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Bi-Lipschitz embeddings of hyperspaces of compact sets
by

Jeremy T. Tyson (Urbana, IL)

Abstract. We study the bi-Lipschitz embedding problem for metric compacta hy-
perspaces. We observe that the compacta hyperspace K(X) of any separable, uniformly
disconnected metric space X admits a bi-Lipschitz embedding in ¢2. If X is a countable
compact metric space containing at most n nonisolated points, there is a Lipschitz em-
bedding of K(X) in R™"*; in the presence of an additional convergence condition, this
embedding may be chosen to be bi-Lipschitz. By way of contrast, the hyperspace K ([0, 1])
of the unit interval contains a bi-Lipschitz copy of a certain self-similar doubling series-
parallel graph studied by Laakso, Lang-Plaut, and Lee-Mendel-Naor, and consequently
admits no bi-Lipschitz embedding into any uniformly convex Banach space. Schori and
West proved that K ([0, 1]) is homeomorphic with the Hilbert cube, while Hohti showed
that K ([0,1]) is not bi-Lipschitz equivalent with a variety of metric Hilbert cubes.

1. Introduction. The topological structure of hyperspaces has been
intensively studied during the twentieth century. According to a celebrated
result of Curtis and Schori [7], the hyperspace of any nondegenerate Peano
continuum is homeomorphic with the Hilbert cube. An essential reference
for the topology of hyperspaces is the book [22] by Illanes and Nadler.

Hyperspaces of metric spaces are naturally metrized by the Hausdorff
metric. They play a role in dynamical systems, as the existence of attractors
for iterated function systems on complete metric spaces may be demon-
strated by an application of a suitable fixed point theorem to the hyper-
space. This approach to fractal geometry was first presented by Hutchinson
[21] (but see Moran [32] for earlier ideas along the same lines) and is now
standard.

Motivated by these and other applications, some recent studies have fo-

cused on the intrinsic metric geometry of hyperspaces. Boardman, Goodey
and McClure [5], [13], [14], [31] studied the generalized Hausdorff measures
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of hyperspaces of self-similar sets, while Hohti [20] showed that the hyper-
space of the closed unit interval is not bi-Lipschitz equivalent with a variety
of metric Hilbert cubes. Gruber, Lettl and Tichy [15], [16], [17] investigated
the isometries of Euclidean and general hyperspaces. See also Bandt [3].

In this paper we study the existence of bi-Lipschitz embeddings of com-
pacta hyperspaces in specified targets. We observe that the hyperspace of
any separable, uniformly disconnected metric space admits a bi-Lipschitz
embedding in #2. We prove that the hyperspace of any countable compact
metric space containing at most n nonisolated points admits a Lipschitz em-
bedding in R™*!; provided a further convergence criterion is satisfied, the
embedding in question is bi-Lipschitz.

On the other hand, we show that the hyperspace K([0,1]) of the closed
unit interval admits no bi-Lipschitz embedding in any uniformly convex Ba-
nach space, and more generally, it admits no bi-Lipschitz embedding in any
round ball metric space, a concept introduced by Laakso [26]. Note that
K([0,1]) is topologically equivalent with the Hilbert cube, as was shown by
Schori and West [37], [38]. To give another proof of this result, we exhibit
within K ([0, 1]) a bi-Lipschitz copy of a certain series-parallel graph G stud-
ied by Laakso [26], Lang-Plaut [27] and Lee-Mendel-Naor [28|. Laakso [26]
showed that a variant of G admits no bi-Lipschitz embedding in any round
ball metric space; his argument can be adapted to apply to G. We construct
a planar iterated function complex (generalized iterated function system)
parameterized by an uncountable collection of geodesic segments in G. The
desired embedding of G in K([0,1]) is obtained by choosing appropriate
vertical slices of the attractors for this complex.

For recent results on the bi-Lipschitz and isometric embedding problem
into hyperspaces of closed unbounded sets, as well as other results on the
metric geometry of hyperspaces, see [24].

In Section 2, we review some standard topics in metric geometry, give
further history and motivation, and state our main results. In Section 3 we
consider countable compact metric spaces and finite-dimensional Euclidean
targets, while Section 4 contains the proof of the nonembeddability of the
hyperspace of the unit interval in any round ball metric space. A concluding
Section 5 contains some questions for future study.

Acknowledgements. We are grateful to the referee for a careful reading
of the paper.

2. Review of metric geometry and main results

2.1. Notation and basic definitions. For a metric space X = (X,d), we
write diam A (or diamg A in case the metric deserves to be mentioned) for
the diameter of a set A C X and dist(A, B) for the distance between two
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nonempty sets A, B C X. We abbreviate dist(A, z) = dist(A, {z}) for A C X
and x € X. We denote by B(z,r) the closed ball in X with center = and
radius r. A metric space (X, d) is doubling if there exists a finite constant
M so that every ball B(z,r) in X can be covered by at most M balls of
radius /2.

A modulus of continuity for a map f : (X,d) — (Y, d’) between compact
metric spaces is an increasing function w : [0, diam X| — [0, co) satisfying

d(f(z), f(y)) < w(d(z,y))

for all z,y € X. The map f is L-Lipschitz, L < oo, if it has a modulus of
continuity of the form w(t) = Lt, and is B-Holder continuous, 0 < [ < 1,
if it has a modulus of continuity of the form w(t) = Ct? for some C' < oc.
If the values of the constants L or 3 are not important, the terms Lipschitz
or Holder continuous are used. An L-Lipschitz map with L < 1 is called a
contraction.

If f is a homeomorphism and f and f~! are both (L-)Lipschitz, f is said
to be (L-)bi-Lipschitz. If f~! is Holder, f is said to be co-Hdlder.

A gauge function is a nondecreasing, right-continuous function ¢ : [0, c0)
— [0, 00) with ¢(0) = 0. Associated with each gauge function is the gener-
alized Hausdorff p-measure H¥ on X, defined for E C X as

® o Tim : AT . ; - .
HY(E) : llgril[glf{%: p(diam E;) : diam E; < § for all i € N, X LZJEZ}

The case ps(t) = t° gives the classical Hausdorff measures H*® := H¥s.
We write sV t, resp. s At, for the maximum, resp. minimum, of two real
numbers s and t.

2.2. Hyperspaces and the Hausdorff metric. The hyperspace of compact
sets (or (compacta) hyperspace) of a topological space X is the space K (X)
of all nonempty compact subsets of X. When X = (X, d) is a metric space,
K(X) is equipped with the Hausdorff metric

D(A,B) = D4(A,B) := inf{e : AC N.(B) and B C N.(A)}
= maxdist(a, B) V max dist(b, A)
acA beB
for A,B € K(X), where N.(A) = {z € X : d(z,a) < ¢ for some a € A}
denotes the e-neighborhood of A.

The hyperspace K (X) of a complete (resp. compact) space X is complete
(resp. compact). See, e.g., [22, Chapter I]. Furthermore, X embeds isomet-
rically in K(X) and diamp K(X) = diamg X. The map A — diam A is a
2-Lipschitz map from K(X) to R. If X is separable, then K(X) is also sep-
arable. Indeed, if Y is a countable dense subset of X, then the collection of
all finite subsets of Y is a countable dense subset of K (X).
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2.3. Hyperspaces of disconnected spaces. A metric d on a space X is
called an wltrametric if d(z,y) < max{d(z,z),d(z,y)} for all z,y,z € X.
Compacta hyperspaces of ultrametric spaces embed isometrically in Hilbert
spaces.

2.4. PROPOSITION. Let (X,d) be an ultrametric space. Then K(X) ad-
mits an isometric embedding in a Hilbert space.

The solution to the isometric embedding problem for Hilbert space tar-
gets was a major advance in twentieth century metric geometry. Work of
Schoenberg [35], [36] and Blumenthal [4] provided an intrinsic characteriza-
tion of metric spaces admitting an isometric embedding in a Hilbert space.
Timan [39], Lemin [29] and Aschbacher et al. [1] gave independent proofs
that every ultrametric space admits an isometric embedding in a Hilbert
space. Since hyperspaces of ultrametric spaces are ultrametric, Proposition
2.4 follows.

A metric space (X, d) is called uniformly disconnected if it is bi-Lipschitz
equivalent with an ultrametric space. Uniformly disconnected spaces were
introduced by David and Semmes |9, Chapter 15 using a different but equiv-
alent definition.

2.5. COROLLARY. Let (X,d) be a uniformly disconnected space. Then
K(X) admits a bi-Lipschitz embedding in a Hilbert space.

This is an immediate consequence of Proposition 2.4, together with the
observation that each bi-Lipschitz map f : X — Y induces a bi-Lipschitz
map Fy: K(X) — K(Y) by Ff(A) = {f(a):a € A}

Since hyperspaces of separable spaces are separable, and separable ultra-
metric spaces embed isometrically in ¢2, we also have the following

2.6. COROLLARY. If (X,d) is separable and uniformly disconnected, then
K(X) admits a bi-Lipschitz embedding in (2.

For example, the hyperspace of the standard Cantor set C' admits a
bi-Lipschitz embedding in #2. Observe that K(C) is perfect and totally dis-
connected, hence homeomorphic with C'. We do not know to what extent
this topological equivalence can be made quantitative.

2.7. QUESTION. What is the optimal modulus of continuity for a hom-
eomorphism of K (C) onto C?

The characterization of metric spaces which admit a bi-Lipschitz em-
bedding in a finite-dimensional Euclidean space is a major open problem
in geometric analysis. The following theorem provides some infinite metric
spaces whose hyperspaces admit such an embedding.
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2.8. THEOREM. Let X be a compact metric space containing at most N
nonisolated points. Let I(X) = {x1,x2,...} be an enumeration of the isolated
points of X so that the sequence d,, := dist(zp, X \ I(X)) is nonincreasing.
Then

(a) there exists a Lipschitz embedding of K(X) in RN*1
(b) if
(2.9) r* = limsup

n—oo dTL

d
n+1 <1

then the embedding in part (a) may be chosen to be co-Hélder,
(c) if v < 1/2, then the embedding in part (a) may be chosen to be
bi-Lipschitz.

For example, the hyperspace of X = {a" : n = 1,2,...} U{0}, a < 1,
admits an embedding in R? which is Lipschitz and co-Holder. When a < 1/2
the embedding is bi-Lipschitz.

Petczyniski [33] characterized the hyperspaces of compact totally discon-
nected topological spaces containing a dense set of isolated points: for every
such space X, the hyperspace K (X) is homeomorphic with the union of the
Cantor set and the midpoints of the omitted intervals. Metric analogues of
this result of Pelczynski remain to be established.

Observe that a condition such as (2.9) is necessary for the conclusion in
Theorem 2.8. Indeed, for any prescribed Hausdorff gauge function ¢ there
exists a countable metric space (X, d) with precisely one nonisolated point,
so that the generalized Hausdorff measure H¥ (K (X)) is positive and finite.
See, for example, Theorem 3.5 in [31].

We will prove our Theorem 2.8 in Section 3.

2.10. The hyperspace of the unit interval. Characterizing the hyperspace
of [0, 1] was a long-standing problem in the topology of hyperspaces. In 1938,
Wojdystawski conjectured that K([0,1]) was homeomorphic to the Hilbert
cube @ = [0,1]*°. The conjecture stood for over thirty years, until Schori
and West proved it in 1975 [38].

The metric structure of K ([0, 1]) was studied by Boardman and Goodey,
who determined some gauge functions ¢ with respect to which K ([0, 1]) has
zero or infinite generalized Hausdorff measure [13], [14], [5]. The results of
Boardman and Goodey were extended to the setting of general self-similar
sets satisfying the open set condition by McClure [31].

A metric space X is called bi-Lipschitz homogeneous if the group of bi-
Lipschitz self-homeomorphisms of X acts transitively. In response to a ques-
tion posed by Véiséld [41], Hohti [20] showed that the metric Hilbert cube
(Q,ds) C cg is bi-Lipschitz homogeneous if and only if

s
(2.11) sup —— < c0.
k Sk+1
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Here s = (si)ken is a decreasing sequence of positive real numbers converging
to zero, and ds(z,y) = maxy sk|lrp — yi| for z = (z1), y = (yx) € @. On
the other hand, Hohti also showed in [20] that K([0,1]) is not bi-Lipschitz
homogeneous. It follows that K([0,1]) is not bi-Lipschitz equivalent with
(Q,ds) for any s satisfying (2.11).

Using a comparison principle for the cardinality of nets in bi-Lipschitz
equivalent spaces, Hohti also demonstrated the bi-Lipschitz inequivalence of
K([0,1]) with (Q,d) for some other metrics d. For example, K ([0, 1]) and
(Q, 05) C £' are bi-Lipschitz inequivalent, where s = (s;), sp = 27%, and
0s(x,y) = D1 Sk|xk —yk|. The proof easily extends to the case (Q, 0sp) C 7,
1 < p < oo, where o5 ,(z,y) = (3, shlzr — Y|P,

The following theorem further illustrates the intrinsic metric complexity
of K([0,1]) and significantly extends the preceding results of Hohti.

2.12. THEOREM. There is no bi-Lipschitz embedding of K([0,1]) into
any round ball metric space.

Following Laakso [26], we say that a metric space (X,d) is a round ball
space if for every € > 0 there exists = §(g) > 0 so that

(2.13)  diam B(z, (1/2+ d)d(x,y)) N B(y, (1/2+ d)d(x,y)) < ed(x,y)

for all x,y € X. We call §(¢) the roundness function of X. If X is a Banach
space, then X is a round ball space if and only if X is uniformly convex
[26]. Bi-Lipschitz embeddings in round ball metric spaces were studied by
Laakso [26] in connection with strong A, deformations of geometry and by
Tyson and Wu [40] in connection with snowflake metric spaces and Assouad’s
embedding theorem [2].

With no a priori control on the geometry of the target, it is not clear
whether one can prove Theorem 2.12 by the techniques of [20]. Note also that
generalized Hausdorff measures cannot be used to rule out the existence of
such an embedding. Indeed, a classical result of Goodey [12]| asserts that
every infinite-dimensional Banach space has non-o-finite Hausdorff measure
for every gauge function ¢.

To prove Theorem 2.12, we use recent results on the bi-Lipschitz non-
embeddability of certain series-parallel graphs due to Laakso, Lang—Plaut
and Lee—Mendel-Naor. Consider the infinite graph G obtained as the Gro-
mov—Hausdorff limit of the sequence of finite series-parallel graphs G, shown
in Figure 1. In rough terms, G, is obtained by replacing each edge in G,
with a scaled copy of the graph G;. For the precise definition, see Defini-
tion 4.8. We equip G with the path metric.

Laakso [26] used a variant of this graph to answer a question of Heinonen
and Semmes [19, Question 1] on the existence of a planar strong A, weight
(in the sense of David and Semmes [8], [9]) whose deformed geometry fails
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Fig. 1. Approximations of the Laakso graph G

to admit a bi-Lipschitz embedding in any uniformly convex Banach space.
Motivated by algorithmic problems in network theory and the failure of the
Johnson-Lindenstrauss dimension reduction lemma in L', Lee, Mendel and
Naor [28] showed that G admits no bi-Lipschitz embedding in L? for any
1 < p < 2. See also Lang and Plaut [27]|. Following the terminology of [28],
we call G the Laakso graph.

2.14. PROPOSITION. The Laakso graph G does not admit a bi-Lipschitz
embedding in any round ball metric space.

For the sake of completeness, we include a proof of Proposition 2.14 in
Section 4, following the argument given by Laakso [26, §2.5].

Theorem 2.12 is a consequence of Proposition 2.14 and the following
theorem, which we also prove in Section 4.

2.15. THEOREM. There is a bi-Lipschitz embedding of the Laakso graph
G in K([0,1]).

We do not know whether K ([0, 1]) admits a bi-Lipschitz embedding in L?,
or whether every bounded series-parallel graph admits a bi-Lipschitz em-
bedding in K ([0, 1]). Gupta et al. [18] have shown that ¢! contains a 14-bi-
Lipschitz copy of every series-parallel graph.

For additional questions and discussion, see Section 5.

3. Proof of Theorem 2.8. Throughout this section, we let X be a
compact metric space and we denote by I(X), resp. L(X), the set of isolated,
resp. limit, points of X. As in the statement of Theorem 2.8, we assume
that I(X) = {x1,z2,...}, where d,, := dist(zy, L(X)) is nonincreasing. For
x € I(X), we define the gap of X at x to be

gap(X, ) := inf{d(z,y) 1 y € X,z # y}.
Fix A > 2 and define
Yo = min{\ " gap(X,z;) i =1,...,n}.
3.1. LEMMA. For each n € N,

Z’Vmg)\—’Yn

m>n
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Proof. Foreachi=1,...,n,

D Am < Z AT gap(X, zz)z)\—AZ " gap(X, ;)

m>n m=n-+1
and the result follows. =

The following theorem gives a more precise statement of part (a) of The-
orem 2.8.

3.2. THEOREM. Let X be a countable compact metric space with N limit
points. Then there is a Lipschitz embedding F of K(X) in RN+l whose in-
verse has a modulus of continuity

(3.3) ()—t—|—2w0<i_; )
where wy is any increasing function from [0, 00) to [0, 00) with wp(0) = 0 and
(3.4) dn < wo(yn)
for all n.
Proof. We denote points in RV*! by 2 = (g, ..., zy), and use the max-

Imum metric

Iz = ylloo = max |o;—wl, zy€ RN

=VU,...,

Let L(X) = {z1,...,2x} and define F' = (fo,..., fy) : K(X) — RN¥+1 by
fi(A) =dist(A, z;), i=1,...,N,

DL

n:xp €A

Observe that fo(A) = fo(ANI(X)) for all A € K(X).

and

3.5. LEMMA. Suppose that ANI(X) # BNI(X) for some A,B € K(X).
Then

A2
A—1
where ny = min{n : z, € A A B}.

A
(3.6) i < [fo(A) = fo(B) < 37 Y < 27,

Here AA B:=(A\ B)U (B \ A) denotes the symmetric difference of A
and B.

Proof of Lemma 3.5. Without loss of generality assume that z,, € A.
By Lemma 3.1,
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|f0(A) - fO(B)| = |Yn; + Z Tn — Z Tn

n>ni Ty GA\B n>ni:xn€B\A
> Yoy — Z Tn = )\
n>ni

In a similar manner, we have |fo(A) = fo(B)| < Yy + 2 pspn, Y0 < 5 250,

Returning to the proof of Theorem 3.2, let A, B € K(X), A # B. If
ANI(X)=BNI(X) then fo(A) = fo(B). Otherwise, using Lemma 3.5 we
find

(B7)  1fo(A) — fo(B)] < 2, < 2gap(X.2n,) < 2D(A, B).
On the other hand, for any ¢ =1,..., N and any b € B,
fi(A) = dist(A, z;) < dist(A,b) + d(b, z;) < D(A, B) + d(b, z;)
so fi(A) < D(A, B) + fi(B). Reversing the roles of A and B shows that
(3.8) [fi(A) = fi(B)| < D(A, B),
and combining (3.7) and (3.8) yields
(3.9) |F(A) — F(B)|lco < 2D(A, B).

To compute a modulus of continuity for F~! let A, B € K(X), A # B.
If ANI(X) = BNI(X), then AN L(X) # BN L(X) and
D(A,B) = maxdlst(a B)\/maxdlst(b A) = mzzxdist(a, B)\/llrzn%xdist(b, A),

acA acA’ en’
where A" = (A\ B)NL(X) and B' = (B\ A)NL(X). (Note that A’UB’ # (.)
Thus
(310)  D(AB)<_mas |fi(A) ~ fi(B)| < |IF(4) ~ F(B)
S w([|[F(A) = F(B)|l),
where w(t) is as in (3.3).

Suppose instead that ANI(X) # BNI(X) and let A” = (A\ B)NI(X)
and B” = (B\ A) N I(X). Choose ny as in Lemma 3.5. For each a € A",
dist(a, L(X)) = d(a, z;) for some z; € L(X). Hence f;(4) < d(a,z) < dn,
and

dist(a, B) < d(a, z;) + dist(z;, B) < dyn, + fi(B)
< 2dn, +[£i(B) = fi(A)| < 2dn, + [|F(B) = F(A)]|oo-
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Similarly dist(b, A) < 2d,,, + || F(B) — F(A)|| for all b € B”. It follows that
(3.11)  D(A, B) = maxdist(a, B) V max dist(b, A)
acA” beB"”

< 2dn, + [|[F(B) = F(A)l|
< 2wo(Yny) + 1F'(B) — F(A)[lo

A—1
< 20 (35 1lB) — )] ) + IF(E) - FLA)
S w([F(B) = F(A)loo)-
We used Lemma 3.5 in the penultimate step. =

3.12. REMARK. The construction in the preceding proof was inspired
by a paper of Reiter and Reiter [34], who gave an explicit form for the
embedding in the theorem of Pelczynski in the setting of compact metric
spaces with a single nonisolated point.

Proof of Theorem 2.8(b),(c). Assume that r* < 1 and choose 7 < p < 1.
If 7+ < 1/2 choose r™ < ¢ < 1/2. Then there exists ny so that d,1 < od,
for all n > ng. Let Z = {x1,...,2,,} and let

— mi X.z,).
€z ;}Llé%gap( ) Tn)

The Lipschitz/Hélder constant for F~! will depend on the parameters ns
and €.

3.13. LEMMA. For all n > ng, gap(X,z,) > (1 — 0)d,.
Proof. For n € N,
gap(X, zy,) = inf{d(z;, x,) : i #n}
> (di —dp) N+ A (dp—1 — dp) Ninf{d, — d; : i > n}
> (dn—l - dn) A (dn - dn—i—l)-
If n > ng then gap(X,z,) > (1 — 0)(dn—1 ANdyn) = (1 — 0)d,, as desired. =

Returning to the proof of Theorem 2.8, we consider two cases according
to the value of p.

CASE 1. If p<1/2, choose A=1/p > 2. Then ,, = min{ " gap(X, z;) :
i=1,...,n}. For n < ny we have the trivial estimate
no—1

3
R

—d,.
— diam X

For 1 <i < no < n we estimate

no—1 no—1

0 €z o > 0 €z

0 gap( )xl) = an n2 = Jiam X
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while for ny < i < n we use Lemma 3.13 to estimate
"' gap(X, ;) > (1 - 0)0" i > (1 — 0)dy.

In all cases we obtain

Yn > min{l -0, %}dn
and deduce (3.4) with

1 diamX
wo(t) = maX{TQ, m}t
CASE 2. If 1/2 < p < 1, choose A = 3 and

(3.14) a =log(1/p)/log 3.

Then v¢ = min{e" ‘gap(X,z;)® : i = 1,...,n}. For n < ny we have the
trivial estimate )
S 0"ey
T 2 diam X

As in the preceding case we deduce that

" gap(X, ;)" > {(dlamX> toleydn,  1<i<ma<n,
YT (diam X)) (1 — 0)%dy,, ng < i< n.
Hence

(- ghley
Tn = mm{ (diam X )1’ diam X [ "

o (3.4) holds with
diam X)'~*  diam X
wo(t) = max{( — )a , iainl = }ta
(1-0) 0" TEy
Using Theorem 3.2, we conclude that F~! is a-Holder continuous if 1/2 <

0 < 1, where « is the value in (3.14), and that F~! is Lipschitz continuous
ifo<1/2. =

3.15. REMARK. We do not know whether there exists a space X, with
L(X) infinite, so that K(X) admits a bi-Lipschitz, or Lipschitz and co-
Hélder, embedding in a finite-dimensional Euclidean space.

4. Proof of Theorem 2.15

4.1. Iterated function systems and iterated function compleres. An it-
erated function system (or IFS) is a finite collection of contractions of a
complete metric space. The basic theory of IFS’s can be found in standard
textbooks of fractal geometry, e.g., [11], [30], [10] or [23]. We briefly recall
the basic theory.
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Associated to each IFS F on a complete metric space X is a unique
nonempty compact set A = A(F) € K(X), called the attractor of F, char-
acterized by the relation A = F(A), where

(4.2) F(S):= ] £(9).
feF

Indeed, the map F' defined in (4.2) is a contraction of K(X), and the attrac-
tor A is the unique fixed point for F. It is easy to see that A = (\*°_, F(™)(T)
for any T € K(X) with F(T) C T, where F(™) denotes the m-fold compo-
sition of F'.

Let M be the cardinality of . For m € N, we let Wi} = {1,...,M}"™
be the space of words of length m on M letters. We abbreviate Wy, := W]&
For m = 0 we set WY, = {0}. We let W}, = ,,>o Wi be the space
of all finite words, and X3y = {1,..., M} be the space of infinite words
on M letters (commonly referred to as the shift space or symbol space).
We denote elements of W3}, m € N, and X, by concatenation of letters,

ie, w = w-wy, € Wi orw =wwy--- € Yy. For v € Wy, and
w € Wy, UXy we denote by vw the word obtained by adjoining v = vy - - - vy,
to the left of w = wywy---, ie., vw = vy ---vpwiws---. Conversely, for

w € Xy and m € N we denote by [w],, the word in W™ consisting of the
first m letters of w; thus w = [w],w’ for some w' € Xy

For each IFS F = {fi,..., far} there is a canonical surjection 7x : Xy —
A(F) given by

{rr(wiwg )} = () fun o0 fuon (1),
m=1

where T is any element of K (X) with F'(T') C T. We write fy, = fuw, 0 -0 fu,,
for any w = w1 - - - wy,, € Wy,
We now introduce a generalization of the notion of IFS.

4.3. DEFINITION. Let Fi,...,F, be a finite collection of iterated func-
tion systems on a complete metric space X. For v = vjug--- € X, let
Fo = (Fuys Fuyy - --). The collection of sequences {F,}yey, is called an iter-
ated function complex (of rank r), or IFC.

Associated to each rank r IFC {F,},ex, is a family {A"},ecx, of non-
empty compact subsets of X, the attractor of {F,}, characterized by the
identity

[o¢]
(4.4) A= () Fyo--0F, (T)
m=1
for any T such that F;(T) C T for all i. Here F;, i = 1,...,r, denotes the set

function for F; defined in (4.2). Indeed, the set functions Fy, ..., F, form an
IF'S on K (X) whose attractor A € K (K (X)) is precisely the collection { A”}.
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Observe that the set A” defined by (4.4) with 7 = (i,4, ...) coincides with
the attractor A° for the IFS F;.

4.5. The Laakso graph. In this subsection, we describe the Laakso graph
G in further detail, first as a quotient of the product space [0,1] x X, and
then as the attractor of a self-similar IF'S.

We denote by Iy = [0,1] the unit interval in R, which we view as the
attractor for the IFS H = {hq, ho, h3, hy}, where

The symbolic coding map 7y : Xy — Iy corresponds to the representation
of elements of Iy = [0, 1] in base four. We let C' be the 1/4 Cantor set, i.e.,
the invariant set for the IFS {hi, hy}. For m € N, let
gm=1_1
(4.7) Om:= |J (4j+1)/4™ (4 +3)/4™).
§=0

The union of the open sets O,, is the complement of C in Ij.

4.8. DEFINITION. The Laakso graph is the space G = Iy x Yo/~ where
(t,v) ~ (t,v") if and only if t € In \ U{Om : vm # v, }.

4.9. EXAMPLE. Let 1 =111--- and 2 = 222---. Then (t,1) ~ (¢t,2) if
and only if t € C.

We denote the equivalence class of (¢,v) in G by [t,v], and equip G with
the canonical quotient path metric, defined as follows:

k
d([t, o), [t',0]) = inf Y [t(j) = t(j — 1),
j=1

where the infimum is taken over all finite sequences

(t,v) = (£(0),v(0)), (¢(1), v(1)), ..., (t(k), v(k)) = (¢, ")
satisfying [t(j),v(j — 1)] = [t(j),v(j)] for all j = 1,...,k. (Compare the
“wormhole metrics” of [25] or [26].) Then G is a compact geodesic doubling
metric space. The maps v, : Ip — G, v € Xy, given by ~,(t) = [t,v] are
isometric embeddings, defining an uncountable family of geodesic segments
in G joining the two endpoints.

The space G may be viewed as the attractor for a self-similar IFS of

cardinality six. To simplify the description, we use an alternate notation for
the alphabet. Thus let

U=1{1,(2,1),(2,2),(3,1),(3,2),4}.

The spaces U™, m € N, U* and Xy of words of length m, finite words, and
infinite words are defined in the usual manner.
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To each u € U there corresponds a set S, C G which is the image
of G under a contractive similarity g, with scale factor 1/4. These first-
order similarity pieces are indicated in Figure 1. Thus G is the attractor
for the IFS G = {g, : u € U} with symbol space Y. As usual, we write
Ju = Guy O+ 0 Gu,, and Sy, = g, (G) for u = uy - - uyy, € U™.

The following diagram commutes:

24 X 22 TFH—de> IO X 22
! !
(4.10) > s G
! !
24 7l——H> IO

Here the maps from Yy x Y5 to Xy and from Xy to X4 are given, in each
coordinate, by the following maps from Wy x W5 to U and from U to Wj:

(1,1),(1,2) - 1 — 1
(271) - (271) \

2
—~ 22 7

2,2
(4.11) (2,2)
(3’ 1) - (3’ 1) \
32 -2
(47 ]‘)’(4’ 2) - 4 - 4
The map from Iy x X5 to G in (4.10) is the quotient map (¢,v) — [t, v], while
the map from G to I is the projection [t,v] — t. Finally, w3 : X4y — Iy and
g : XYy — G denote the symbolic coding maps for the IFS’s H and G.
Sketch of the proof of Theorem 2.15. In Section 4.27, we will construct

a specific rank two iterated function complex {F"},cx, in the plane. The
essential feature of the attractor {A"},ex, for this IFC is the equivalence

(4.12) (t,v) ~ (t',0) & AV =AYV,
which guarantees that the map @ : G — K(Ip) given by
D([t, v]) = Af
is well defined. We will prove that
(4.13) & is 33-bi-Lipschitz,
and
(4.14) Do, Iy — K(Ip) is an isometry for each v € 5.

We now prove Proposition 2.14. Compare the proof in [26, §2.5].
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Proof of Proposition 2.14. Let (Y,d') be a round ball space with round-
ness function (), and suppose that F' : G — Y is L-bi-Lipschitz. For each
z,y € G, let L(z,y) := d'(F(x),F(y))/d(x,y) be the Lipschitz constant of
f|z7y. Let a = 51N 5(2’1) N 5(2’2), b= 5(371) N 5(372) NSy, c= 5(271) N 5(371)
and d = Sz9) N S3,9). Observe that {c,d} C B(a,1/4) U B(b,1/4) and
d(c,d) =1/2. Then d'(F(c), F(d)) > L=2d'(F(a), F(b)). From the definition
of round ball spaces, we conclude that

max{L(a, c), L(a,d), L(c,b), L(d,b)} > (14 6(L™2))L(a, b).

Each pair of points on the left hand side coincides with the endpoints of one
of the first-order similarity pieces Sy, v € U. Thus the endpoints x and ¥y of
one of these pieces satisfy L(x,y) > (1 +6(L~2))L(a,b).

The same argument can be applied to points ay, = Sy,1 M Sy, (2,1) N Su,3,1)
and by, = S, (2,2) N Sy,(3,2) N Su,a for any w € U™ and m € N. For each such u
and m there exists a similarity piece of order m + 1 with endpoints z, and
Yu 50 that L(xy, yu) > (14 6(L72))L(ay, by).

Note that 32,7 1 >=, (1 4ym (bu — au) = 1. Hence L(ay,bu) > L(0,1) for
some u € {1,4}™, and so

L(:L’u/, yu’) > (1 + 5(L72))L(07 1)
for the endpoints x,/, 3,/ of some similarity piece S,/ of G. By self-similarity,
S, contains a further similarity piece .S,/,» with endpoints .., 3,/ SO that
L(xu/v/, yu/v’) > (1 + (5(L_2))2L(0, 1).
Continuing in this fashion, we eventually contradict the L-bi-Lipschitz char-
acter of F. m

4.15. A lemma on geodesic segments in K (Iy). The following lemma
provides a sufficient condition for the vertical slices of a compact set A C
Iy x Iy to sweep out a geodesic in K (Ip).

We denote by Qo = Iy x Iy the unit square in R?. For a compact set
A C R? we write A = {z : (t,z) € A} for the vertical slice of A with
abscissa t. Finally, for p = (¢, z) € Qo, we write

Xp)={p={,2")eQo:[t' —t| > — |}

Then X(p) is the union of two antipodal sectors with opening angle 7/4
centered at p.

4.16. LEMMA. For a compact set A C Qq, the map t — Ay is an iso-
metric embedding of Iy in K (Ip) provided

(4.17) te Ay C[0,t] Vtely
and
(4.18) Ac | X(tx) Vel

TEA:
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Condition (4.17) says that A lies in the triangle
(4.19) To={(t,x):0<z <t <1}

and contains the diagonal {(¢,¢) : 0 < t < 1}, while condition (4.18) says
that whenever an open vertical segment J is in the complement of A, then
the open square with diagonal J is also in the complement of A.

Proof of Lemma 4.16. Let 0 < ¢ <t < 1. Condition (4.17) implies that
(4.20) D(Ay, Ay) > dist(t, Ay) > |t —t'].
On the other hand, condition (4.18) implies that {t} x A; C U:p'eAt, X (2, 1)

and the corresponding statement with the roles of (¢,z) and (t', z) reversed.
Consequently,

(4.21) D(Ay, Ap) < [t —1).
Inequalities (4.20) and (4.21) show that ¢ — A; is an isometric embedding. =

4.22. REMARK. Inequality (4.20) can be generalized as follows: if A and
A’ are compact sets in Qq satisfying (4.17) and (4.18), then D(A;, A}) >
|t —t'| for all ¢,t' € Iy. The proof is the same.

4.23. Two planar iterated function systems. We begin by defining two
planar IFS’s corresponding to the digits in the alphabet Whs.

The 4-adic subsquares of Qo are the sixteen squares [(i — 1)/4,i/4] X
[(.7 - 1)/47.7/4]a i,j=1,2,34.

The IFS Fi consists of nine planar contractive maps. Eight of these maps
are contractive similarities, with scale factor 1/4, while the ninth is a degen-
erate affine contraction, with scale factor 1/4 in one direction and zero in
the other direction. These nine contractions are indicated pictorially in the
left part of Figure 2; they are the eight contractive maps of R? which send
the ordered triple A, B,C of vertices of )y to each of the ordered triples
a, b, ¢ of vertices of the specified 4-adic subsquares of Qq, together with the
degenerate map sending A and the pair B, C' to the endpoints a and b of the
line segment labelled “8”. We label these maps f{, j = 1,...,9, as indicated
in the left part of Figure 2.

The IFS F; consists of ten contractive similarities, each with scale factor
1/4. These similarities f3, j = 1,...,10, are indicated pictorially in the right
part of Figure 2.

4.24. REMARK. Observe that JF contains two contractions fj and f3§
mapping into a common subsquare. However, both F; and F satisfy the
open set condition [11, §9.2]|.

4.25. REMARK. Note that the maps in the first and last columns co-
incide: f{ = fJ for j = 1,4,7 and i = £30. In the middle two columns,
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B/ B/
4 . 4.
b 7a b°7a

3 ¢|p 3::!:

bcﬁa b 6 /

2 b 2cb

A basa a 8b 39C bCSabcg a a loc
1cb Cb A lcb 8ﬂn bi

Fig. 2. Similarities comprising F (left), F> (right)

the set of maps is not the same: {f2, £} # {2, f5, f3} and {f3, f9, 31 #
{15,135, 13}

4.26. REMARK. Figure 3 shows the attractors A’ for the IFS’s F;, i =
1,2. Tt is clear that conditions (4.17) and (4.18) hold for these attractors. It
follows from the previous remark and the self-similarity of the constructions
that Al(m), = A%(m); if and only if t € I \ UjL, O; for each m € N, where
A'(m) is the image of Ty under m iterates of F’, i = 1,2. Hence A} = A? if
and only if ¢ € C, as asserted in (4.12) (see Example 4.9).

4.27. A planar iterated function complexr. We now consider the rank two
IFC {F,}ves, defined by F; and Fy. To aid the reader, we describe the
structure of the attractor of this IFC in greater detail. Given an infinite
word v = vivg -+ € Xy, let Wi = Wy, x---x W, and f! = fiito---0 fim
for all w € W, and let

(4.28) FS) = [J £(S).
weWinr

The attractor for {F,}yex, is the family {A"},ex, of compact sets, where
AY = °_, F™(Ty). When v = 1, AY coincides with the attractor A® in
the left part of Figure 3; when v = 2, AY coincides with A2 in the right

Fig. 3. Attractors A' and A?
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part of Figure 3. For any v € Y5, AY is the Hausdorff limit of the sequence
AY(m) = Fy 0---0F, (Tp).
We now extend Remark 4.26 to the full IFC.

4.29. PROPOSITION. For each v € X9, AV satisfies (4.17) and (4.18).
Furthermore, (4.12) holds.

Proof. Since F;(Qo) C Tp and F; D {ff 17 =1,2,3,4} for each i = 1,2,
(4.17) holds. To prove (4.18), let Uy, Us be the open sets shaded in the left
and right parts of Figure 2 respectively. Then

A%(m) =int(Q)\ |J |J fr(U)

i=1 weW;

for each m, where int(Qg) denotes the interior of Qo and S denotes the
closure of a set S. It follows that (4.18) is satisfied for each AY(m), m € N,
and hence (4.18) is satisfied for AY =(,, A%(m).

To see why (4.12) holds, observe that Remark 4.25 guarantees that

AV(m); = AV (m); & tely) U 0;
j:l,...,m:vj;év;.
for all v,v" € Xy and m € N, where O,, is the open set defined in (4.7).

Then (4.12) follows by intersecting these conditions over all m and using the
definition of the equivalence relation on Iy x Y5 (see Definition 4.8). u

4.30. COROLLARY. The map & : G — K(ly) given by @([t,v]) = A} is
well defined.

4.31. Subsets and supersets of the sets Ay. In this section we prove two
technical lemmas describing certain distinguished subsets and supersets of
the vertical slices AY. These lemmas will play a key role in the proof of
Theorem 2.15 by yielding lower bounds for the Hausdorff distance between
slices A} and Af,/.

We begin by observing the common elements of the two parts of Figure 2.
Figure 4 shows a set of line segments I C ()¢9 which are common to these
two figures. Explicitly,

7 8
r=JAur = A urw),
j=1 j=1

where A := {(¢t,t) : t € Iy} denotes the principal diagonal of Iy. Thus
I' C F;(A) for i = 1,2, whence I' C A” for any v € Y. In fact,

(4.32) FMI)c A
for all m € N, where F" is the set function defined in (4.28).
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Fig. 4. The set I’

Recall our notation [u],, for the element of U™ consisting of the first m
letters of u € Y. For each m € N, the projection of Sj,;,, C G to Iy (via
the map in (4.10)) is an interval [ay,m, by m] With
(4.33) bu,m — Qum = diam S[u]m =47,

If [t,v] = mg(u), then

(4.34) g+ W) 71 o oy g W) o

4 4
where i : U — Wy is as in (4.11).
In our first lemma, we describe some subsets of the slices A7. Let h;,
i=1,2,3,4, be the maps from (4.6).

4.35. LEMMA. Let u € Xy with mg(u) = [t,v] and let m € N.
(i) If ums1 = (3,2), then
AU D) hz(u1) o h;
where s = (aum+3 4~ m—t) (
(ii) If umy1 = (2,2), then
AV D higuy) 0+ 0 hiu,) © ha (L),
where s = (t — aym — - 47™)/(3-47™) andf:FUfll(F)Ufllo
DU

To each u € U, we associate a collection C(u) of elements of F' U F? as
follows:

c@) = {fll}v c(2,1)= {f127f15}’ C(3,1) = {fig’fl(i’fls}a
C(2,2) = {fQQvfﬁr)vaS}v C(3,2) = {f§7f267f29}7 c4) = {f§7f277 210}
Observe that each collection C(u) contains precisely one diagonal contrac-
tion, namely Hj(,) := hj) X i) (By a diagonal contraction we mean one

of the maps f},i=1,2,3,4.)

ohi(I%),

()
/(3-47M).
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Proof of Lemma 4.35. Let uw € Xy be as in the statement of the lemma.
From (4.32), we deduce that

A" D Hz(ul) 0---0 Hi(um)(F’L)m+1(F))‘
If U1 = (3,2), then
D [Hz(ul i(Um,) f ( )]t = z(u1) 0---0 hz(um) o hl(FS)
where s = (aym +2-47™ —1) /(L. 47™). (Note that f9(t,x) = (hs(1 —t),
hi(1—z)).)
Similarly, if uy,+1 = (2,2), then
A} D [Hiuyy 0+ 0 Hygyy © fS(I)]e = Riguy) © ++ © higuyy © ha(I%),
where s = (t—ayum—73 L= m)/(i-él_m). (Note that f5(t,z) = (ha(t), h1(z)).) =
Next, we give some supersets of the slices A}.
4.36. LEMMA. Let u € Xy with mg(u) = [t,v] and let m € N.
(i) If ums1 = (3,1), then A} C [0, Gy m) [aum + 4_m,t].
(ii) If ums1 = (2,1), then A} C [0, aym] [t 4 m,t].
Proof. Let m € N. By construction,
AV = F"(AY) C EM(Tp).
If upms1 € {(3,1),(2,1)}, then v,,41 =1 and
A" C E"(F1(Ty)) C F*"(To \ Uh),

where U; denotes the open set from the proof of Proposition 4.29. Separating
the diagonal and nondiagonal elements gives

AV C Iy x [O,a%m] U Hz(ul) 0--:0 Hz( m)(TO \ Ul)

whence

A:t] C [07 a%m] U [Hz(ul) 0---0 Hi(um)<T0 \ Ul)]t
= [07 au,m] U hz(ul) ©---0 hz(um)((TO \ U1)5)7

where s = (t — aym)/47". If upmy1 = (2,1), then by (4.34) we have 1/4 <
s <1/2 and

AY C [0, um] U hyguy) © -+ 0 hygu,y ([s — 358]) = 10, aum] U [t — 5 -47™,t];
if Umt1 = (3,1), then by (4.34) we have % <s< % and
A9 € 0. ] Uiy -+ iy ([315]) = [0 s U [ + - 477,

Proof of Theorem 2.15. By Corollary 4.30 the map ¢ : G — K(I)
given by &([t,v]) = A} is well defined. The assertion in (4.14) follows from
Proposition 4.29. To prove (4.13) we will show that

(4.37) D(A?, AY) < K1d(p, ')
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with K7 =4, and
(4.38) d(p,p') < KaD(AY, AY)
with Ky = 33, for all points p = [¢t,v] and p/ = [/,¢'] in G.

4.39. REMARK. We do not know the best bi-Lipschitz constants K; and
K for the embedding ®. Let p = [1/2,1v] and p’ = [1/2,2¢] for arbitrary
v,v" € Xy. Then

11 11
{12} C () /QC[Z 3, {0.1.3) CoW) A2/2C[ 3l
so d(p,p’) = 1/2 and D(P(p),®(p') = 1/4, which shows that K cannot be
smaller than 2.

Returning to the proof of the theorem, let p = [t,v] and p’ = [t/,'] be
distinct elements of G. Choose a word [ul, € U™ of maximal length m so
that p,p" € Sy),,- By changing the representatives of p and p’ if necessary,
we may assume that v; = v; for j =1,...,m. We begin by noting that

(4.40) It — | < D(AY, AY) < diam St =47
see Remark 4.22 for the lower bound in (4.40).

There exist indices i,i" € U, i # 7', so that p € Sy),,; and p’ € Spy,,.i-
We distinguish several cases according to the values of ¢ and 7’.

CASE 1. Suppose that {i,i'} = {(2,1),(3,2)} or {i,7'} = {(2,2),(3,1)}.
Then
(4.41) 14 <d(pp) <i-am
By (4.40) we see that (4.37) holds with K; = 4.

If [t —¢/| > £ -47™, then (4.38) holds with Ky = 4 by (4.40) and (4.41).
Suppose that [t —t/| < % A7 Let cym = (Qum +bum)/2 = aym + % 4m,
Then |t — | = |t — cym| + |cum — t'| and

D(A}, AY) = D(A2, AL ) = DAY, AL, ) = D(AY, L AY)

Cu,m’?

> D(A7, . AL, ) = leum = t] = [cum — '

=24 —ft—t|> L4,
where we used Lemma 4.16 and Remark 4.39 in the second and third lines, re-
spectively. Combining this with (4.40), we see that (4.38) holds with
Ky =4.
We divide the remaining possibilities into two cases:
Case 2. {i,/'}N{1,4} #0 or {7,i} = {(2,1),(3,1)} or
{1} ={(2,2),(3,2)}.

CasE 3. (a) {i,7'} = {(3,1),(3,2)} or (b) {i,i'} = {(2,1),(2,2)}.
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In Case 2 we may assume that ¢ < ¢’ and choose
t” € {au,m + % : 4—m7 Qu,m + % : 4—m7 Qu,m + % ’ 4—m}

so that ¢ < ¢” < ¢'. In Case 3(a) we choose t" = ay m + % -47™_ while in
Case 3(b) we choose t" = aym + % -47™ In all cases, for a suitable choice
of p” = [t",v"], we have (t",v) ~ (t",v") ~ (t",v") and
(4.42)  d(p,p)) = d(p,p") +d(p",p)
= [t —t"| +|t" — | = D(A}, Al) + D(Ap/, AY)
> D(A}, AY)
by (4.14) and Lemma 4.16. Thus (4.37) holds with K; = 1.
The proof of (4.38) splits according to the various cases.
In Case 2, since t < t” < t', we deduce from (4.42) and (4.40) that
d(p,p') = |t —t'| < D(AY, A%). Thus (4.38) holds with K5 = 1 in this case.
In Case 3(a), we have aym + % AT <t <t = aym + % .4~ We
may assume that ¢ = (3,1) and i = (3,2). By Lemma 4.35(i), A;’,, contains
a point z’ such that

Gy + 15 - 4™ <@ <max{aym + g4 - 547
Lemma 4.36(i) guarantees that A} C [0, aym| U [auym + i -4_m,t}. Hence
D(Af,Af,/) > min {x’ — Qym, Qum + }1 S4Tm :C’}
>min{& 47" — '} > 2" - 1)
since ' —t/ < i -4=™_ Thus
Alp, 1) = 20—t — £ < 2" — )+ | — 1] < 9D(AY, AY)
by the first two equalities of (4.42) and by (4.40). We obtain (4.38) with
Ky =9.
In Case 3(b), we have " = aym + }1 AT < < aym + % 4™, We
may assume that ¢ = (2,1) and i’ = (2,2). If t — ¢ < 12(¢ — ¢"), then
DAY, AY) = [t =] = g5t = ")
Otherwise, choose an integer k > 1 so that
1
t/, _ 4 m < t < t” - 4—
+ 4k + 4k—1
By Lemma 4.35(ii), AY contains a point 2’ such that

1 _ 1 3 _
aum+4k+1 4m§x/§t/ ( +W>4 m
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Next, Lemma 4.36(ii) guarantees that AY C [0, @ym) U [t —1-47™,¢]. Hence

! 1
D(AY, Ay ) > min{x/ I R L x/}

4
) 1 _ 3 _ ,

. 1 — 3 _ T, "

In either case, we find D(AY, AY) > (¢’ — ¢"), whence
dlp,p) =t 4+t —2t" <2(t' —t") + |t/ —t| < 33D(AY, AY)

by the first two equalities of (4.42) and (4.40). We obtain (4.38) with
Ko=33. =

5. Questions and remarks
QUESTION 1. Does K ([0,1]) admit a bi-Lipschitz embedding in L!?

The map F : K([0,1]) — L*([0,1]) given by F(A) = dist(x, A) is a
1-Lipschitz embedding. Its inverse can be no better than 1/2-Hélder, as can
be seen by considering the distance from an arbitrary point A € K(X) to
B =[0,1]. Is F~! 1/2-Hslder continuous?

QUESTION 2. Is there a constant L. < oo so that every series-parallel
graph of diameter one admits an L-bi-Lipschitz embedding in K ([0, 1])?

As previously observed, Gupta et al. [18] have recently shown that every
series-parallel graph admits a 14-bi-Lipschitz embedding in L'. Bi-Lipschitz
embeddings of graphs and/or finite metric spaces in “good” targets play an
increasingly important role in algorithmic problems in computer science and
sorting problems (see [18] for a more complete list of applications). It would
be interesting to know whether hyperspaces can play the role of the target
in embedding results of this type.

QUESTION 3. For which spaces X does K(X) admit a bi-Lipschitz em-
bedding into a uniformly convex Banach space? into a finite-dimensional
FEuclidean space?

Taking into account the principal theorems of this paper, it is natural to
begin an attack on the first part of Question 3 by considering nonuniformly
disconnected subsets of [0, 1], for example, the “fat” Cantor sets of [6]. When
do the hyperspaces of such sets admit bi-Lipschitz embeddings in uniformly
convex Banach spaces? For the second part of Question 3, see Remark 3.15.
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Other classes of hyperspaces. For a fixed closed set C' in a metric space
X, denote by K(X,C) the hyperspace of all closed subsets A C X with
D(A,C) < oo. Thus K(X,{zo}) (for fixed zyp € X) is the hyperspace of
all closed and bounded sets in X, which coincides with K(X) when X is a
proper (or Heine—Borel) metric space. The metric structure of hyperspaces
of the type K(X,C) is considered by Kovalev and the author in [24]. Here
is a sample result from that study related to the topic of this paper: For any
connected metric space X and unbounded closed set C' C X, the hyperspace
K(X,C) contains an isometric copy of (¥ = {z = (z3) € £* : z > 0
for all £} and hence of every bounded separable metric space. Furthermore,
K(X,C) contains a v/2-bi-Lipschitz embedded copy of every separable metric
space.
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