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Dehn twists on nonorientable surfaesbyMihaª Stukow (Gda«sk)
Abstrat. Let ta be the Dehn twist about a irle a on an orientable surfae. It is wellknown that for eah irle b and an integer n, I(tn

a(b), b) = |n|I(a, b)2, where I(·, ·) is thegeometri intersetion number. We prove a similar formula for irles on nonorientablesurfaes. As a orollary we prove some algebrai properties of twists on nonorientablesurfaes. We also prove that if M(N) is the mapping lass group of a nonorientablesurfae N , then up to a �nite number of exeptions, the entraliser of the subgroup of
M(N) generated by the twists is equal to the entre of M(N) and is generated by twistsabout irles isotopi to boundary omponents of N .1. Introdution. Let N s

g,r be a smooth, nonorientable, ompat surfaeof genus g with r boundary omponents and s puntures. If r and/or s iszero then we omit it from the notation. If we do not want to emphasisethe numbers g, r, s, we simply write N for a surfae N s
g,r. Reall that Ngis a onneted sum of g projetive planes and N s

g,r is obtained from Ng byremoving r open disks and speifying a set Σ of s distinguished points inthe interior of N .Let H(N) be the group of all di�eomorphisms h : N → N suh that
h is the identity on eah boundary omponent and h(Σ) = Σ. By M(N)we denote the quotient group of H(N) by the subgroup onsisting of themaps isotopi to the identity, where we assume that the isotopies �x Σ andare the identity on eah boundary omponent. M(N) is alled the mappinglass group of N . The mapping lass group of an orientable surfae is de�nedanalogously, but we onsider only orientation preserving maps. Usually wewill use the same letter for a map and its isotopy lass.1.1. Bakground. In ontrast to the mapping lass groups of orientablesurfaes, the nonorientable ase has not been studied muh. The �rst sig-ni�ant result is due to Likorish [9℄, who proved that the mapping lass2000 Mathematis Subjet Classi�ation: Primary 57N05; Seondary 20F38, 57M99.Key words and phrases: mapping lass groups, nonorientable surfaes, Dehn twists.Supported by KBN 1 P03A 026 26. [117℄



118 M. Stukowgroup of a losed nonorientable surfae is generated by Dehn twists and aso-alled rossap slide (or a Y-homeomorphism). Later this generating setwas simpli�ed by Chillingworth [2℄, and extended to the ase of punturedsurfaes by Korkmaz [8℄. Korkmaz also omputed the �rst homology groupof the mapping lass groups of puntured nonorientable surfaes [7, 8℄. It isalso known that the group M(N s
g ) is generated by involutions [11, 12℄.At �rst glane it seems that it should be possible to derive some propertiesof M(N) from the properties of the mapping lass group of its orientabledouble over. Surprisingly, although it is known that M(N) is isomorphi tothe entraliser of some involution in the mapping lass group of the doubleover of N (see [1℄), this idea has not led to any signi�ant results.One of the most fundamental properties of the mapping lass group isthat it ats on the set C of isotopy lasses of irles. In the ase of an ori-entable surfae this observation leads to the most powerful tools in the studyof mapping lass groups.For example the set C has simple strutures of a simpliial omplex, whihlead to de�nitions of omplexes of urves. This idea was the basi tool in�nding a presentation of the mapping lass group and also in obtaining somedesriptions of its (o)homology groups (f. [5℄ and referenes there).Another example is the extension of the ation of the mapping lass groupon C to the ation on equivalene lasses of measured foliations. This idealeads to the Thurston theory of surfae di�eomorphisms (f. [4℄).In either of these examples, it is of fundamental importane to understandthe ation of generators of M(N) on a single irle. Throughout this paper,we onentrate on a very basi result in this diretion, namely on the wellknown formula for the intersetion number(1.1) I(tna(b), b) = |n|I(a, b)2,whih holds for any two irles a and b on an orientable surfae and anyinteger n (f. Proposition 3.3 of [10℄).1.2. Main results. Our �rst result provides a formula for the ation of atwist on a nonorientable surfae, similar to (1.1) (f. Theorem 3.3). To bemore preise, we show that for generi two-sided irles a and b on N suhthat I(a, b) = |a ∩ b|, and any integer n 6= 0, we have

I(tna(b), b) = |n|I(a, b)2 −
u∑

i=1

k2
i ,where k1, . . . , ku are nonnegative integers depending only on the mutualposition of a and b.As an appliation of this result, we prove in Setion 4 some algebraiproperties of twists on nonorientable surfaes. Finally, in Setion 6 we showthat up to a �nite number of exeptions, the entraliser of the subgroup



Twists on nonorientable surfaes 119generated by the twists is equal to the entre of M(N s
g,r) and is generatedby r boundary twists (f. Theorem 6.2). We end the paper with an ap-pendix, whih ontains the desription of two rather exeptional mappinglass groups, namely those of a Klein bottle with one punture and of aKlein bottle with one boundary omponent.All the results presented are well known in the orientable ase (f. [6, 10℄),but for nonorientable surfaes they are new. Moreover, we believe that themethods we develop will ontribute to a further study of mapping lassgroups of nonorientable surfaes.Sine the strategy we follow is similar to that in [10℄, in some ases weomit detailed proofs referring the reader to the above artile.2. Preliminaries. By a irle on N we mean an oriented simple losedurve on N \Σ, whih is disjoint from the boundary of N . Usually we identifya irle with its image. If a1 and a2 are isotopi, we write a1 ≃ a2. If twoirles a and b interset, we always assume that they interset transversely.Aording to whether a regular neighbourhood of a irle is an annulus ora Möbius strip, we all the irle two-sided or one-sided respetively. Wesay that a irle is essential if it does not bound a disk disjoint from Σ,and generi if it bounds neither a disk with fewer than two puntures nora Möbius strip disjoint from Σ. Notie that the nonorientable surfae N s

g,radmits a generi two-sided irle if and only if N 6= N s
1 with s ≤ 2 and

N 6= N1,1.Following [10℄ we will say that irles a and b obound a bigon if thereexists a disk whose boundary is the union of an ar of a and an ar of b.Moreover, we assume that exept the end points, these ars are disjoint from
a ∩ b.For any two irles a and b we de�ne their geometri intersetion numberas follows:

I(a, b) = inf{|a′ ∩ b| : a′ ≃ a}.In partiular, if a is a two-sided irle and a ≃ b then I(a, b) = 0.The following proposition (f. Proposition 3.2 of [10℄) provides a veryuseful tool for heking if two irles are in a minimal position (with respetto |a ∩ b|).Proposition 2.1. Let a and b be essential irles on N . Then |a∩ b| =
I(a, b) if and only if a and b do not obound a bigon.Let a be a two-sided irle. By de�nition, a regular neighbourhood of
a is an annulus Sa, so if we �x one of two possible orientations of Sa, wean de�ne the Dehn twist ta about a in the usual way. We emphasise thatsine we are dealing with nonorientable surfaes, there is no anonial wayto hoose the orientation of Sa. Therefore by a twist about a we always



120 M. Stukowmean one of two possible twists about a (the seond one is then its inverse).By a boundary twist we mean a twist about a irle isotopi to a boundaryomponent. If a is not generi then the Dehn twist ta is trivial. We will showthat the onverse is also true (f. Corollary 4.5).Other important examples of di�eomorphisms of a nonorientable surfaeare the rossap slide and the punture slide. They are de�ned as a slide of arossap and of a punture, respetively, along a one-sided irle (for preisede�nitions and properties see [8℄).3. Ation of a Dehn twist on a two-sided irle. For the rest of thissetion let us �x two-sided generi irles a and b suh that |a∩ b| = I(a, b).3.1. De�nitions. By a segment of b (with respet to a) we mean anyunoriented ar p of b satisfying a ∩ p = ∂p. Similarly we de�ne an orientedsegment. If p is an oriented segment, by −p we mean the segment equalto p as an unoriented segment but with reversed orientation, and by |p|the unoriented segment determined by p. We all a segment p of b one-sided[two-sided ℄ if the union of p and an ar of a onneting ∂p is a one-sided [two-sided℄ irle. An oriented segment is one-sided [two-sided℄ if the underlyingunoriented segment is one-sided [two-sided℄.Oriented segments PP ′ and QQ′ (not neessarily distint) of b are alledadjaent if both are one-sided and there exists an open disk ∆ on N \ Σwith the following properties:(1) ∂∆ onsists of the segments PP ′, QQ′ of b and the ars PQ, P ′Q′of a;(2) ∆ is disjoint from a ∪ b (see Figure 1).

Fig. 1. Adjaent segments of b

Remark 3.1. Let p, q, p′, q′ be oriented segments suh that p is adjaentto q through a disk ∆ and p′ is adjaent to q′ through ∆′. Then sine ∆ and
∆′ are disjoint from a ∪ b, either ∆ = ∆′ or ∆ ∩ ∆′ = ∅. In partiular if
{p, q} 6= {p′, q′} and {p, q} 6= {−p′,−q′} then ∆ ∩ ∆′ = ∅.Oriented segments p 6= q are alled joinable if there exist oriented seg-ments p1, . . . , pk suh that p1 = p, pk = q and pi is adjaent to pi+1 for
i = 1, . . . , k − 1.



Twists on nonorientable surfaes 121Unoriented segments are alled adjaent [joinable℄ if they are adjaent[joinable℄ as oriented segments for some hoie of orientations.Remark 3.2. Observe that if p is a segment of b then there are at mosttwo segments of b adjaent to p (one on eah side of p).We now de�ne a graph Γ (a, b), whih will help us to measure how muh
I(tna(b), b) di�ers from |n|I(a, b)2 (f. formula (1.1)). The verties of Γ (a, b)orrespond to one-sided unoriented segments of b. If we have two segmentswhih are adjaent through the disk ∆, we join the verties orresponding tothese segments by an edge (labelled ∆). So in partiular, we do not exludethe possibility that there are multiple edges or loops.Observe that segments p 6= q are joinable if and only if the orrespondingverties of Γ (a, b) an be onneted by a path.Having the above de�nitions, we an formulate the relationship betweenthe ation of a twist and the intersetion number.Theorem 3.3. Let a and b be two-sided generi irles and let k1, . . . , kube the numbers of verties in the onneted omponents of Γ (a, b). Then forevery integer n 6= 0,

I(tna(b), b) = |n|I(a, b)2 −
u∑

i=1

k2
i .The rest of this setion is devoted to the proof of the above theorem.The idea of the proof is very simple: onstrut the irle tna(b), perform allobvious redutions of tna(b) ∩ b and ount them, �nally prove that there areno further redutions. However, the details of the proof are quite involved,and we �rst need some preparations.3.2. Joinable segments. For two oriented joinable segments p and q de�nethe distane between p and q to be the minimal k suh that there existoriented segments p1, . . . , pk with p1 = p, pk = q and pi adjaent to pi+1 for

i = 1, . . . , k − 1.The following three lemmas, whih ontain the ruial properties of join-able segments, will be proved simultaneously.Lemma 3.4. If p is an oriented segment of b then p and −p are notjoinable.Lemma 3.5. Let p and q be oriented , joinable segments of b at distane k,and let p1, . . . , pk be oriented segments suh that p1 = p, pk = q and pi isadjaent to pi+1 for i = 1, . . . , k − 1. Then |pi| 6= |pj | if i 6= j.Lemma 3.6. Let P1P
′
1, . . . , PkP

′
k be oriented segments of b suh that PiP

′
iis adjaent to Pi+1P

′
i+1 through a disk ∆i for i = 1, . . . , k − 1. Moreover ,assume that P1P

′
1 6= PkP

′
k and the distane between these two segments is



122 M. Stukowequal to k. Then ∆i ∩∆j = ∅ for i 6= j, and the interior ∆ of ⋃k−1
i=1 ∆i is anopen disk with the following properties:(1) ∂∆ onsists of the segments P1P

′
1, PkP

′
k of b and the ars P1Pk, P ′

1P
′
kof a;(2) ∆ ∩ b = {P1P

′
1, . . . , PkP

′
k};(3) eah of the sequenes P1, . . . , Pk and P ′

1, . . . , P
′
k is stritly monotonewith respet to some orientation of a (f. Figure 2).

Fig. 2. Con�guration of segments�Lemma 3.6Proof of Lemmas 3.4�3.6. First observe that we have the impliations:(A) Lemma 3.4 ⇒ Lemma 3.5,(B) Lemma 3.5 ⇒ Lemma 3.6.In fat, in order to prove (A), let oriented segments p1, . . . , pk of b be as inLemma 3.5. Sine p1 6= pk (by the de�nition of joinability) and the sequene
p1, . . . , pk is minimal with respet to k, we have pi 6= pj for i 6= j. Moreover,by Lemma 3.4, pi 6= −pj for i 6= j.To prove (B), observe that by Lemma 3.5, |PiP

′
i | 6= |PjP

′
j| for i 6= j.Hene by Remark 3.1, ∆i ∩ ∆j = ∅ for i 6= j and one an think of ∆ as theinterior of a standard retangle (obtained by gluing all ∆i's along ommonboundary omponents) with two opposite sides glued to a. Now it is learthat ∆ satis�es onditions (1)�(3) above.Observe that the proofs of the above impliations preserve distane, inthe sense that if Lemma 3.4 is true for segments of distane ≤ k (i.e. p and

−p are not joinable with distane ≤ k), then Lemma 3.5 is also true forsegments of distane ≤ k. Similarly for impliation (B).The rest of the proof will be by indution (simultaneous for all threelemmas) on the distane between joinable segments.Suppose �rst that k = 2. We will prove Lemma 3.4; Lemmas 3.5 and 3.6will follow by impliations (A) and (B) above.If p is adjaent to −p then there exists an open disk ∆ with boundaryonsisting of p, −p and two ars of a onneting ∂p. The best way to thinkabout suh a situation is that we have a retangle (orresponding to ∆)with two opposite sides glued by an orientation reversing map (these sidesorrespond to p and −p). What we get is a Möbius strip with a as theboundary irle, whih is a ontradition, sine a is generi.



Twists on nonorientable surfaes 123Let k ≥ 3, and assume that Lemmas 3.4�3.6 are true for joinable segmentsof distane less than k. By impliations (A) and (B) it is enough to showthat p and −p are not joinable with distane k.Suppose that oriented segments p1, . . . , pk of b are suh that pi is adjaentto pi+1 for i = 1, . . . , k − 1, pk = −p1 and the distane between p1 and −p1is equal to k. If pk−1 = p1 then p1 and −p1 would have distane 2, ontraryto k ≥ 3. Hene pk−1 6= p1 and we an apply Lemma 3.6 to the segments p1and pk−1. Let ∆1 be an open disk provided by that lemma and let ∆2 be adisk given by adjaeny of pk−1 and pk = −p1. By Lemma 3.5, |pi| 6= |pj | for
i 6= j, i, j ∈ 1, . . . , k − 1, hene if we assume that ∆1∩∆2 6= ∅, then Remark3.1 and the onstrution of ∆1 implies that ∆2 is a disk given by adjaenyof pk−2 and pk−1 (this is beause this is the only disk omposing ∆1 whihhas pk−1 as a boundary omponent). But this is impossible sine pk−2 6= −p1(otherwise the distane between p1 and −p1 would be less than k). Therefore
∆1∩∆2 = ∅ and we laim that ∆ = ∆1∪∆2 is a Möbius strip with boundaryequal to a, whih leads to a ontradition, sine a is generi. In fat, ∆ isobtained from a retangle (orresponding to ∆1∪pk−1∪∆2) by identifying itstwo opposite sides (orresponding to p1 and −p1) by an orientation reversingmap and then gluing the remaining side to a.Sine a is two-sided, we have the notion of being on the same side of a forgerms of transversal ars starting at the points of a. In partiular, if P is anend point of a segment p and Q of q then by P and Q being on the same sideof a, we mean that the germs of p and q starting at P and Q respetivelyare on the same side of a.Lemma 3.7. Initial [terminal ] points of oriented joinable segments of bare on the same side of a.Proof. In fat, otherwise there would exist a path, arbitrarily lose to a,onneting points on di�erent sides of a whih is disjoint from a (f. Lemma3.6).Lemma 3.8. Let p and q 6= −p be oriented segments suh that q beginsat the terminal point of p. Then p and q are not joinable.Proof. Suppose p and q are joinable. Then p and q are one-sided and byLemma 3.7, the initial points of p and q are on the same side of a. Henethe initial and terminal points of p are on di�erent sides of a. Sine p and qare joinable, by Lemma 3.6, there exists a disk ∆ with boundary onsistingof p, q and ars of a onneting the initial point of p with the terminal pointof p and the terminal point of p with the terminal point of q. In order toimagine possible on�gurations of a, p and q, it is onvenient to think of aretangle with two opposite sides p and q suh that the remaining sides areglued to di�erent sides of a in suh a way that p and q are one-sided and



124 M. Stukowthe terminal point of p oinides with the initial point of q. There are twopossibilities to do it (see Figure 3): either the initial point of p is betweenthe end points of q, or the terminal point of q is between the end points of
p (the third possibility, that the initial point of p and the terminal point of
q oinide, is impossible sine b is generi).

Fig. 3. Con�guration of p, q and a�Lemma 3.8Geometrially, it is quite lear that the situation shown in Figure 3 isnot possible. In fat, this �gure implies that b �winds� in�nitely many timesalong the ore of a Möbius strip (it annot turn bak, beause a and b donot obound a bigon, and sine everything is smooth there is no risk ofpathologies).In order to have a more formal argument, reall that Lemma 3.6 impliesthat ∆ ∩ b onsists of k segments P1P
′
1, . . . , PkP

′
k of b suh that P1P

′
1 = pand PkP

′
k = q. In partiular, eah of the ars P1Pk and P ′

1P
′
k of a ∩ ∆ontains k points of b. But this is impossible sine either P1Pk ⊂ P ′

1P
′
k and

P ′
k ∈ P ′

1P
′
k \ P1Pk (Figure 3(i)), or P ′

1P
′
k ⊂ P1Pk and P1 ∈ P1Pk \ P ′

1P
′
k(Figure 3(ii)).

Definitions. By a double segment of b we mean an unordered pair oftwo di�erent oriented segments of b whih have the same initial point.Clearly eah point of a ∩ b determines exatly one double segment, so inpartiular, there are |a ∩ b| double segments.Two double segments are alled joinable if there exists an oriented seg-ment p in the �rst double segment and q in the other suh that p and q arejoinable.Lemma 3.9. Suppose I(a, b) > 1. Then for eah double segment P thereexists a double segment Q 6= P whih is not joinable to P .Proof. Assume that every double segment is joinable to P . Let p1, p2 beoriented segments forming P . Sine I(a, b) > 1, p1 6= −p2. Let us adopt thenotation of onseutive segments of b as in Figure 4. We have the following
Fig. 4. Segments of b�Lemma 3.9relationships:



Twists on nonorientable surfaes 125
• s and p2 are joinable: this is beause by Lemma 3.4, −p1 is not joinableto p1 and by Lemma 3.8, it is not joinable to p2. Therefore s must bejoinable either to p1 or p2 (sine we assumed that every double segmentis joinable to P ). Lemma 3.8 implies that it is joinable to p2.
• The initial and terminal points of p1 are on the same side of a: thisfollows by Lemma 3.7, from joinability of s and p2.
• q and p1 are joinable: this is beause −p2 is joinable neither to p2(Lemma 3.4) nor to p1 (Lemma 3.8), and q is not joinable to p2 (Lemma3.8).
• The initial and terminal points of p2 are on the same side of a: thisfollows by Lemma 3.7, from joinability of q and p1.
• r and p2 are joinable: this is beause −q is joinable neither to p2(Lemma 3.7) nor to p1 (beause q is joinable to p1), and r is notjoinable to p1 (Lemma 3.7).Figures 5(i)�(iii) show reonstrution of a and b due to the above proper-ties (here, as in the proof of Lemma 3.8, one should think of joinability asa retangle with two edges glued to a). Let K be an annulus with sides:

Fig. 5. Segments of b�Lemma 3.9
p1, q, r, s, the ar of a onneting the initial point of p2 with the terminalpoint of s and the ar of a onneting the terminal points of r and p2, i.e. Kis the shaded region in Figure 5(iv). Clearly this �gure implies that b windsin�nitely many times along the ore of K.More formally, as in Lemma 3.8, Lemma 3.6 implies that eah of the twosides of K ontained in a ontains the same number of points of a∩ b, whihis impossible.3.3. Properties of Γ (a, b). Reall that a yle in a graph with the set ofverties V is any sequene of di�erent edges (u1, u2), (u2, u3), . . . , (uk, u1),where u1, . . . , uk ∈ V .



126 M. StukowProposition 3.10. Every vertex in Γ (a, b) has degree at most 2. More-over Γ (a, b) is a forest , i.e. it does not ontain yles (in partiular there areneither loops nor multiple edges).Proof. The �rst statement follows from Remark 3.2.Suppose that there is a yle in Γ (a, b). By Lemma 3.4, this means thatthere exists a sequene p1, . . . , pk of oriented segments of b suh that p1 = pkand pi is adjaent to pi+1 through a disk ∆i for i = 1, . . . , k − 1. Moreover,sine every vertex has degree at most 2, our yle is simple (i.e. all its vertiesare di�erent), hene |pi| 6= |pj | for i 6= j, i, j ∈ {1, . . . , k − 1}.Suppose �rst that k = 1, i.e. there exists a loop in Γ (a, b) and ∆1 is adisk given by adjaeny of p1 to itself. Now think of ∆ as obtained by thefollowing onstrution: identify two opposite sides (orresponding to p1) of aretangle (orresponding to ∆)�this gives us an annulus, and then we haveto glue the remaining sides to a. There are two possibilities to do it and weobtain either a torus or a Klein bottle. The �rst ase is not possible sine
p1 is one-sided and in the seond ase Γ (a, b) = ∅ (beause there is onlyone isotopy lass of generi two-sided irles on a Klein bottle�f. CorollaryA.4).If k > 1, sine |pi| 6= |pj | for i 6= j, i, j ∈ {1, . . . , k − 1}, and ∆1 6= ∆k−1,we have ∆i ∩ ∆k−1 = ∅ for i = 1, . . . , k − 2 (f. Remark 3.1). Therefore if
∆ is an open disk obtained by applying Lemma 3.6 to the segments p1 and
pk−1, then ∆ ∩ ∆k−1 = ∅. Hene we an omplete the reasoning as in thease k = 1, but with ∆′ = ∆ ∪ pk−1 ∪ ∆k−1.The following proposition shows that Γ (a, b) ould be de�ned not onlyfor irles a, b but for their isotopy lasses. Sine we will not use this resultwe skip its proof.Proposition 3.11. Let a, a′, b, b′ be two-sided irles on N suh that
a ≃ a′, b ≃ b′ and |a ∩ b| = |a′ ∩ b′| = I(a, b). Then Γ (a, b) is isomorphi to
Γ (a′, b′).3.4. Proof of Theorem 3.3. The theorem is trivial if I(a, b) = 0, so assumethat I(a, b) ≥ 1.Constrution of tna(b). Let Sa and Sb be oriented regular neighbourhoodsof a and b respetively suh that Sa ∪ Sb is a regular neighbourhood of
a ∪ b. De�ne also S◦

b ⊂ Sb to be a ollar neighbourhood of b and let b′ bethe boundary omponent of S◦
b di�erent from b. In partiular, b and b′ aredisjoint, isotopi and |a∩ b′| = |a∩ b|. The set S◦

b ∩Sa onsists of m = I(a, b)disjoint 4-gons. We an label their verties by Ei, E
′
i, F

′
i , Fi for 1 ≤ i ≤ m insuh a way that the following onditions are satis�ed:



Twists on nonorientable surfaes 127(1) EiFi and E′
iF

′
i are ars of b and b′, respetively;(2) the orientation of the 4-gon EiE

′
iF

′
iFi indued by a yli orderingof verties agrees with the orientation of Sa (see Figure 6).

Fig. 6. Intersetions of Sa and S◦

bLet also Gi = EiFi∩a and let us adopt the onvention that unless otherwisestated the ar EiFi (or E′
iF

′
i ) means that of the two ars of b (or b′) withend points Ei, Fi (or E′

i, F
′
i ) whih is ontained in Sa.Outside Sa the twist ta ats as the identity, so the irle c = tna(b′) hasthe following properties:(1) outside Sa, c is equal to b′;(2) eah ar of c ∩ Sa irles |n| times around Sa.Due to the above properties, eah of the m ars E′

iF
′
i of c rosses b in |n|mpoints (see Figure 7). In partiular

|c ∩ b| = |n|I(a, b)2.Observe that the notation is hosen in suh a way that every time c entersthe neighbourhood Sa through a point E′
i, it rosses EiFi (f. Figure 7).

Fig. 7. Points of intersetion of c and bAdmissible irles. Now we are going to de�ne a lass of irles whihontains c and is losed under ertain deformations (de�ned later).Suppose γ is a irle ontained in Sa ∪ Sb and suh that outside Sa,
γ onsists of m disjoint ars eah of whih is disjoint from b and has endpoints on di�erent omponents of P∩Sa, where P is the omponent of Sb\Sa



128 M. Stukowontaining this ar. Moreover, if we identify Sa with a × [0, 1] so that eahof the ars b ∩ Sa has onstant �rst oordinate, then we assume that eahar of γ ∩ Sa is monotone with respet to the �rst oordinate. We then all
γ admissible. Observe that in partiular, b′ and c are admissible.We an extend the notion of [oriented℄ segments to any admissible irle
γ, de�ning them to be omponents of γ \ Sa. Moreover, sine Sa is orientable,we an speak about one-sided [two-sided℄ segments. In addition every ori-ented segment of γ uniquely determines an oriented segment of b, so we havea well de�ned map from the set of oriented segments of γ into the set oforiented segments of b. Denote this map by γb. Clearly γb indues a map be-tween the sets of unoriented segments of γ and of b. By abuse of notation wealso use the symbol γb for this map. We will use the notion of an [oriented℄segment of b starting at Ei (or Fi), meaning the [oriented℄ segment of b withinitial point Gi whih passes through Ei (or Fi).Redutions of types I and II. The onstruted irle c, in ontrast to theoriented ase, usually does not satisfy I(c, b) = |c∩b|. However we will de�netwo types of redution whih will enable us to deform, in a very ontrolledway, c into a irle d satisfying I(d, b) = |d ∩ b|.Let p be an oriented one-sided segment of b with initial point Gi andterminal point Gj . Let q be an oriented segment of an admissible irle
γ suh that γb(q) = p. Suppose further that if we orient the ar q̃ of γomplementary to q in suh a way that it has the same initial and terminalpoints as q then the �rst intersetion point of γ ∩ b lying on q̃ is on EiFiand the last one is on EjFj . Moreover, assume that between p and q thereare no other segments of γ (see Figure 8). Now we see that we an push

Fig. 8. Redution of type Ithe segment q of γ towards p to obtain a irle γ′ isotopi to γ suh that
I(γ′, b) = I(γ, b)−2. Observe also that γ′ is admissible and γb = γ′

b (modulothe identi�ation of q and its deformation q′). We all every suh deformationof γ a redution of type I.Suppose now that we have two adjaent oriented segments p, p′ of b withinitial points Gi, Gj and terminal points Gk, Gl respetively. Let q be anoriented segment of an admissible irle γ suh that γb(q) = p′. Supposefurther that if q̃ is onstruted as above then the �rst intersetion point of



Twists on nonorientable surfaes 129
γ ∩ b lying on q̃ is on EiFi and the last one is on EkFk. Moreover, assumethat between p and q there are no other segments of γ (see Figure 9). As

Fig. 9. Redution of type IIbefore we an push q towards p obtaining a irle γ′ isotopi to γ suh that
I(γ′, b) = I(γ, b)−2. Observe also that γ′ is admissible and if we denote by q′the segment resulting from the deformation of q, we have γ′

b(q
′) = p whereas

γb(q) = p′. Outside the segments q for γb and q′ for γ′
b these two maps areidential. We all every suh deformation of γ a redution of type II.Reduing c. Let p = GiGj be an oriented segment of b. Then by theonstrution of c, there exists a unique oriented segment q of c with cb(q) = p.Suppose further that p and q determine a redution of type I (see Figure 8).We laim that if q′ is obtained from q by performing this redution, then

p and q′ do not allow a redution of type I. In fat, if we orient the ar q̃ ′omplementary to q′ in suh a way that it has the same initial and terminalpoints as q′, then the �rst point of q̃ ′ ∩ b on q̃ ′ annot be on EiFi (beausebefore q̃ ′ goes bak to EiFi it must interset eah ElFl for l 6= i). Therefore if
p1, . . . , pk are all segments of b whih determine a redution of type I (withrespet to c), and c′ is the irle obtained from c by performing these kredutions, then c′ admits no further redutions of type I.

Fig. 10. Possible on�gurations of segments of bIn order to determine the number k, observe that if E = {E1, . . . , Em}and F = {F1, . . . , Fm} then a segment p of b is one-sided if and only if both



130 M. Stukowits end points are in E or F (see Figure 10). Moreover, if p′ is a segmentof c with cb(p
′) = p then p and p′ determine a redution of type I if andonly if both end points of p are in E (f. Figure 7). Observe also that theabove haraterisation of one-sided and two-sided segments of b in termsof their end points shows that the number of one-sided segments with endpoints in E is equal to the number of one-sided segments with end points in

F (they alternate along b). Sine the total number of one-sided segments of
b is ∑u

i=1 ki, where k1, . . . , ku are the numbers of verties in the onnetedomponents of Γ (a, b), we see that k = 1
2

∑u
i=1 ki. Therefore

|c′ ∩ b| = |c ∩ b| −
u∑

i=1

ki.Notie also that c′ is admissible and c′b = cb (up to the obvious identi�ationof domains).By Proposition 3.10, every onneted omponent Ki of Γ (a, b) is a path,so every suh omponent determines a sequene p1, . . . , pki
(ki being thenumber of verties in Ki) of segments of b suh that pi is adjaent to pi+1 for

i = 1, . . . , ki − 1. Therefore we see that Ki determines 1 + 2 + · · ·+ (ki − 1)redutions of c′ of type II (see Figure 11). Let d be the irle obtained by

Fig. 11. Segments of b and c′ orresponding to Kiperforming all these redutions, in partiular
|d ∩ b| = |c′ ∩ b| −

u∑

i=1

ki(ki − 1) = |c ∩ b| −
u∑

i=1

k2
i = |n|I(a, b)2 −

u∑

i=1

k2
i .We laim that d admits no further redutions. First observe that everyredution of type II is determined by two adjaent segments p and p′ of b. Bythe onstrution of d at least one of the preimages d−1

b (p) or d−1
b (p′) is empty.Hene d admits no redution of type II. In order to show that d admits noredution of type I, suppose that p = GiGj is an oriented one-sided segmentof b and q is an oriented segment of d suh that db(q) = p. Denote also by

q̃ the ar omplementary to q oriented in suh a way that Gi is its initialpoint. By the onstrution of d it is lear that the �rst point of d∩ b lying on
q̃ annot be on EiFi (beause before q̃ goes bak to EiFi it must interseteah ElFl for l 6= i).



Twists on nonorientable surfaes 131To �nish the proof it is enough to show that |d ∩ b| = I(d, b), i.e. that band d do not obound a bigon (f. Proposition 2.1).Denote by Ed
1 , . . . , Ed

m, F d
1 , . . . , F d

m the points of intersetion of d withthe boundary of Sa orresponding to the points E′
1, . . . , E

′
m, F ′

1, . . . , F
′
m of c(i.e. the segment Ed

i F d
i of d is the deformation of E′

iF
′
i ).Before we proeed further we need the following orollary of Lemma 3.9.Lemma 3.12. If I(a, b) > 1, then for every 1 ≤ i ≤ m, eah of the ars

EiFi and Ed
i F d

i intersets the set (b ∩ d) \ (EiFi ∩ Ed
i F d

i ).Proof. For a �xed i, by Lemma 3.9, there exists a double segment Pwhih is not joinable to the double segment determined by EiFi. Assumethat P is determined by an ar EjFj for some j 6= i (see Figure 12). Now

Fig. 12. Con�guration of segments�Lemma 3.12one should think that d is obtained from c by unwinding along adjaentsegments. Sine no oriented segment of P is joinable to an oriented segmentof the double segment EiFi, E′
jF

′
j annot unwind along EiFi and vie versa(rossed disks in Figure 12 represent obstales to the unwinding). Hene thear Ed

j F d
j intersets EiFi and Ed

i F d
i intersets EjFj .Minimality of d ∩ b. Suppose that b and d obound a bigon ∆ withverties X, Y . Assume that X is on the ars EiFi, Ed

j F d
j , and Y on EkFk,

Ed
l F d

l .First onsider the ase m = 1. Sine there are at least two points ofintersetion b∩d, we have |n| ≥ 2. Observe that sine there are no one-sidedsegments of b, we have d = c. Now there are two possibilities: either the ar
b ∩ ∂∆ is ontained in Sa or it passes through E1 and F1. Similarly, thereare two possibilities for the position of the seond ar of ∂∆ (see Figure 13;observe that ases (ii) and (iii) are possible only if |n| = 2). In eah of theseases, the path indiated in Figure 13 (running along b) onnets points ondi�erent sides of ∂∆ and is disjoint from ∂∆, a ontradition.Therefore we further assume that I(a, b) > 1. Now the proof splits intotwo ases.
Case 1: i = k. There are two ars of b joining X and Y : the one on-tained in Sa and another one, running through Ei and Fi. Observe that
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Fig. 13. Points of intersetion of c and b if I(a, b) = 1only the �rst one an be a boundary ar of the bigon ∆. This follows fromthe observation that by the assumption I(a, b) > 1 and by Lemma 3.12, Xand Y annot be onseutive on the seond of these ars. Now dependingon the position of the seond boundary ar of ∆, we dedue that either theboundary of ∆ is a nonseparating irle, or a and b obound a bigon�seeFigure 14.

Fig. 14. The ase i = k

Case 2: i 6= k. Sine X and Y are onseutive on b, there exists an arof b with end points X and Y whose interior is disjoint from d. By Lemma3.12, this ar outside Sa is equal to the segment p of b with end points Giand Gk.If j = l then a and b would obound a bigon (see Figure 15), so j 6= l.

Fig. 15. The ase i 6= k, j = lSine X and Y are onseutive on d, there exists an ar of d with endpoints X and Y whose interior is disjoint from b. As before, by Lemma 3.12,



Twists on nonorientable surfaes 133this ar outside Sa is equal to the segment q of d with one end point Ed
j or

F d
j and the other one Ed

l or F d
l �see Figure 16.

Fig. 16. The ase i 6= k, j 6= lFirst observe that q is one-sided. In fat, otherwise the ar XY of ∂∆orresponding to q at one end would interset db(q) and at the other wouldnot (see Figure 10). This would imply that db(q) = p and db(q) 6= p at thesame time�a ontradition. From this it follows that p is also one-sided(otherwise ∂∆ would be one-sided).Therefore the existene of ∆ implies that if db(q) 6= p then db(q) and pare adjaent and we an perform a redution of type II�see Figure 17(i).In ase db(q) = p it is possible to perform a redution of type I�see Figure17(ii). Hene in both ases we obtain a ontradition with the onstrutionof d.

Fig. 17. The ase i 6= k, j 6= l

3.5. Further remarksRemark 3.13. Observe that if Γ (a, b) = ∅, i.e. if a regular neighbour-hood of a ∪ b is orientable, then c = d and the proof of Theorem 3.3 workswithout the assumption that a and b are generi (Lemma 3.12 is not needed).In partiular, if I(a, b) > 0, Theorem 3.3 implies that ta 6= 1, hene a isgeneri.Proposition 3.14. Let n 6= 0 be an integer. Then(1) I(tna(b), b) = |n| if I(a, b) = 1;(2) I(tna(b), b) ≥ I(a, b);(3) I(tna(b), b) ≥ (|n| − 1)I(a, b)2 + 2I(a, b) − 2.In partiular , if I(a, b) 6= 0, then I(tna(b), b) > 0.



134 M. StukowProof. The assertion is trivial for I(a, b) = 0, so let I(a, b) ≥ 1. By theproof of Theorem 3.3, I(tna(b), b) = |d∩ b|. If I(a, b) = 1 then |d∩ b| = |c∩ b|
= |n|, whih proves (1). The inequality (2) follows from (1) if I(a, b) = 1,and if I(a, b) ≥ 2 then by Lemma 3.12, |d ∩ b| ≥ I(a, b).In order to prove (3), �rst observe that if k1, . . . , ku are as in the statementof Theorem 3.3, then by (2), ∑u

i=1 k2
i < I(a, b)2 (otherwise I(ta(b), b) = 0).Therefore Γ (a, b) is not a path with I(a, b) verties, i.e. u > 1. Now it is aneasy exerise that if a and b are positive integers suh that a + b = m, then

a2 + b2 ≤ 1 + (m − 1)2. Hene
u∑

i=1

k2
i ≤ k2

1 +
( u∑

i=2

ki

)2
≤ 1 + (I(a, b) − 1)2.By Theorem 3.3, the above inequality yields (3).4. Algebrai properties of twistsLemma 4.1. Assume that s+r ≥ 2 if g = 2, and let a1, . . . , au be generitwo-sided irles on N = N s

g,r suh that :(1) ai ∩ aj = ∅ if i 6= j;(2) ai is isotopi neither to aj nor to a−1
j if i 6= j;(3) none of the ai is isotopi to a boundary omponent of N ;(4) if we ut N along those ai whih separate N , then every omponenthomeomorphi to a Klein bottle with one boundary omponent is dis-joint from a1.Then there exists a generi two-sided irle b suh that ai ∩ b = ∅ if i 6= 1,and |a1 ∩ b| = I(a1, b) > 0.Proof. Let N ′ be the onneted omponent of N \

⋃u
j=2 aj ontaining a1.Clearly it is enough to onstrut a generi two-sided irle b on N ′ suh that

|a1∩b| = I(a1, b) > 0. Now if we ut N ′ open along a1 we obtain a surfae N ′′with two more boundary omponents; denote them by α1 and α2. Moreover,if we �x the orientation of a1, then α1 and α2 inherit orientations from a1.Consider two ases:
Case 1: N ′′ is onneted. If N ′′ is nonorientable then we an represent

N ′′ as a onneted sum of an oriented surfae and a number of projetiveplanes. Now depending on mutual orientations of α1 and α2, one of the twourves indiated in Figure 18 projets to a two-sided irle b on N ′ (theshaded disk in Figure 18 represents a rossap on N ′′).If N ′′ and N ′ are orientable then the onstrution of b is shown in Figure19(i). If N ′′ is orientable and N ′ is nonorientable then either N ′′ has genus atleast 1 or by assumption, it has at least two puntures/boundary omponents
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Fig. 18. Constrution of b if N ′′ is nonorientabledi�erent from α1 and α2. The onstrution of b in eah of these ases is shownin Figures 19(ii) and 19(iii) respetively.

Fig. 19. Constrution of b if N ′′ is orientable
Case 2: N ′′ is disonneted. Let M1 and M2 be onneted omponentsof N ′′ suh that αk is a boundary omponent of Mk, k = 1, 2. Observe thatfor k = 1, 2, we have:(1) if Mk has genus 0 then it has at least two puntures/boundary om-ponents di�erent from αk (sine a1 is generi and isotopi neither toa boundary omponent of N nor to any of a±1

j , j ≥ 2);(2) if Mk is nonorientable of genus 1, then it has at least one puntureor a boundary omponent di�erent from αk (sine a1 is generi);(3) if Mk is orientable of genus at least 1 or nonorientable of genus atleast 2, then Mk is a onneted sum of a torus/Klein bottle withboundary omponent αk and some other surfae.Therefore, in any ase we an onstrut an ar βk on eah of Mk, k = 1, 2,suh that projetions of β1 and β2 onto N ′ give a two-sided irle b suh that
|a1 ∩ b| = I(a1, b) = 2 (see Figure 20).

Fig. 20. Constrution of b if N ′′ is disonnetedObserve that in eah ase, Γ (a1, b) = ∅, hene by Remark 3.13, b isgeneri.



136 M. StukowRemark 4.2. It is easy to prove that if a is a generi two-sided irle ona Klein bottle with one boundary omponent, whih is not isotopi to theboundary, then a is nonseparating (f. Lemma A.1 and its proof). Therefore,if a1, . . . , au are generi two-sided irles on a losed surfae, satisfying allassumptions of the above lemma but (4), then a1 is nonseparating and aj isseparating for some j > 1.For eah nonorientable surfae N , let N̂ be the surfae obtained by gluinga torus minus a disk to eah boundary omponent of N . Then N̂ has noboundary and the following, very useful, property (f. Proposition 3.5 of[10℄):Proposition 4.3. Suppose a and b are irles on N . Then a is isotopito b in N if and only if they are isotopi in N̂ .It is an easy observation that the only nontrivial Dehn twist on a Kleinbottle has order 2. The next proposition shows that exept for this example,Dehn twists about disjoint irles generate a free abelian group (we will usethis result in the proof of Theorem 6.2).Proposition 4.4. Suppose r + s > 0 if g = 2, and let a1, . . . , au begeneri two-sided irles on N = N s
g,r suh that ai ∩ aj = ∅ if i 6= j,and ai is isotopi neither to aj nor to a−1

j if i 6= j. Consider the funtion
h : Z

u → M(N) de�ned by
h(n1, . . . , nu) = tn1

a1
· · · tnu

au
.Then h is an injetive homomorphism.Proof. Clearly h is a homomorphism, so let us prove that it is injetive.For N being a Klein bottle with a punture the assertion follows from Propo-sition A.3 and Theorem A.5, so assume that N is not a Klein bottle witha punture. Suppose tn1

a1
· · · tnu

au
= 1 in M(N). Clearly tn1

a1
· · · tnu

au
= 1 also in

M(N̂), where N̂ is the surfae desribed above. Without loss of generalitywe an assume that the �rst k of the irles a1, . . . , au are separating on N̂and the remaining ones are not. We will prove by indution on i that ni = 0.Suppose that nj = 0 for j < i. By Proposition 4.3 and by Remark 4.2, theirles ai, ai+1, . . . , au and the surfae N̂ satisfy the assumptions of Lemma4.1. Therefore, there exists a irle b on N̂ suh that aj ∩ b = ∅ for j > i and
|ai ∩ b| = I(ai, b) > 0. Now if ni 6= 0, Proposition 3.14 yields

0 = I(b, b) = I(tni
ai
· · · tnu

au
(b), b) = I(tni

ai
(b), b) > 0.Hene ni = 0, whih ompletes the proof.Corollary 4.5. Suppose r + s > 0 if g = 2, and let a be a generitwo-sided irle on N = N s

g,r. Then the Dehn twist ta has in�nite order in
M(N).



Twists on nonorientable surfaes 137If a and b are irles on an orientable surfae and j, k nonzero integers,then it is known (f. Theorems 3.14�3.15 of [6℄) that:(1) tja = tkb if and only if a ≃ b and j = k;(2) tjatkb = tkb t
j
a if and only if I(a, b) = 0.Moreover if a 6≃ b±1 then(3) tjatkb t

j
a = tkb t

j
atkb if and only if I(a, b) = 1 and j = k = ±1.Clearly the �if� lauses of (1) and (2) also hold on nonorientable surfaes.In ase (3) observe that if a and b are two-sided irles on a nonorientablesurfae and |a ∩ b| = I(a, b) = 1, then the regular neighbourhood of a ∪ b isa torus with one boundary omponent, so it makes sense to assume that theorientations of regular neighbourhoods Sa, Sb of a and b agree. Under thisassumption also the �if� lause of (3) holds (it is just a braid relation).The next three propositions show that under some obvious assumptions,also the �only if� lauses of the above statements hold on nonorientablesurfaes.Proposition 4.6. Let a and b be generi two-sided irles on N = N s

g,r.If j and k are nonzero integers suh that tja = tkb , then a is isotopi to b±1.Moreover if r+s > 0 for g = 2 and the orientations of regular neighbourhoodsof a and b are suh that ta = tb, then j = k.Proof. If I(a, b) ≥ 1 then by Proposition 3.14, I(tja(b), b) > 0 and
I(tkb (b), b) = I(b, b) = 0. Therefore I(a, b) = 0.Suppose a is not isotopi to b±1. By Proposition 4.3, a is not isotopi to
b±1 in N̂ . Sine on a Klein bottle or a Klein bottle with one punture there isonly one generi two-sided irle (up to isotopy and reversing orientation�f. Proposition A.3 and Corollary A.4), N̂ is neither of these surfaes. Noweither a1 = a, a2 = b or a1 = b, a2 = a satisfy the assumptions of Lemma4.1 (f. Remark 4.2). In the �rst ase we have a irle c on N̂ suh that byProposition 3.14, I(tja(c), c) > 0 and I(tkb (c), c) = I(c, c) = 0. Hene tja 6= tkb .The seond ase an be handled in exatly the same way.The last statement follows from Corollary 4.5.Proposition 4.7. Let a and b be generi two-sided irles on N . If jand k are nonzero integers suh that tjatkb = tkb t

j
a, then I(a, b) = 0.Proof. The assertion is trivial for a Klein bottle (f. Corollary A.4), soassume that N is not a Klein bottle. If c = tkb (a) then tjc = tkb t

j
at

−k
b = tja. ByCorollary 4.5, 1 6= tja = tjc, hene c is generi. Therefore, by Proposition 4.6,

c is isotopi to a±1. If we assume that I(a, b) > 0 then by Proposition 3.14,
0 = I(c, a) = I(tkb (a), a) > 0�a ontradition.



138 M. StukowProposition 4.8. Let a and b be generi two-sided irles on N = N s
g,rsuh that a 6≃ b±1. If j and k are nonzero integers suh that tjatkb t

j
a = tkb t

j
atkb ,then I(a, b) = 1. Moreover , if |a∩ b| = I(a, b) and the orientations of regularneighbourhoods of a and b agree, then j = k = ±1.Proof. Sine there is only one isotopy lass of irles on a Klein bottle(f. Corollary A.4), r + s > 0 if g = 2. Moreover, we an assume that

|a∩ b| = I(a, b). If I(a, b) = 0 then tja = tkb , and by Proposition 4.6, a ≃ b±1.Therefore I(a, b) > 0. If c = tjatkb (a) then(4.1) tjc = tj
t
j
atk

b
(a)

= (tjat
k
b )t

j
a(t

j
at

k
b )

−1 = tkb .Hene by Corollary 4.5, c is generi, and by Proposition 4.6, c ≃ b±1. Thisgives(4.2) I(a, b) = I(tkb (a), b) = I(tjat
k
b (a), tja(b)) = I(c, tja(b)) = I(b, tja(b)).Therefore by inequality (3) of Proposition 3.14,

I(a, b) ≥ (|j| − 1)I(a, b)2 + 2I(a, b) − 2.This easily implies that I(a, b) ∈ {1, 2}.Suppose �rst that I(a, b) = 2. If Γ (a, b) = ∅ then by Theorem 3.3,
I(b, tja(b)) = |j|I(a, b)2 ≥ 4,ontrary to (4.2). Therefore Γ (a, b) has two verties. This implies that theregular neighbourhood of a ∪ b is a Klein bottle with two boundary om-ponents, i.e. the on�guration of a, b and their regular neighbourhood is asin the left-hand part of Figure 21. The right-hand part of the same �gure

Fig. 21. Cirles a, b and c = tj
atk

b (a)�Lemma 4.8shows the irle c = tjatkb (a) (stritly speaking, sine we have an ambiguityin the hoie of orientations of neighbourhoods of a and b, it is one of thepossible irles c = tjatkb (a); however, other hoies yield similar pitures). Inpartiular Γ (a, c) = ∅ and by Theorem 3.3,
I(c, tja(c)) = |j|I(a, c)2 ≥ 4,ontraditing (4.2).



Twists on nonorientable surfaes 139Therefore I(a, b) = 1, and by statement (1) of Proposition 3.14,
I(b, tja(b)) = |j|.Hene by (4.2), |j| = 1. Now if the orientations of neighbourhoods of a and

b agree, then tc = tb. Therefore by (4.1) and Proposition 4.6, j = k = ±1.5. Pantalon & skirt deompositions. To deompose nonorientablesurfaes, besides standard pantalons of type I�III (see Figure 22 and Setion 4of [10℄), we need two more surfaes, namely a Möbius strip N1
1,1 with onepunture and a Möbius strip N1,2 with an open disk removed, whih we all(nonorientable) skirts of type I and II, respetively. The mapping lass group

Fig. 22. Di�erent types of pantalons and skirtsof a skirt of type II is generated by the boundary twists, and the mappinglass group of a skirt of type I is generated by a punture slide v suh that
v2 is a twist about the boundary omponent.A deomposition of a surfae into pantalons and skirts is alled a P-Sdeomposition. A P-S deomposition is alled separating if eah of the irlesde�ning it is a boundary of two di�erent pantalons/skirts.The reason for onsidering separating P-S deompositions is that if weknow that some di�eomorphism f : N → N preserves suh a deomposition,then from the struture of the mapping lass groups of pantalons/skirts wean onlude that f is of a very simple form. This remark will be of greatimportane in the proof of Theorem 6.2.For preise de�nitions of pantalons of type I�III and a pantalon deom-position, we refer the reader to [10℄.The Euler harateristi of a pantalon or skirt is −1. Therefore, noneof the surfaes: N s

1,r with r + s ≤ 1, N2
1 nor N2 admits a P-S deomposi-tion. Apart from these exeptions, every nonorientable surfae admits a P-Sdeomposition. Let us now speify some suh deompositions:

• Projetive plane N s
1,r with r + s ≥ 2 and (r, s) 6= (0, 2). If N is not askirt, we ut o� a Möbius strip with a punture/boundary omponent;



140 M. Stukowthere remains a disk with at least two puntures/boundary omponentsand we an deompose it into pantalons. The resulting deompositionis separating.
• Klein bottle N s

2,r with r + s ≥ 1. We ut N into pantalons of type IIand III. If r + s ≥ 2, this deomposition is separating.
• Nonorientable surfae N s

g,r with g ≥ 3 odd. We deompose N into oneskirt of type II and a number of pantalons of type II and III (see Figure23; the shaded disk represents a rossap). If g ≥ 5 or r + s ≥ 1, thisdeomposition is separating.

Fig. 23. P-S deomposition if the genus is odd
• Nonorientable surfae N s

g,r with g ≥ 4 even. We deompose N into twopantalons of type III and a number of pantalons of type II and III (seeFigure 24). This deomposition is separating.

Fig. 24. P-S deomposition if the genus is evenIn the following, by a P-S deomposition we will always mean one of thedeompositions listed above.6. Centralisers of subgroups generated by twists. Let T (N) be thetwist subgroup of M(N), i.e. the subgroup of M(N) generated by all Dehntwists. In the ase of a losed nonorientable surfae, T (N) is a subgroup ofindex 2 (f. [9℄). If g ≥ 7 then the index of T (N s
g ) is 2s+1s! (f. Corollary 6.2of [8℄).We now ompute the entraliser Z = ZM(N)(T (N)). This will allow usto ompute the entre of M(N).Observe that, as in the orientable ase, boundary twists are entral in

M(N). We are going to prove that up to a �nite number of exeptions, thereare no other elements of M(N) whih entralise T (N).Before we state the main theorem, we need to onsider some exeptionalases.



Twists on nonorientable surfaes 141The mapping lass group of a projetive plane and of a Möbius strip istrivial (f. Theorem 3.4 of [3℄).The projetive plane with one punture, a skirt of type I, a skirt oftype II and the Klein bottle have abelian mapping lass groups (respetively
Z2, Z, Z × Z, Z2 × Z2) so Z is equal to M(N).If N is a projetive plane with two puntures, then T (N) is trivial, so Zis equal to M(N), i.e. to the dihedral group D4 (of order 8) (f. Corollary4.6 of [8℄).If N is a Klein bottle with one punture or a Klein bottle with oneboundary omponent then the desription of Z follows from Corollaries A.6and A.8.We will now examine the ase of a losed nonorientable surfae N ofgenus 3. N has a double over Ñ whih is an orientable surfae of genus 2.Suppose that Ñ is embedded in R

3 in suh a way that it is invariant underre�etions in the xy, yz and zx planes (see Figure 25). Let J ∈ M(Ñ) be

Fig. 25. Nonorientable surfae of genus 3 and its double overthe isotopy lass of a di�eomorphism j : Ñ → Ñ indued by the entralsymmetry of R
3: (x, y, z) 7→ (−x,−y,−z). By [1℄, M(N) is isomorphi tothe quotient group S(Ñ)/〈J〉, where S(Ñ) is the entraliser of J in M(Ñ).Moreover, this isomorphism is indued by the projetion p : Ñ → Ñ/〈j〉,where Ñ/〈j〉 is the orbit spae, whih from now on will be our model for N .Let ˜̺ ∈ M(Ñ) be the hyperellipti involution, i.e. the isotopy lass of adi�eomorphism indued by the half turn about the y-axis (see Figure 25).Sine ˜̺ is entral, it indues a entral element ̺ of M(N) ∼= S(Ñ)/〈J〉.Observe that if a is a irle on N as in Figure 25, then ̺(a) = a−1 and ̺preserves the loal orientation of a neighbourhood of a.Now let h : N → N represent an element of the entraliser Z ⊆ M(N) ofthe twist subgroup. Sine th(a) = htah

−1 = ta, Proposition 4.6 implies that
h(a) is isotopi to a±1. So we an assume that h(a) = a±1. Moreover, h mustpreserve the loal orientation of a neighbourhood of a. Therefore we anhoose ε ∈ {0, 1} suh that h̺ε is isotopi to the identity in a neighbourhoodof a. Now we an ut N open along a, and onlude from the mapping lassgroup of the skirt of type II that h̺ε = tka for some integer k. Now byLemma 4.1, there exists a two-sided generi irle b suh that I(a, b) > 0



142 M. Stukow(see Figure 25). Sine tka = h̺ε ommutes with the twist tb, Proposition 4.7implies that k = 0. Therefore we have proved the following:Proposition 6.1. Let N be a losed nonorientable surfae of genus 3.The entre of M(N) is equal to the entraliser Z of the twist subgroup andis generated by the involution ̺.Now we are ready to prove the general result onerning the entraliser Z.Theorem 6.2. Suppose that g+r+s ≥ 4 and let c1, . . . , cr be the bound-ary urves of N = N s
g,r. Then the entraliser Z of the twist subgroup is equalto the entre of M(N). Moreover , Z is generated by tc1 , . . . , tcr and is iso-morphi to Z

r.Proof. Sine the proof follows the lines of the proof of Theorem 5.6 of[10℄, we only sketh it.The isomorphism 〈tc1 , . . . , tcr〉
∼= Z

r follows from Proposition 4.4, so it isenough to prove that Z = 〈tc1 , . . . , tcr〉.Let a1, . . . , au be the irles de�ning a separating P-S deomposition of
N (f. Setion 5). If h ∈ Z then th(ai) = htai

h−1 = tai
, hene by Proposition4.6, h(ai) ≃ a±1

i for i = 1, . . . , u. Now we an assume that in fat h(ai) = a±1
i(f. Proposition 3.10 of [10℄), hene h permutes pantalons/skirts.First suppose that h interhanges some two omponents M1 and M2 ofthe P-S deomposition.If M1 and M2 are both pantalons of type II glued along a irle aj ,then the remaining boundary urves ak ⊂ M1 and al ⊂ M2 must be gluedtogether. In fat, sine h(ai) = a±1

i for every i, and h interhanges a±1
k and

a±1
l , we have ak = a±1

l . Therefore N is a Klein bottle with two puntures.Observe that h must preserve orientations of regular neighbourhoods of ajand ak and this is possible only if h does not interhange M1 and M2.If M1 and M2 are both pantalons of type III, then as before we argue that
N is a losed nonorientable surfae of genus 4 and h does not interhange
M1 and M2.Observe that by our hoie of P-S deompositions (f. Setion 5), andsine N is nonorientable, M1 and M2 an be neither a pantalon of type I nora skirt.Thus we have proved that h maps every pantalon/skirt onto itself. More-over, sine h entralises their boundary twists, the restrition of h to eahpantalon preserves its orientation.If N 6= N s

1 then the P-S deomposition of N ontains neither a pantalonof type I nor a skirt of type I (f. Setion 5). By the struture of the mappinglass groups of pantalons of type II/III and skirts of type II,
h = tα1

a1
· · · tαu

au
tγ1

c1
· · · tγr

cr
.



Twists on nonorientable surfaes 143Now for eah �xed 1 ≤ i ≤ u, by Lemma 4.1, there exists a generi two-sidedirle b suh that I(ai, b) > 0 and aj ∩b = ∅ for j 6= i. Therefore tb ommuteswith taj
for j 6= i. It also ommutes with all tci

and with h, hene it ommuteswith tαi
ai
. By Proposition 4.7, this yields αi = 0, whih ompletes the proofin this ase.It remains to onsider the ase of N being a projetive plane with s ≥ 3puntures Σ = {P1, . . . , Ps}. For eah 1 ≤ i ≤ s, there exists a two-sidedirle c on N suh that N \ c has two omponents, one of whih is a Möbiusstrip with a punture Pi, and the other is a disk with s−1 puntures. Sine hentralises the twist about c, it satis�es h(c) ≃ c±1. Beause the omponentsof N \ c are not homeomorphi, h annot interhange them, so in partiular,

h(Pi) = Pi. Therefore h �xes Σ pointwise.Now the P-S deomposition of N onsists of one skirt of type I and anumber of pantalons of type I and II; assume that ai is the irle whihuts o� the skirt. Sine h preserves the orientation of every pantalon, by thestruture of the mapping lass groups of the pantalons and of the skirt,
h = vktα2

a2
tα3

a3
· · · tαu

au
,where v is a boundary slide. Then

h2 = tka1
t2α2

a2
· · · t2αu

au
.Now a similar argument as before yields k = α2 = α3 = · · · = αu = 0.Corollary 6.3. Suppose g + s ≥ 4. Then the entre of M(N s

g ) is triv-ial.Appendix A. Mapping lass group of a Klein bottle with onepunture/boundary omponentA.1. Mapping lass group of a Klein bottle with one punture. For therest of this subsetion let N = N1
2 denote a Klein bottle with one punture p.Lemma A.1. Let c be a generi two-sided irle on N . Then N \ c isonneted and orientable.Proof. Suppose that N \ c has two omponents M1 and M2. Then both

M1 and M2 have exatly one boundary omponent and one of them has apunture. The Euler harateristis of M1 and M2 satisfy
χ(M1) + χ(M2) = χ(N) = −1.Without loss of generality we an assume that χ(M1) ≥ χ(M2) and therefore

0 ≤ χ(M1) ≤ 1. If χ(M1) = 1 then M1 is a disk, whih is impossible sine
c is generi. If χ(M1) = 0 then M1 is either a disk with a punture or aMöbius strip. Both ases are impossible.Sine χ(N \ c) = −1 and N \ c has two boundary omponents and onepunture, if we glue a disk to eah of the boundary omponents and remove



144 M. Stukowthe punture, we obtain a surfae of Euler harateristi 2, i.e. the sphere.Therefore N \ c is orientable.Lemma A.2. If a and b are generi two-sided irles on N , then thereexists h ∈ H(N) suh that h(a) = b±1.Proof. By the previous lemma, N \ a and N \ b are di�eomorphi aspuntured surfaes. We an hoose a di�eomorphism h : N \a → N \b whihextends to h̃ : N → N . Then h̃(a) = b±1.Proposition A.3. There are exatly two isotopy lasses of generi two-sided irles on N .Proof. By Lemma A.2, it is enough to prove that if we �x some generitwo-sided irle on N then a 6≃ a−1 and for any h ∈ M(N), h(a) is isotopieither to a or to a−1. To prove this, let us desribe generators of M(N).Following [8℄, we represent N as the one-point ompati�ation of a planewith two rossaps and a punture (see Figure 26). Let α, β, γ, a be losedurves indiated in Figure 26. In partiular, β and γ are one-sided, while αand a are two-sided. De�ne v, w, y to be the punture slides along β and γ,

Fig. 26. Cirles on a Klein bottle with puntureand the rossap slide along α respetively. Then by Theorem 4.9 of [8℄,
M(N) is generated by v, w, y and ta.It is straightforward to hek that a 6≃ a−1, v(a) ≃ w(a) ≃ a−1 and
y(a) ≃ ta(a) = a.Corollary A.4. There is exatly one isotopy lass of generi two-sidedirles on a Klein bottle N2.Consider another model of N , namely the one shown in Figure 27. De�ne

Fig. 27. Cirles on a Klein bottle with punture
a and β as shown in the �gure, and let v be the punture slide along β.



Twists on nonorientable surfaes 145If we ut N along a, we obtain a ylinder with a punture. Re�etion ofthis ylinder aross the irle parallel to boundary omponents and passingthrough the punture indues a di�eomorphism σ ∈ H(N) suh that σ(a)
= a−1.Theorem A.5. Let N be a Klein bottle with a punture and v, σ asabove. Then M(N) is the produt (〈ta〉 ⋊ 〈v〉) × 〈σ〉 and is isomorphi to
(Z ⋊ Z2) × Z2.Proof. By Proposition A.3, if h ∈ H(N) is any di�eomorphism, then
h(a) is isotopi either to a or to a−1, so the subgroup H < M(N) onsistingof maps whih do not interhange the sides of a is of index 2 in M(N).Moreover, ta, v ∈ H and σ ∈ M(N) \ H.All maps h ∈ H suh that h(a) is isotopi to a form a subgroup K ofindex 2 in H, and v ∈ H \ K. If k ∈ K is any di�eomorphism then we anassume that k(a) = a and k preserves the sides of a. If we ut N open along
a, we onlude from the mapping lass group of the ylinder that k = tnafor some n ∈ Z. Therefore H is generated by v and ta. Sine v2 is a twistabout the boundary of a Möbius strip, v is of order 2. Moreover, v reversesthe orientation of a regular neighbourhood of a, so vtav

−1 = t−1
a . Therefore

H = 〈ta〉 ⋊ 〈v〉.Sine σtaσ
−1 = ta, σvσ−1 = v−1 = v, to omplete the proof it is enoughto show that ta is of in�nite order. This an be shown by omputing theindued homomorphism on homology.Corollary A.6. Let N be a Klein bottle with one punture and ta, v, σas above. Then the entre of M(N) is equal to the group of order 2 generatedby σ. The entraliser Z of the twist subgroup is generated by ta and σ, andis isomorphi to Z × Z2.A.2. Mapping lass group of a Klein bottle with one boundary omponent.Now let N = N2,1 denote the Klein bottle with one boundary omponent b.Observe that if N ′ is a Klein bottle with a punture, then the inlusion

i : N → N ′ indues a homomorphism i∗ : M(N) → M(N ′) whih extendsevery h ∈ M(N) by the identity on N ′ \ N (see Figure 28; note that thistime the shaded disk does not represent a rossap but a disk). We laimthat the kernel of i∗ is generated by the boundary twist tb on N . In fat,if h ∈ ker i∗ then h(a) ≃ a in N ′. By Proposition 3.5 of [10℄, we also have
h(a) ≃ a in N . Moreover, h preserves the orientation of a neighbourhoodof a, so it does not interhange the sides of a. Therefore h is indued by amapping of N \ a, hene by the struture of the mapping lass group of apantalon of type III, h = tαa tβb . Now 1 = i∗(h) = tαa and by Corollary 4.5,
α = 0.
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Fig. 28. Klein bottle with boundary as a subsurfae of a Klein bottle with puntureSine every di�eomorphism of N �xes the boundary, the image of i∗onsists of elements of M(N ′) whih preserve the loal orientation aroundthe punture on N ′. All suh elements form a subgroup M+(N ′) of index 2,whih is generated by ta and σv. Observe that we an use the same de�nitionsas for the maps ta, σ, and v to de�ne di�eomorphisms ta, σ̃, ṽ : N → N suhthat i∗(ta) = ta, i∗(σ̃) = σ, i∗(ṽ) = v. The problem is that σ̃ and ṽ do not �xthe boundary of N . However, if we de�ne
σ̃v = σ̃ṽtb,where tb is a half twist about the boundary irle b, then σ̃v : N → N �xesthe boundary and i∗(σ̃v) = σv. Now from the exat sequene

1 → 〈tb〉 → M(N)
i∗−→ M+(N ′) → 1and easily veri�able relations

σ̃v2 = tb, σ̃vtaσ̃v−1 = t−1
a ,we obtain the following theorem:Theorem A.7. Let N be a Klein bottle with one boundary omponentand ta, σ̃v as above. Then the mapping lass group of N is the semidiretprodut 〈ta〉 ⋊ 〈σ̃v〉 and is isomorphi to Z ⋊ Z.Corollary A.8. Let N be a Klein bottle with one boundary omponentand ta, σ̃v, tb = σ̃v2 as above. Then the entre of M(N) is the yli groupgenerated by tb. The entraliser Z of the twist subgroup is generated by taand tb, and is isomorphi to Z × Z.Aknowledgements. The author wishes to thank the referee for his/herhelpful suggestions.
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