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Abstract. We study domain-representable spaces, i.e., spaces that can be represented
as the space of maximal elements of some continuous directed-complete partial order
(= domain) with the Scott topology. We show that the Michael and Sorgenfrey lines
are of this type, as is any subspace of any space of ordinals. We show that any com-
pletely regular space is a closed subset of some domain-representable space, and that if
X is domain-representable, then so is any Gδ-subspace of X. It follows that any Čech-
complete space is domain-representable. These results answer several questions in the
literature.

1. Introduction. Approximability by special partially ordered sets is
an idea that came into topology from theoretical computer science. Contem-
porary discussions containing many important examples can be found in the
papers of Martin, Mislove, and Reed [8], [11], [12]. An article by Ciesielski,
Flagg, and Kopperman [4] gives valuable motivation for studies of this type
(and proves important results about countably-based models of spaces).

Because the literature about domain-representations contains conflicting
terminology, we begin with the basic definitions to be used in this paper.
Let (P,⊑) be a partially ordered set (= poset). A subset D ⊆ P is directed

provided for each d1, d2 ∈ D, some d3 ∈ D has d1, d2 ⊑ d3. We say that
such a d3 is a common extension of d1 and d2. For any set T ⊆ P we write
sup(T ) to mean the least of all of the upper bounds of T in P , if such a
thing exists. Most frequently T will be a directed set, but sometimes T will
be a subset of P with the property that if t1, t2 ∈ T then some p ∈ P has
t1, t2 ⊑ p. The poset (P,⊑) is a dcpo (= directed-complete partial order)
if every nonempty directed set D ⊆ P has a supremum in P . If (P,⊑) is a
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dcpo, then Zorn’s Lemma shows that for each p ∈ P at least one maximal
element x ∈ P has p ⊑ x. The set of all maximal elements of P is denoted
by max(P ).

Starting with a poset (P,⊑), there is a new relation ≪ on P defined
as follows: for p, q ∈ P , p ≪ q means that for any directed set D with
q ⊑ sup(D), there is some d ∈ D with p ⊑ d. Traditionally p ≪ q is read
“p is far below q” or “q is far above p”. Clearly p ≪ q implies p ⊑ q (use the
directed set D = {q} in the definition of p ≪ q). It can happen that some
p ∈ P has p ≪ p and such elements of P are called compact elements of P .
For p ∈ P we write

⇑(p) = {q ∈ P : p ≪ q} and ⇓(p) = {q ∈ P : q ≪ p}.

We say that the poset (P,⊑) is continuous if for each p ∈ P , the set ⇓(p)
is directed and has p = sup(⇓(p)). The word domain used in the title is a
synonym for “continuous dcpo”. To say that a domain is algebraic means
that for each p ∈ P , the set K(p) of compact elements of P that belong
to ⇓(p) is a directed set with sup(K(p)) = p.

We introduce a topology on P as follows. A subset U of a dcpo (P,⊑) is
Scott-open provided U has the following two properties:

(a) if x ∈ U and x ⊑ y ∈ P , then y ∈ U ;
(b) if D ⊆ P is any directed set with sup(D) ∈ U then D ∩ U 6= ∅.

The collection of all Scott-open sets is a topology on the set P , called the
Scott topology . From a traditional topological viewpoint, the Scott topology
is not a good one—as shown in Proposition 2.6 of [12], it is always T0

but almost never T1. However, when restricted to the subset max(P ), the
Scott topology can be very nice, as can be seen from Theorem 1.1 below.
If a topological space X is homeomorphic to the space max(P ) topologized
using the relative Scott topology for some continuous dcpo (P,⊑), then we
say that the space X is representable as the space of maximal elements of P
and that X is domain-representable.

Being representable as the space of maximal elements of some domain is a
nontrivial restriction on a space X. For example, any such space X is a Baire
space, and (even more) is Choquet-complete [10]. (Choquet completeness is
a game-theoretic property that is equivalent to Čech-completeness in any
metric space; see Theorem 8.7 in [3] and Choquet’s remarks after the proof
of (8.7) there.)

Many important types of spaces are representable as the space of maxi-
mal elements of some continuous dcpo. The following theorem summarizes
results of Edalat and Heckmann [5] and Martin [10] concerning complete
metrizability, and of Gierz et al. [7] concerning local compactness. See also
Examples 3.6 and 3.7 in [8] and Example 3.7 in [11].
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Theorem 1.1. A metrizable space X is representable as the space of

maximal elements of some continuous dcpo if and only if X is completely

metrizable, and any locally compact Hausdorff space is representable as the

space of maximal elements of some continuous dcpo.

The goal of our paper is to study spaces that can be represented as the
space of maximal elements in a continuous dcpo and to extend Theorem 1.1
in a significant way by answering several questions in the literature. We will
show:

(1) Representability as the space of maximal elements of some domain is
not a closed-hereditary property. In fact, any completely regular T1-
space Y is a closed subspace of a completely regular T1-space X(Y )
that is domain-representable. This answers a question posed in [9].

(2) Suppose X = max(P ) for some continuous dcpo P . If Y is a Gδ-
subset of X, then Y is also domain-representable. In particular, every
Čech-complete space is domain-representable. (This answers ques-
tion (vii) in [8].) Furthermore, if X is both perfect (= closed sets are
Gδ-sets) and domain-representable, then so is any closed subset of X.

(3) Both the Michael line and the Sorgenfrey line can be represented as
the space of maximal elements of some continuous dcpo, and so can
any subspace of any ordinal.

We will use several known results about dcpos at many points in this
paper, so we record them here. The first is easy and the other two appear
in the literature.

Lemma 1.2. If (D,⊑) is any nonempty directed set that contains no

maximum element , then for each d ∈ D there exists a sequence 〈dj〉 of

distinct elements of D with d = d1 ⊑ d2 ⊑ · · · .

Lemma 1.3 (see [13] or Proposition 2.13 in [8]). Let (P,⊑) be a continu-

ous dcpo. Then the collection {⇑(p) : p ∈ P} is a basis for the Scott topology

on P .

Lemma 1.4 (see [13] or Proposition 2.9 in [8]). Suppose (P,⊑) is a con-

tinuous dcpo and that a, c ∈ P have a ≪ c. Then there is some b ∈ P
(possibly b ∈ {a, c}) with a ≪ b ≪ c.

Throughout this paper, we will reserve the symbols R, Q and P for
the usual sets of real, rational, and irrational numbers, and Z will denote
the set of all integers (positive and negative). In addition, for any ordered
pair p, πi(p) will denote the ith coordinate of p.

The authors would like to thank K. Martin and G. M. Reed for help-
ful correspondence during the preparation of this paper. We also thank
K. P. Hart for comments that substantially improved an earlier draft.
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2. Examples of domain-representable spaces. This section con-
tains a technical construction that will be used in later sections, as well as
some examples that may be of interest in themselves.

Proposition 2.1. Suppose that the topological space (X, σ) has X =
max(P ) where (P,⊑) is a continuous dcpo, and suppose that I is an arbi-

trary subset of X. Use σ ∪ {{y} : y ∈ I} as the base for a new topology τ
on X. Then there is a continuous dcpo (Q,�) having max(Q) = (X, τ).

Proof. For each y ∈ I, let y+ be any point not in P , chosen in such a way
that if y 6= z are in I, then y+ 6= z+. Let Q = P ∪ {y+ : y ∈ I}. Thinking of
partial orders as sets of ordered pairs, we define an ordering � on Q by

� = ⊑ ∪ {(p, y+) : p ⊑ y} ∪ {(y, y+) : y ∈ I}.

Then � is a partial ordering of Q and it is clear that, as a set, max(Q) =
{y : y ∈ X − I} ∪ {y+ : y ∈ I}. We will identify this set with X in the
obvious way.

We claim that (Q,�) is a dcpo. We must show that if D is a nonempty
directed subset of Q, then D has a supremum in Q. In case D ⊆ P , some
p0 ∈ P is the supremum of D in (P,⊑) and therefore also in (Q,�). In case
D is not a subset of P , there is some y+ ∈ Q with y+ ∈ D, and directedness
of D guarantees that this y+ is unique. But then y+ is the supremum of D
in (Q,�).

Next we claim that Q is continuous. In this part of the proof, ⇓⊑(r)
(respectively, ⇓�(r)) will denote the collection of members of P (respectively,
of Q) that are far below r in the poset (P,⊑) (respectively, in (Q,�)). We
must show that r = sup(⇓�(r)) for each r ∈ Q, where the supremum is
taken in Q, and that ⇓�(r) is directed. In case r ∈ P , both are automatic.
To complete this part of the proof, we will show that y+ ∈ ⇓�(y+) for
each y ∈ I. To that end, suppose E is a directed subset of Q and that
y+ � sup�(E) where the supremum is taken in (Q,�). If y+ ∈ E there is
nothing to prove, so assume y+ /∈ E. For any e ∈ E we know that e � y+ so
that the definition of � gives y ∈ P and e ⊑ y. But then y is an upper bound
for E in (Q,�) that is strictly below y+, and that is impossible. Therefore
y+ ∈ ⇓�(y+) for each y+ ∈ Q. Hence y+ is a common extension of any two
members of ⇓�(y+), so that ⇓�(y+) is directed and y+ = sup�(⇓(y+)), as
required.

As noted above, max(Q) = {y : y ∈ X − I} ∪ {y+ : y ∈ I}. To
complete the proof, we show that the relative Scott topology on max(Q)
is the topology τ described in the statement of the proposition. Suppose
z ∈ U ∈ τ . If z ∈ I, then z is identified with the point z+ ∈ max(Q)
and because we know that z+ ∈ ⇓�(z+) we also have z+ ∈ ⇑�(z+). Hence
⇑�(z+)∩max(Q) = {z+}, showing that U is a neighborhood of z in the rel-
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ative Scott topology. Next suppose z ∈ U ∈ τ with z ∈ X − I. Then U is a
neighborhood of z in the original topology σ so that there is some p ∈ P with
z ∈ ⇑⊑(p) and ⇑⊑(p)∩max(P ) ⊆ U . But then z ∈ ⇑�(p)∩max(Q) ⊆ U , as
required to show that U is relatively Scott-open. Conversely, consider any set
⇑�(r)∩max(Q) where r ∈ Q. If r ∈ P , this is the same as ⇑⊑(r)∩max(P ),

which is open in σ and hence also in τ . In case r 6∈ P , we have r = y+ for
some y ∈ I and so ⇑�(r) ∩ max(Q) = {y+} ∈ τ . Thus, every basic open set
in the relative Scott topology on max(Q) is τ -open. Hence the relative Scott
topology on max(Q) coincides with τ , as required.

Generalized ordered spaces (GO-spaces) are Hausdorff spaces (X, τ) that
admit a linear order < such that there is a base for τ consisting of order-
convex sets. An easy way to obtain GO-spaces is to start with some linearly
ordered set (X, <) and choose three disjoint subsets R, L, and I of X. Isolate
each point of I, and let basic neighborhoods of any point x ∈ R have the
form [x, b) for x < b ∈ X. Basic neighborhoods of points of y ∈ L have
the form (a, y] for a < y, and points of X − (R ∪ L ∪ I) have their usual
open interval neighborhoods. GO-spaces have been widely used as sources of
examples in topology. The most famous are the Michael and the Sorgenfrey
lines, as well as spaces (and subspaces) of ordinals.

Example 2.2. The Michael line is representable as the space of maximal

elements of a continuous dcpo.

Proof. The usual real line is representable as the set of maximal elements
of the poset {[a, b] : a ≤ b, a, b ∈ R} ordered by reverse inclusion. Let I be
the set of all irrational numbers and apply Proposition 2.1.

It is harder to prove that the Sorgenfrey line is representable as the space
of maximal elements of some continuous dcpo, but our next example shows
that it is true.

Example 2.3. The Sorgenfrey line S is representable as the space of

maximal elements of some continuous dcpo.

Outline of proof. For each pair of real numbers a < b, let S(a, b) be
a strictly increasing sequence 〈xn〉 with a = x1, limn→∞ xn = b, and
|xn+1 − xn| ≤ (b − a)/2. Let C0 = Z and, given Cn, let

Cn+1 =
⋃

{S(a, b) : a < b, a, b ∈ Cn, (a, b) ∩ Cn = ∅}.

Let C =
⋃
{Cn : 0 ≤ n < ω}. Note that if a < b are consecutive points of

some Cn, then b − a ≤ 2−n.

Let A = R×{0, 1} carry the open interval topology of the lexicographic
order. For real numbers a < b let J(a, b) = [(a, 1), (b, 0)]. Each J(a, b) is a
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compact, convex subset of A. Now define

Q(ω) = {({(x, 0), (x, 1)}, ω) : x ∈ R − C} ∪ {({(x, 1)}, ω) : x ∈ R}

and for each n with 0 ≤ n < ω let

Q(n) = {(J(a, b), n) : a < b, b ∈ C(n) and (a, b) ∩ C(n) = ∅}.

Let Q =
⋃
{Q(n) : 0 ≤ n ≤ ω}. Define a relation ⊑ in Q by the rule that

for q1, q2 ∈ Q, q1 ⊑ q2 if and only if one of the following holds:

(a) q1 = q2;
(b) for i = 1, 2, qi = (J(ai, bi), ni) ∈ Q−Q(ω), J(a2, b2) ⊆ J(a1, b1), and

n1 < n2;
(c) q1 = (J(a, b), n) ∈ Q − Q(ω), q2 ∈ Q(ω) and q2 ⊆ IntA(J(a, b));
(d) qi = (pi, ω) and p2 ⊆ p1.

Then (Q,⊑) is a poset. If E is a nonempty directed subset of Q that does not
contain its own maximum element, then E ∩ Q(ω) = ∅ and {π1(e) : e ∈ E}
is a directed collection of compact, convex subsets of A. Lemma 1.2 gives
a sequence e1 ⊑ e2 ⊑ · · · of distinct elements of E where π2(ei) < π2(ei+1)
for each i. The width restriction on consecutive points in Cni

, where ni =
π2(ei), forces

⋂
{π1(e) : e ∈ E} ⊆ {(x, 0), (x, 1)} for some x ∈ R. If some

e ∈ E has the form e = (J(x, b), n), then sup(E) = {(x, 1)}, and otherwise
sup(E) = {(x, 0), (x, 1)}. Therefore, (Q,⊑) is a dcpo.

For any q ∈ Q with π2(q) < ω we have q ≪ q so that q ∈ ⇓(q). Therefore q
is a common extension of any two members of ⇓(q), making ⇓(q) a directed
set, and q = sup(⇓(q)). For distinct q1, q2 ∈ Q(ω) it never happens that
q1 ≪ q2, and for any q ∈ Q(ω), ⇓(q) = {q′ ∈ Q−Q(ω) : q′ ⊑ q}. Hence ⇓(q)
is directed and has sup(⇓(q)) = q. Therefore, Q is a continuous dcpo.

The set of maximal elements of Q is given by max(Q) = {{(x, 1)} : x∈R}.
For each x ∈ R there are members q = (J(x, b), n) ∈ Q with ǫ = b − x
arbitrarily small, so that max(Q) ∩ ⇑(q) = [x, x + ǫ). Hence the topology
induced on max(Q) by the Scott topology on Q is exactly the Sorgenfrey
line topology.

Example 2.4. Suppose X is any subspace of any space of ordinals. Then

X is representable as the space of maximal elements of some continuous

dcpo.

Proof. There is a strictly increasing function f from the ordered set X
onto some initial ordinal [0, β). The function f might fail to be a homeomor-
phism from X with its given topology onto [0, β) with its usual open interval
topology because for some isolated point x ∈ X, f(x) might be a limit ordi-
nal in [0, β). Let I = {f(x) : x ∈ X is isolated and f(x) is a limit ordinal}.
Because, in its usual order topology, [0, β) is locally compact, it is repre-
sentable as max(P ) for come continuous dcpo (P,⊑). Let Y be the space
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obtained by isolating every point of the set I. In the light of Proposition 2.1,
the space Y is representable as the subspace of maximal elements of some
continuous dcpo, and Y is homeomorphic to X.

Subspaces of ordinals are not the only spaces that are hereditarily do-
main-representable. In a subsequent paper, we will show that if X is a
countable T1-space with exactly one non-isolated point, then every subspace
of X is homeomorphic to the space of maximal elements of some continuous
dcpo with the Scott topology.

Question 2.5. For which spaces X is it true that every subspace of X
is representable as the space of maximal elements of some continuous dcpo

with the Scott topology? Must such an X be scattered?

3. Subspaces of domain-representable spaces. One can think of
domain-representability as a kind of topological completeness property, re-
lated to being a Baire space. The property of being a Baire space, and
most other completeness properties associated with being a Baire space, are
open-hereditary properties and are hereditary to dense Gδ-sets, but are not
closed-hereditary. (See [1].) In addition, if X has a dense subspace Y that
is a Baire space, then X is also a Baire space. In this section we show that
representability as the space of maximal elements of some continuous dcpo
follows that same pattern to a large degree, but not entirely.

Example 3.1. Any completely regular space Y is a closed subset of a

space X that can be represented as the space of maximal elements of a con-

tinuous dcpo. Hence there is a space X that is representable as the space

of maximal elements of a continuous dcpo and a closed subset Y ⊆ X that

cannot be represented as the space of maximal elements of any continuous

dcpo.

Proof. Given a completely regular space Y , we know that the compact
Hausdorff space βY can be represented as the space of maximal elements of
some continuous dcpo (see Theorem 1.1). Let X be the space that is obtained
from βY by isolating all points of βY − Y . By Proposition 2.1, X is also
representable as the space of maximal elements of some continuous dcpo,
and Y is a closed subspace of X. To obtain the second assertion of the
example from the first, let Q be the usual set of rational numbers, construct
βQ and isolate all points of βQ−Q. Because Q is not a Baire space, it cannot
be represented as the space of maximal elements of a continuous dcpo. (The
second assertion also follows from Example 2.2.)

Example 3.1 answers a question of K. Martin [9]. While domain-repre-
sentability is not a closed-hereditary property, it is open-hereditary. (Ac-
cording to an e-mail from K. Martin, Reinhold Heckmann was the first to
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observe that domain-representability is an open-hereditary property.) Our
next result goes much further.

Theorem 3.2. Suppose that a space X can be represented as the space

of maximal elements of some continuous dcpo (P,⊑) and that Y is a Gδ-

subspace of X. Then there is a continuous dcpo (Q,�) such that Y is hom-

eomorphic to the space max(Q). Furthermore, (Q,�) is algebraic.

Proof. Write X = max(P,⊑). Because Y is a Gδ-subset of X, there
must be Scott-open subsets O(n) of P with O(n + 1) ⊆ O(n) and Y =
X ∩

⋂
{O(n) : n < ω}. Let

Qn = {(p, n) : p ∈ O(n) and ⇑(p) ∩ Y 6= ∅}

and define

Qω =
{
(p, ω) : p ∈

⋂
{O(n) : n < ω}

}
.

Let Q =
⋃
{Qn : n ≤ ω}. Notice that if y ∈ Y , then (y, ω) ∈ Q.

We claim that (p, ω) ∈ Qω if and only if for each n < ω we have
⇓(p) ∩ O(n) 6= ∅. For suppose that (p, ω) ∈ Qω. Then for each n < ω
we have p ∈ O(n) so that for some pn ∈ P we have p ∈ ⇑(pn) ⊆ O(n). The
Interpolation Lemma 1.4 gives us some p′n ∈ P with pn ≪ p′n ≪ p so that
p′n ∈ ⇓(p)∩O(n), showing that ⇓(p)∩O(n) 6= ∅ for each n < ω. Conversely,
if ⇓(p) ∩O(n) 6= ∅ for each n < ω, then some pn has pn ≪ p and pn ∈ O(n)
so that, O(n) being Scott-open, we have p ∈ O(n).

We define a relation � on Q by the rule that if (p, m), (q, n) ∈ Q (with
m, n ≤ ω), then (p, m) � (q, n) if and only if one of the following holds:

(a) (p, m) = (q, n);
(b) m < n < ω and p ≪ q;
(c) p ≪ q and m < n = ω;
(d) p ⊑ q and m = n = ω.

Then � is a partial order on Q and the relation (p1, ω) � (p2, n2) never
happens for n2 < ω.

The rest of the proof involves a sequence of steps. We will carefully
distinguish between the partial orders ⊑ and �, but we will use ≪ to denote
the “far below” relation in both (P,⊑) and (Q,�), relying on context to
make the meaning clear. In addition, we will write sup(S) meaning the
supremum of S in P or Q, depending upon whether S ⊆ P or S ⊆ Q.
Similarly we will write ⇓(x) rather than ⇓P (x) or ⇓Q(x) and are confident
that readers will know which we mean by deciding whether x ∈ P or x ∈ Q.

Step 1: (Q,�) is a dcpo. We will show that if E is a nonempty directed
subset of Q, then sup(E) ∈ Q. If E contains a maximal element e∗ of itself
then sup(E) = e∗ ∈ Q so suppose that no point of E is maximal in E. The
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set π1[E] = {π1(e) : e ∈ E} is a nonempty directed subset of P , so that
some p∗ ∈ P has p∗ = sup(π1[E]).

We claim that (p∗, ω) ∈ Q. There are two cases to consider. In the first,
suppose E ∩ Qω 6= ∅. Then some e ∈ E has e = (p, ω) so that e ∈ Q yields
p ∈

⋂
{O(n) : n < ω}. Then p ⊑ p∗ yields p∗ ∈

⋂
{O(n) : n < ω} because

each O(n) is Scott-open, and therefore (p∗, ω) ∈ Q. In the second case,
suppose that E ∩ Qω = ∅. Choose distinct ei = (pi, ni) ∈ E with ei � ei+1.
Then ni < ni+1 so that pi ∈ O(ni). Since pi ⊑ p∗, we have p∗ ∈ O(ni)
because each O(ni) is Scott-open. Hence

p∗ ∈
⋂

{O(ni) : i ≥ 1} =
⋂

{O(n) : n ≥ 1},

showing that (p∗, ω) ∈ Q.
Knowing that q∗ = (p∗, ω) ∈ Q, we can show that q∗ is an upper bound

for E in Q. For let e ∈ E. In case e = (p, n) with n < ω, some e1 ∈ E − {e}
has e � e1. According to part (b) or (c) of the definition of �, we must
have π1(e) ≪ π1(e1) ⊑ sup(π1[E]) = p∗ so that π1(e) ≪ p∗ and therefore
e � (p∗, ω) = q∗. In case e = (p, ω), we have π1(e) ⊑ sup(π1[E]) = p∗ and
part (d) of the definition of � shows that e � (p∗, ω) = q∗.

We complete the proof that sup(E) = q∗ by showing that q∗ � q when-
ever q is an upper bound for E in Q. Given an upper bound q we know
that π1(e) ⊑ π1(q) for each e ∈ E. Because p∗ = sup(π1[E]) it follows that
p∗ = π1(q

∗) ⊑ π1(q). Either because some e ∈ E has π2(e) = ω, or because
we can find distinct ei ∈ E with π2(ei) < π2(ei+1), we know that π2(q) = ω.
But then π1(q

∗) ⊑ π1(q) is enough to show that q∗ � q, as required.

Step 2: If (p, n) ∈ Q with n < ω, then (p, n) ≪ (p, n) in Q. To verify
that assertion, suppose E is a nonempty directed set in Q with (p, n) �
sup(E). The nontrivial case is where E contains no maximal element of
itself. As proved in Step 1, we then know that sup(E) = (p∗, ω) where
p∗ = sup(π1(E)) in P . Then (p, n) � sup(E) = (p∗, ω) so that p ≪ p∗ in P .
Now we invoke Lemma 1.4 to find some r ∈ P with p ≪ r ≪ p∗ in P .
Because r ≪ p∗ = sup(π1(E)), some e1 = (p1, m1) ∈ E has p ≪ r ⊑ π1(e1).
Either because some element of E has second coordinate ω or because we
can choose distinct points e2, e3, . . . of E with e1 � e2 � e3 � · · · and
with π2(ei) < π2(ei+1) < ω for each i, we can find e∗ ∈ E with e1 ⊑ e∗ and
n < π2(e

∗). But then (p, n)� e∗ ∈E as required to show that (p, n)≪ (p, n).

Step 3: If (p∗, ω) ∈ Q then (p∗, ω) = sup(E∗) where E∗ = {(p, n) ∈ Q :
1 ≤ n < ω and p ∈ ⇓(p∗) ∩ O(n)}. To verify that assertion, first note that
(p∗, ω) is clearly an upper bound for E∗. Next observe that E∗ ∩ Q(n) 6= ∅
for each fixed n < ω, because (p∗, ω) ∈ Q yields p∗ ∈ O(n) and then some
r ∈ P with p∗ ∈ ⇑(r) ⊆ O(n). Lemma 1.4 gives some s with r ≪ s ≪ p∗

and then (s, n) ∈ E∗. Next consider any upper bound q ∈ Q for E∗. We will
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show that (p∗, ω) � q. Because E∗ ∩O(n) 6= ∅ for each n < ω, we know that
π2(q) = ω so that q has the form q = (p, ω) for some p ∈ P . Therefore we
will have the desired (p∗, ω) � q provided we can prove p∗ ⊑ π1(q). To do
that, we will show that π1(q) is an upper bound for ⇓(p∗) in P , and that
will yield p∗ = sup(⇓(p∗)) ⊑ π1(q) as required.

Consider any t ∈ ⇓(p∗). We know that p∗ ∈
⋂
{O(n) : n < ω} ⊆ O(1),

so that there is some s ∈ P with p∗ ∈ ⇑(s) ⊆ O(1). Then s ≪ p∗ so that
Lemma 1.4 provides some r ∈ P with s ≪ r ≪ p∗. Because the directed set
⇓(p∗) contains both t and r, some u ∈ ⇓(p∗) has r, t ⊑ u. Then s ≪ r ⊑ u and
so u ∈ ⇑(s) ⊆ O(1). Therefore u ∈ O(1) ∩ ⇓(p∗), showing that (u, 1) ∈ E∗.
Because q is an upper bound for E∗ we know that (u, 1) � q and therefore
u ≪ π1(q). But then t ⊑ u ≪ π1(q) gives t ≪ π1(q) so that π1(q) is an upper
bound for ⇓(p∗). Hence p∗ ⊑ π1(q) as required to show that (p∗, ω) � q. This
completes Step 3.

Step 4: If (p̂, ω), (p∗, ω) ∈ Q, then (p̂, ω) ≪ (p∗, ω) never happens in Q.

Consider the set E∗ defined using p∗ in Step 3. We know that (p∗, ω) =
sup(E∗) so that if (p̂, ω) ≪ (p∗, ω), then some (p, n) ∈ E∗ would have
(p̂, ω) � (p, n) and because n < ω that can never happen.

Step 5: (Q,�) is a continuous poset, i.e., for each q ∈ Q, ⇓(q) is

directed and q = sup(⇓(q)). In case q has the form q = (p, n) with n < ω,
Step 2 gives q ∈ ⇓(q) so that q is a common extension of any two members
of ⇓(q) and q = sup(⇓(q)). Now consider the case where q = (p∗, ω) ∈ Q. Let
q1, q2 ∈ ⇓(p∗, ω). From Step 4, each qi has the form qi = (pi, ni) with ni < ω.
Because qi ≪ (p∗, ω) in Q and ni < ω, we know that π1(qi) ≪ p∗ in P . Let
m = n1 +n2. Because (p∗, ω) ∈ Q we may choose r ∈ ⇓(p∗)∩O(m). Because
p1, p2, r belong to the directed set ⇓(p∗), some s ∈ ⇓(p∗) has p1, p2, r ⊑ s.
Because s ≪ p∗ in P , Lemma 1.4 gives t ∈ P with s ≪ t ≪ p∗. Because
t ≪ p∗ we have (t, m) � (p∗, ω). Applying Step 3 to (t, m), we obtain
(t, m) ≪ (t, m) � (p∗, ω) in Q so that (t, m) ∈ ⇓((p∗, ω)). Because pi ⊑ s ≪ t
and ni < m we have (pi, ni) � (t, m), so that ⇓((p∗, ω)) is directed. It follows
that sup(⇓((p∗, ω))) exists in Q. Obviously sup(⇓((p∗, ω))) � (p∗, ω).

Now consider the directed set E∗ in Step 3. For each (p, n) ∈ E∗ we have
p ∈ ⇓(p∗) so that (p, n) � (p∗, ω). Apply Step 3 to see that (p, n) ≪ (p, n)
� (p∗, ω) so that (p, n) ∈ ⇓((p∗, ω)). Hence E∗ ⊆ ⇓((p∗, ω)) so we must have

(p∗, ω) = sup(E∗) � sup(⇓((p∗, ω))) � (p∗, ω).

We conclude that sup(⇓((p∗, ω))) = (p∗, ω), as required to complete Step 5.

Step 6: The set of maximal elements of (Q,�) is given by max(Q) =
{(y, ω) : y ∈ Y }. Consider any y ∈ Y ⊆ X = max(P ). Then y ∈

⋂
{O(n) :

n < ω} so that (y, ω) ∈ Q. Because no element of P is strictly above y, it
follows that (y, ω) is maximal in Q.
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Conversely, suppose that q is a maximal element of Q. If q = (p, n)
with n < ω, it follows from the definition of Q that ⇑(p) ∩ Y 6= ∅. Choose
y ∈ Y ∩ ⇑(p). Then (y, ω) ∈ Q, and p ≪ y gives (p, n) � (y, ω), contrary to
maximality of (p, n) in Q. Hence any maximal element q of Q has the form
q = (p, ω). Because p ∈ P we may choose some x(p) ∈ X with p ⊑ x(p).
Because (p, ω) ∈ Qω we know that p ∈

⋂
{O(n) : n ≥ 1} and therefore

p ⊑ x(p) gives x(p) ∈ X ∩
⋂
{O(n) : n ≥ 1} = Y . Then (x(p), ω) ∈ Q

and q = (p, ω) � (x(p), ω) so that maximality of q gives p = x(p) ∈ Y , as
required to complete Step 6.

Step 7: The continuous dcpo (Q,�) is algebraic. Let q ∈ Q. We must
show that the set K(q) of compact elements of ⇓(q) is directed and has
sup(K(q)) = q. If q = (p, n) for n < ω then K(q) = ⇓(q), and if q = (p∗, ω)
then the set E∗ constructed in Step 3 is directed, and has E∗ ⊆ ⇓((p∗, ω))
and (p∗, ω) = sup(E∗). Finally, each element of E∗ is compact in the light
of Step 2.

Step 8: If Y is topologized as a subspace of X, then Y is homeomorphic

to the subspace max(Q) of Q. Define h : Y → max(Q) by h(y) = (y, ω).
Then h is 1-1 and onto.

We claim that h is continuous. Suppose h(y) ∈ ⇑(q) for some q ∈ Q. By
Step 3, q cannot have π2(q) = ω so q has the form q = (p, n) with n < ω.
Because (y, ω) ∈ ⇑((p, n)) we have (p, n) ≪ (y, ω) in Q so that (p, n) � (y, ω)
and therefore p ≪ y in P . Consequently, ⇑(p)∩Y is a relative neighborhood
of y in the relativized Scott topology from P . Consider any z ∈ ⇑(p) ∩ Y .
We have p ≪ z in P so that (p, n) � (y, ω) in Q. Because of Step 4, we have
(p, n) ≪ (p, n) � (z, ω) so that h(z) ∈ ⇑((p, n)) as required.

Finally, we claim that h is an open mapping. Consider any basic neigh-
borhood U = ⇑(p) ∩ Y in the relative Scott topology on Y . We must show
that h(U) is a relative neighborhood of h(y) in max(Q). We know that
y ∈ Y ⊆ O(1) so that because y = sup(⇓(y)) we may choose r ∈ ⇓(y)∩O(1).
Because r ≪ y we certainly have ⇑(r) ∩ Y 6= ∅, so that (r, 1) ∈ Q. Consider
the basic open set ⇑(r, 1). We know that r ≪ y in P so that (r, 1) � (y, ω)
in Q, and because (r, 1) ≪ (r, 1) in Q we have (r, 1) ≪ (y, ω) in Q. Thus
(y, ω) ∈ ⇑((r, 1)). To complete Step 8, we will show that ⇑((r, 1))∩max(Q) ⊆
h(U), so let q ∈ ⇑((r, 1)) ∩ max(Q). Then q = (z, ω) with z ∈ Y . From
(r, 1) ≪ (z, ω) in Q, we know that r ≪ z in P , so that z ∈ ⇑(r) ∩ Y = U .
Hence q = (z, ω) ∈ h(U) as required.

Our proof of Theorem 3.2 gives another proof of the following result
that, K. Martin has told us, was originally obtained by Philip Sunderhauf.

Corollary 3.3. If a space X can be represented as the space of maximal

elements of some continuous dcpo P , then X can also be represented as the

space of maximal elements of some continuous dcpo Q that is algebraic.
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Proof. Let Y = X. Then Y is a Gδ-subset of X so that Theorem 3.2
applies to complete the proof.

Example 3.1 showed that, in general, the property of being represented
as the space of maximal elements of some continuous dcpo is not hereditary
to closed sets. However, in perfect spaces (= each closed set is a Gδ-set) we
have the following immediate consequence of Theorem 3.2:

Corollary 3.4. If X is a perfect space (= closed sets are Gδ-sets) that

can be represented as the space max(P ) for some continuous dcpo, then each

closed subspace Y of X can be represented as max(Q) for some continuous,
algebraic dcpo Q.

We close this section by noting that any Čech-complete space can be
represented as the set of maximal elements of a continuous, algebraic dcpo.
Because locally compact Hausdorff spaces and completely metrizable spaces
are Čech-complete, this generalizes a theorem of Edalat and Heckmann [5]
that any completely metrizable space can be represented as the space of
maximal elements of some continuous, algebraic dcpo, and also generalizes
a theorem in [7] that any locally compact Hausdorff space can be repre-
sented as the space of maximal elements of a continuous dcpo. In addition,
it answers question (vii) of K. Martin [8].

Theorem 3.5. Suppose Y is a Čech-complete space. Then there is a

continuous, algebraic dcpo (P,⊑) with Y = max(P ).

Proof. Let X = βY be the Čech–Stone compactification of Y . Because
Y is Čech-complete, Y is a dense Gδ-subset of X. It is known (see [11])
that X, being compact Hausdorff, can be represented as max(P ) where P
is a continuous algebraic dcpo. Apply Theorem 3.2 to conclude that Y can
also be represented as max(Q) for some continuous, algebraic dcpo.

It would be natural to ask whether Theorem 3.5 could be generalized
further, by replacing Gδ-subsets of compact Hausdorff spaces by Arkhan-
gel’skĭı’s p-embedded subspaces of compact Hausdorff spaces. The answer is
“No” because any metric space is p-embedded in its Čech–Stone compacti-
fication; now consider the metric space Q.

The converse of Theorem 3.5 holds for metrizable spaces (see Theo-
rem 1.1) but is false for other types of spaces, e.g., for Moore spaces. A result
announced by G. M. Reed in a conference talk shows that M. E. Rudin’s
space in [6] is domain-representable but not Čech-complete. (In fact every
Rudin-complete space (see [1]) is domain-representable.) The converse of 3.5
is also false among generalized ordered spaces, as Examples 2.2, 2.3, and 2.4
show.

Compact Hausdorff spaces can be represented as the space max(P ) for
some Scott domain (P,⊑), i.e., a continuous dcpo P with a least element
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and with the additional property that if p1, p2 ∈ P have p1, p2 ⊑ p3 for some
p3 ∈ P , then sup{p1, p2} exists in P (see [11]). It is always possible to add a
single minimal element to any dcpo (Q,�), and one might wonder whether
some variation of the construction in Theorem 3.2 could show that any Čech-
complete space can be represented as max(R) for some Scott domain R. That
cannot be done because of another example announced by G. M. Reed in
several talks. He has constructed a Čech-complete Moore space that is not
the space of maximal elements of any Scott domain.

Example 3.6. There is a metrizable space X that has a dense subspace

Y that is domain-representable, and yet X is not.

Proof. Let

Y = {(k/n, 1/n) : k, n ∈ Z and n > 0} and X = Y ∪ {(q, 0) : q ∈ Q},

and topologize X as a subspace of the plane. (This is the space of Exercise 14,
p. 253, in [2].) Then Y , being a set of isolated points, is completely metriz-
able, and is dense in X. But X is not completely metrizable, because it has Q

as a closed subspace. According to Theorem 1.1, Y is domain-representable,
but X is not.

Remark 3.7. It is well known that open mappings and perfect irre-
ducible mappings preserve the Baire space property and that perfect map-
pings do not (e.g., the projection π(x, y) = (x, 0) with the space X of Ex-
ample 3.6 as domain is a perfect mapping that does not preserve the Baire
space property). It would be interesting to know the extent to which var-
ious types of mappings preserve the property of domain-representability.
A closely related question is whether the product space X × K must be
domain-representable, given that X is domain-representable and K is a com-
pact Hausdorff space.
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