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Multivalued Lyapunov functions for

homeomorphisms of the 2-torus

by

Patrice Le Calvez (Paris)

Abstract. Let F be a homeomorphism of T2 = R2/Z2 isotopic to the identity and f
a lift to the universal covering space R2. We suppose that κ ∈ H1(T2, R) is a cohomology
class which is positive on the rotation set of f . We prove the existence of a smooth
Lyapunov function of f whose derivative lifts a non-vanishing smooth closed form on T2

whose cohomology class is κ.

0. Introduction. Let us recall first some classical results mainly due
to Schwartzman [Sc] and Fried [Fri]. For convenience we recall these results
in the smooth case. Let ξ be a complete smooth (i.e. C∞) vector field on
an oriented compact connected manifold M and (φt)t∈R the flow induced
by ξ. The set of Borel probability measures invariant under the flow is a
non-empty convex subsetMξ of the set of complex measures and is compact
with respect to the weak topology. The rotation vector of µ ∈ Mξ may be
defined as follows. Take a smooth closed 1-form ω and write, for t > 0,\

M

〈ω(z), ξ(z)〉 dµ(z) =
1

t

t\
0

( \
M

〈ω(z), ξ(z)〉 dφs∗µ(z)
)
ds

=
1

t

\
M

( \
γt

z

ω
)
dµ(z),

where γt
z : s 7→ φs(z) is defined on [0, t]. If ω = dH is exact the integral may

be written
1

t

\
M

(H(φt(z))−H(z)) dµ(z) = 0.

One deduces that the previous integral depends linearly on the cohomology
class [ω] ∈ H1(M,R). Thus there exists a homology class ̺(µ) ∈ H1(M,R),
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called the rotation vector of µ, such that\
M

〈ω(z), ξ(z)〉 dµ(z) = 〈[ω], ̺(µ)〉.

The map µ 7→ ̺(µ) is a continuous affine map and its image ̺(ξ), called the
rotation set of the flow, is a non-empty convex compact subset of H1(M,R).

In the case where 0 6∈ ̺(ξ), one can find classes κ ∈ H1(M,R) such that
〈κ, ̺(µ)〉 > 0 for every µ ∈ Mξ. Fix such a class κ, a smooth closed form

ω satisfying [ω] = κ, and write ωt = t−1
Tt
0 φ
∗
sω ds for t > 0. Then [ωt] = κ

because [φ∗sω] = κ. Observe that 〈ωt(z), ξ(z)〉 > 0 for every z ∈ M , if t is
large enough. Otherwise, one could find a sequence (tn)n≥0 tending to +∞
and a sequence (zn)n≥0 in M such that

〈ωtn(zn), ξ(zn)〉 =
\

γ
tn
zn

ω ≤ 0.

Writing µn for the equidistributed probability measure defined on the seg-
ment of orbit γtn

zn
and choosing a limit point of the sequence (µn)n≥0 with

respect to the weak topology one would find an invariant measure µ satis-
fying 〈[ω], ̺(µ)〉 ≤ 0.

Replacing ω by ωt, one gets:

For any cohomology class κ which is positive on ̺(ξ), one can find

a non-vanishing smooth form ω satisfying [ω] = κ and
T
γt

z
ω > 0 for

every z ∈M and every t > 0.

In the case where 0 6∈ ̺(ξ), one can find a class κ ∈ H1(M,Z) which is
positive on ̺(ξ). The form ω defined above may be written ω = dH where
H : M → T1 = R/Z is a smooth submersion: there exists a foliation which
is transverse to ξ such that all leaves are diffeomorphic closed hypersurfaces,
so the manifold M fibers over T1.

Do similar results exist if one replaces flows by isotopies of the identity?

Suppose that t 7→ Ft is a continuous arc joining IdM to F in the set
of homeomorphisms of M (endowed with the C0-topology) and define the
trajectory γz : t 7→ Ft(z) of any point z ∈M . Here again the setMF of Borel
probability measures invariant under F is a non-empty convex and compact
set. For any smooth closed 1-form ω,

T
γz
ω may be defined by approximation

of γz by a smooth arc. Similarly one defines the rotation vector ̺(µ) of any
measure µ ∈MF by \

M

( \
γz

ω
)
dµ(z) = 〈[ω], ̺(µ)〉.

The set of rotation vectors of probability invariant measures is a non-empty
convex compact subset of H1(M,R).
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In the case where F is smooth, if κ ∈ H1(M,R) satisfies 〈κ, ̺(µ)〉 > 0
for any µ ∈ MF and if ω is a smooth closed form such that [ω] = κ, then
ωn = n−1

∑n−1
k=0 F

k∗(ω) satisfies [ωn] = κ for any integer n and
T
γz
ωn > 0

for every z ∈ M , if n is large enough. In contrast to the continuous case,
one cannot assert that ωn does not vanish, so it is natural to ask:

Does there exist a non-vanishing smooth 1-form ω such that [ω] = κ
and

T
γz
ω > 0 for every z ∈M?

and therefore:

Does the existence of a map isotopic to the identity whose rotation

set does not contain zero imply that M fibers over T1?

We will see that the first question has a positive answer in the case of
a surface. If M is a sphere the homology is trivial. If the genus of M is
greater than 1 then, by the Lefschetz–Nielsen formula (see Jiang [J]), F has
a contractible fixed point z (i.e. such that γz is homotopic to zero). The
rotation vector of the Dirac measure δz is zero. Thus, the second question
has a positive answer for surfaces and the only case where the first question
has to be considered is the case of the torus T2 = R2/Z2.

If F is a homeomorphism of T2 which is isotopic to the identity, any
isotopy from identity to F can be lifted to the universal covering space R2

to an isotopy of the identity defining a lift f of F . The rotation vector of
µ ∈MF may be written

̺(µ) =
\

T2

ψ dµ ∈ R2 ≃ H1(T
2,R),

where ψ : T2 → R2 lifts to f−IdR2 and one defines similarly the rotation set
̺(f) (there are other ways to define that set, see for example Misiurewicz–
Ziemian [MZ]).

We write π : R2 → T2 for the universal covering projection. The group of
covering transformations is the group G of integer translations T : z 7→ z+r,
r ∈ Z2, and may be naturally identified with H1(T

2,Z), thus we will write
〈κ, T 〉 if κ ∈ H1(T2,R) and T ∈ G.

Let us state the result proved in this paper:

Theorem 0.1. Let F be a homeomorphism of T2 isotopic to the identity

and f a lift of F to R2. Suppose that κ ∈ H1(M,R) is positive on ̺(f). Then

there exists a non-vanishing smooth closed form ω on T2 satisfying [ω] = κ
and such that H(f(z))−H(z) > 0 for every z ∈ R2, where H : R2 → R is

a primitive of π∗(ω).

The theorem above may be stated in a different but equivalent way that
we now explain. For that, let us introduce some definitions.
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A line Γ ⊂ R2 is the image of a proper topological embedding of the
oriented line R. By the Schoenflies Theorem, the complement R2\Γ has two
connected components R(Γ ) and L(Γ ), the right and left of Γ . We will use a
partial order � defined on the set of lines, writing Γ � Γ ′ if R(Γ ) ⊂ R(Γ ′).
A Brouwer line of an orientation preserving homeomorphism f of R2 is a
line Γ such that

f−1(Γ ) ⊂ R(Γ ), f(Γ ) ⊂ L(Γ ),

or equivalently a line Γ such that f(L(Γ )) ⊂ L(Γ ) (see [LeC2] for more
details on these definitions).

If κ is a rational class, Theorem 0.1 asserts that there exists a smooth ori-
ented foliation of T2 with closed leaves which lifts to the plane as a foliation
by Brouwer lines all of them invariant under the translations T ∈ G such
that 〈κ, T 〉 = 0. If κ is irrational and generated by the form αdx1−dx2, The-
orem 0.1 asserts that there exists a smooth oriented foliation of T2 smoothly
conjugate to a linear foliation which lifts to a foliation of R2 by Brouwer
lines with asymptotic irrational slope α.

Under the hypothesis of Theorem 0.1, the map f is fixed point free.
The Brouwer Plane Translation Theorem asserts that every point belongs
to a Brouwer line [Br]. Franks gave a proof of that theorem using Lyapunov
functions. More precisely, he proved in [Fra] that an orientation preserving
homeomorphism f of R2 which is fixed point free admits a smooth Lyapunov
function H which is a Morse function. Moreover, if z is any given point, the
level set containing z may be supposed to be a properly embedded line.
The important fact in his proof is that there is no chain recurrent point.
With the same hypothesis on f , we constructed in [LeC2] a topological
oriented foliation F by Brouwer lines and explained in [LeC3] how to make
it invariant under G in the case where f commutes with every element
of G; this was previously known for diffeomorphisms (see [LeC1]). Here the
stronger hypothesis on f permits us to obtain stronger dynamical properties
on F . It may happen that f is fixed point free but its rotation set contains 0.
It is proved in [LeC1] (but similar results exist in the topological case) that

the foliation F̃ induced on T2 has both closed and non-closed leaves. If there
are Reeb components, there is a finite (and even) number of such components
and each Reeb component is an attracting or a repulsing annulus. In that
case, there exists r ∈ Z2 \ {0} such that every closed leaf joins a point z
to z + r or to z − r when lifted to R2. In that case, the rotation set is a
segment of the line directed by r, and 0 is not an end of it. Moreover the
support of any invariant ergodic measure is included in a component of the
complement of the union of the closed leaves. If there is no Reeb component,
there exists r ∈ Z2 \ {0} such that every closed leaf joins a point z to z + r
when lifted to R2. The rotation set is included in the half plane to the left of
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the oriented line generated by r. In the case where 0 6∈ ̺(f), it was proved
in [LeC1] and [LeC3] that there exists an equivariant foliation by Brouwer
lines; here we prove the existence of many such foliations, the asymptotic
direction may be chosen in a well determined open cone.

The method of proof will be similar to but easier than the one in [LeC2]
and [LeC3] and will be based on the properties of brick decompositions
introduced by Flucher [Fl] and studied in detail by Sauzet [LS], [Sa]. One can
find other applications of brick decompositions to the dynamics of surface
homeomorphisms in Bonino [Bo], Leroux [LeR] or Béguin, Crovisier, Leroux
and Patou [BCLP].

I would like to thank the referee whose numerous remarks have improved
the presentation of this article.

1. Brick decompositions. Everything which appears in this section,
with the exception of the last part, containing Lemma 1.1, can be found
with more details in [Sa], [LeC2] or [LeC3].

Consider a one-dimensional stratified set Σ on a (not necessarily closed)
surface M with a zero-dimensional submanifold V such that any vertex
v ∈ V is locally the end of exactly three edges. An open edge is a connected
component of Σ \ V and an edge is the closure of an open edge. It is the
image of a proper topological embedding of [0, 1], [0,+∞[, R or T1. An open

brick is a connected component of M \Σ and a brick is the closure of an open
brick. Writing E (resp. B) for the set of edges (resp. bricks) one obtains a
brick decomposition D = (V,E,B) of M whose skeleton is Σ = Σ(D). An
example of a brick decomposition is given in Fig. 1.

Fig. 1

If D′ = (V ′, E′, B′) is a brick decomposition satisfying Σ(D′) ⊂ Σ(D),
we say that D′ is a subdecomposition of D and write D′ ⊂ D. Note that one
may have B′ = B even if D′ 6= D.
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Suppose that M is a normal covering space of a surface M̃ and write Π :

M → M̃ for the projection. If D̃ = (Ṽ , Ẽ, B̃) is a brick decomposition of M̃ ,

then Π−1(Σ(D̃)) is the skeleton of a brick decomposition D = (V,E,B)

of M . We call it the lifted decomposition and write D = Π−1(D̃). A brick
decomposition D = (V,E,B) is a lifted decomposition if and only if the
sets V , E and B are invariant under the action of the group G of covering
transformations, i.e., if D is a G-equivariant decomposition.

Let D = (V,E,B) be a brick decomposition of M . For any X ⊂ B the
union of bricks which are in X is a subsurface of M with boundary. Any
connected component of the boundary is contained in Σ(D), it is the image
of a proper topological embedding of R or T1. Our subsurface is connected

if and only if for any bricks b, b′ ∈ X, there exists a sequence (bi)0≤i≤n, with
b0 = b and bn = b′, such that bi and bi+1 are adjacent for i ∈ {0, . . . , n− 1},
that is, contain a common edge. For convenience we will denote by the same
letter the set X ⊂ B and the union X ⊂ M of bricks of X, specifying it if
necessary if we want to avoid any confusion.

If (Xi)i∈I is a partition of B into connected subsets, the set
⋃

i∈I ∂Xi is
the skeleton of a subdecomposition D′ of D whose bricks are the Xi. Let us
say that D is a filled decomposition if D′ = D where D′ is defined by the
partition into singletons. In other words, D is filled if and only if any edge is
contained in exactly two bricks of the decomposition (for example the brick
decomposition in Fig. 1 is not filled).

Suppose that f is a homeomorphism of M . Write P(B) for the set of
subsets of B. One gets a natural map ϕ : P(B)→ P(B) by defining

ϕ(X) = {b ∈ B | there exists b′ ∈ X such that b ∩ f(b′) 6= ∅}

= {b ∈ B | b ∩ f(X) 6= ∅}.

It sends connected subsets to connected subsets and satisfies

ϕ
( ⋃

i∈I

Xi

)
=

⋃

i∈I

ϕ(Xi), ϕ
( ⋂

i∈I

Xi

)
⊂

⋂

i∈I

ϕ(Xi),

for any family (Xi)i∈I .

Any set X ⊂ B such that ϕ(X) ⊂ X, or equivalently f(X) ⊂ Int(X)
in M , is called an attractor.

The union or intersection of a family of attractors is again an attractor.

Similarly, one defines ϕ− : P(B)→ P(B) by

ϕ−(X) = {b ∈ B | there exists b′ ∈ X such that b ∩ f−1(b′) 6= ∅}

= {b ∈ B | b ∩ f−1(X) 6= ∅}.

The relations b′ ∈ ϕn({b}) and b ∈ ϕn
−({b′}) are equivalent. They mean that

there exists a sequence (bi)0≤i≤n of bricks such that b0 = b, bn = b′ and
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f(bi) ∩ bi+1 6= ∅ for every i ∈ {0, . . . , n − 1}. A repulsor is a set positively
invariant under ϕ−, or equivalently the complement (in B) of an attractor.

Suppose now that M = R2 is the universal covering space of T2 and that
f is the lift of a homeomorphism F of T2 isotopic to the identity. Fix κ ∈
H1(T2,R) and say that a G-equivariant brick decomposition D = (V,E,B)
is κ-positive if:

(i) for all b ∈ B, n ≥ 1 and T ∈ G,

T (b) ∈ ϕn({b})⇒ 〈κ, T 〉 > 0;

(ii) for b ∈ B and T ∈ G,

T (b) = b ⇒ 〈κ, T 〉 = 0.

Lemma 1.1. If κ ∈ H1(M,R) is positive on ̺(f), then there exists a

G-equivariant brick decomposition of R2 which is κ-positive.

Proof. For any ε > 0, one can find a brick decomposition of T2 whose
bricks have diameter ≤ ε. Let us prove that it lifts to a κ-positive decompo-
sition if ε is sufficiently small. Condition (ii) is clearly satisfied for ε small
enough. Suppose that (i) is not. One can find a sequence (εm)m≥0 converg-

ing to zero and for any m ≥ 0 a brick decomposition D̃m = (Ṽm, Ẽm, B̃m)
of T2 whose bricks have diameter ≤ εm, a sequence (bmi )0≤i≤nm of bricks of
the lifted decomposition and a translation Tm ∈ G such that:

• f(bmi ) ∩ bmi+1 6= ∅ for any i ∈ {0, . . . , nm − 1};

• bmnm
= Tm(bm0 );

• 〈κ, Tm〉 ≤ 0.

For any i ∈ {0, . . . , nm − 1} choose zm
i ∈ b

m
i ∩ f

−1(bmi+1), write z̃m
i = π(zm

i )
and consider the probability measure

µm =
1

nm

nm−1∑

i=0

δz̃m
i
.

Because εm tends to 0 as m tends to +∞, any limit point µ of (µm)m≥0 is
invariant under F . From 〈κ, Tm〉 ≤ 0, passing to the limit, one can deduce
that the rotation vector (for f) of µ satisfies 〈κ, ̺(µ)〉 ≤ 0.

2. The rational case. This is the easiest case. We may suppose that
κ is represented by the form dx2, where (x1, x2) are the coordinates on the
plane. We do not need any brick decomposition. The ideas of this section can
be found in [BCLP]. The result stated in the Appendix B of [BCLP], which
was previously proved for diffeomorphisms by Kwapisz [Kw], gives a much
more precise statement if the rotation set of f is included in R× [p/q, p′/q′],
where [p/q, p′/q′] ⊂ ]0,+∞[ is a Farey interval.
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Define T1 : z 7→ z + (1, 0) and T2 : z 7→ z + (0, 1), denote by f̂ (resp. T̂2)
the homeomorphism of the annulus A = R2/T1 = T1 × R with lift f (resp.
T2) and write κ̂1 for the generator of H1(A,Z) associated to T1.

By an essential circle we mean a simple oriented closed curve Γ ⊂ A

whose homology class is κ̂1. Its complement has two connected components
R(Γ ) and L(Γ ), the right and left of Γ . If Γ and Γ ′ are two essential circles,
write

Γ ≪ Γ ′ if R(Γ ) ⊂ R(Γ ′).

A classical result of Kerékjártó [Ke] asserts that for any pair of essential
circles Γ and Γ ′, there exists an essential circle Γ ∧ Γ ′ ⊂ Γ ∪ Γ ′ such that
the unbounded connected component of R(Γ )∩R(Γ ′) is equal to R(Γ ∧Γ ′)
(see [LY] for a modern explanation).

Lemma 2.1. If (Γi)1≤i≤n and (Γ ′i )1≤i≤n are two sequences such that

Γi ≪ Γ ′i for every i, then
∧

1≤i≤n

Γi ≪
∧

1≤i≤n

Γ ′i .

Proof. The closure of R(
∧

1≤i≤n Γi) is contained in every R(Γi) and
therefore in every R(Γ ′i ). Using the fact that it is connected and unbounded
one deduces that it is contained in R(

∧
1≤i≤n Γ

′
i ).

To get Theorem 0.1 in the rational case one has to prove the following:

Proposition 2.2. There exists a smooth T̂2-invariant foliation of A by

essential circles Γ satisfying Γ ≪ f̂(Γ ).

Let us begin with:

Lemma 2.3. There is an integer n ≥ 1 and a family (Γi)i∈Z of essential

circles satisfying Γi ≪ Γi+1 ≪ f̂(Γi) and Γi+2n = T̂2(Γi) for every i ∈ Z.

Proof. Write p2 : A → R for the projection on the second factor. Using
the fact that κ is positive on ̺(f), one deduces that there exist ε > 0 and
N > 0 such that

p̂2(f̂
n(z))− p̂2(z)

n
≥ ε

for every n ≥ N and every z ∈ A. In particular, one may find n ≥ 1 such
that

p̂2(f̂
n(z))− p̂2(z) > 1.

One deduces that T̂2(Γ )≪ f̂n(Γ ) for any circle Γ = T1 × {x2}.
For any i ∈ Z write Γ ′i = T1 × {i/2n} and define

Γi =
∧

0≤j<n

f̂ j(Γ ′i−2j).
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Lemma 2.1 shows that Γi ≪ Γi+1. Clearly, Γi+2n = T̂2(Γi) for every i ∈ Z.
Moreover

Γi+1 =
∧

0≤j<n

f̂ j(Γ ′i+1−2j) = Γ ′i+1 ∧
∧

0≤j<n−1

f̂ j+1(Γ ′i−1−2j)

≪ f̂n(Γi−2n+1) ∧
∧

0≤j<n−1

f̂ j+1(Γ ′i−2j)

≪ f̂n(Γi−2n+2) ∧
∧

0≤j<n−1

f̂ j+1(Γ ′i−2j)

= f̂
(
f̂n−1(Γi−2n+2) ∧

∧

0≤j<n−1

f̂ j(Γ ′i−2j)
)

= f̂(Γi).

Proof of Proposition 2.2. One can approximate each circle of the family
(Γi)i∈Z constructed above by a smooth one to get a family of smooth circles
satisfying the same property. One can complete this family to a smooth
T̂2-invariant foliation of A by essential circles. For any such circle Γ , one has
necessarily Γ ≪ f̂(Γ ). Indeed, there exists i ∈ Z such that

R(Γi) ⊂ R(Γ ) ⊂ R(Γ ) ⊂ R(Γi+1), R(Γi+1) ⊂ R(f̂(Γi)) ⊂ R(f̂(Γ )).

Remark. Consider a homeomorphism of T2 which admits a lift f̂ to
A commuting with T̂2, that is, a homeomorphism isotopic to an iterate of
the Dehn twist (x, y) 7→ (x+ y, y). For any probability measure µ invariant
under F one may define the vertical rotation number ̺v(µ) =

T
T2 ψ dµ where

ψ : T2 → R lifts to p̂2 ◦ f̂ − f̂ . The set of such numbers is a segment,
the vertical rotation set ̺v(f̂) (see Doeff [D] or Doeff–Misiurewicz [DM]
for more details on vertical rotation numbers). Note that the conclusion of

Proposition 2.2 is true as soon as ̺v(f̂) ⊂ ]0,+∞[.

3. The irrational case, construction of an order. Here again, many
arguments of this section can be found with more details in [Sa], [LeC2] or
[LeC3].

If ≤ is an order on a set Θ we define, for every θ ∈ Θ,

(←, θ]≤ = {θ′ ∈ Θ | θ′ ≤ θ}, [θ,→)≤ = {θ′ ∈ Θ | θ ≤ θ′},

(←, θ)≤ = {θ′ ∈ Θ | θ′ < θ}, (θ,→)≤ = {θ′ ∈ Θ | θ < θ′}.

A cut C = (C←, C→) is a partition of Θ into two non-empty subsets such
that

θ ∈ C← ⇒ (←, θ]≤ ⊂ C←,

or equivalently

θ ∈ C→ ⇒ [θ,→)≤ ⊂ C→.
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We say that θ and θ′ are comparable if θ ≤ θ′ or θ′ ≤ θ. We say that the
order ≤′ is weaker than ≤ if for every (θ, θ′) ∈ Θ2,

θ ≤ θ′ ⇒ θ ≤′ θ′.

If H is a group of bijections of Θ, we say that ≤ is H-equivariant if

θ ≤ θ′ ⇒ T (θ) ≤ T (θ′)

for all (θ, θ′) ∈ Θ2 and every T ∈ H.
In the next three sections we suppose that κ ∈ H1(T2,R) is represented

by the linear form λα = −α dx1 + dx2 where α 6∈ Q. We write

G+
α = {T ∈ G | 〈κ, T 〉 > 0}, G−α = {T ∈ G | 〈κ, T 〉 < 0},

G∗ = G \ {IdR2} = G+
α ∪G

−
α .

Let us state the main result of this section:

Proposition 3.1. There exists a G-equivariant brick decomposition

D = (V,E,B) of R2 and a G-equivariant order ≤ on B which satisfies:

(a) for every (b, b′) ∈ B2, f(b) ∩ b′ 6= ∅ ⇒ b < b′;
(b) for every b ∈ B and T ∈ G+

α one has b < T (b);
(c) the order ≤ is total ;
(d) if C = (C←, C→) is a cut of B, then both C← and C→ are connected ;
(e) for any cut C, there exists M > 0 such that for every z ∈ R2,

λα(z) < −M ⇒ z ∈ C←, λα(z) > M ⇒ z ∈ C→.
We will construct ≤ step by step. Choose a κ-positive equivariant brick

decomposition D = (V,E,B) of R2. Recall that:

(i) T (b) 6∈
⋃

n≥1 ϕ
n({b}) for all b ∈ B and T ∈ G \G+

α ;
(ii) T (b) 6= b for all b ∈ B and T ∈ G∗.

Item (ii) is a consequence of the κ-positivity of D and of the irrationality
of κ.

We will use very often in this section the fact that, for every T ∈ G, the
map ϕ : P(B)→ P(B) commutes with the map T : P(B)→ P(B) induced
by T .

Define on B a G-equivariant order ≤0 in the following way: b ≤0 b
′ if

b = b′ or b <0 b
′, where

b <0 b
′ ⇔ b′ ∈

( ⋃

n≥1

ϕn({b})
)
∪

( ⋃

T∈G+
α

⋃

n≥0

ϕn({T (b)})
)
.

The relation ≤0 is obviously reflexive and transitive. The κ-positivity of D
implies that ≤0 is antisymmetric. Observe that ≤0 satisfies the conditions
(a) and (b) of Proposition 3.1.

The set of equivariant subdecompositions of D being finite, one can find
a minimal equivariant subdecomposition among the κ-positive ones. Re-
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placing D by this minimal decomposition, one may suppose that no strict
subdecomposition of D is κ-positive. In particular D is a filled decomposition
because the subdecomposition defined by the partition of B into singletons
is κ-positive (it has the same bricks!). Observe also that any brick is bounded
by (ii).

Lemma 3.2. If b and b′ are two adjacent bricks, then they are compa-

rable.

Proof. This is clear if b and b′ belong to the same G-orbit. If not, write

B′′ = B \
⋃

T∈G

T ({b, b′})

and consider the subdecomposition D′′ of D defined by the partition

B =
⊔

T∈G

T ({b, b′}) ⊔
⊔

b′′∈B′′

{b′′}.

It satisfies (ii). We will suppose that b and b′ are not comparable and prove
that (i) is also satisfied by D′′, which contradicts the minimality of D.

Note that for any sequence (bi)0≤i≤n in B, if we have

• bi+1 ∈ ϕ({bi}) for all i ∈ {0, . . . , n− 1};
• b0 ∈ {b, b

′};
• bn ∈ {T (b), T (b′)};
• bi ∈ B

′′ for all i ∈ {1, . . . , n− 1};

then T ∈ G+
α , by κ-positivity of D and b and b′ being incomparable.

By additivity of G+
α , one deduces that for any sequence (bi)0≤i≤n in B,

if we have

• for every i ∈ {0, . . . , n− 1}, either

bi+1 ∈ ϕ({bi})

or

bi+1 ∈ ϕ({b′i}) and {bi, b
′
i} = Ti({b, b

′}) with Ti ∈ G;

• b0 ∈ {b, b
′};

• bn ∈ {T (b), T (b′)};

then T ∈ G+
α .

This implies that D′′ satisfies (i).

Lemma 3.3. For every b ∈ B, there are b′1 ∈ B and b′2 ∈ B adjacent to b
such that b′2 <0 b <0 b

′
1.

Proof. The set Bb of bricks adjacent to b is finite because b is bounded.
It contains a maximal element b′1 ∈ Bb and a minimal element b′2 for the
restricted order. Let us prove that b <0 b

′
1 (similar arguments give b′2 <0 b).
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If b′1 and b belong to the same G-orbit, one may write b′1 = T (b), T ∈ G∗,
and deduce thatBb also contains T−1(b). As b′1 = T (b) 6<0 T

−1(b), we deduce
that T ∈ G+

α and b <0 b
′
1.

Suppose now that b′1 and b do not belong to the same G-orbit and prove
by contradiction that b <0 b

′
1. Otherwise, by Lemma 3.2, one has b′1 <0 b:

there exist n > 0 and T ∈ G\G−α such that b ∈ T (ϕn({b′1})). By maximality
of b′1, T (ϕn({b′1}) does not contain any brick adjacent to b. As it is connected
it reduces to b. Thus T ◦ fn(b′1) is contained in the interior of b, which
means that T ◦ fn(b′) ∩ b 6= ∅ for any brick b′ adjacent to b′1. In particular
T ◦ fn(b) ∩ b 6= ∅. But T (fn(b)) ∩ b = ∅ because D is κ-positive.

For every brick b choose a point zb ∈ Int(b) in such a way that zT (b) =
T (zb) for all b ∈ B and T ∈ G.

Lemma 3.4. There is a positive number M1 such that

b ≤0 b
′ ⇒ λα(zb′ − zb) ≥ −M1.

Proof. Write N for the number of bricks of the decomposition of T2

covered by D. Using the equivariance property and a finiteness argument,
one can find a positive number M1 such that λα(zb′ − zb) ≥ −M1 for all
b ∈ B and b′ ∈

⋃
0≤n≤N−1 ϕ

n({b}). Observe now that
⋃

n≥0

ϕn({b}) ⊂
⋃

T 6∈G−α

T
( ⋃

0≤n≤N−1

ϕn({b})
)

and more generally that

[b,→)≤0
⊂

⋃

T 6∈G−α

T
( ⋃

0≤n≤N−1

ϕn({b})
)
.

Finally, observe that λα(zT (b′) − zb′) ≥ 0 for all T 6∈ G−α and b′ ∈ B.

Define on B a G-equivariant order ≤1 in the following way: b ≤1 b
′ if

b = b′ or b <1 b
′, where

b <1 b
′ ⇔ λα(zb′ − zb) ≥ 3M1.

Lemma 3.5. There is a G-equivariant order ≤2 on B which is weaker

than ≤0 and ≤1.

Proof. Write b ≤2 b
′ if there exists a sequence (bi)0≤i≤n such that b0 = b,

bn = b′ and bi ≤0 bi+1 or bi ≤1 bi+1 for i ∈ {0, . . . , n − 1}. The relation ≤2

is clearly reflexive, transitive and G-equivariant. Let us now prove that it is
antisymmetric. Suppose that b ≤2 b

′ and that the integer n above is smallest
possible. Then, for every i ∈ {0, . . . , n−2}, one has bi+1 ≤1 bi+2 if bi ≤0 bi+1.
By Lemma 3.4, this implies that either b ≤0 b

′ or λα(zb′ − zb) ≥ M1. This
clearly implies that ≤2 is antisymmetric.
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Lemma 3.6. If C = (C←, C→) is a cut of a G-equivariant order ≤ on B
which is weaker than ≤0 and ≤1, then C← and C→ are connected. Moreover

there exists M > 0 such that

λα(z) ≤ −M ⇒ z ∈ C←, λα(z) ≥M ⇒ z ∈ C→.

Proof. Fix b ∈ C→. The set [b,→)≤1 is included in C→ because ≤ is
weaker than ≤1. Thus there exists M > 0 such that C→ contains {z ∈
R2 | λα(z) ≥M}. This last set, being connected, is included in a connected
component C0

→ of C→. To get the lemma it is sufficient to prove that any
connected component X of C→ meets C0

→. Fix b′ ∈ X. By Lemma 3.3 one
can find a sequence (bi)i≥0 starting from b′ such that bi <0 bi+1 and bi
and bi+1 are adjacent. Hence there exists T ∈ G and two integers i0 < i1
such that bi1 = T (bi0), and necessarily T ∈ G+

α . The order ≤ being weaker
than ≤0, each bi belongs to X. Moreover C→ is positively invariant under
T because ≤ is weaker than ≤0 and because ≤0 satisfies item (b) of Propo-
sition 3.1. Of course T sends connected components of C→ to connected
components of C→. Hence X is itself positively invariant under T because
T (X) ∩ X 6= ∅. This implies that X meets {z ∈ R2 | λα(z) > M} and
therefore meets C0

→. One does the same thing for C←.

Proof of Proposition 3.1. It is sufficient to find a total G-equivariant
order ≤ on B which is weaker than ≤0 and ≤1. Using Zorn’s Lemma one
can find a G-equivariant order ≤ on B which is weaker than ≤0 and ≤1 and
minimal for this property: there is no strictly weaker G-equivariant order
than ≤. Using the fact that G is an abelian group without torsion which
acts freely on B, it is not difficult to prove that ≤ is a total order. The
idea is the following. Suppose that b∗ and b∗∗ are two bricks which are not
comparable. Write bR1b

′ if there exists a sequence (bi)0≤i≤n, n ≥ 1, such
that b0 = b, bn = b′ and a sequence (Ti)0≤i≤n in G such that bi ≤ Ti(b

∗)
and Ti(b

∗∗) ≤ bi+1. This relation is equivariant, reflexive, transitive and one
has b∗R1b

∗∗. One can define R2 in a similar way, replacing b∗ by b∗∗ and
b∗∗ by b∗. The important fact is that at least one of these two relations
is antisymmetric, so it is an equivariant order strictly weaker than ≤ (see
[LeC3, Section 3] for a detailed proof).

Remarks. For any brick b, we have a partition B \ {b} = (←, b)≤ ⊔
(b,→)≤ into connected unbounded subsets. This implies that any brick is a
disk.

Observe that if ≤ is any order satisfying Proposition 3.1, then for every
b ∈ B, there exist b′1 ∈ B and b′2 ∈ B which are adjacent to b such that
b′2 < b < b′1. Indeed, both (←, b]≤ and [b,→)≤ are connected, unbounded
and contain b.
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It is the fact that our brick decomposition was minimal among the κ-
positive ones which has permitted us to get Lemmas 3.2 and 3.3 and then
Proposition 3.1(d). This last assertion will be fundamental in the construc-
tion of a form ω without singularity in the proof of Theorem 0.1.

The fact that we are working on surfaces has not really been used until
now, it will appear in the next sections.

4. The irrational case, construction of a topological foliation by

Brouwer lines. Let us state the main result proven in this section:

Proposition 4.1. There exists a G-equivariant oriented topological fo-

liation of R2 by Brouwer lines with asymptotic slopes equal to α.

Let D = (V,E,B) be a G-equivariant brick decomposition on R2 and ≤
an order on B satisfying the five conditions of Proposition 3.1. There is a
natural orientation of the skeleton Σ(D): every edge e ∈ E is oriented in
such a way that r(e) < l(e), where r(e) (resp. l(e)) is the brick containing
e and located to the right (resp. left) of e. Write v−(e) (resp. v+(e)) for the
initial (resp. final) vertex of the oriented edge e.

Let us now define a natural topology on the set LD of oriented D-
lines, that is, lines Γ ⊂ Σ(D) which may be written Γ =

∏
i∈Z

ei, with

v+(ei) = v−(ei+1). Write E ⊂ EZ for the set of sequences (ei)i∈Z such that
v+(ei) = v−(ei+1) and identify LD with the space E/σ of orbits of the shift
σ : (ei)i∈Z → (ei+1)i∈Z . If one endows E with the discrete topology and EZ

with the product topology, one gets a natural (non-Hausdorff) topology on
LD by taking the quotient topology.

For any cut C = (C←, C→), the subsets C← ⊂ R2 and C→ ⊂ R2 are
connected and unbounded. By Proposition 3.1(d), (e), they have the same
boundary which must be a line ΓC . Since the order ≤ satisfies (a), C→ is an
attractor, and we deduce that

f−1(ΓC) ⊂ Int(C←), f(ΓC) ⊂ Int(C→).

We get a Brouwer line of f if ΓC is oriented in such a way that R(ΓC) =
Int(C←) and L(ΓC) = Int(C→). This orientation is compatible with the
orientation of the skeleton: one may write Γ =

∏
i∈Z

ei as a concatenation
of oriented edges with v+(ei) = v−(ei+1). If C and C ′ are two cuts, write
C � C ′ if C← ⊂ C ′←. The set C of cuts of B being totally ordered, the set
L of boundary lines ΓC , C ∈ C, is itself totally ordered. Indeed,

C � C ′ ⇔ R(ΓC) ⊂ R(ΓC′) ⇔ ΓC � ΓC′ .

For every brick b ∈ B, consider the cuts

C−b = ((←, b)≤, [b,→)≤), C+
b = ((←, b]≤, (b,→)≤)
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and their respective boundaries Γ−b and Γ+
b (see Fig. 2). These lines intersect

b in two oriented segments γ−b =
∏n

i=0 ei and γ+
b =

∏n′

i=0 e
′
i with the same

initial and final points. We define the initial point of the brick b to be

v−(b) = v−(e0) = v−(e′0),

and the final point to be

v+(b) = v+(en) = v+(e′n).

Fig. 2

Proposition 4.2.

(i) The set L is a closed subset of LD.

(ii) The restricted topology on L is the order topology and consequently

L is a Hausdorff space.

(iii) For every edge e the set L(e) of lines Γ ∈ L containing e is compact

and

maxL(e) = Γ−
l(e), minL(e) = Γ+

r(e).

(iv) The lines Γ ∈ L isolated from above (resp. below) are the ones which

may be written Γ−b (resp. Γ+
b ), where b ∈ B.

Proof. If Γ =
∏

i∈Z
ei ∈ LD is a limit point of L, there is a sequence

(Cn)n≥0 in C such that the arc
∏
−n≤i≤n ei is included in ΓCn

. Writing
Cn = (Cn

←, C
n
→), observe that

lim sup (Cn)n≥0 =
( ⋂

n≥0

⋃

k≥n

Cn
←,

⋃

n≥0

⋂

k≥n

Cn
→

)

is a cut whose boundary is Γ . This implies that L is a closed subset of LD.
The topology of L is generated by the open sets L(e), e ∈ E. To prove

assertion (ii) observe that for every e,

L(e) = {ΓC | r(e) ∈ C←, l(e) ∈ C→} = {ΓC | C
−
r(e) ≺ C ≺ C

+
l(e)},

and that for every cut C = (C←, C→),

{ΓC′ | C
′ ≺ C} =

⋃

e6⊂C→

L(e), {ΓC′ | C ≺ C
′} =

⋃

e6⊂C←

L(e).
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The fact that L(e) is compact is an easy consequence of the following
fact: for every edge e, there exist at most two edges whose initial points are
v+(e) and at most two edges whose final points are v−(e). The second part
of assertion (iii) is obvious.

It remains to prove (iv). For any brick b, there is no cut strictly contained
between C−b and C+

b . The corresponding lines are isolated in L, the first one
from above and the second one from below. Suppose that Γ ∈ L is not the
boundary line of a set C−b . Write Γ =

∏
i∈Z

ei and fix n ≥ 0. Write bn for
the smallest brick among the l(ei), −n ≤ i ≤ n. The boundary line of C−bn

is strictly bigger than Γ and contains the segment
∏n

i=−n ei. The sequence
(ΓC−

bn

)n≥0 converges to Γ . Similarly if Γ is not the boundary line of a set

C+
b , write b′n for the largest brick among the r(ei), −n ≤ i ≤ n, and consider

the boundary line of C+
b′n

.

Proposition 4.3. One can cover the plane by a totally ordered G-

equivariant family of Brouwer lines. Any point z 6∈ Σ(D) belongs to a unique

such line and the family defines locally near z a topological foliation. Any line

of the family passing through z ∈ Σ(D) \ V coincides with the unique edge

containing z and here again the family defines locally a topological foliation.

Proof. One can foliate any brick b by a continuous family (γt
b)t∈[−1,1] of

segments joining v−(b) to v+(b) which are disjoint except at the ends, and
such that γ−1

b = γ−b and γ1
b = γ+

b . One extends each γt
b to a line Γ t

b by
adding the two connected components of Γ−b ∩ Γ

+
b . One may suppose that

γt
T (b) = T (γt

b) for all b ∈ B, t ∈ [−1, 1] and T ∈ G. The function t 7→ Γ t
b is

increasing and Γ−1
b = Γ−b , Γ 1

b = Γ+
b . The union of L and of the set of lines

Γ t
b , b ∈ B, t ∈ (−1, 1), covers the plane and is totally ordered. Indeed, two

lines Γ t
b and Γ t′

b′ are clearly comparable if b = b′. They also are comparable in

the case where b 6= b′. Indeed, if b < b′, then Γ t
b ≺ Γ

+
b � Γ

−
b′ ≺ Γ

t′

b′ . Similarly
a line Γ t

b and a line Γ ′ ∈ L are comparable. Indeed, either Γ ′ � Γ−b ≺ Γ
t
b or

Γ t
b ≺ Γ

+
b � Γ

′.

Fig. 3

To get the proposition, one has to prove now that any line Γ t
b is a Brouwer

line. The fact that ≤ satisfies condition (a) of Proposition 3.1 implies that

ϕ([b,→)≤) ⊂ (b,→)≤ or equivalently that f(L(Γ−b )) ⊂ L(Γ+
b ). We deduce
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that for every t ∈ [0, 1] one has

f(L(Γ t
b )) ⊂ f(L(Γ−b )) ⊂ L(Γ+

b ) ⊂ L(Γ t
b ).

It is possible to desingularize the family given by Proposition 4.3 and
to construct a topological oriented foliation on R2 invariant under G such
that L is isomorphic, as an ordered topological space, to a lamination, that
is, a closed subset of the set of leaves of our foliation. This foliation will
satisfy the conclusion of Proposition 4.1 and project onto a foliation of T2

of Denjoy type. We give here the idea of this desingularization; the details
can be found in [LeC2]. One will add bricks close to the skeleton of D.

Say that an edge e is singular if L(e) reduces to a single line, and regular

otherwise. A vertex v cannot be the final point, or the initial point, of three
edges (because ≤ is an order). There are two types of vertices: a vertex of
the first type is the initial point of two edges and the final point of one edge,
it is the initial point of a brick; a vertex of the second type is the initial
point of one edge and the final point of two edges, it is the final point of a
brick.

Fix a vertex v of the first type, and consider the edges (ei)1≤i≤3 such
that

v = v+(e1) = v−(e2) = v−(e3), r(e3) = l(e2),

and the brick b such that v = v−(b). Conjugating f by an orientation pre-
serving homeomorphism, one may suppose that close to v, the skeletonΣ(D)
is as in Fig. 4.

Fig. 4

The edge e1 is necessarily regular, it lies on at least two lines of L,
one containing e2 and the other containing e3. If both e2 and e3 are regu-
lar we add the three bricks βe2

e1
, βb

e1
, βe3

e1
drawn in Fig. 5, and denote by

I+(e1), I−(e2), I−(b), I−(e3) the four oriented segments as in the figure.
Then we foliate the three bricks as indicated and denote by hv : I+(e1) →
I−(e2)I−(b)I−(e3) the induced homeomorphism. One can construct on each
segment I−(ei), i ∈ {2, 3}, a closed set L−(ei) containing the ends which is
isomorphic as an ordered topological space to L(ei). Observe that the set
defined by L+(e1) = h−1

v (L−(e2) ∪ L−(e3)) is isomorphic to L(e1).
If e2 is regular and e3 is singular we add only the two bricks βe2

e1
, βb

e1

introduced above and define in the same way I−(b), I−(e2) and a shorter
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Fig. 5

segment I+(e1) (see Fig. 6). We foliate the two bricks in the same way and
define hv : I+(e1)→ I−(e2)I−(b). The set L−(e3) reduces to the final point
of I−(b). Construct on I−(e2) a closed set L−(e2) containing the ends which
is isomorphic to L(e2) and set L+(e1) = h−1

v (L−(e2) ∪ L−(e3)).

Fig. 6

Fig. 7

If e2 is singular and e3 is regular we add two bricks βb
e1

, βe3
e1

(see Fig. 7),

the brick βb
e1

being the union of the bricks βe2
e1

and βb
e1

defined in the first
case and the brick βe3

e1
being unchanged. The segments I+(e1) and I−(e3)

are the same as in the first case and the new segment I−(b) is the union of
the previous ones I−(e2) and I−(b). Foliate the two bricks as in the figure
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and define similarly hv : I+(e1) → I−(b)I−(e3). The set L−(e2) reduces
to the initial point of I−(b), the set L−(e3) is a closed subset of I−(e3)
containing the ends which is isomorphic to L(e3), and we set L+(e1) =
h−1

v (L−(e2) ∪ L−(e3)).
If e2 and e3 are both singular add only the brick βb

e1
defined in the

previous case (see Fig. 8). The segment I−(b) is unchanged and I+(e1) is
defined as in the second case. Foliate the brick as previously and define
hv : I+(e1) → I−(b). Each set L−(e2) and L−(e3) is an end of I−(b) and
L+(e1) = h−1

v (L−(e2) ∪ L−(e3)) is the union of the two ends of I+(e1).

Fig. 8

Consider now a vertex v of the second type, the edges (ei)1≤i≤3 such
that

v = v−(e1) = v+(e2) = v+(e3), r(e3) = l(e2),

and the brick b such that v = v+(b). We have a symmetric situation.
Let us explain the construction in the case where e2 and e3 are regular.
We construct three foliated bricks βe1

e2
, βe1

b , βe1
e3

, four oriented segments
I−(e1), I+(e2), I+(b), I+(e3), and a homeomorphism hv : I+(e2)I+(b)I+(e3)
→ I−(e1). On each segment I+(ei), i ∈ {2, 3}, we get a closed set
L+(ei) containing the ends which is isomorphic to L(ei) and finally the
set L−(ei) = hv(L+(e2)∪L+(e3)) which is isomorphic to L(e1) (see Fig. 9).

Fig. 9

Consider now a regular edge e. One constructs a new brick βe ⊂ l(e)
whose boundary contains I−(e), I+(e) and the subarc of e joining the two
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initial points of I−(e), I+(e). We foliate it in such a way that the induced
map he : I−(e) → I+(e) sends homeomorphically L−(e) onto L+(e). An
example is depicted in Fig. 10 after conjugation by an orientation preserving
homeomorphism.

Fig. 10

Finally, consider a brick b. Observe that the new bricks which are in-
cluded in b are the bricks βe, where l(e) = b, and the bricks constructed at
a vertex v such that there exist e and e′ satisfying v+(e) = v−(e′) = v and
l(e) = l(e′) = b. The closure of the complement in b of the union of these
new bricks is a closed disk βb whose boundary contains the two segments
I−(b) and I+(b). One can foliate the brick βb as indicated in Fig. 11 and
construct a homeomorphism hb : I−(b)→ I+(b).

Fig. 11

All the objects defined above may be chosen G-equivariant. We have con-
structed a new equivariant brick decomposition and an oriented topological
foliation F of the plane which lifts an oriented topological foliation F̃ of T2.
Let us study these foliations. Write φz for the leaf passing through a given
point z.

Recall that if e is an edge, then the ordered topological spaces L−(e)
and L−(e) are both isomorphic to L(e). Write Ψ−(e) : L(e) → L−(e) and
Ψ+(e) : L(e)→ L+(e) for these isomorphisms. If Γ =

∏
i∈Z

ei is a line in L,
the points Ψ−(ei)(Γ ) and Ψ+(ei)(Γ ) belong to the same leaf of F and this
leaf does not depend on i; denote it Ψ(Γ ). Observe that Γ � Ψ(Γ ). More
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precisely,

R(Γ ) ⊂ R(Ψ(Γ )) ⊂ Int
(
R(Γ ) ∪

⋃

i∈Z

l(ei)
)
.

This implies in particular that Ψ(Γ ) has an asymptotic irrational slope α.
This also implies that Ψ(Γ ) ≺ Ψ(Γ ′) if Γ ≺ Γ ′. Indeed, the inequality is
obviously true if Γ ′ contains an edge ei because Ψ−(ei)(Γ ) ≺ Ψ−(ei)(Γ

′),
but it is also true if Γ ∩ Γ ′ = ∅ because Int(R(Γ ) ∪

⋃
i∈Z

l(ei)) ⊂ R(Γ ′) in
that case.

Observe that for any brick b, the initial points of I−(b) and I+(b) belong
to Ψ(Γ−(b)) and the final points belong to Ψ(Γ+(b)). In particular any leaf φ
which meets the interior of βb satisfies Ψ(Γ−(b)) ≺ φ ≺ Ψ(Γ+(b)). Recall that
if one writes Γ−b =

∏
i∈Z

e−i and Γ+
b =

∏
i∈Z

e+i with v−(e−0 ) = v−(e+0 ) =
v−(b), then e−i = e+i for every i < 0. Similarly if one writes Γ−b =

∏
i∈Z

e′−i
and Γ+

b =
∏

i∈Z
e′+i with v+(e′−0 ) = v+(e′+0 ) = v+(b), then e′−i = e′+i for

every i > 0. This implies that φ does not meet any other brick βb′ , b
′ ∈ B,

and intersects βb in a unique segment joining I−(b) to I+(b). In particular

φ projects onto a wandering leaf of F̃ .
Take a point z in a segment I−(e) which does not belong to L−(e). Let

(z−, z+) be the connected component of I−(e) \ L−(e) containing z. The
point z− (resp. z+) is the image under Ψ of a line isolated from above (resp.
from below), more precisely there is a brick b ∈ B such that z− = Ψ−(e)(Γ−b )
and z+ = Ψ−(e)(Γ+

b ). We deduce that the leaf φz meets the interior of βb.
In conclusion, there are two kinds of leaves, those which are in the image

of Ψ and those which intersect the interior of a brick βb. The arguments at
the beginning of the proof of Proposition 4.3 tell us that the set of leaves
is totally ordered. Therefore the foliation is trivial. The set of leaves of the
first kind is closed, it is a lamination, isomorphic to L, which projects to a
lamination of F̃ . The foliation is an irrational foliation of Denjoy type with
an asymptotic slope α.

To get Proposition 4.1 one has to prove:

Lemma 4.4. If the new bricks are chosen very close to the skeleton, then

the leaves of F are Brouwer lines.

Proof. Remember that for any brick b, we have the following inclusions
in the plane:

f(L(Γ−b )) ⊂ L(Γ+
b ), f−1(R(Γ+

b )) ⊂ R(Γ−b ).

Therefore we can choose G-equivariantly a neighborhood Ub of b such that

f(Ub) ⊂ L(Γ+
b ), f−1(Ub) ⊂ R(Γ−b ).

Suppose now that the bricks constructed in a neighborhood of a vertex v
are included in the three sets Ub such that v ∈ b and that the brick βe
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constructed in a neighborhood of a regular edge e is included in the two sets
Ub such that e ⊂ b. We will prove that any leaf of F is a Brouwer line of f .

For any leaf φ = Ψ(Γ ) where Γ = ΓC =
∏

i∈Z
ei, we have

R(Γ ) ⊂ R(φ) ⊂ R(φ) ⊂ R(Γ ) ∪
⋃

i∈Z

Ur(ei).

We know that R(Γ−
r(ei)

) ⊂ R(Γ ) because r(ei) ∈ C←. We deduce that

f−1(R(φ)) ⊂ f−1(R(Γ )) ∪
⋃

i∈Z

f−1(Ur(ei))

⊂ R(Γ ) ∪
⋃

i∈Z

R(Γ−
r(ei)

) = R(Γ ) ⊂ R(φ).

Therefore φ is a Brouwer line.
Now consider a leaf φ intersecting the interior of a brick βb. Write Γ+

b =∏
i∈Z

ei. Observe that

R(Γ−b ) ⊂ R(φ) ⊂ R(φ) ⊂ R(Γ−b ) ∪
⋃

i∈Z

Ur(ei).

Observe that r(ei) ≤ b and therefore R(Γ−
r(ei)

) ⊂ R(Γ−b ) for every i ∈ Z. We

deduce that

f−1(R(φ)) ⊂ f−1(R(Γ−b )) ∪
⋃

i∈Z

f−1(Ur(ei))

⊂ R(Γ−b ) ∪
⋃

i∈Z

R(Γ−
r(ei)

)) = R(Γ−b ) ⊂ R(φ).

Therefore φ is a Brouwer line.

5. The irrational case, construction of a smooth foliation by

Brouwer lines. We now perturb F to construct a foliation smoothly equi-
variantly conjugate to the linear foliation of slope α. The arguments are
rather standard.

Lemma 5.1. There exists a G-equivariant brick decomposition D′ =
(V ′, E′, B′) of R2 and a G-equivariant order ≤ on B which satisfy items

(a)–(e) of Proposition 3.1 and such that :

• any edge e ∈ E′ is smooth;
• the model drawn in Fig. 5 shows the structure of Σ(D′) in a neighbor-

hood of a vertex in an affine chart.

Proof. Note first that if we slightly perturb the skeleton of D and get a
new G-equivariant decomposition D′ = (V ′, E′, B′) with a natural bijection
δ : B → B′, then the order δ∗(≤) defined on B′ still has the properties stated
in Proposition 3.1. Indeed, the only non-trivial property to verify is (a). But
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we are dealing with closed bricks, therefore if D′ is sufficiently “close” to D,
then for any bricks b0, b1 in B,

f(b0) ∩ b1 = ∅ ⇒ f(δ(b0)) ∩ δ(b1) = ∅.

The decomposition D has been constructed as a subdecomposition of
any given decomposition D′′ with very small bricks. One may suppose that
every edge of D′′ is affine and therefore that every edge of D is piecewise
affine. We begin by modifying Σ(D) in a neighborhood of any vertex as in
Fig. 12, and then we smooth any new edge.

Fig. 12

Lemma 5.2. Our foliation F may be constructed such that every leaf

is smooth and tangent to a certain non-vanishing G-equivariant continuous

vector field ξ0.

Proof. In the desingularization procedure of Section 4, instead of adding
affine bricks in a neighborhood of a vertex, we can choose the model of
foliated bricks described in Fig. 13.

Fig. 13

Fig. 13 is a smoothed version of Fig. 5. Other figures in Section 4 can
be smoothed in an analogous way. We can do a similar thing to construct
the (non-foliated) bricks βe and βb. There will not be any problem to foliate
smoothly the bricks βb but there will be for the bricks βe (we cannot choose
our foliation F smooth and even C2 because of the Denjoy counterexample).
Indeed, the maps hv and hb may be chosen smooth but not the map he

because it must send L−(e) onto L+(e). Let us see how to foliate βe to
get the lemma. One should be able to do the following. An orientation
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preserving homeomorphism h : [0, 1] → [0, 1] being given, one has to find a
non-vanishing continuous vector field ξ on the plane equal to (1, 0) outside
[−1, 1]×[0, 1] and a continuous oriented foliation with smooth leaves tangent
to ξ and such that any leaf passing through (−1, u) contains (1, h(u)).

Extend h to R by setting h(u) = u if u 6∈ [0, 1] and define ψ0 : R2 → R

by

ψ0(t, u) =





u if t ≤ −1/2,

(1/2− t)u+ (1/2 + t)h(u) if t ∈ [−1/2, 1/2],

h(u) if t ≥ 1/2.

Then define

ψ1 : (t, u) 7→
\
R

χ(t− s)ψ0(s, u) ds

where χ is a smooth non-negative function with support in [−1/2, 1/2] sat-
isfying

T
R
χ(s) ds = 1, and consider the family of graphs of the partial maps

t 7→ ψ1(t, u).

Observe that the tangent vector field will be C0-close to the constant
horizontal vector field (0, 1) if h is C0-close to the identity.

Write ξ̃0 for the vector field naturally defined on T2 and choose a smooth
non-vanishing vector field η̃ satisfying ξ̃0(z) ∧ η̃(z) > 0, where ∧ is the
usual symplectic form. Perturbing η̃ if necessary and rescaling it, one may
suppose that the induced flow has a periodic orbit Γ̃ of period 1. It is a
smooth global Poincaré section of ξ̃0. The preimage of Γ̃ in R2 defines an
ordered family (Γi)i∈Z of global sections of F , where Γi+1 ≺ Γi. Consider
the time parametrization τ : Γ0 → R and the translation T ∈ G∗ such that
τ(T (z)) = τ(z) + 1. Choose a translation T ′ ∈ G∗ such that Γ1 = T ′(Γ0).
We clearly have:

Lemma 5.3. There is a neighborhood Ξ of ξ0 (for the C0-topology) in

the set of continuous equivariant vector fields such that :

• any vector field ξ ∈ Ξ is non-singular ;
• if ξ is smooth, the circle Γ̃ is a global section of the foliation of T2

associated to the induced vector field ξ̃.

For any smooth vector field ξ ∈ Ξ and for ξ = ξ0 we define:

• the foliation Fξ defined by ξ;
• the holonomy map g′ξ : Γ0 → Γ1;

• the homeomorphism gξ = T ′−1 ◦ g′ξ and its (real) rotation number
̺ξ ∈ R (to be more precise, the rotation number of τ ◦ gξ ◦ τ

−1, which
is a lift of a homeomorphism of T1);

• the projection pξ : R2 → Γ0 which associates to any point z ∈ R2 the
intersection of the leaf φz of Fξ and Γ0.
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Lemma 5.4. There exists a convex neighborhood Ξ ′ ⊂ Ξ of ξ0 for the

C0-topology such that for every smooth vector field ξ ∈ Ξ ′, the leaves of Fξ

are Brouwer lines. More precisely, for every z ∈ R2,

τ(pξ(f(z)))− τ(pξ(z)) > 0.

Proof. The leaves of F = Fξ0 being Brouwer lines, for any z ∈ R2 one
has

τ(pξ0(f(z)))− τ(pξ0(z)) > 0.

Choosing δ > 0 such that

z ∈ [0, 1]2 ⇒ τ(pξ0(f(z)))− τ(pξ0(z)) ≥ δ,

one can find a neighborhood Ξ ′ ⊂ Ξ (which can be chosen convex) of ξ0 for
the C0-topology such that for every smooth vector field ξ ∈ Ξ ′,

z ∈ [0, 1]2 ⇒ τ(pξ(f(z)))− τ(pξ(z)) ≥ δ/2.

Using the relations

pξ ◦ T = T ◦ pξ, pξ ◦ T
′ = g−1

ξ ◦ pξ,

one deduces that

τ(pξ(f(z)))− τ(pξ(z)) > 0

for every z ∈ R2.

Lemma 5.5. There exists a smooth vector field ξ1 ∈ Ξ
′ with ̺ξ1 = ̺ξ0 .

Proof. Consider two smooth vector fields ξ+ and ξ− in Ξ ′ such that for
every z ∈ R2,

ξ0(z) ∧ ξ−(z) < 0 < ξ0(z) ∧ ξ+(z).

One deduces that for any z ∈ Γ0,

τ(gξ−(z)) < τ(gξ0(z)) < τ(gξ+(z)),

which implies that ̺ξ− < ̺ξ0 < ̺ξ+ because ̺ξ0 6∈ Q. Therefore we can
find in the family (sξ− + (1− s)ξ+)s∈[0,1] a smooth vector field ξ1 such that
̺ξ1 = ̺ξ0 .

Lemma 5.6. There exists a smooth vector field ξ2 ∈ Ξ
′ with ̺ξ2 = ̺ξ0

whose foliation is smoothly conjugate to a linear one.

Proof. The induced vector field ξ̃1 on T2 being C∞, the first return map
on Γ̃ is conjugate to a rotation: there exists a homeomorphism h1 : Γ0 → R

such that

h1(T (z)) = h1(z) + 1, h1(gξ1(z)) = h1(z) + ̺ξ0 .

One can approximate h1 by a smooth diffeomorphism h2 : Γ0 → R satisfying
h2(T (z)) = h2(z) + 1 for every z ∈ Γ0. Defining θ̺ξ0

: s 7→ s+ ̺ξ0 , one sees

that h−1
2 ◦ θ̺ξ0

◦ h2 is C0-close to gξ1 . Using the existence of a tubular
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neighborhood W of Γ̃ and of a smooth diffeomorphism sending W onto

T1 × [−1,+1], the circle Γ̃ onto T1 × {0}, and the vector field ξ̃1|W to a
constant vertical vector field, one constructs a smooth vector field ξ2 ∈ Ξ

′

such that

gξ2 = h−1
2 ◦ θ̺ξ0

◦ h2,

in the same way that we foliated the bricks βe in the proof of Lemma 5.2.

Proof of Theorem 0.1. The map

H2 = h2 ◦ pξ2

is a smooth map satisfying

H2(T (z)) = H2(z) + 1, H2(T
′(z)) = H2(z)− ̺ξ0

and

H2(f(z)) > H2(z)

for every z ∈ R2. Moreover the form dH2 does not vanish and defines on T2

a closed form of cohomology class κ.

References
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Astérisque 204 (1991).
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au voisinage d’un point fixe, Ann. of Math. 146 (1997), 241–293.
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