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Abstract. We describe new approaches for constructing virtual knot invariants. The
main background of this paper comes from formulating and bringing together the ideas of
biquandle [KR], [FJK], the virtual quandle [Ma2], the ideas of quaternion biquandles by
Roger Fenn and Andrew Bartholomew [BF], the concepts and properties of long virtual
knots [Ma10], and other ideas in the interface between classical and virtual knot theory. In
the present paper we present a new algebraic construction of virtual knot invariants, give
various presentations of it, and study several examples. Several conjectures and unsolved
problems are presented throughout the paper.

1. INTRODUCTION

1.1. Background. Virtual knot theory was proposed by Kauffman in
1996; see [KaV]. The combinatorial notion of virtual knot (1) is defined as
an equivalence class of 4-valent plane diagrams (4-regular plane graphs with
extra structure) where a new type of crossing (called virtual) is allowed. This
theory can be regarded as a “projection” of knot theory in thickened sur-
faces Sg ×R (as studied in [JKS]). Regarded from this point of view, virtual
crossings appear as artifacts of the diagram projection from Sg to R2. How-
ever, the rules for handling the virtual diagrams are motivated (in [KaV]) by
the idea that one can generalize the notion of a knot diagram to its oriented
Gauss code.

A Gauss code for a knot is a list of crossings encountered on traversing
the knot diagram, with the signs of the crossings indicated, and whether they
are over or under in the course of the traverse. Each crossing is encountered
twice in such a traverse, and thus the Gauss code has each crossing label
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(1) In what follows, we use the generic term “knot” for both knots and links, unless
otherwise specified.
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appearing twice in the list. One can define Reidemeister moves on the Gauss
codes, and thus abstract the knot theory from its planar diagrams.

Virtual knot theory is the theory of such Gauss codes, not necessarily
realizable in the plane. When one takes such a non-realizable code, and at-
tempts to draw a planar diagram, virtual crossings are needed to complete
the connections in the plane. These crossings are artifacts of the planar pro-
jection. The rules for handling virtual knot diagrams are designed to make
the representation of the virtual knot independent of the particular choice of
virtual crossings that realizes the diagram. It turns out that these rules de-
scribe embeddings of knots and links in thickened surfaces, stabilized by the
addition and subtraction of empty handles (i.e. the addition and subtrac-
tion of thickened 1-handles from the surface that do not have any part of the
knot or link embedded in them) [KaV2, KaV4, Ma1, Ma8, Ma9, CKS, Kup].

Another approach to Gauss codes for knots and links is the use of Gauss
diagrams as in [GPV]. In that paper by Goussarov, Polyak and Viro, the
virtual knot theory, taken as all Gauss diagrams up to Reidemeister moves,
was used to analyze the structure of Vassiliev invariants for classical and
virtual knots. In both [KaV] and [GPV] it is proved that if two classical
knots are equivalent in the virtual category [Kup], then they are equivalent
in the classical category. Thus classical knot theory is properly embedded
in virtual knot theory.

To date, many invariants of classical knots have been generalized to
the virtual case; see [GPV, KaV, KR, Ma1, Ma2, Ma8, Ma9, Saw, SW].
In many cases, a classical invariant extends to an invariant of virtuals. In
some cases one has an invariant of virtuals that is an extension of ideas
from classical knot theory, but vanishes or is otherwise trivial for classical
knots. An example of this is the polynomial invariant studied by Sawollek
[Saw], by Silver and Williams [SW] and by Kauffman and Radford [KR] (2).
This invariant is produced by the methods that give the classical Alexander
polynomial, but it is an example of a zeroth order Alexander polynomial,
and is trivial in the classical case and non-trivial in the virtual case. Such
invariants are valuable for the study of virtual knots, since they promise the
possibility of distinguishing classical from virtual knots in key cases. Other
examples of this phenomenon can be found in [Ma2, Ma5].

On the other hand, some invariants evaluated on classical knots coincide
with well known classical knot invariants (see [KaV, KaV2, KaV4, Ma3] on
generalizations of the Jones polynomial, fundamental group, quandle and
quantum link invariants). These invariants exhibit interesting phenomena
on virtual knots and links: for instance, there exists a virtual knot K with
“fundamental group” isomorphic to Z and Jones polynomial not equal to 1.

(2) Later, we will describe another approach [Ma3] that leads to the same results.
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This phenomenon immediately implies that the knot K is not classical,
and underlines the difficulty of extracting the Jones polynomial from the
fundamental group in the classical case. We know in principle that the fun-
damental group, plus peripheral information, determines the knot itself in
the classical case. It is not known how to extract the Jones polynomial from
this algebraic information.

Note that, for classical knots, the quandle is a generalization of the fun-
damental group with a geometric interpretation. In this paper we consider
quandles of virtual knots, defined formally in terms of their diagrams. How-
ever, the formally defined fundamental group of a virtual knot can be inter-
preted as the fundamental group of the complement of the virtual knot in
the one-point suspension of a thickened surface where this knot is presented.

Another phenomenon that does not appear in the classical case is long
knots [Ma10]: if we break a virtual knot diagram at two different points and
take them to the infinity, we may obtain two different long knots. We will
discuss this subject later in the text.

Beyond the fundamental group and the quandle, there are two algebraic
constructions defining virtual knot invariants: the biquandle [KaV2, KR,
FJK] and the virtual quandle [Ma2]. Each of them has a number of realiza-
tions (representations). In this paper, we bring these two ideas together, and
present a combined construction that allows the extraction of new algebraic
invariants of virtual knots.

The general strategy of this paper is the following: One presents an alge-
braically defined invariant of knots (virtual knots, long knots, etc.). This in-
variant is defined axiomatically (the axioms correspond to invariance under
diagrammatic moves). In this form, the invariant appears to have strength,
but is difficult to work with. In order to manage the invariant, we may take
its representation, say, I, into some category (e.g. groups) with operations
defined in terms of that representation category. In this manner we can ob-
tain, for example, the knot group and its generalizations. Or one can find a
finite object (or category) G with operations satisfying the initial axioms.
Then the set of homomorphisms I(K) → G is an invariant of the knot K.
In particular, so is the cardinality of the set of such homomorphisms. Such
homomorphisms can also be called colorings because they correspond to
colorings of the diagram arcs (generators of I(K)) by elements of G.

In some cases, polynomial-type invariants emerge naturally from the
algebra. In other cases it is useful to use algebraic and polynomial-type
invariants together to extract information.

This paper does not pretend to describe all directions of virtual knot
theory. For instance, we say a little about the Jones polynomial and do
not describe its generalizations, the Khovanov complex [Ma11], the surface-
bracket polynomial [KaV4], and the Ξ-polynomial [Ma3, Ma6]. Also, we do
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not touch the Vassiliev invariants for virtual links [KaV, GPV, Ma9]. All
these concepts will be described in the book [Vbook] by the authors. Also,
a list of unsolved problems concerning virtual knots can be found in [FKM].

1.2. Basic definitions. We begin with the definition of a virtual knot
according to [KaV].

Definition 1. A virtual link diagram is a 4-valent graph on the plane
such that each crossing of it is either classical (i.e., one pair of opposite edges
is selected to make an overcrossing; the other pair forms an undercrossing)
or virtual (just marked by a circle).

Definition 2. A virtual knot is an equivalence class of virtual knot
diagrams modulo generalized Reidemeister moves.

The set of virtual Reidemeister moves consists of:

1. classical Reidemeister moves:

2. virtual versions of these moves (where all classical crossings are re-
placed with virtual ones):

3. the “semivirtual” version of the third Reidemeister move where two
virtual crossings pass through a classical crossing:
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The analogous version with two classical crossings and one virtual cross-
ing is forbidden. There are two versions of these forbidden moves shown
in Fig. 1.

Fig. 1. The forbidden moves

It is proved in [GPV] (see also S. Nelson [Nel] and T. Kanenobu [Kan])
that if we include these two moves, each knot will be equivalent to the un-
knot. If we add only first of them (F1), we will obtain what is called “welded
knots” (see [FRR] and [Satoh]). In [FRR] Fenn, Rimányi and Rourke intro-
duced the notion of the “welded braid group”. This version of braids is the
same as virtual braids with the forbidden move F1 added in braid form.
Satoh in [Satoh] showed that the concept of welded knots could be inter-
preted in terms of embeddings of tori in Euclidean four-space. This also
leads to an interpretation of welded braids in terms of braidings of tubes in
four-space.

One can easily consider oriented virtual links by endowing diagrams with
an orientation.

As with classical knots, virtual knots can be obtained as closures of vir-

tual braids first mentioned in the talk by Kauffman [Kau0], and in [KaV,
KaV2, Ma1, KL1, KL2]. See also Vershinin [Ver] and Kamada [Kam]. Vir-
tual braids are analogues of classical braids where some crossings are al-
lowed to be virtual (and marked by a circle). The corresponding n-strand
group has generators σ1, . . . , σn−1 (as in the classical case) and “virtual
generators” ζ1, . . . , ζn−1 with obvious relations ζ2

i = 1 (more details in
[Ver, KaV, KL1]). The closure procedure is quite analogous to that for clas-
sical knots.

Remark 1. All virtual (and classical) knots are oriented, unless other-
wise specified.
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The geometric approach to virtual knots is based on the following fact:
virtual knots are isotopy classes of curves in “thickened surfaces” Sg × I up
to “stabilization”, i.e. adding and removing handles. See the discussion of
this viewpoint given earlier in this introduction.

2. BASIC CONSTRUCTION

Here we are going to recall the construction of the quandle and generalize
it to the case of virtual knots.

2.1. The case of classical knots. For the classical case, there is a com-
plete algebraic invariant of knots (complete up to reversed mirror images,
and actually complete if one adds longitudinal information to the system),
first proposed by D. Joyce [Joy] and S. V. Matveev [Mat]. Here is a sketch
of the quandle construction. One considers a classical knot diagram, and
encodes all arcs of it by letters. We use a formal algebraic structure with
the operation ◦ for which the following condition holds: For each crossing
X at which the arc a (we do not look at its orientation) lies on the right
hand of the overcrossing oriented arc b and the arc c lies on the left hand,
we write the formal relation

(1) a ◦ b = c.

It can be checked that the invariance of this structure (a formal algebra given
by generators and relations) under the three Reidemeister moves implies the
following algebraic axioms:

1. Idempotence: ∀a : a ◦ a = a.

2. The existence of left inverses: ∀b, c∃!x : x ◦ b = c. This x is denoted
by c ◦ b.

3. Right self-distributivity: ∀a, b, c : (a ◦ b) ◦ c = (a ◦ c) ◦ (b ◦ c).

An algebraic structure satisfying these axioms is called a quandle. The
quandle of an oriented knot or link is defined by generators and relations as
above (plus the imposition of these axioms).

Now, this can be easily generalized [KaV] to the case of virtual knots:
we allow arcs to pass through a virtual crossing and ignore the virtual in-
tersections.

It is straightforward to check that this “virtualization” of the quandle is
an invariant of virtual knots. Since the quandle plus longitudinal informa-
tion is a complete invariant of classical knots, and since this information is
preserved under virtual equivalence, one can conclude [KaV, GPV] that two
classical knot diagrams are equivalent in the virtual category if and only if
they are equivalent in the classical category.
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2.2.Biquandles and a generalized Alexander polynomial GK(s, t).
The biquandle [KaV2, FJK, CS] is an algebra associated with the diagram
that is invariant (up to isomorphism) under the generalized Reidemeister
moves for virtual knots and links. The operations in this algebra are mo-
tivated by the formation of labels for the edges of the diagram and the
intended invariance under the moves. We will give the abstract definition of
the biquandle after a discussion of these knot-theoretic issues. View Figure 2.

ab = a b

ba = b a b

a

ab = a b

ba = b a

b

a

6

6

�

6

6
-

Fig. 2. Biquandle relations at a crossing

In this figure we have shown the format for the operations in a biquandle.
The overcrossing arc has two labels, one on each side of the crossing. In a
biquandle there is an algebra element labeling each edge of the diagram. An
edge of the diagram corresponds to an edge of the underlying plane graph
of that diagram.

Let the edges oriented toward a crossing in a diagram be called the
input edges for the crossing, and the edges oriented away from the crossing
be called the output edges for the crossing. Let a and b be the input edges
for a positive crossing, with a the label of the undercrossing input and b

the label on the overcrossing input. Then in the biquandle, we label the
undercrossing output by

c = ab

just as in the case of the quandle, but the overcrossing output is labeled

d = ba.

We usually read ab as “the undercrossing line a is acted upon by the over-
crossing line b to produce the output c = ab”. In the same way, we can read
ba as “the overcrossing line b is operated on by the undercrossing line a to
produce the output d = ba”. The biquandle labels for a negative crossing
are similar but with an overline (denoting an operation of order two) placed
on the letters. Thus in the case of the negative crossing, we would write

c = ab, d = ba.

To form the biquandle, BQ(K), we take one generator for each edge of
the diagram and two relations at each crossing (as described above). This
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system of generators and relations is then regarded as encoding an algebra
that is generated freely by the biquandle operations as concatenations of
these symbols and subject to the biquandle algebra axioms. These axioms
(which we will describe below) are a transcription in the biquandle language
of the requirement that this algebra be invariant under Reidemeister moves
on the diagram.

Another way to write this formalism for the biquandle is as follows:

ab = a b , ab = a b , ab = a b , ab = a b .

We call this the operator formalism for the biquandle. The operator formal-
ism has advantages when one is performing calculations, since it is possible
to maintain the formulas on a line rather than extending them up and down
the page as in the exponential notation. On the other hand the exponential
notation has intuitive familiarity and is good for displaying certain results.

The axioms for the biquandle are exactly the rules needed for invariance
of this structure under the Reidemeister moves. Note that in analyzing in-
variance under Reidemeister moves, we visualize representative parts of link
diagrams with biquandle labels on their edges. The primary labeling occurs
at a crossing. At a positive crossing with over input b and under input a,

the under output is labeled a b and the over output is labeled b a . At a
negative crossing with over input b and under input a, the under output is

labeled a b and the over output is labeled b a . At a virtual crossing there
is no change in the labeling of the lines that cross one another.

Remark 2. Later in this paper, we shall generalize the biquandle to
include operations at the virtual crossings.

Remark 3. A remark is in order about the relationship of the operator
notations with the usual conventions for binary algebraic operations. Let

a∗b = ab = a b . We are asserting that the biquandle comes equipped with
four binary operations of which one is a ∗ b. Here is how these notations are
related to the usual parenthesizations:

1. (a ∗ b) ∗ c = (ab)c = abc = a b c

2. a ∗ (b ∗ c) = abc

= a b c

From this the reader should see that the exponential and operator notations
allow us to express biquandle equation with a minimum of parentheses.

In Figure 3 we illustrate the effect of these conventions and how they
lead to the following algebraic transcription of the directly oriented second
Reidemeister move:

a = a b b a or a = abba ,

b = b a a b or b = b
aab .
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Fig. 3. Direct two move

The reverse oriented second Reidemeister move gives a different sort of iden-
tity, as shown in Figure 4. For the reverse oriented move, we must assert

∃x ∋ x = a b x , a = x b and b = b x a

b x a

x b x

x bb

a

J
JĴ

J
JĴ
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Fig. 4. Reverse two move

that given elements a and b in the biquandle, there exists an element x such
that

x = a b x , a = x b , b = b x a .

By reversing the arrows in Figure 4 we obtain a second statement for
invariance under the type two move, saying the same thing with the oper-
ations reversed: Given elements a and b in the biquandle, there exists an
element x such that

x = a b x , a = x b , b = b x a .

There is no necessary relation between the x in the first statement and the
x in the second statement.
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These assertions about the existence of x can be viewed as asserting the
existence of fixed points for a certain operator. In this case such an operator

is F (x) = a b x . It is characteristic of certain axioms in the biquandle

that they demand the existence of such fixed points. Another example is
the axiom corresponding to the first Reidemeister move (one of them) as
illustrated in Figure 5. This axiom states that given an element a in the
biquandle, there exists an x in the biquandle such that x = a x and that
a = x a . In this case the operator is G(x) = a x .

∃x ∋ x = a x and a = x a

x a

a xx

a

�
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�
�

��>

@
@I

�
�

�
�	

HHHHHHHHj

Fig. 5. First move

It is unusual that an algebra would have axioms asserting the existence of
fixed points with respect to operations involving its own elements. We plan
to take up the study of this aspect of biquandles in a separate publication.
For now it is worth remarking that a slight change in the axiomatic structure
allows an easy definition of the free biquandle. The idea is this: Suppose
that one has an axiom that states the existence of an x such that x =
a x for each a. Then we change the statement of the axiom by adding a
new operation (unary in this case) to the algebra, call it Fix(a), such that

Fix(a) = a Fix(a) . Existence of the fixed point follows from this property

of the new operation, and we can describe the free biquandle on a set by
taking all finite biquandle expressions in the elememts of the set, modulo
these revised axioms for the biquandle.

The biquandle relations for invariance under the third Reidemeister move
are shown in Figure 6. The version of the third Reidemeister move shown
in this figure yields the following algebraic relations:

a b c = a c b b c or abc = acbb
c

,

c b a = c a b b a or cba = cabba
,

b a c a b = b c a c b or (ba)
c
ab = (bc)acb .

The reader will note that if we replace the diagrams of Figure 6 with dia-
grams with all negative crossings then we will get a second triple of equations
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b cc b
a c b b c

cb

a

b a c a bc a b b a

a b cb a

c
a bb

a

Fig. 6. Third move

identical to those above but with all right operator symbols replaced by the
corresponding left operator symbols (equivalently: with all exponent literals
replaced by their barred versions). Here are the operator versions of these
equations; we refrain from writing the exponential versions because of the
prolixity of barred variables.

a b c = a c b b c ,

c b a = c a b b a ,

b a c a b = b c a c b .

We now have a complete set of axioms, for it is a fact (see, e.g., [Knots,
Ma1]) that the third Reidemeister move with the orientation shown in Fig-
ure 6 and either all positive crossings (as shown in that figure) or all negative
crossings, is sufficient to generate all the other cases of third Reidemeister
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move just so long as we have both oriented forms of the second Reidemeister
move. Consequently, we can now give the full definition of the biquandle.

Definition. A biquandle B is a set with four binary operations indi-

cated by the conventions we have explained above: ab , ab , ab , ab. We shall
refer to the operations with barred variables as the left operations and the
operations without barred variables as the right operations. The biquandle
is closed under these operations and the following axioms are satisfied:

1. For any elements a and b in B we have

a = abba , b = b
aab , a = abba , b = b

aab .

2. Given elements a and b in B, there exists an element x such that

x = abx , a = xb, b = bxa.

Given elements a and b in B, there exists an element x such that

x = abx , a = xb, b = bxa.

3. For any a, b, c in B the following equations hold and the same equa-
tions hold when all right operations are replaced in these equations
by left operations:

abc = acbbc

, cba = cabba
, (ba)

c
ab = (bc)acb .

4. Given an element a in B, there exists an x in the biquandle such that
x = ax and a = xa. Given an element a in B, there exists an x in the
biquandle such that x = ax and a = xa.

These axioms are transcriptions of the Reidemeister moves. The first ax-
iom transcribes the directly oriented second Reidemeister move. The second
axiom transcribes the reverse oriented Reidemeister move. The third axiom
transcribes the third Reidemeister move as we have described it in Figure
6. The fourth axiom transcribes the first Reidemeister move. Much more
work is needed in exploring these algebras and their applications to knot
theory.

2.3. The Alexander biquandle. In order to realize a specific example
of a biquandle structure, suppose that

a b = ta + vb, b = sa + ub,

where a, b, c are elements of a module M over a ring R and t, s, v, u are
in R. We use invariance under the Reidemeister moves to determine relations
among these coefficients.
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Taking the equation for the third Reidemeister move discussed above,
we have

a b c = t(ta + vb) + vc = t2a + tvb + vc,

a c b b c = t(ta + v(sc + ub)) + v(tb + vc)

= t2a + tv(u + 1)b + v(ts + v)c.

From this we see that we have a solution to the equation for the third
Reidemeister move if u = 0 and v = 1 − st. Assuming that t and s are
invertible, it is not hard to see that the following equations not only solve this
single Reideimeister move, but they give a biquandle structure, satisfying
all the axioms:

a b = ta + (1 − st)b, a b = sa,

a b = t−1a + (1 − s−1t−1)b, a b = s−1a.

Thus we have a simple generalization of the Alexander quandle and we shall
refer to this structure, with the equations given above, as the Alexander

Biquandle.
Just as one can define the Alexander Module of a classical knot, we have

the Alexander Biquandle of a virtual knot or link, obtained by taking one
generator for each edge of the knot diagram and taking the module relations
in the above linear form. Let ABQ(K) denote this module structure for an
oriented link K. That is, ABQ(K) is the module generated by the edges
of the diagram, modulo the submodule generated by the relations. This
module then has a biquandle structure specified by the operations defined
above for an Alexander Biquandle. We first construct the module and then
note that it has a biquandle structure. See Figures 7–9 for an illustration of
the Alexander Biquandle labelings at a crossing.

For example, consider the virtual knot in Figure 8. This knot gives rise
to a biquandle with generators a, b, c, d and relations

a = d b , c = b d , d = c a , b = a c .

Writing these out in ABQ(K), we have

a = td + (1 − st)b, c = sb, d = tc + (1 − st)a, b = sa.

Eliminating c and b and rewriting, we find

a = td + (1 − st)sa, d = ts2a + (1 − st)a.

Note that these relations can be written directly from the diagram as
indicated in Figure 9 if we perform the lower biquandle operations directly
on the diagram. This is the most convenient algorithm for producing the
relations.
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Fig. 8. A virtual knot fully labeled Fig. 9. A virtual knot with lower operations labeled

We can write these as a list of relations

(s − s2t − 1)a + td = 0, (s2t + 1 − st)a − d = 0.

for the Alexander Biquandle as a module over Z[s, s−1, t, t−1]. The relations
can be expressed concisely with the matrix of coefficients of this system of
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equations:

M =

[

s − s2t − 1 t

(s2t + 1 − st) −1

]

.

The determinant of M is, up to multiples of ±sitj for integers i and j, an
invariant of the virtual knot or link K. We shall denote this determinant by
GK(s, t) and call it the generalized Alexander polynomial for K.

A key fact about GK(s, t) is that GK(s, t) = 0 if K is equivalent to a

classical diagram. This is seen by noting that in a classical diagram one of
the relations will be a consequence of the others. In this case we have

GK = (1 − s) + (s2 − 1)t + (s − s2)t2,

which shows that the knot in question is non-trivial and non-classical.
Here is another example of the use of this polynomial. Let D denote

the diagram in Figure 10. It is not hard to see that this virtual knot has
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Fig. 10. Unit Jones polynomial, integer fundamental group

unit Jones polynomial, and that the fundamental group is isomorphic to the
integers. The biquandle does detect the knottedness of D. The relations are

a d = b, d a = e, c e = d, e c = f, f b = a, b f = c,

from which we obtain the relations (eliminating c, e and f)

b = ta + (1− tv)d, d = ts−1b + (1− ts)sd, a = t−1s2d + (1− t−1s−1)b.

The determinant of this system is the generalized Alexander polynomial
for D:

t2(s2 − 1) + t(s−1 + 1 − s − s2) + (s − s2).

This proves that D is a non-trivial virtual knot.
In fact the polynomial that we have computed is the same as the poly-

nomial invariant of virtuals of Sawollek [Saw] and defined by an alternative



118 L. H. Kauffman and V. O. Manturov

method by Silver and Williams [SW] and, in a third way, by Manturov [Ma3],
and given a state sum formulation by Kauffman and Radford [KR]. Sawollek
defines a module structure essentially the same as our Alexander Biquandle.
Silver and Williams first define a group. The Alexander Biquandle proceeds
from taking the abelianization of the Silver–Williams group. Manturov uses
the virtual quandle construction we shall describe in the next subsection.

We end this discussion of the Alexander Biquandle with two examples
that show clearly its limitations. View Figure 11. In this figure we illus-
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Fig. 11. The Knot K and the Kishino Diagram KI

trate two diagrams labeled K and KI. It is not hard to calculate that both
GK(s, t) and GKI(s, t) are equal to zero. However, the Alexander Biquan-
dle of K is non-trivial—calculation shows that it is isomorphic to the free
module over Z[s, s−1, t, t−1] generated by elements a and b subject to the
relation

(s−1 − t − 1)(a − b) = 0.

Thus K represents a non-trivial virtual knot. This shows that it is possible
for a non-trivial virtual diagram to be a connected sum of two trivial virtual
diagrams, and it shows that the Alexander Biquandle can sometimes be
more powerful than the polynomial invariant G. However, the diagram KI

also has trivial Alexander Biquandle. This knot is proved to be knotted
virtual by Kishino and Satoh [KS], Bartholomew and Fenn [BF], Manturov
[Ma8], Kadokami [Kad], Dye and Kauffman [KaV4] and others (see also the
first problem in [FKM]).

2.4. Virtual quandles

Definition 3. A virtual quandle is a quandle (M, ◦) endowed with a
unary operation f such that:

1. f is invertible, the inverse operation being denoted by f−1;
2. ◦ is distributive with respect to f :

(2) ∀a, b ∈ M : f(a) ◦ f(b) = f(a ◦ b).
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Remark 4. Equation (2) implies that for all a, b ∈ M :

f−1(a) ◦ f−1(b) = f−1(a ◦ b),

f(a) ◦ f(b) = f(a ◦ b),

f−1(a) ◦ f−1(b) = f−1(a ◦ b).

Given a virtual link diagram L, we construct its virtual quandle Q(L)
as follows.

We say that a diagram has proper arcs if there are no circles (circular
arcs) in the diagram. See Figure 13. We can choose a diagram L′ in such a
way that it is divided into long arcs in a proper way. (A long arc is an arc of
the diagram that may contain virtual crossings.) Such diagrams are called
proper . It is clear that a proper diagram with m crossings has m long arcs.
We do need the fact that each long arc has two different final crossing points.
For some diagrams this is not true. However, this can easily be accomplished
by slight deformations of the diagram; see Fig. 12.

�
Y

�
Y

Ω2−→

↓

circular long arc
normal diagram

Fig. 12. Reconstructing a link diagram in a proper way

Definition 4. An arc of L′ is an oriented interval in the diagram not
containing undercrossings or virtual crossings.

Example 1. The knot shown in Fig. 13 has 3 classical crossings, 3 arcs
(a1 and a2; b1 and b2; c), and 5 virtual arcs (a1, a2, b1, b2, c).

�

j

a1

b1a2

b2 c

Fig. 13. A knot diagram and its arcs
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The invariant Q(L) is now constructed as follows. Consider all arcs ai,
i = 1, . . . , n, of the diagram L′. Consider the set of formal words X(L′)
obtained inductively from ai by using ◦, ◦, f, f−1. In order to construct Q(L′)
we will factorize X(L′) by the equivalence relation generated by the general
axioms shown below, plus the consequences of the specific relations incurred
from the diagram.

Axiomatically, for each a, b, c ∈ X(L′) we identify:

f−1(f(a)) ∼ f(f−1(a)) ∼ a;

(a ◦ b) ◦ b ∼ a;

(a ◦ b) ◦ b ∼ a;

a ∼ a ◦ a;

(a ◦ b) ◦ c ∼ (a ◦ c) ◦ (b ◦ c);

f(a ◦ b) ∼ f(a) ◦ f(b).

With the equivalence generated by these axioms, we get a “free” virtual
quandle with generators a1, . . . , an. We then add the extra equivalences from
the structure of L′:

For each classical crossing we write the relation (1) just as in the classical
case. For each virtual crossing V we also write relations. Let aj1 , aj2 , aj3 , aj4

be the four arcs incident to V as shown in Fig. 14.
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aj3 =f−1(aj2) aj2 =f(aj1)

Fig. 14. Relation for a virtual crossing

Then, let us write the relations

(3) aj2 = f(aj1)

and

(4) aj3 = f(aj4).

So, the virtual quandle Q(L) is the quandle generated by all arcs ai, i =
1, . . . , n, all linear relations at classical vertices and all relations (3), (4) at
virtual vertices.

Theorem 1. The quandle Q(L) is a link invariant.
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Proof. First, note that two proper diagrams generate isotopic virtual
links if and only if one can be deformed to the other by using a sequence
of virtual Reidemeister moves. Indeed, if during isotopy a circular long link
occurs, we can modify the isotopy by applying the first classical Reidemeister
move to this long arc and subdividing it into two parts.

We have to show that Q(L) is invariant under virtual Reidemeister
moves. The invariance of Q(L) under all classical moves is checked in the
same way as that of the ordinary quandle. Let us check now the invariance
of Q under purely virtual Reidemeister moves.

The first virtual Reidemeister move is shown in Fig. 15. In the initial local
picture we have one local generator a. Here we just add a new generator b

and two coinciding relations: b = f(a). Thus, it does not change the virtual
quandle at all.
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Fig. 15. Invariance of Q under the 1st virtual move

The case of inverse orientation at the crossings gives us b = f−1(a) that
does not change the situation.

For each next relation, we will check only one case of arc orientation.
The second move (see Fig. 16) adds two generators c and d and two pairs

of coinciding relations c = f(a) and d = f−1(b). Thus, the quandle Q stays
the same. In the case of the third Reidemeister move we have six “exterior
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Fig. 16. Invariance of Q under the 2nd virtual move

arcs”: three incoming (a, b, c) and three outgoing (p, q, r); see Fig. 17. In
both cases we have p = f2(a), q = b, r = f−2(c). The three interior arcs are
expressed in terms of a, b, c, and give no other relations.
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Fig. 17. Invariance of Q under the 3rd virtual move

Finally, let us check the mixed move. We will only check the version of
it shown in Fig. 18.
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Fig. 18. Invariance of Q under the mixed move

In both pictures we have three incoming edges a, b, c and three outgoing
edges p, q, r. In the first case we have the relations p = f(a), q = b, r =
f−1(c) ◦ a. In the second case we have p = f(a), q = b, r = f−1(c ◦ f(a)).

The distributivity relation f(x ◦ y) = f(x) ◦ f(y) implies f−1(c) ◦ a =
f−1(c ◦ f(a)). Hence, two virtual quandles before the mixed move and after
the mixed move coincide.

The other cases of the mixed move lead to other relations all equivalent
to f(x ◦ y) = f(x) ◦ f(y).

This completes the proof of the theorem.

This leads to a construction of a polynomial invariant (the “easier” part
of the paper [Ma3]). First, we take a ◦ b to be ta + (1 − t)b and f(a) to
be sa, where t and s are independent commuting variables. After this, the
normalized determinant of this matrix gives an invariant.

It was proved recently by R. Fenn (considering virtual knots as closures
of virtual braids; this idea was inspired by H. Morton) that this polynomial
in fact coincides with that proposed by Sawollek and Silver–Williams and
with that coming from the Alexander Biquandle (up to a variable change)
as discussed by Kauffman and Radford. Fenn’s method also proves that we
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get nothing new if we try to use the linear biquandle structure at classical
crossings and linear automorphism f at virtual crossings.

In the present paper, we will construct a more general invariant in Sec-
tion 5 (which works for the case of colored links).

2.5. Jones polynomial for virtual knots and involutory quan-

dles. We use a generalization of the bracket state summation model for the
Jones polynomial to extend it to virtual knots and links. We call a diagram
in the plane purely virtual if the only crossings in the diagram are virtual
crossings. Each purely virtual diagram is equivalent by virtual moves to a
disjoint collection of circles in the plane.

Given a link diagram K, a state S of this diagram is obtained by choosing
a smoothing for each crossing in the diagram and labeling that smoothing
with either A or A−1 according to the convention that a counterclockwise
rotation of the overcrossing line sweeps two regions labeled A, and that a
smoothing that connects the A regions is labeled by the letter A, or dia-
grammatically,

Fig. 19

Then, given a state S, one has the evaluation 〈K|S〉 equal to the product
of the labels at the smoothings, and one has the evaluation ‖S‖ equal to
the number of loops in the state (the smoothings produce purely virtual
diagrams). One then has the formula

(5) 〈K〉 =
∑

S

〈K|S〉d‖S‖−1,

where the summation runs over the states S of the diagram K, and d =
−A2 − A−2. This state summation is invariant under all classical and vir-
tual moves except the first Reidemeister move. The bracket polynomial is
normalized to an invariant fK(A) of all the moves by the formula fK(A) =

(−A3)−w(K)〈K〉 where w(K) is the writhe of the (now) oriented diagram K.
The writhe is the sum of the orientation signs (±1) of the crossings of the
diagram. The Jones polynomial VK(t) is given in terms of this model by the
formula

(6) VK(t) = fK(t−1/4).

The reader should note that this definition is a direct generalization to
the virtual category of the state sum model for the original Jones polynomial.
It is straightforward to verify the invariances stated above. In this way one
has the Jones polynomial for virtual knots and links (see [KaV]).
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In terms of the interpretation of virtual knots as stabilized classes of
embeddings of circles into thickened surfaces, our definition coincides with
the simplest version of the Jones polynomial for links in thickened surfaces.
In that version one counts all the loops in a state the same way, with no
regard for their isotopy class in the surface. It is this equal treatment that
makes the invariance under handle stabilization work. With this general-
ized version of the Jones polynomial, one has again the problem of finding
a geometric/topological interpretation of this invariant. There is no fully
satisfactory topological interpretation of the original Jones polynomial and
the problem is inherited by this generalization.

In [KaV2], the following theorem was proved.

Theorem 2. For each non-trivial classical knot diagram K of one com-

ponent there is a corresponding non-trivial virtual knot diagram Virt(K)
with unit Jones polynomial.

This theorem is a key ingredient in the problems involving virtual knots.
Here is a sketch of its proof. The proof uses two invariants of classical knots
and links that generalize to arbitrary virtual knots and links. These invari-
ants are the Jones polynomial and the involutory quandle; we denote the
latter by IQ(K) for a knot or link K.

Given a crossing i in a link diagram, we define s(i) to be the result of
switching that crossing so that the undercrossing arc becomes an overcross-
ing arc and vice versa. We also define the virtualization v(i) of the crossing
by the local replacement indicated in Figure 20. In this figure we illustrate
how in the virtualization of the crossing the original crossing is replaced by
a crossing that is flanked by two virtual crossings.

s(i)

v(i)

i

j j

Fig. 20. Switching and virtualizing a crossing

Proof of Theorem 2. Suppose that K is a (virtual or classical) diagram

with a classical crossing labeled i. Let Kv(i) be the diagram obtained from
K by virtualizing the crossing i while leaving the rest of the diagram just as
before. Let Ks(i) be the diagram obtained from K by switching the crossing
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i while leaving the rest of the diagram just as before. Then it follows directly
from the definition of the Jones polynomial that

VKs(i)(t) = VKv(i)(t).

As far as the Jones polynomial is concerned, switching a crossing and vir-
tualizing a crossing look the same.

The involutory quandle [Knots] is an algebraic invariant equivalent to
the fundamental group of the double branched cover of a knot or link in
the classical case. In this algebraic system one associates a generator of the
algebra IQ(K) to each arc of the diagram K and there is a relation of the
form c = ab at each crossing, where ab denotes the (non-associative) algebra
product of a and b in IQ(K). See Figure 21. In this figure we have illustrated
through the local relations the fact that

IQ(Kv(i)) = IQ(K).

As far as the involutory quandle is concerned, the original crossing and the
virtualized crossing look the same.

b

c =c = ab

bb

a

ab

b

a

j j

Fig. 21. IQ(Virt(K)) = IQ(K)

If a classical knot is actually knotted, then its involutory quandle is
non-trivial [W]. Hence if we start with a non-trivial classical knot, we can
virtualize any subset of its crossings to obtain a virtual knot that is still
non-trivial. There is a subset A of the crossings of a classical knot K such
that the knot SK obtained by switching these crossings is an unknot. Let
Virt(K) denote the virtual diagram obtained from A by virtualizing the
crossings in the subset A. By the above discussion the Jones polynomial
of Virt(K) is the same as the Jones polynomial of SK, and this is 1 since
SK is unknotted. On the other hand, the IQ of Virt(K) is the same as the
IQ of K, and hence if K is knotted, then so is Virt(K). We have shown
that Virt(K) is a non-trivial virtual knot with unit Jones polynomial. This
completes the proof of the theorem.
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If there exists a classical knot with unit Jones polynomial, then one
of the knots Virt(K) produced by this theorem may be equivalent to a
classical knot. It is an intricate task to verify that specific examples of
Virt(K) are not classical; a very special partial case was considered in [SW2].
This has led to an investigation of new invariants for virtual knots. In
this investigation a number of issues appear. One can examine the com-
binatorial generalization of the fundamental group (or quandle) of the vir-
tual knot and sometimes one can prove by pure algebra that the result-
ing group is not classical. This is related to observations by Silver and
Williams [SW], by Manturov [Ma6, Ma8] and by Satoh [Satoh] showing
that the fundamental group of a virtual knot can be interpreted as the fun-
damental group of the complement of a torus embedded in four-dimensional
Euclidean space.

A very fruitful line of new invariants comes about by examining the bi-
quandles and virtual quandles. Flat virtual diagrams are seldom trivial. If
we can verify that the flat knot F (Virt(K)) is non-trivial, then Virt(K) is
non-classical. In this way the search for classical knots with unit Jones poly-
nomial expands to the exploration of the structure of the infinite collection
of virtual knots with unit Jones polynomial; for a detailed description of
this problem, see [FKM].

Another way of putting Theorem 2 is as follows: In the arena of knots
in thickened surfaces there are many examples of knots with unit Jones
polynomial. Might one of these be equivalent via handle stabilization to a
classical knot? In [Kup] Kuperberg shows the uniqueness of the embedding
of minimal genus in the stable class for a given virtual link. The minimal
embedding genus can be strictly less than the number of virtual crossings
in a diagram for the link. There are many problems associated with this
phenomenon.

There are generalizations of the Jones polynomial that involve the sur-
face representation of virtual knots. To begin with, one can keep track of the
isotopy classes of the curves in the state expansion of the bracket polynomial
for a knot embedded in a surface. This gives a surface bracket polynomial
[KaV4] that can be used in tandem with Kuperberg’s results [Kup] to deter-
mine the minimal surface embedding genus for some virtual knots and links.
In [KaV4] this method is used to show that the Kishino diagram has genus
two. Another approach [Ma8] uses a relative of the surface bracket polyno-
mial, and includes in the equivalence relation of the curves in the states, the
stabilization of the surfaces themselves. In this way the Manturov invariant
becomes an element of a module over the Laurent polynomial ring in one
variable, and is strictly stronger than the original extension of the Jones
polynomial to virtuals. We do not yet know the relative strengths of these
two methods.
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2.6. A common construction—the virtual biquandle. Consider
an oriented virtual link diagram L and divide it into arcs. Write down the
biquandle relations at each classical crossing, and the virtual quandle rela-
tions at each virtual crossing.

The full list of operations and axioms for this object, the virtual biquandle

(making this related algebra an invariant of virtual knots and links), is as
follows:

1. We have operations , , , as above and the invertible operation
f acting on the whole algebra.

2. Biquandle operations satisfy all conditions described previously.
3. The operation f ia a biquandle automorphism. Thus, for instance,

f(a b ) = f(a) f(b) ; the same statements are true for , , .

The object defined in this manner is called the virtual biquandle of the link .
Now, we consider a larger context, admitting more general constructions at
virtual crossings.

Let us now give the definition of the formal virtual biquandle as some
algebraic object satisfying certain axioms; along the same lines, we shall de-
fine the virtual biquandle of a link by interpreting the biquandle operations
according to the crossing structure.

Let us now write down the axioms in the general case, when virtual
crossings are endowed with binary operations a.b and b|a (see Fig. 22).
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a.bb|a

Fig. 22. Binary relation at
a virtual crossing

Fig. 23. Relations coming from the first
virtual move

The axioms for the classical case are the same as above.
The axioms for purely virtual moves are:

1. The first Reidemeister move (see Fig. 23):

∀a ∃x :

{

cx.a = a,

a|x = x,
(7)

∀a ∃y :

{

a.y = y,

y|a = a.
(8)
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2. The second oriented Reidemeister move (see the left part of Fig. 24):

(9) ∀a, b : (a.b)|(b|a) = a and (b|a).(a.b) = b.

Fig. 24. Relations coming from the second virtual move

The second unoriented Reidemeister moves (see the central and right
parts of Fig. 24):

(10)

{

∀a, b : ∃!x : b|(a|x) = x; (a|x).b = a,

∀a, b : ∃!y : (y|b) = a; (b.y)|a = b.

3. The third Reidemeister move (see Fig. 25, upper and lower pictures).
The two cases are:

(11) ∀a, b, c :







(a.b).c = (a.(c|b)).(b.c),

(b|a).(c|(a.b)) = (b.c)|(a.(c|b)),

(c|(a.b))|(b|a) = (c|b)|a,

and

(12) ∀a, b, c : ∃!x, y :



























(c|(b|(a|x))) = x,

b.(c.(a.y)) = y,

(a|x).b = (a.y)|c,

y|a = (b|(a|x)).c,

x.a = (c.(a.y))|b.

Remark 5. In Figs. 24 and 25 we label only some arcs; all other arcs
can be labeled according to the rule shown in Fig. 22.

For the semivirtual move we have the pictures in Fig. 26 and relations:

(13) ∀a, b, c :











(a b )|c = (a|(c.b)) b|c ,

(b a )|(c.(a b )) = (b|c) a|(c.b) ,

c.(a b ).(b a ) = (c.b).a
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Fig. 25. Relations coming from the third virtual move

and

(14) ∀a, b, c : ∃!x, y :































(b|(a x )).c = x,

a.(b.(c y )) = y,

(a x ).b = y c ,

c|(b|(a x )) = (b.(c y ))|a,

x a = (c y )|b.

Fig. 26. Relations coming from the mixed move

The proof is trivial by design. It is left to the reader.
This common structure should have a lot of realizations. We indicate one

of them in the following section.
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3. PRESENTATIONS

In this section, we describe several explicit constructions of the virtual
quandle and biquandle invariants described above, using specific algebraic
structures for the representation.

3.1. A presentation for virtual biquandles. Virtual biquandles ad-
mit the following linear representation: at classical crossings we have the
Alexander Biquandle operations (with generators t, s) and set (a.b) = (1 +
qb)a, (b′a) = (1 − qa)b for some new generator q that commutes with t, s

such that q2 = (t − 1)q = (s − 1)q = 0. We are going to investigate other
models of the virtual biquandle with binary operations at virtual crossings.

We shall discuss other presentations of the virtual biquandle construction
in our further publications. Later in this section, we deal with long quandles,
virtual quandles, and some generalizations of them.

3.2. Formal power functions and conjugation. For the virtual
quandles, one can take a group together with the following two possible
operations:

1. a ◦ b = bnab−n, f(a) = qaq−1, where q is a new generator for this
group, and n is an integer;

2. a ◦ b = ba−1b, f(a) = qaq−1 or f(a) = qa−1q, where q is a new
generator for the group.

In this way, we associate a group to each virtual knot in two possible ways.
One can also associate a finite group G with the virtual quandle oper-

ations defined as above, and look at the set of all maps Γ (L) → G, where
Γ (L) is the virtual knot quandle, and G is a finite virtual quandle. The
set of such mappings is finite for any finite group (we can fix the images of
generators of the quandle thus defining the map completely), so the num-
ber of “colorings”, i.e., mappings, is finite and invariant under generalized
Reidemeister moves. For more details see [Ma2].

These ideas can also be used for the case of biquandles and virtual bi-
quandles. More precisely, one can say the following: if we have an abstract
knot invariant G constructed according to some axioms (quandle, virtual
quandle or biquandle) and a finite object G satisfying the same axioms,
then the cardinality of the set of mappings G(L) → G is a knot invariant.

Thus there is a way to search for finite-valued invariants (colorings) by
finding finite sets satisfying such axioms.

3.3. The quaternionic biquandle. It turns out that there are beauti-
ful, explicit biquandle constructions that give powerful results. One class of
such constructions come from the quaternions. This idea and the following
formulae are due to R. A. Fenn and A. Bartholomew [BF].
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The quaternionic biquandle is defined by the following operations:

a b = j · a + (1 + i) · b, a b = j · a + (1 − i) · b,

a b = −j · a + (1 + i) · b, a b = −j · a + (1 − i) · b.

where i2 = j2 = k2 = ijk = −1, ij = −ji = k, jk = −kj = i, ki =
−ik = j in the associative, non-commutative algebra of the quaternions.
The elements a, b, . . . are in a module over the ring of integer quaternions.

Amazingly, one can verify that these operations satisfy the axioms for
the biquandle.

For more about quaternionic and other non-commutative biquandles, see
[BF].

Let us look at what happens with the Kishino knot (see labeling shown
in Fig. 27).

Fig. 27. The Kishino knot

Let us first consider the rightmost crossings (that deal with arcs a, b, c).
We have:

c a = −j · c + (1 + i)a, a c = j · a + (1 + i) · c.

Now,
a c c a = c and c a a c = b

give us

b = j(−jc + (1 + i)a) + (1 − i)(ja + (1 + i)c) = 3c + 2(j − k)a,(15)

c = −j(ja + (1 + i)c) + (1 − i)(−jc + (1 + i)a) = 3a − 2(j − k)c.(16)

It follows that 3a = 3b.
Now, let us write the relations for the left crossings. We have:

b d = −jb + (1 − i)d, d b = jd + (1 − i)b.

So,

d b b d = a and b d d b = d.

Hence,

a = −j(jd + (1 − i)b) + (1 + i)(−jb + (1 − i)d) = 3d − 2(j + k)b,(17)

d = j(−jb + (1 − i)d) + (1 + i)(jd + (1 − i)b) = 3b + 2(j + k)d.(18)

From these equations we can also conclude that 3a = 3b.
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Let us show that the module we get is not just the module generated by
a where a = b. Indeed, by tensoring the above equations with Z3, we get

b = 2(j − k)a, c = −2(j − k)c, a = −2(j + k)b, d = 2(j + k)d.

Thus, b is out of picture, and we get

c = −2(j − k)c, a = 2ia, d = 2(j + k)d.

But this implies (1 − 2i)a = 0 from which we deduce

2a = 5a = (1 + 2i)(1 − 2i)a = 0,

whence a = 0.
Therefore we are left with

c = 2(j − k)c, d = 2(j + k)d,

and this is certainly a non-trivial module over Z3.
Thus, this linear biquandle is not isomorphic to the free one-dimensional

linear space over integer quaternions. From this we conclude that the Kishino
diagram is a non-trivial virtual knot. The proof given above is a simplifi-
cation of the method used by Fenn and Bartholomew. In any case, this
proof is perhaps the most direct verification for the detection of the Kishino
diagram!

4. INFINITE-DIMENSIONAL LIE ALGEBRAS

Here we propose one new method to obtain quandles, biquandles, virtual
quandles, etc. (see [Ma4]). For simplicity, we will deal with quandles. We
know that quandles can be well defined on discrete groups by putting, say,
a ◦ b = bab−1. The question is: is it possible to arrange a quandle operation
which would act on a geometric group (Lie group)? Well, each of the relations

(19)







a ◦ b = bab−1,

a ◦ b = bnab−n,

a ◦ b = ba−1b

works well in any group (i.e. satisfies all the quandle axioms), but what we
actually want to do is to construct a group by generators and relations.

This problem for geometrical groups is quite difficult, so we may imagine
we already have a group with such an operation, and this group G is good,
it is a Lie group. Thinking in this way, we see that this group should have
the corresponding Lie algebra g (which can in fact be constructed by using
generators and relations), and the group is connected with the algebra by
the exponential mapping exp : g → G. So, it would be nice to understand
the quandle relations of type (19), say, the relation a ◦ b = bab−1. In the
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algebra, this relation would be

(20) a ◦ b = log(exp(a) exp(b) exp(c)),

where log is the inverse operation G → g to the exponential map (more
precisely, this operation is defined in the vicinity of the group unit, however,
we will operate with formulae and look what happens).

It turns out that the operation a, b 7→ log(exp(a) exp(b)) can be defined
in terms of the Lie algebra, i.e., it can be expressed in commutators.

The required statement is called the Baker–Campbell–Hausdorff theo-

rem, and the coefficients are given by a beautiful formula due to Dynkin
[Dyn]:

(21) ln(exey)
∑ (−1)k−1

k

1

p1!q1! · · · pk!qk!
(xp1yq1 · · ·xpkyqk)◦,

where piqi > 0 for i ≤ k; here the function ·◦ is defined on formal non-
commutative monomials in variables xj by the rule

(22) (xi1 · · ·xik)◦ =
1

k
[. . . [[xi1, xi2 ], xi3], . . . , xik ]

and extended linearly to their linear combinations.
Thus, for any classical (or virtual) link L we construct an infinite-dimen-

sional Lie algebra Li(L) as follows. (All this can be done, if we, for instance,
take into account virtual crossings as well; we can just add a new generator
q and define

f(a) = log(exp(q) exp(a) exp(−q)).

We take its arcs as generators of the free infinite-dimensional Lie algebra,
and factorize the resulting algebra subject to the relation (20) taking into
account formula (21).

The infinite-dimensional Lie algebra obtained is a link invariant that is
not the most pleasant to work with, however, it admits a simplification.
Thus, for instance, we can take just a ◦ b = a + [a, b].

Decree a ◦ b to be a + [a, b] (actually, one should take a − [a, b], but we
choose this operation for simplicity). Then the first axiom holds by defini-
tion:

[a, a] = a + 0 = a.

As for the second axiom, the reverse operation exists by the formula

a ◦ b = a − [a, b] + [[a, b], b] − [[[a, b], b], b] + · · ·

without worrying a lot whether this formula converges. Even if it has infin-
itely many members, we can write all in the finite manner: namely, instead
of writing p ◦ q = r, we write r ◦ q = p. There is another way to handle the
situation: we put

a ◦ b = a + ε[a, b],
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where ε is just a new generator in the basic ring. In this case there would
be no problem with convergence.

Now, for the third relation we need

(a ◦ b) ◦ c = (a ◦ c) ◦ (b ◦ c).

So, we have the relation

a + [a, b] + [a, c] + [[a, b], c]

= a + [a, c] + [a, b] + [a, [b, c]] + [[a, c], [b, c]] + [[a, b], b]

in any of these cases, with or without ε.
Taking into account the Jacobi identity, we see that the equation above

is equivalent to

[[a, c], [b, c]] = 0.

This means that we must factorize only by third (not second!) commutators
of the form [[a, c], [b, c]]. Thus, we should not cut our series at some finite
place. This leads to some interesting results.

Denote by Li(K) the invariant obtained (with a◦b = a+ε[a, b] at classical
crossings and no structure at virtual crossings).

Moreover, this idea together with the Baker–Campbell–Hausdorff for-
mula leads to many other realizations and models for quandles.

Having this approach, one may search for particular representations
which certainly lead to new invariants of classical and virtual knots.

Let us consider the Li(K) invariant (without any structure at virtual
crossings). For instance, the trefoil and the figure eight knot give us a finite-
dimensional Lie algebra, whence the (5, 2)-torus knot Lie algebra is finite-
dimensional.

Indeed, for the trefoil, we have three arcs a, b, c and three vertices where
we have to write down the commutators. Obviously, we get

a + ε[a, b] = c

and two other relations obtained by permuting this one cyclically. Thus, we
can express all first commutators as linear combinations of generators. So,
this algebra cannot be infinite-dimensional.

For the figure eight knot, we have four arcs and three commutators, one
of them is expressed twice. Namely, view Figure 28.

We see that the first crossing gives us d ◦ c = a, the second one gives
b ◦ d = a, the third one gives b ◦ a = c, and the fourth one gives d ◦ b = c.
So, we have expressions for three of six commutators. Thus we have

ε[b, d] = a − b, ε[d, b] = c − d,

which easily leads to the finite-dimensionality of the algebra.
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Fig. 28. The labeled figure eight knot Fig. 29. The (5, 2)-torus knot

However, if we take the (5, 2)-torus knot, we have five generators
a1, a2, a3, a4, a5 and five cyclic relations

ε[a1, a2] = a3 − a1, ε[a2, a3] = a4 − a2, ε[a3, a4] = a5 − a3,

ε[a4, a5] = a1 − a4, ε[a5, a1] = a2 − a5;

see Figure 29.
The commutator [a1, a3] is not expressible in the terms of linear combi-

nations of ai’s. It is also easy to show that the elements

a1, [a1, a3], [[a1, a3], a3], [[[a1, a3], a3], a3]

represent linearly independent elements. Thus, we obtain a finite-dimen-
sional algebra.

5. COLORED VIRTUAL LINKS AND THEIR INVARIANTS

It is not difficult to show that the virtual quandle construction generalizes
to the case of colored links.

We will not write down all the axioms for the multicomponent virtual
quandle, we are just going to represent one linear model for oriented virtual
links.

Here we give a generalization of the work by Manturov initiated in
[Ma7, Ma3]. Namely, consider an n-component link L. Let us fix n gen-
erators t1, . . . , tn and n generators s1, . . . , sn. We are going to associate
elements of the module over Z[s1, . . . , sn, t1, . . . , tn] to the arcs of the dia-
gram, whence the module itself will be an invariant. The relations for virtual
crossings look as follows: while passing through the ith component from the
left to the right, we multiply the element associated to the arc “before”
by si. If we go from the right to the left, we multiply by the correspond-
ing s−1

j .
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At classical crossings, we do the following. Suppose we have a crossing
where the ith component goes over, and the jth component goes under (see
Fig. 30). Suppose the arc going over is b, the arc lying on the right is a, and
that on the left is c. Then the relation looks like

tia + (1 − tj)b = c.

Fig. 30. Relation at a crossing for colored links

For negative crossings we write down exactly the same relation just as
in Fig. 30 with the orientation of the jth arc reversed.

Denote the resulting module by M(L). The invariance of this module
under Reidemeister moves goes straightforwardly. It turns out that this leads
to a polynomial invariant. This invariant is a generalization of that proposed
in [Ma3] (there we use one variable t and many variables s).

First, we label all arcs of the diagram by monomials in s1, . . . , sn (this will
correspond to the operations at virtual crossings). We do it as follows. First,
we deal only with proper diagrams. Thus, we can associate each crossing with
a long arc. After that, we associate 1 with each “first” arc outgoing directly
from a crossing. After that, we can associate monomials in si’s to all arcs in
the way described above. View Fig. 31.

Fig. 31. Two-component link completely labeled

Now, we construct a matrix according to the relations at classical cross-
ings. Namely, each row of our matrix represents a crossing, each column of
the matrix represents a long arc. The matrix element is going to be the in-
cidence between them. More specifically, suppose we have positive crossing
number i with incoming edge number j having label P (this edge lies on the
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component p), and overcrossing edge number k having label Q (this edge
lies on the component q). Then the ith row of our matrix should consist
of at most three elements, more precisely, it is equal to the sum of three
rows, each of them having only one non-zero element. One of them has el-
ement i equal to 1, another one has element j equal to −tqP , and the last
one has element k equal to (tp − 1)Q. In the case when we have a nega-
tive crossing, we will have three rows, one of them having tq at position i,
another one having −P at position j and the last one having (tp − 1)Q at
position k.

The determinant of the matrix does not change while renumbering cross-
ings and long arcs correspondingly.

Thus, the determinant is well defined on proper link diagrams. Let us
denote by κ this function on diagrams.

The invariance check is quite similar to that performed in [Ma3], so we
can show only the most difficult case, namely, the invariance under the third
Reidemeister move.

Namely, consider the two diagrams shown in Figure 32.

Fig. 32. Labeling for the third Reidemeister move

Here all numbers of crossings are indicated by Roman numbers, all num-
bers of arcs are indicated by Arabic numbers, numbers of components are
encircled, and monomials corresponding to incoming arcs are marked by
letters P, Q, R.

In the first case we have the matrix




















1 0 0 0 (tk − 1)Q −tjR 0 . . . 0

0 1 0 (tj − 1)P −tiQ 0 0 . . . 0

−ti 0 1 (tk − 1)P 0 0 0 . . . 0

0
... ∗

0





















.
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The second matrix looks like




















1 0 0 (tk − 1)P 0 −tiR 0 . . . 0

0 1 0 (tj − 1)P −tiQ 0 0 . . . 0

−tj (tk − 1) 1 0 0 0 0 . . . 0

0
... ∗

0





















.

As we see, the second rows of these matrices coincide. So, let us look at
the third rows. For the first matrix, add the first row multiplied by ti to the
third row. For the second matrix, add the first row multiplied by tj and the
second row multiplied by 1 − tk to the third row. We will get two matrices
for which the third rows coincide. Namely, it looks like

(0, 0, 1, (tk − 1)P, ti(tk − 1)Q,−titjR, 0, . . . , 0).

Now, the first column of the new matrices consists of the only non-zero
element, namely, 1 at position (1, 1). So, we can easily make the first rows of
these matrices equal. Thus, we have proved that the determinants of these
matrices coincide.

As for the first Reidemeister move, it might multiply the determinant by
a monomial in ti’s. Thus, we have proved the following

Theorem 3. The polynomial κ is invariant under Reidemeister moves

up to multiplication by powers of ti’s.

The colored link invariant can be used for knots (not links) as well: one
should just take cabling and care about the proper normalization of the
invariant.

6. LONG KNOTS AND THEIR INVARIANTS

It is well known that long classical knots (non-compact knots in R3 lying
on the straight line outside some big circle) are just the same as ordinary
classical knots. For a proof see e.g. [Ma1].

The results and main ideas of the present section were sketched in the
book [Ma1]; see also [Ma10]. The two main arguments that can be taken
into account in the theory of “long” virtual knots and could not be used
before are the following:

1. One can indicate the initial and the final arcs (which are not compact)
of the diagram representing some two fixed elements of the quandle;
the elements corresponding to them are invariant under generalized
Reidemeister moves.
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2. One can take two different quandle-like operations at vertices depend-
ing on which arc is “before” and which is “after” according to the
orientation of a long knot.

As shown in [GPV], the procedure of breaking a virtual knot is not well
defined: breaking the same knot diagram at different points, we may obtain
different long knots. Moreover, a virtual unknot diagram broken at some
point can generate a non-trivial long knot diagram. The aim of this section
is to construct invariants of long virtual knots that “feel” the breaking point.

Remark 6. Throughout the present section, we deal only with long
virtual knots, not links.

Remark 7. We shall never indicate the orientation of the long knot
assuming it to be oriented from left to right.

Notation. Throughout this section, R will denote the field of rational
functions in one (real) variable t: R = Q(t).

Now, let us define the virtual long knot.

Definition 5. By a long virtual knot diagram we mean a smooth im-
mersion f of the oriented line Lx, x ∈ (−∞, +∞), in R2, such that:

1. outside some big circle, we have f(t) = (t, 0);
2. each intersection point is double and transverse;
3. each intersection point is endowed with classical or virtual crossing

structure.

Definition 6. A long virtual knot is an equivalence class of long virtual
knot diagrams modulo generalized Reidemeister moves.

Definition 7. A long quandle is a set Q equipped with two binary
operations ◦ and ∗ and one unary operation f(·) such that (Q, ◦, f) is a
virtual quandle and (Q, ∗, f) is a virtual quandle and the following relations
hold: The reverse operation for ◦ is ◦ and the reverse operation for ∗ is ∗;

∀a, b, c ∈ Q : (a ◦ b) ∗ c = (a ∗ c) ◦ (b ∗ c),

∀a, b, c ∈ Q : (a ∗ b) ◦ c = (a ◦ c) ∗ (b ◦ c)

(new distributivity relations); and

∀x, a, b ∈ Q : xα(a ◦ b) = xα(a ∗ b)

∀x, a, b ∈ Q : xβ(a ◦ b) = xβ(a ∗ b)

(strange relations), where α and β are some operations from the list ◦, ∗, ◦, ∗.

Remark 8. It might seem that the last two relations hold only in the
case when ◦ coincides with ∗. However, the equation (a ◦ b) = c has the
only relation in a and not in b! As will be shown later, there are non-trivial
algebraic presentations of the long quandle.
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Consider a diagram K of a virtual knot and arcs of it. Fix the initial arc
a and the final arc b.

Now, we construct the long quandle of it by the following rule. First, we
take all arcs of it including a and b and consider the free long quandle: just by
using formal operations ◦, ∗, ◦, ∗, f factorized only by the quandle relations
(together with the new distributivity relations and strange relations).

After this, we factorize by relations at crossings. At each virtual cross-
ing, we do just the same as in the case of virtual quandle. At each classical
crossing we write the relation either with ◦ or with ∗, namely, if the over-
crossing is passed before the undercrossing (with respect to the orientation
of the knot) then we use the operation ◦ (respectively, ◦); otherwise we use ∗
(respectively, ∗).

After this factorization, we obtain an algebraic object M equipped with
the five operations ◦, ◦, ∗, ∗, f and two selected elements a, b.

Definition 8. Denote the resulting object by QL(K).

Let K be a diagram of a long knot K. Call QL(K) the long quandle of K.
Obviously, for the long unknot U (represented by a line without any

crossings) we see that the elements a, b ∈ QL(U) representing the initial and
the final arc should be equal.

Theorem 4. The quandle QL together with selected elements a, b is in-

variant with respect to generalized Reidemeister moves.

Proof. The proof is quite analogous to the invariance proof of the virtual
quandle. Therefore, the details will only be sketched.

The invariance under purely virtual moves and the semivirtual move goes
as in the classical case: we deal only with f and one of the operations ∗ or ◦.
Only one of the operators ∗, ◦ appears when applying the first or the second
classical Reidemeister move.

So, the most interesting case is the third classical Reidemeister move. In
fact, it is sufficient to consider the four cases (a, b, c, d) shown in Fig. 33.
In some cases this means the distributivity of the operations ◦, ∗, ◦, ∗ with
respect to each other.

In each of the four cases everything is OK with p and q (p does not
change and q is affected by p in the same manner on the right and on the
left). So, one should only check the transformation for r.

In each picture, at each crossing we put some operation α, β or γ. This
means one of the operations ◦, ∗, ◦, ∗ (which are going to be applied to the
arc below to obtain the corresponding arc above).

Consider case a. Each α, β, γ is a “multiplication” ◦ or ∗ (the operations
◦, ∗ are thus “divisions”).
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Fig. 33. Checking the invariance under Ω3

Thus, at the upper left corner we shall have (rγq)αp in the left picture
and (rαp)γ(qβp) in the right picture. But, by definition,

(rγq)αp = (rαp)γ(qαp).

The latter expression equals (rαp)γ(qβp) according to the “new relation”
(because both β and α are “multiplications”).

Now, let us turn to case b. Here γ is a “multiplication” and α, β are
“divisions”. Thus, the same equality takes place:

(rγq)αp = (rαp)γ(qαp) = (rαp)γ(qβp).

The same equality holds for the cases shown in pictures c and d: the
only important thing is that α and β are either both multiplications (as in
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case c) or both divisions (as in case d). The remaining part of the statement
follows straightforwardly.

The (non-trivial) virtual knot in Figure 34 is the connected sum of two
unknots. In particular, this means that the corresponding long virtual knots
are not trivial.

Fig. 34. The Kishino knot

Fig. 35. Two long virtual knots obtained by breaking the unknot

Consider the unknots shown in both parts of Fig. 35. Let us show that
they are not isotopic to the trivial knot. To do this, we will use the presen-
tation of the long virtual quandle to the module over Z16 by

a ◦ b = 5a − 4b, a ∗ b = 9a − 8b, f(x) = 3 · x.

It can be readily checked that these relations satisfy all axioms of the
long quandle.

Let us show that for none of these two knots a = b. Indeed, for the first
knot (Fig. 35.a), denote by c the next arc after a. Then we have

9a − 8 · (3c) = c, 5b − 4 · (3c) = c ⇒ b = 9a.

For the second knot (Fig. 35.b), denote by c the upper (shortest) arc. We
have

5 · (3b) − 4a = c, 9 · (3a) − 8b = c ⇒ b = 9a.

As we see, in none of these cases a = b. Moreover, the expressions of b

via a are different. Thus, none of the two long knots shown in Fig. 35.a and
Fig. 35.b is trivial.

If we take another field, say, Z25 with the operations a ◦ b = 6a − 5b,
a∗b = 11a−10b, f(x) = 3x, we shall see that the two knots from Figures 35.a
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and 35.b are indeed different: in the first case we obtain a = 11b, in the
second case we obtain a = 21b.

In fact, the linear model for long quandles allows us to prove even more,
namely, we can show that the knots 35.a and 35.b do not commute (this
implies the non-triviality and non-classicality of each of them together with
their non-equivalence).

Later, the same effect was established by D. Silver and S. Williams by
using non-commutative structures in biquandles.

7. LONG KNOT FLAT QUANDLES

There is an interesting question to consider: virtual knots modulo clas-
sical crossing change. These objects are called virtual flats (for more details
see, e.g., [Ma1, Ma6]). They are classified geometrically, moreover, they lead
to powerful invariants of virtual knots [Ma6, Tur]. However their algebraic
classification and invariants are worth studying (which was performed in
[Tur, HK]), because this may lead to the construction of skein algebras (see
e.g. [Ma1]) for virtual knots.

It turns out that this plan can be performed somehow by using the ideas
described in the previous section.

As in [FJK] and [BF], one can consider linear biquandles over non-com-
mutative rings, e.g., over quaternions. Namely, having a classical crossing
with two inputs, one writes down two outputs depending on the first ones
linearly by means of some matrix A. Here we do not pay attention to virtual
crossings (3). Obviously, the second (classical) Reidemeister move requires
invertibility of A, and the third Reidemeister move requires some equation
of Yang–Baxter type, namely,

(23) A1A2A1 = A2A1A2,

where A1 is a 3 × 3-matrix consisting of blocks A (of size 2 × 2) and 1 (of
size 1 × 1), and A1 is the matrix consisting of blocks 1 and A.

What have the equations got to do with long virtual knots? It turns out
that we can use two different matrices, say, A and B, for different types of
crossings, namely, A for the early overcrossing and B for the late overcross-
ing. In this case, we get the equations (23) for A1, A2 and analogous ones
for B1, B2 (as before). Besides this, we get one more equation for the third
Reidemeister move which corresponds to the “strange relation” in the case
of long quandles. Namely,

(24) A1A2B1 = B2A1A2.

(3) This is an interesting object to be discussed.
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Besides the obvious solution B = A, one can also take the solution
B = A−1. It is clear that all conditions described above hold (this is left to
the reader as a simple exercise). What do we get in this case? Obviously, each
“bad crossing” (with late overcrossing) is operated on by B (or B−1), so we
will have the same result as in the case of the inverse crossing (A−1 or A).

Finally, we get the invariant of the “descending” long knot with the same
shadow, obtained by using simply the Fenn approach with the matrix A.
This is going to be an invariant under generalized Reidemeister moves, so
this is an invariant of flats.

This agrees with the following general statement due to V. G. Turaev:
the mapping associating to a flat long virtual link diagram the corresponding
ascending long virtual link diagram is well defined. Thus it allows one to
use any long virtual knot invariants for recognizing flat long virtual knots.

So, we can take each of the solutions presented in [BF] and derive long
virtual flat invariants from them.

Whether these flat long virtual knot invariants can be used as a basis
for some skein module is still to be discovered.
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