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The reduction of quantum invariants of 4-thickenings

by

Ivelina Bobtcheva (Ancona) and Frank Quinn (Blacksburg, VA)

Abstract. We study the sensibility of an invariant of 2-dimensional CW complexes
in the case when it comes as a reduction (through a change of ring) of a modular invariant
of 4-dimensional thickenings of such complexes: it is shown that if the Euler characteristic
of the 2-complex is greater than or equal to 1, its invariant depends only on homology.
To see what is happening when the Euler characteristic is smaller than 1, we use ideas
of Kerler and construct, from any tortile category, an invariant of 4-thickenings which, if
the category is modular, is a normalization of the Reshetikhin–Turaev invariant, and if
the category is symmetric, depends only on the spine and the second Whitney number of
the thickening. Then we show that the so(3) quantum invariant at a 5th root of unity has
its reduction, and this reduction is able to distinguish complexes with the same homology
groups when the Euler characteristic is smaller than 1.

1. Introduction

1.1. The work of Kerler [10] and Turaev [21] has shown that it is natu-
ral to look at the quantum invariants not just as invariants of 3-manifolds,
but rather as invariants of 4-dimensional 2-handlebodies bounded by 3-
manifolds, or in other words, 4-thickenings of 2-complexes. The question
we study here: how sensitive is an invariant of 2-complexes which has a
“lift”, i.e. can be obtained through a change of ring from an invariant of 4-
dimensional thickenings, was inspired by the long standing Andrews–Curtis
conjecture in the topology of 2-complexes.

The (generalized) Andrews–Curtis conjecture [1] asserts that any simple
homotopy equivalence between two 2-complexes P and P ′ can be obtained
through a 2-deformation, which consists in changing the attaching maps of
the 2-cells by homotopy and expansions and collapses of disks of dimension
at most two (1). A 2-deformation transforming P into P ′ will be denoted
by σ : P  P ′ and it induces an isomorphism on homology (resp. coho-

2000 Mathematics Subject Classification: Primary 57M20, 57M27; Secondary 57R56.

(1) In part of the literature, for example [8], this is actually called a 3-deformation,
since it can be achieved through expansions and collapses of disks of dimension at most
three.

[21]
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mology) with R-coefficients denoted by σ∗ : H∗(P,R) → H∗(P
′,R) (resp.

σ∗ : H∗(P ′,R) → H∗(P,R)). The AC-conjecture is expected to be false and
different proposals for counterexamples have been made, but there seem to
be a lack of tools for actually detecting them as such. An extensive reference
on this problem is [8].

To any 2-dimensional CW complex P , there corresponds a presentation
P̂ = 〈x1, . . . , xn | R1, . . . , Rm〉 of its fundamental group, determined by a
choice of a spanning tree T in the one-skeleton of the complex and orienta-
tion of the 1-cells not in T . Theorem 2.4 in [8] shows that the correspondence

P 7→ P̂ induces a bijection between the 2-deformation types of connected
2-dimensional CW complexes and the equivalence classes of finite presenta-
tions under the following moves:

(i) the places of R1 and Rs are interchanged;
(ii) R1 is replaced with gR1g

−1, where g is any element in the group,
or the reverse of such a move;

(iii) R1 is replaced with R−1
1 ;

(iv) R1 is replaced with R1R2;
(v) adding an additional generator y and an additional relator yR,

where R is any word in the xi’s, or the reverse of such a move.

We will refer to these six operations as AC-moves, and a sequence σ of AC-
moves which transforms P̂ into P̂ ′ will be denoted by σ : P̂  P̂ ′ and called
a 2-deformation of P̂ . We will compose 2-deformations on the left. The in-
verse P̂ 7→ P of the bijection above is obtained by taking the one-point union
of n circles and attaching to them m 2-cells as described by the relations.
We will denote by [P ] (resp. [P̂ ]) the 2-equivalence class of P (resp. P̂ ).

A decorated 2-complex (P,w) is a 2-dimensional complex P and a choice
of a cohomology class w ∈ H2(P,Z/2). Then a 2-deformation σ : (P,w)  
(P ′, w′) of decorated complexes is given by a 2-deformation σ : P  P ′ such
that σ∗(w′) = w. The equivalence class of (P,w) under these deformations
will be denoted by [P,w].

1.2. What makes the AC-phenomenon difficult to detect is that it disap-
pears after taking one-point union with spheres. In fact, if two 2-complexes
X and Y are simple homotopy equivalent, then for some k there exists a

2-deformation X∨
∨k S2

 Y ∨
∨k S2 (see (40) in [8]). Therefore, an invari-

ant Z2
K of 2-complexes, which takes values in a commutative ring K, may

have some chance of detecting a counterexample to the AC-conjecture if the
following two conditions are satisfied:

• it is multiplicative with respect to one-point union, i.e. Z2
K(X ∨ Y ) =

Z2
K(X)Z2

K(Y );

• Z2
K(S2) is zero or a zero divisor in K.
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A Z/p-valued invariant, called QZ/p, with this property was introduced in
[18] and studied in [3]. Its input is a finite semisimple symmetric monoidal
category, which is taken to be one of the families described by Gelfand–
Kazhdan in [6], obtained as subquotients of mod p representations of simple
Lie algebras. An extensive numerical study ofQZ/p, described in [23], showed
that all numerically generated examples come from a representation of the
free group on the generators into a subgroup of GLN (Z/p) for some N , and
in this representation every word has order p. Consequently, it was shown
in [16] that any invariant possessing this property is not sensitive to the
AC-phenomenon. Such a property is obviously very difficult to check and
this criterion has a limited use for invariants taking values in finite fields.
The present work offers another criterion concerning the class of invariants
of 2-complexes which are reductions of invariants of 4-thickenings of such
complexes. Surprisingly it is easy to see that many of the known invari-
ants of 2-complexes are such reductions: all (except maybe one) numerically
generated examples of QZ/p, but also many of the HKR-type invariants con-
structed in [4] from triangular non-cosemisimple algebras.

1.3. A 4-thickening M of a 2-dimensional CW complex P , denoted by
(M,P ), is an orientable 4-dimensional manifold together with a decompo-
sition as a handlebody with 0-, 1- and 2-handles and an identification (as
CW complexes) of the spine of the handlebody structure with P through
an embedding ιM,P : P → M . In particular, ιM,P induces isomorphism on
homology. We will restrict ourselves to 4-thickenings with a single 0-handle.
A 2-deformation of such 4-thickenings is given by a sequence of the following
handle moves:

(a) creation or cancellation of a canceling 1-2 handle pair (2);

(b) changing the attaching maps of the 1- and 2-handles by isotopy.

Observe that these moves induce a 2-deformation on the spine. Moreover we
have a well defined functor from the category of 4-thickenings/2-deforma-
tions into the category of decorated 2-complexes/2-deformations given by
(M,P ) → (P, ι∗M,P (w2(M))), where w2(M) is the second Whitney class
of M .

The word 4-thickening is supposed to stress not only the fact that a
spine has been fixed, but also that we have weaker equivalence relations
on the objects than diffeomorphisms: while changing the attaching map of
a 2-handle by isotopy is equivalent to the creation and cancellation of 2-3
handle pairs, isotoping the attaching map of a 3-handle is not (known to

(2) A pair of an (n + 1)-handle and an n-handle is called a canceling pair if the
attaching sphere of the (n+1)-handle intersects the belt sphere of the n-handle in a single
point.
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be) a 2-deformation. In this sense there will be some abuse of notation. For
example we will use the notation ±CP 2 to denote the 4-thickenings of the
sphere (not the smooth 4-manifolds) obtained by attaching a 2-handle of
framing +1 (resp. −1) to B4.

1.4. Let R,K be commutative rings and ϕ : K → R be a ring homo-
morphism. Let also Z4

K be a K-valued invariant of 4-thickenings, satisfying
the following conditions:

• Z4
K is multiplicative with respect to (boundary) connected sum, i.e.

Z4
K(M1 #∂ M2) = Z4

K(M1)Z
4
K(M2);

• Z2
R = Z4

K ⊗ϕ R depends only on the spine of the 4-thickening.

Then Z2
R is multiplicative with respect to one-point union of 2-complexes,

and we will call Z2
R an R-reduction of Z4

K. Suppose also that Z4
K can be

normalized to a K′-valued invariant Z∂
K′ of the boundary for some field

extension K′ of K. Under these assumptions, Theorem 2.11 states that when
the Euler characteristic of P is greater than or equal to 1, Z2

R(P ) depends
only on the homology of P (3). The precise definitions and the proof are
given in Section 2.

Section 3 puts together the results of [10] and [2] to show that any
finite semisimple tortile category C over K leads to an invariant Z4

K of 4-
thickenings under 2-deformations. Actually in [10] Kerler defines and proves
the invariance of Z4

K when the category is modular, and it is shown in [2] that
the modularity condition is not necessary to have invariance under 2-handle
slides. In the modular case Z4

K can be normalized to the Reshetikhin–Turaev
invariant of the boundary. If instead the category is symmetric, we show
that Z4

K depends only on the spine and the second Whitney class of the
4-thickening, and if in addition the twist morphisms in C are the identities,
Z4

K depends only on the spine, i.e. defines an invariant of 2-complexes.

In Section 4 we study the reduction in the case of so(3)-type tortile cat-
egories defined over the ring Kp = Z[v] where v is a pth root of unity. The
smallest example of such a category with p = 5 is explicitly presented in
Section 5. In this case, Z4

Kp
is a normalization of the Kirby–Melvin so(3)-

invariant [13]. Moreover, through the ring homomorphism ϕp : Kp → Z/p,
sending v to 1, we obtain QZ/p as a Z/p-reduction of Z4

Kp
. The example

is used to show that the reduction is able to distinguish complexes with
the same homology groups when the Euler characteristic is smaller than 1.
The discussion also relates the pth cyclotomic order of a 3-manifold, de-
fined in [5], to the minimal Euler characteristic of a 4-manifold which it
bounds.

(3) All suggestions for counterexamples of the AC-conjecture are in Euler character-
istic 1.
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2. Reduction of modular invariants to the spine

2.1. Define a Kirby link (K-link) to be a framed link in S3 where some
of the unknotted components of framing 0 have been dotted. We will assume
that the dotted components bound disjoint Seifert surfaces which have only
transverse intersections with the undotted components. Then a based ori-
ented Kirby link (BOK-link) is a K-link where one has a fixed numbering,
base points and orientation of the undotted components and a numbering
and a set of disjoint oriented Seifert surfaces for the dotted components.
A BOK-link which has L as the underlying K-link will be denoted by L̂.

Any K-link L represents a 4-dimensional 2-handlebody ML (see [12]),
where the attaching maps of the 1-handles are described by the dotted com-
ponents (we are actually drawing the canceling 2-handles) and the attach-
ing maps of the 2-handles are described by the undotted ones. If L has n
dotted and m undotted components, any L̂ defines a unique presentation
P̂L = 〈x1, . . . , xn | R1, . . . , Rm〉 of π1(ML), where Ri = Ri(x1, . . . , xn) is a
(non-freely reduced) word in the xj ’s and shows in which order and with
which sign the ith undotted component intersects the Seifert surfaces of the
dotted ones, starting from the base point. Observe that a different choice
of orientation, numbering and base points changes the representation by
a 2-deformation, i.e. there is a well defined map L 7→ [P̂L] from the set of
K-links onto the set of 2-equivalence classes of presentations (4). An example
of a BOK-link is shown in Figure 1.

Fig. 1. A BOK-link L̂ with P̂L = 〈x, y | xy−1xy, 1〉

2.2. K- and BOK-links will be presented by plane tangle diagrams with
blackboard framing. We recall that the framed tangles in R

2 × [0, 1] form
a category whose objects are sets of points in R

2 and the morphisms are
“slices” of framed links. The composition of two tangles is obtained by iden-

(4) The notion of K-link is equivalent to Kerler’s notion of a bridged link introduced
in [10] where the attaching maps of the 1-handles are described directly by two balls in S3.
But since bridged links are used to describe the boundary of the 4-thickening, the moves
of equivalence there are stronger than the 2-deformation moves, including also the moves
in 2.5.
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Fig. 2. Elementary tangle plane diagrams

tifying the outgoing ends of the first tangle with the incoming ends of the
second. There is a product structure in this category given by disjoint union.
The tangles are presented by their regular plane projections which consist
of compositions and products of the elementary tangle diagrams presented
in Figure 2(a). Note that we consider as incoming ends the bottom ones.
The category of K-tangles is defined by introducing an additional elemen-
tary morphism corresponding to the diagram of Figure 2(b). Two K-links
are (regular) isotopic if and only if the corresponding diagrams can be trans-
formed into each other by the usual Reidemeister moves involving only un-
dotted components and the additional moves presented in Figure 3.

Fig. 3. Additional isotopy moves

2.5. Two K-links are said to be 2-equivalent if they can be deformed
into each other through a sequence of the following moves (corresponding
to 1- and 2-handle moves of the underlying handlebody), and changing a
K-link through such a sequence will be called a 2-deformation of this link:

(a) isotopy of framed links;
(b) any pair of one dotted component x and one undotted component y

can be removed or added if the geometric intersection number of y
and a Seifert surface Sx of x is ±1, while Sx is disjoint from all other
undotted components (1-2 handle cancellation or introduction);

(c) band-connected sum or difference of two undotted link components
(sliding a 2-handle over a 2-handle);

2-deformation and 2-equivalence of BOK-links are defined analogously by
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adding the possibility of changing numberings, base points, Seifert surfaces
and orientations.

We will denote by L  L′ (resp. L̂  L̂′) 2-deformations of K-links
(resp. BOK-links) and we will compose such deformations on the left. By
definition the K-links L and L′ are 2-equivalent if ML is 2-equivalent to ML′ .

Moreover, if σ̃ : L̂L  L̂′ is a 2-deformation then P̂L′ is obtained from P̂L

by one of the moves in 1.1. Therefore there is a well defined 2-deformation
σ which makes the following diagram commute:

L̂
σ̃

−→ L̂′

y
y

P̂L
σ

−→ P̂L′

In a diagram like the one above we will call σ̃ the lift of σ to L.

2.6. Not every 2-deformation of the spine can be lifted to a 2-deforma-
tion of its thickening. Let L̂ be a BOK-link. Then Proposition 5.5 in [4]

states that if P̂L and P̂ ′ are 2-equivalent, there exist 2-deformations σ̃0 and
ξ such that the diagram

L̂
σ̃0−→ L̂′

y
y

P̂L
σ0−→ P̂L′

ξ
−→ P̂ ′

commutes, where ξ is a sequence of cancellations of terms xix
−1
i in the

relations (considered as cyclic words in xj ’s).

Our next goal is to describe a set of moves which connect any two K-
links describing 4-thickenings with 2-equivalent spines or 2-equivalent dec-
orated spines. We recall that according to Corollary 5.7.2 in [7], the second
Whitney class w2(M) of a 4-thickening (M,P ) is represented by a cocycle
c ∈ H2(M,M1,Z/2) ≃ H2(P, P1,Z/2) whose value on each 2-handle is its
framing coefficient modulo 2. In other words, if M = ML, then the framing
coefficient of the ith undotted component of L is equal to ci modulo 2.

2.5. Definition. Let L be a K-link described with the corresponding
regular plane projection. We say that L′ is sw-equivalent to L if it can be
obtained from L by a finite sequence of the following moves:

(i) 2-deformation;
(ii) changing the signs of a finite number of crossings of undotted seg-

ments.

L′ is said to be s-equivalent to L if it can be obtained from L by a finite
sequence of moves of the type (i), (ii) and

(iii) adding a positive or negative twist on an undotted component.
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2.6. Proposition. Two K-links L and L′ are s-equivalent if and only if

[PL] = [PL′ ], and they are sw-equivalent if and only if [PL, ι
∗
M,P (w2(ML))] =

[PL′ , ι∗M ′,P ′(w2(ML′))].

Proof. Observe that moves (ii) and (iii) do not change P̂L. Moreover,
(ii) either leaves the framings of the corresponding undotted components
unchanged, or changes them by ±2. Hence, if L and L′ are s-equivalent (resp.
sw-equivalent), then ML and ML′ have 2-equivalent spines (resp. decorated
spines).

Fig. 4. Unknotting a segment

To see the opposite direction, according to 2.4, it is enough to show
that if there exist BOK-links L̂ and L̂′ and a 2-deformation ξ : P̂L  P̂L′

which is just a sequence of cancellations of terms xix
−1
i in the relations, then

L can be transformed into L′ through regular isotopy and moves (ii) and
(iii), where (iii) is needed only if the corresponding components of L and L′

have different framings modulo 2. But a term xix
−1
i in P̂L corresponds in L̂

to a segment of an undotted component which is limited by a negative and
positive intersection with the Seifert surface of the ith dotted component, Si,
and does not intersect any other Seifert surface. Then by changing crossings,
we can unknot this segment from the other unknotted components and
cancel its intersections with Si through regular isotopy (Figure 4). Observe
that this operation leaves the framing of the undotted components the same
modulo 2. After doing this to all such segments we obtain a K-link L̂′′ with
P̂L′′ = P̂L′ . Now the statement would follow from the one with ξ = id.
For ξ = id it has been proved in [4, Lemma 2.16] by showing that if the
corresponding undotted components of L and L′ have the same framings
modulo 2, then through regular isotopy and move (ii) both diagrams can
be deformed into the same standard form as a closure, through the dotted
components, of a chosen braid. If the framings differ modulo 2, we need
move (iii) to adjust them.

2.7. Two K-links describe 4-thickenings with diffeomorphic boundaries
if and only if they can be transformed into each other through a finite
sequence of 2-deformation moves as in 2.3 and two extra moves (see [12]):

(d) removing (or adding) a dot on a zero framed unknot. This corre-
sponds to replacing a 1-handle with its canceling 2-handle and vice
versa;
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(e) deleting or adding an unknot U±1 of framing ±1, contained in a
neighborhood ball in the rest of the link, which corresponds to taking
a connected union with ±CP 2.

Let M be a 4-thickening represented by a K-link L and let σ+, σ− and
σ0 be the numbers of positive, negative and zero eigenvalues of the linking
matrix of L. Then index(M) = σ+ − σ− and rankH1(∂M,Z) = σ0.

2.8. Definition. A K-valued invariant Z4
K of 4-thickenings is called

modular if it is multiplicative with respect to connected sum and there exists
X 6= 0 ∈ K, not a zero divisor, such that if L is a K-link obtained from L′

by removing a dot from a component then Z4
K(ML) = X Z4

K(ML′).

2.9. Proposition. Let Z4
K be a K-valued modular invariant of 4-thick-

enings and let C+ = Z4
K(CP 2) and C− = Z4

K(−CP 2). Then

(a) C+C− = X. In particular

C
n−σ+
+ C

n−σ−

− =

(
C+

C−

)−index(M)/2

X(1+σ0−χ(M))/2

is an invariant of 4-thickenings.

(b) Let K′ = K[1/C−, 1/C+]. Then for any 4-thickening M represented

by a K-link L with n dotted components, C
n−σ+
+ C

n−σ−

− Z4
K(M) ∈ K′

depends only on the boundary ∂M of M and is denoted by Z∂
K(∂M).

Proof. (a) follows from the fact that the connected sum CP 2 # −CP 2

is related to B4 by move 2.3(c) and 2.5(d) as shown in Figure 5. Moreover,
since it is a modular invariant, under moves 2.5(d) and (e), Z4

K(M) changes

exactly as C
σ+−n
+ C

σ−−n
− and therefore the quotient of those two invariants

depends only on the boundary of M .

Observe that the proposition implies that a modular invariant is actually
an invariant of smooth 4-manifolds which have a decomposition into 0-, 1-
and 2-handles.

move (c) move (f)

Fig. 5. CP 2 # −CP 2 is related to B4 by move (f)

2.10. Definition. An R-valued invariant of 2-complexes (resp. deco-
rated 2-complexes) Z2

R is called a reduction of a K-valued invariant Z4
K of

4-thickenings if there exists a ring homomorphisms ϕ : K → R such that
for any 4-thickening (M,P ), Z4

K(M)⊗ϕ R = Z2
R(P ) (resp. Z4

K(M)⊗ϕ R =
Z2

R(P, ι∗M,P (w2(M))).
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2.11. Theorem. Let Z2
R be an invariant of 2-complexes which is a

reduction of a modular invariant Z4
K. Then if P is a 2-dimensional CW

complex with χ(P ) ≥ 1, Z2
R(P ) depends only on the homology of P . In

particular , if H1(P ) = (
⊕

i Z/ti) ⊕ Z
b1 and H2(P ) = Z

b2 then

Z2
R(P ) = ϕ

(
X−b1Y b2+b1

0

∏

i

YtiY−ti

)
,

where Yn = Z∂
K′(L(n, 1)) is the invariant of the corresponding lens space.

Proof. Let P[b1, b2, {ti}i] denote the one-point union (
∨

iΩti)∨(
∨b1 S1)∨

(
∨b2 S2), where Ωt is the 2-complex with Ω̂t = 〈x | xt〉. We will first see

that the formula holds for P[b1, b2, {ti}i]. Observe that since Z4
K is multi-

plicative with respect to connected sum, its reduction Z2
R is multiplicative

with respect to one-point union. Moreover, Proposition 2.9(b) implies that
Z2

R(S2) = ϕ(Z4
K(S2 × D2)) = ϕ(Y0) and Z2

R(S1) = ϕ(Z4
K(S1 × D3)) =

ϕ(Y0/X). Let now (Mt, Ωt), t > 0, be the 4-thickening described by the
K-link of Figure 6(a). Figure 6(b) has been obtained from (a) by deleting
the dot from the unknot and sliding it over the other component, and there-
fore describes ∂Mt as Yt # Y−t. Since σ±(Mt) = 1, from 2.9(b) it follows
that

Z2
R(Ωt) = ϕ(Z4

K(Mt)) = ϕ(YtY−t).

Hence the formula holds for the complex P[b1, b2, {ti}i].

Fig. 6. The K-link corresponding to the cyclic group

The general statement follows from Corollary 1.5 in [17] which states that
two complexes P and P ′ occur (up to 2-deformation) as dual spines of some
Heegard decomposition of S4 if and only if they are connected and satisfy the
Alexander–Lefschetz duality: H1(P ) ≃ H2(P ′) and H2(P ) ≃ H1(P ′) (this
is a generalization of a result of Huck [9] concerning acyclic complexes).
In particular, if H1(P ) = (

⊕
i Z/ti) ⊕ Z

b1 and H2(P ) = Z
b2 , there exists

a decomposition S4 = M ∪∂ M ′, as a union along the boundary, of a 4-
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thickening M of a complex 2-equivalent to P and a 4-thickening M ′ of a
complex 2-equivalent to P ′ = P[b2, b1, {ti}i]. Here M ′ indicates M ′ with the
reversed orientation. Since index(S4) = 0, we have index(M) = index(M ′).
Moreover Proposition 2.9(b) implies that

Z∂
K′(∂M) =

(
C+

C−

)−index(M)/2

X(1+σ0−χ(M))/2Z4
K(M)

=

(
C+

C−

)−index(M ′)/2

X(1+σ0−χ(M ′))/2Z4
K(M ′).

Hence Z4
K(M) = Xχ(P )−1Z4

K(M ′) and if χ(P ) ≥ 1 then

Z2
R(P ) = ϕ(Z4

K(M)) = ϕ(Xχ(P )−1)Z2
R(P ′) = ϕ

(
X−b1Y b2+b1

0

∏

i

YtiY−ti

)
.

3. Invariants of 4-thickenings constructed from finite

semisimple tortile categories

3.1. A finite semisimple category C (see for example [15]) is an additive
category over a ring K such that there is a finite set S of simple objects
and any other object is isomorphic to a finite sum of copies of those, and
for any a, b ∈ S, hom(a, b) is 0 if a 6= b and is naturally isomorphic to K if
a = b. We will use small letters a, b, . . . to denote elements in S. Observe that
for any object A in C and any a ∈ S, the K-modules hom(a,A) are finite-
dimensional and we will denote by {εi(a,A)}i a basis for these modules,
omitting (a,A) when they are clear from the context. Moreover, the map
hom(A, a) → hom(a,A)∗ given by composition and the natural isomorphism
hom(a, a) ≃ K is an isomorphism, and we will denote by {εi(A, a)}i (or
simply {εi}i) the basis of hom(A, a) dual to {εi(a,A)}i.

3.2. A semisimple tortile category C (see [20]) is a finite semisimple
category over K which first of all is equipped with a product C×C → C with
identity 1 ∈ S, and also any object A is equipped with a right dual A. The
product will be denoted by ⋄ or simply by juxtaposition: A ⋄ B = AB. For
any objects A,B,C we are given the following set of morphisms:

̺A : A→ 1A, ̺−1
A : 1A→ A,

αA,B,C : (AB)C → A(BC), α−1
A,B,C : A(BC) → (AB)C (associativity),

γA,B : AB → BA, γ−1
A,B : BA→ AB (commutativity),

ΛA : 1 → AA (coform), λA : AA→ 1 (form),

which satisfy a number of identities described for example in [20]. Based on
the coherence result of MacLane for monoidal categories (p. 161 in [15]), in
what follows we will often omit the associativity morphisms since they can
be filled in a unique way. Below we define and list some basic properties



32 I. Bobtcheva and F. Quinn

of the twist, rank and projection operators in a semisimple tortile category.
We refer the reader to [20, 22, 19] for proofs and details.

3.3. The twist θA = (λA ⋄ idA)◦ (idA ⋄γA,A)◦ (ΛA ⋄ idA) is a natural iso-

morphism A ≃ A with θ−1
A given by the same expression with γA,A replaced

by γ−1
A,A. In particular, θ−1

B ψθA = ψ for any ψ ∈ hom(A,B). Moreover,

θab = θ−1
a θ−1

b γb,aγa,b for any a, b ∈ S.
The choice of a twist is equivalent to the choice of a natural monoidal

isomorphism A → A (Proposition 2.4 in [22]). Combining with these iso-
morphisms if necessary, in what follows we will assume that “–” is an in-
volution on the set of objects and on S, and that A ⋄B = B ⋄ A with
λAB = λA ◦ (idA ⋄ λB ⋄ idA) and ΛAB = (idA ⋄ ΛB ⋄ idA) ◦ ΛA.

3.4. For any a ∈ S and A ∈ Obj(C) define

π(a,A) =
∑

i

εi(a,A) ◦ εi(A, a) ∈ hom(A,A).

Then π(a,A) is a projection operator independent of the choice of the basis
{εi}i, and

∑
a∈S π(a,A) = idA. These properties together with the semisim-

plicity of the category imply that for any ψ ∈ hom(A,B) and a ∈ S,

ψ ◦ π(a,A) =
∑

b∈S

π(b, B) ◦ ψ ◦ π(a,A) = π(a,B) ◦ ψ ◦ π(a,A) = π(a,B) ◦ ψ.

3.5. The rank of a morphism f ∈ hom(A,A) is given by rank(f) =
λA(1 ⋄ f)ΛA ∈ hom(1,1) ≃ K, and the rank of an object A ∈ Obj(C) is
rA = rank(idA). Moreover, given any f ∈ hom(A,B), g ∈ hom(B,A) and
h ∈ hom(C,D),

rank(f ◦ g) = rank(g ◦ f) and rank(f ⋄ h) = rank(f) rank(h).

In particular rAB = rArB. In what follows we will assume (5) that ra 6= 0
for any a ∈ S. In particular, using the natural isomorphisms hom(a, a) ≃ K,
we see that f = (rank(f)/ra)ida for any f ∈ hom(a, a). Moreover,

π(1, ab) =

{
0 if b 6= a,

(1/ra)Λa ◦ λa otherwise.

3.6. Proposition. Let

ζ̂i(ba, c) = (λb ⋄ idc) ◦ (idb ⋄ εi(a, bc)),

ζi(c, ba) = (idb ⋄ εi(bc, a)) ◦ (Λb ⋄ idc).

Then {ζi}i forms a basis for hom(c, ba) with dual basis ζi = (rc/ra)ζ̂i.

(5) If necessary one can eliminate objects of zero rank taking the quotient category
by all morphisms which factor through such objects [19, 6].
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Proof. From the properties of the rank in 3.5 it follows that

ζ̂i ◦ ζj =
1

rc
rank(ζ̂i ◦ ζj) =

1

rc
rank(εi ◦ εj) =

1

rc
rank(εj ◦ εi) =

ra
rc
δi,j .

3.7. Proposition. Let δ : hom(A,B) → hom(B,A) be given by

δ(ϕ) = (idA ⋄ λB) ◦ (idA ⋄ ϕ ⋄ idB) ◦ (ΛA ⋄ idB).

Then

(a) λB ◦(ϕ⋄idB) = λA◦(idA⋄δ(ϕ)) and (idA⋄ϕ)◦ΛA = (δ(ϕ)⋄idB)◦ΛB.

(b) δ2 = id. In particular , δ is an isomorphism.

(c) δ(εi(bc, a)) = δ(εi(a, bc)).

Proof. (a) and (c) are direct consequences of the axioms for the form
and coform. The naturality of the commutativity morphism implies that
δ2(ϕ) = θ−1

B ϕθA. Then (b) follows from 3.3.

3.8. We define the category of K-tangles labeled in C, T (C), to be the
category with objects sets of points in R

2, labeled by elements in S, and mor-
phisms compositions of products of elementary tangles presented in Figure 7.
The relations in the category are given by the consistently labeled Reide-
meister moves and moves presented in Figure 3. We observe that if T is a
K-tangle with fixed orientation on each undotted component, and if µ is a
map from the set of undotted components into S, then there exists a unique
labeled tangle T (µ) which has T as underlying tangle such that the upgoing
segments of x are labeled by idµ(x). Moreover, F (T (µ)) is independent of
the orientation of the closed components in T .

−1

_

_

1 2 l

1 2 l

1 2 l

Fig. 7. Defining the functor F

Following the generalization of Kerler [10, 11] of the results of Resheti-
khin–Turaev and Shum [19, 20] we define a monoidal braided functor F
from T (C) to C where the images of the elementary tangles are presented in
Figure 7. To see that F is a functor the only additional relations to check
(in view of the coherence result in [20]) are the ones presented in Figure 3:
(d) and (e) there follow from the naturality of the braiding, (a) and (b) follow
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from the naturality of π(a,A) in 3.4, and (c) follows from Proposition 3.7(a)
and the fact that δ(π(1, A)) = π(1, A).

Let L be a K-link with n dotted and m undotted components and let
µ be a labeling of L such that ai ∈ S is the image of the ith undotted
component. Define

{L} =
∑

µ

w(µ)F (L(µ)),

where w(µ) = ra1 · · · ram and the sum is over all possible labelings of L.

3.9. Theorem. Let M be a 4-thickening represented by a K-link L.

Then {L} defines an invariant of M under 2-deformations, which will be

denoted by Z4
K(M).

Observe that this implies that when L does not have dotted components,
{L} is a link invariant under the connected sum of two undotted components
(the first Kirby move) without putting any modularity condition on the
category. This is exactly Proposition 1.1 in [2]. As we will see later, the
modularity condition is needed for the invariance under the second Kirby
move, i.e. adding or deleting an unknot of framing ±1. The proof below
follows the idea in [2] and is presented for the sake of completeness.

Proof. According to 2.3 it is enough to show the invariance under

(a) adding or deleting a canceling pair of a dotted and undotted com-
ponent;

(b) connected sum of two undotted components.

(a) follows from the fact that if a single undotted component y intersects
once the Seifert surface of a dotted component x then the only label of y,
giving a non-trivial contribution to {L}, is 1.

To prove (b) suppose that we want to slide the undotted component x
over the undotted component y. Then L can be presented as the closure of
a 2-2 tangle T on these two components. Let µa,b be a labeling of T where
x is labeled by a and y is labeled by b and let w′(µa,b) = w(µa,b)/rarb. Then

{L} =
∑

a,b

rarb rank(ψa,b), where ψa,b =
∑

µa,b

w′(µa,b)F (T (µa,b)),

and the sum is over all possible values of µa,b. In terms of labeled tangle
diagrams the following steps in the proof are illustrated in Figure 8 and are
explained below.

Let T# denote the 3-3 tangle which is obtained from T by adding a
parallel component y′ of y. After the sliding of x over y the resulting link
L# can be thought of as obtained from the closure of T# connecting x and
y′ by a small band. Let now µ#

a,b denote the labeling of L# induced by µa,b



Quantum invariants of 4-thickenings 35

Fig. 8. 2-handle slide

and let ψa,ab =
∑

µ#
a,b
w′(µa,b)F (T#(µ#

a,b)). Then

{L#} =
∑

a,b

rarb rank((Λa ⋄ idb) ◦ (λa ⋄ idb) ◦ ψa,ab)

=
∑

a,b

rarb rank((λa ⋄ idb) ◦ ψa,ab ◦ (Λa ⋄ idb))

=
∑

a,b,c,i

rarb rank((λa ⋄ idb)

◦ (ida ⋄ εi(c, ab)) ◦ ψa,c ◦ (ida ⋄ εi(ab, c)) ◦ (Λa ⋄ idb))

=
∑

a,b,c,i

rarb rank(ζ̂i(ac, b) ◦ ψa,c ◦ ζi(b, ac)),

where ζ̂i(ac, b) and ζi(b, ac) are defined in 3.6. Then Proposition 3.6 implies
that

{L#} =
∑

a,c,b,i

rcra rank(ζi ◦ ψa,c ◦ ζi) =
∑

a,c

rcra rank
(∑

b,i

(ζi ◦ ζi) ◦ ψa,c

)

=
∑

a,c

rcra rank
(∑

b

(π(b, ac) ◦ ψa,c)
)

=
∑

a,c

rcra rank(ψa,c) = {L},

where we have used 3.4 and 3.5.

The case of a modular category. Let H(a, b) denote the Hopf link where
one component has been labeled with a and the other with b and let Sa,b =
F (H(a, b)). Then C is called modular if there exists X 6= 0 ∈ K, not a
zero divisor, such that

∑
b rbSa,b = Xδa,1. Lemma 17 in Section 4.2 of [10]

shows that this definition over a field is equivalent to the usual modularity
condition, i.e. the invertibility of the S-matrix.

Let Φ̇l(a1, . . . , al) be the K-tangle consisting of l vertical segments, la-
beled by ai ∈ S, and one unknotted dotted closed component which goes
around them as presented in Figure 7(b). Let also Φl(b, a1, . . . , al) be the
same tangle where the dotted unknot has been replaced with an undotted



36 I. Bobtcheva and F. Quinn

one and it has been labeled by b ∈ S. Then the semisimplicity and modu-
larity of the category imply that

∑

b

rb F (Φl(b, a1, . . . , al)) =
∑

b

rb Sa,b π(a, a1 · · · al)

= Xπ(1, a1 · · · al) = XF (Φ̇l(a1, . . . , al)).

Hence we have

3.10. Proposition. If C is a modular tortile category then Z4
K(M) is

a modular invariant with X = Z4
K(S2 ×D2) =

∑
a∈S r

2
a.

The case of a symmetric category. A finite semisimple tortile category
is called symmetric if γb,aγa,b = idab.

3.11. Proposition. A finite semisimple tortile category is symmetric

if and only if for any a ∈ S, θa = νaida where νa = ±1, and for any triple

(a, b, c) such that hom(c, ab) 6= 0, νaνbνc = 1.

Proof. The expressions for the twist and its inverse in 3.3 imply that in
a symmetric category θ−1

a = θa, i.e. θa = νaida where νa = ±1. On the other
hand, if C is a tortile category and θa = νaida, θab = θ−1

a θ−1
b γb,aγa,b implies

that νaνbνcidc = εi(ab, c)γb,aγa,bεi(c, ab). Hence such a category is symmetric
if and only if νaνbνc = 1 for any triple (a, b, c) such that hom(c, ab) 6= 0.

In [18, 3] it has been shown that from every finite semisimple symmetric
category over a ring K such that νa = 1 for any a ∈ S, one can construct a K-
valued invariant of 2-dimensional CW complexes, called QK. The following
lemma is a slight generalization of this result for decorated 2-complexes.

3.12. Proposition. If C is a finite semisimple symmetric category over

a ring K, then for any 4-thickenings (M,P ) and (M ′, P ′) such that

[P, ι∗M,P (w2(M))] = [P ′, ι∗M ′,P ′(w2(M
′))]

we have Z4
K(M) = Z4

K(M ′), i.e. Z4
K(M) defines an invariant of decorated

2-complexes which will be denoted by Z2
K(P,w). If in addition νa = 1 for

any a ∈ S, then Z2(P,w) depends only on P and will be denoted by Z2
K(P ).

Proof. Let ML be described by a K-link L. Then γa,b = γ−1
b,a implies that

the value of Z4
K(ML) does not change if we change the sign of a crossing

between two undotted components. Moreover under the functor F , the im-
age of a twist labeled by a ∈ S is exactly θa. Hence if νa = 1, adding or
removing such twists does not change the value of the invariant either. Now
the statement follows from Proposition 2.6.

Let C be a finite semisimple category and let s = |S|. The map A →⊕
a∈S hom(a,A) induces equivalence of C into the category K(S) with ob-



Quantum invariants of 4-thickenings 37

jects

A(n1, . . . , ns) =
s⊕

i=1

Kni

and morphisms A(n1, . . . , ns) → A(m1, . . . ,ms) described by block matrices
in
⊕s

i=1 K
ni×mi acting on the left. If in addition C is a tortile category,

its structure morphisms induce a tortile structure on K(S) which can be
described by presenting the list of the block matrices corresponding to the
morphisms ̺, α, γ, Λ and λ.

3.13. Definition. Let C be a finite semisimple tortile category over
a commutative ring K and ϕ : K → R be a ring homomorphism. Then
̺ ⊗ R, α ⊗ R, γ ⊗ R, Λ ⊗ R and λ ⊗ R induce on the category R(S) =
K(S) ⊗ϕ R the structure of a finite semisimple tortile category. If R(S) is
symmetric it is called an R-reduction of C.

3.14. Corollary. If a symmetric category is an R-reduction of a finite

semisimple tortile category over K then Z4
K ⊗ϕ R = Z2

R is an R-reduction

of Z4
K.

4. Example: reduction in the so(3) case. Let p = 2l+3, l ≥ 1, be an
odd prime, K = Z[v, v−1], and qp = vp−1

v−1 ∈ K. Let also Kp be the quotient
of K by the ideal generated by qp, and let K′

p be the fraction field of Kp. In
what follows we will use the common notation for the quantum integers

[n] =
vn − v−n

v − v−1
.

4.1. Definition. A finite semisimple tortile category C over Kp will be
called of so(3) type if it satisfies the following conditions:

(i) it has l+ 1 simple objects which will be identified with elements of
S = {a ∈ Z | 0 ≤ a ≤ l};

(ii) hom(a, b ⋄ c) ≃ Kp if all of the conditions below are satisfied:

a+ b+ c ≤ p− 2, a+ b− c ≥ 0, a+ c− b ≥ 0, b+ c− a ≥ 0.

Otherwise hom(a, b ⋄ c) = 0.
(iii) ra = [2a+ 1] and θa = v−2a(a+1).

Whenever the so(3) Gelfand–Kazhdan category [6] is defined over the
ring Kp it is an so(3) type category. A numerical procedure generating such
categories and the smallest example corresponding to p = 5 is presented in
Section 5.

Let Un be the unknot of framing n and let n denote the mod p inverse
of n. Then from the definition of {L} we find that for such a category,
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{Un} =

l∑

a=0

[2a+ 1]2v−2an(a+1)

=






(
−2n

p

)
g1v

(n2+2)/2n

(v − v−1)
[n] if n is prime to p,

−
p

(v − v−1)2
otherwise.

Here
(

z
p

)
is the Legendre symbol and

g1 =

p−1∑

a=0

va2
= (v − v−1)(p−1)/2

(p−1)/2∏

k=1

[2k − 1]

is the Gauss sum. In particular,

X = {U0} = −
p

(v − v−1)2
=

(−1)(p+1)/2

(v − v−1)2
g2
1,

C± = {U±1} = ±

(
∓2

p

)
g1v

±3/2

v − v−1
.

Let ϕp : Kp → Z/p denote the ring homomorphism such that ϕp(v) = 1.
Then for any category of so(3) type, ϕp(θa) = 1 and ϕp(X) = 0. Hence
according to Corollary 3.14, Z4

Kp
⊗ϕp = Z2

Z/p is an invariant of 2-complexes

which vanishes on S2. But at the same time, Z2
Z/p is a reduction of a modular

invariant and therefore Theorem 2.11 implies that in Euler characteristic ≥ 1
it depends only on homology in the following way:

4.2. Proposition. Suppose that P is a 2-complex with Euler charac-

teristic greater than or equal to 1 and H1(P ) = (
⊕

i Z/ti) ⊕ Z
b1 and H2(P )

= Z
b2 . Then Z2

Z/p(P ) is 0 if b2 > 0 or if p divides ti for some i, and it is
∏

i t
2
i ∈ Z/pZ otherwise.

Proof. We only need to observe that if n is prime to p and if sgn(n)
denotes the sign of n then

ϕp(Yn) = ϕp

(
{Un}

Csgn(n)

)
=

(
n

p

)
n.

Otherwise ϕp(Yn) = 0.

4.3. The above statement is no longer true in the case when the Euler
characteristic of the complex is smaller than or equal to 0. The simplest
counterexample comes from comparing the invariant of S2 ∨

∨2 S1 (which

is 0) and the one of the 2-complex C with Ĉ = 〈x, y | xyx−1y−1〉. To evaluate
Z2

Z/p(C) we take the 4-thickening (M,C) presented by the leftmost diagram
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in Figure 9. Together with 3.4 Figure 9 shows that

Z4
Kp

(M) =
l∑

a=0

1 = l + 1.

Hence Z2
Z/p(C) = ϕp(Z

4
Kp

(M)) = (l+1) mod p. In particular, for the explicit

example of an so(3) type category presented in 5.1 with p = 5 and l = 1, we
have Z2

Z/p(C) = 2 6= 0.

__

Fig. 9. Evaluation of Z2
Z/p(C) with Ĉ = 〈x, y | xyx−1y−1〉

4.4. Bounding properties and cyclotomic orders of 3-manifolds. Let h =
v − 1 ∈ Kp. We refer the reader to [5] for the definition and properties of
the p-order op of an element in K′

p, indicating just that for x, y ∈ Kp, op(x)
is the exponent of the highest power of h which divides x (as an element
in Kp) and op(x/y) = op(x) − op(y).

Let C be an so(3) type category over Kp and let W be a 3-manifold
obtained by surgery on a link L. The level p quantum so(3) invariant of W ,
as defined in [5], is given by

τp(W ) = {L}/|L| where |L| = C
σ+
+ C

σ−

−

(
X

hl

)σ0

,

and op(τp(W )) is called the cyclotomic order of W . Moreover, according to
Theorem 4.2 in [5], τp takes values in Kp. Let now M be a 4-thickening

represented by a K-link L̇ with n dotted components and let L denote the
link obtained from L̇ by removing all the dots. Since an so(3) type category
is modular,

Z4
Kp

(M) =
{L}

Xn
= Npτp(∂M),

where

Np =

(
C+

C−

)index(M)/2( X

hp−3

)σ0/2

X(χ(M)−1)/2

= (−1)(σ++σ0−n)(p+1)/2

(
g1

v − v−1

)χ(M)−1

(1 + v−1)σ0(p−3)/2.

Since op(g1/(v − v−1)) = (p− 3)/2, it follows that

op(τp(∂M)) + (χ(M) − 1)
p− 3

2
= op(Z

4
Kp

(M)) ≥ 0.
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So, we can give the following lower bound for the cyclotomic order of a
3-manifold:

4.5. Proposition. If a 3-manifold W bounds a connected 4-dimensio-

nal manifold 2-handlebody M , then op(τp(∂M)) ≥ (1 − χ(M))(p− 3)/2.

In any case this is a stronger statement than the bound for op(τp(∂M))
given in [5]. It may be interesting to look at it as a lower bound for the
Euler characteristic of the set of 4-thickenings with fixed boundary:

min
M : ∂M=W

χ(M) ≥ 1 −
2

p− 3
op(τp(W )),

even if this bound is not sharp as can be seen from the exampleW = L(n, 1).

5. Generating finite semisimple categories over a ring. The ex-
istence of such categories is a numerical and not theoretical result of the
project in [23] where the category data can be viewed and downloaded.
Here we just outline how such categories have been generated. For the sake
of this work it is probably enough to present explicitly the smallest example
as is done in Section 5.1, but we think it is important to indicate that the
existence of a Z/p-reduction of finite semisimple tortile categories coming
from representations of quantum groups is quite a general phenomenon.

Let g be a Lie algebra and p be greater than the Coxeter number of g.
To any such data in [6] there is associated a finite semisimple monoidal
category Cp (see [19] for the sl(2) case) which is a quotient of a subcategory
of the category of representations of the quantum enveloping algebra of g

over the field K′
p. The set S of simple objects of Cp correspond to the simple

representations whose highest weights are contained in the open standard
alcove of g. The tortile structure of Cp is explained in Chapter 6.1 and 32
in [14]. Moreover, for any a ∈ S, θa = vt(a) for some t(a) ∈ Z/p (6).

The algorithms in [23] generate numerically the tortile subcategory C0
p of

Cp whose simple objects are the representations in S with highest weights in
the root lattice of g. These algorithms consist of the following main steps:

(i) explicit evaluation of the algebra generators at the representations
in S0 in the Lakshmibai–Sishadri bases;

(ii) explicit evaluation of the set of bases for the spaces hom
C0

p
(a, bc)

and their duals;
(iii) computing the block matrices representing the commutativity and

associativity morphisms with respect to the bases in (ii).

(6) The quantum Casimir operator (the twist), as described explicitly [13, 6.1.7], acts
on any presentation a ∈ S with highest weight λ as multiplication by vs(λ)/d, where s is
an integer-valued function on the weight space of g and d is the determinant of the Cartan
matrix of g and it is therefore prime to p and can be inverted in Z/p.
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The categories generated so far are the following:

algebra A1 A2 C2 G2

prime 5, 7, 11, 13, 17 7, 11 7, 11 11, 13

Except G2, p = 13, all of the categories listed above live over the ring Kp,
i.e. with respect to the chosen bases of the spaces hom

C0
p
(a, b⊗ c) the forms,

coforms, associativity and commutativity morphisms and their inverses are
represented by matrices with Kp-coefficients. Moreover, all of these cate-
gories are modular with X =

∑
a∈S r

2
a and ϕp(X) = 0. In particular, any

of them leads to a modular invariant Z4
Kp

of 4-thickenings and, according

to 3.14, except G2, p = 13, all these invariants have a Z/p-reduction.

5.1. The category C0
5 for g = sl(2). We present here the smallest possible

example corresponding to g = sl(2), p = 5. There are only two simple
objects, corresponding to the trivial representation 1 and the representation
a of highest weight 2: S0 = {1, a}. In C0

5,

a ⋄ a ≃ 1 ⊕ a.

The category is equivalent to one with objects A(n,m) = Kn
p ⊕ Km

p , where
n and m correspond to the number of trivial summands and the number of
a summands in A. The morphisms between two objects A(n,m) → A(k, l)
are given by block matrices in Kn×k

p ⊕ Km×l
p acting on the left. The tortile

structure is defined by the product A(n,m) ⋄ A(k, l) = A(nk +ml, nl +ml
+mk) and the following morphisms:

γa,a =

(
1 0

0 −v2

)
, γ−1

a,a =

(
1 0

0 −v3

)
∈ Kp ⊕Kp;

αa,a,a = α−1
a,a,a =




1 0 0

0 v2 + v3 1 + v + v3

0 v + 2v2 + v3 −v2 − v3



 ∈ Kp ⊕K2×2
p ;

Λa =

(
1

0

)
∈ Kp ⊕Kp;

λa = ( ra 0 ) ∈ Kp ⊕Kp, ra = 1 + v + v3;

θa = v, X = 3 + v + v3, C+ = −v2 + v, C− = −v3 + v4.

The Z/p-reduction of this category gives exactly the symmetric category
described in 10.7 of [18].

Finally, we observe that the HKR-type invariants of 2-complexes, defined
in [4] from unimodular triangular Hopf algebras, in many cases are also
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reductions. This usually happens because the triangular algebra itself is
obtained by a change of ring from a factorizable quasitriangular algebra
(the factorizability condition leads to modular HKR-type invariants of 4-
thickenings). In conclusion, it seems like the search for interesting invariants
of 2-complexes should start by looking at possible reductions of non-modular
invariants of 4-thickenings constructed either from premodular categories
(see [2] for examples), or from non-factorizable unimodular quasitriangular
Hopf algebras.
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