 1. This is in general stronger than just
requiring that G should have a comeagre conjugacy class. In fact, one can
show that in this case any homomorphism into a topological group with
uniform Suslin number ≤ 2ℵ0 is automatically continuous [12].

It is now known that a fairly large class of automorphism groups have
ample generics. These include the automorphism groups of (i) ω-stable, ω-
categorical structures [7], (ii) the random graph [9], (iii) the rational Urysohn
metric space [18], and (iv) the group of measure preserving homeomorphisms
of 2N [12]. So in particular it holds for S∞.

Incidentally, all of these groups also have a neighbourhood basis at the
identity consisting of clopen subgroups with a dense (in fact comeagre) con-
jugacy class [12].

A topological group is called a pro-Lie group if it is a projective limit of
Lie groups (which is equivalent to being isomorphic to a closed subgroup of
a product of Lie groups). In a personal communication, Karl H. Hofmann
has shown that no non-trivial Lie group can have a dense conjugacy class,
and this in turn implies that no non-trivial pro-Lie group can have a dense
conjugacy class.

Theorem 22. Let G be a Polish group with ample generics and suppose

that G has a neighbourhood basis at the identity consisting of open subgroups

with dense conjugacy classes. Then there is no non-trivial abstract homo-

morphism of G into a locally compact Hausdorff group with uniform Suslin

number ≤ 2ℵ0 (e.g., into a separable group).

Proof. Suppose H is a locally compact Hausdorff group with uniform
Suslin number ≤ 2ℵ0 and let π : G → H be any homomorphism. As G has
ample generics, π is necessarily continuous. Put N = π”G ≤ H, which is still
locally compact. Let N0 ≤ N be the connected component of the identity
element in N , whereby N0 is a closed normal subgroup and N/N0 a totally
disconnected locally compact Hausdorff group. Therefore, by a theorem of
van Dantzig (Theorem 1.34 in [8]), N/N0 has a neighbourhood basis at the
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identity consisting of compact open subgroups. So choose some compact
open K ≤ N/N0 and denote by π0 the composition of π with the quotient
mapping from N to N/N0. Then π−1

0 (K) is open in G and we can therefore
find a clopen F ≤ π−1

0 (K) ≤ G with a dense conjugacy class C ⊂ F . But
then π0(C) is a dense set in π0”F and is contained in a single conjugacy
class of π0”F . Hence as this latter group is compact and the conjugation
action on itself is continuous, each conjugacy class is closed. Therefore the
conjugacy class of the identity element is everything, i.e., π0”F = {e}. So
F ≤ ker π0 is open and as kerπ0 is normal in G, it is conjugacy invariant.
Since G has ample generics, it in particular has a dense conjugacy class, so
kerπ0 = G.

This shows that π”G ≤ N0 and as G is dense in N and N0 is closed,
N0 = N . So N is connected and therefore by the theorem of Gleason, Mont-
gomery, Yamabe and Zippin (see [2]) it is pro-Lie. Now, the image of any
dense conjugacy class in G under π will be a dense set in N contained in a
single conjugacy class, which, by the theorem of Hofmann mentioned above,
implies that N = {e}, whence π”G = {e}.

So from either Proposition 21 or Theorem 22 follows:

Corollary 23. Any abstract homomorphism of S∞ into a locally com-

pact Polish group is trivial.

The above results imply that a great number of groups appearing in
analysis cannot be abstractly embedded into a locally compact Polish group.
For this it is enough that they should contain some copy of S∞ or indeed
any of the other groups mentioned to have ample generics. So these remarks
apply in particular to the unitary group of ℓ2 or the group of isomorphisms
of ℓp.
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