Brunnian local moves of knots and Vassiliev invariants

by

Akira Yasuhara (Tokyo)

Dedicated to Professor Takao Matumoto for his 60th birthday

Abstract. K. Habiro gave a neccessary and sufficient condition for knots to have the same Vassiliev invariants in terms of C_k -moves. In this paper we give another geometric condition in terms of Brunnian local moves. The proof is simple and self-contained.

1. Introduction. We will define local moves via tangles. Our definition follows [11], [12]. A tangle T is a disjoint union of properly embedded arcs in the unit 3-ball B^3 . Here T contains no closed arcs. A tangle T is trivial if there exists a properly embedded disk in B^3 that contains T. A local move is a pair of trivial tangles (T_1, T_2) with $\partial T_1 = \partial T_2$ such that for each component t of T_1 there exists a component u of T_2 with $\partial t = \partial u$. Two local moves (T_1, T_2) and (U_1, U_2) are equivalent, denoted by $(T_1, T_2) \cong (U_1, U_2)$, if there is an orientation preserving self-homeomorphism $\psi : B^3 \to B^3$ such that $\psi(T_i)$ and U_i are ambient isotopic in B^3 relative to ∂B^3 for i = 1, 2. A local move (T_1, T_2) is trivial if (T_1, T_2) is equivalent to the local move (T_1, T_1) . Note that (T_1, T_2) is trivial if and only if T_1 and T_2 are ambient isotopic in B^3 relative to ∂B^3 .

Let (T_1, T_2) be a local move, and let t_1, \ldots, t_k and u_1, \ldots, u_k be the components of T_1 and T_2 respectively with $\partial t_i = \partial u_i$ $(i = 1, \ldots, k)$. We call (T_1, T_2) a k-component Brunnian local move $(k \ge 2)$, or B_k -move, if each local move $(T_1 - t_i, T_2 - u_i)$ is trivial $(i = 1, \ldots, k)$ [10]. If (T_1, T_2) is Brunnian, then (T_2, T_1) is also Brunnian. For example, a crossing change is a B_2 -move, the delta-move defined in [7] is a B_3 -move, and a C_k -move defined in [3], [4] is a B_{k+1} -move.

²⁰⁰⁰ Mathematics Subject Classification: Primary 57M25.

Key words and phrases: Brunnian move, Vassiliev invariant, band sum.

Let K_1 and K_2 be oriented knots in the three-sphere S^3 with a fixed orientation. We say that K_2 is obtained from K_1 by a local move (T_1, T_2) if there is an orientation preserving embedding $h : B^3 \to S^3$ such that $(h^{-1}(K_1), h^{-1}(K_2)) \cong (T_1, T_2)$ and $K_1 - h(B^3) = K_2 - h(B^3)$ as oriented tangles. Two oriented knots K_1 and K_2 are B_k -equivalent if K_2 is obtained from K_1 by a finite sequence of B_k -moves and ambient isotopies. This relation is an equivalence relation on knots.

We have the following geometric condition for knots to have the same value of Vassiliev invariant.

THEOREM 1 (cf. Goussarov-Habiro Theorem [4], [2]). Two knots K_1 and K_2 are B_{l+1} -equivalent if and only if their values of any Vassiliev invariant of order $\leq l-1$ are equal.

REMARK. The authors of [5] and [6] showed independently that B_{l+1} and C_l -equivalence classes coincide. Therefore, the theorem above and the Goussarov-Habiro Theorem are consequences of each other. Although Theorem 1 can be obtained as a corollary of the Goussarov-Habiro Theorem the author believes that a new and self-contained proof is worth presenting. Moreover, the arguments used in our proof are shorter and simpler compared to those given in [4], [2] and [12] for the proof of the Goussarov-Habiro Theorem.

Let l be a positive integer and let $k_1, \ldots, k_l (\geq 2)$ be integers. Suppose that for each $P \subset \{1, \ldots, l\}$ we have an oriented knot K_P in S^3 and there are orientation preserving embeddings $h_i : B^3 \to S^3$ $(i = 1, \ldots, l)$ such that:

(1)
$$h_i(B^3) \cap h_j(B^3) = \emptyset$$
 if $i \neq j$,

(2)
$$K_P - \bigcup_{i=1}^l h_i(B^3) = K_{P'} - \bigcup_{i=1}^l h_i(B^3)$$
 for all $P, P' \subset \{1, \dots, l\},$

(3) $(h_i^{-1}(K_{\emptyset}), h_i^{-1}(K_{\{1,\dots,l\}}))$ is a B_{k_i} -move $(i = 1, \dots, l)$, and

(4)
$$K_P \cap h_i(B^3) = \begin{cases} K_{\{1,\dots,l\}} \cap h_i(B^3) & \text{if } i \in P, \\ K_{\emptyset} \cap h_i(B^3) & \text{otherwise} \end{cases}$$

Then we call the set $\{K_P \mid P \subset \{1, \ldots, l\}\}$ of oriented knots a singular knot of type $B(k_1, \ldots, k_l)$. Let \mathcal{K} be the set of knots, A an abelian group, and $\varphi : \mathcal{K} \to A$ an invariant. We say that φ is a finite type invariant of type $B(k_1, \ldots, k_l)$ if for any singular knot $\{K_P \mid P \subset \{1, \ldots, l\}\}$ of type $B(k_1, \ldots, k_l)$,

$$\sum_{P \subset \{1, \dots, l\}} (-1)^{|P|} \varphi(K_P) = 0.$$

Since a B_2 -move is realized by some crossing changes we see that an invariant $\varphi : \mathcal{K} \to A$ is a finite type invariant of type $B(\underbrace{2, \ldots, 2}_{l})$ if and only if it is a Vassiliev invariant of order $\leq l-1$.

In order to prove Theorem 1, we need the following theorems.

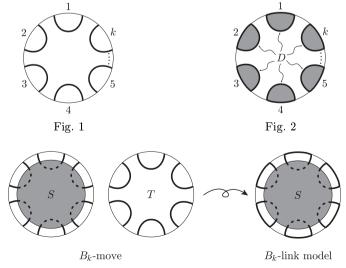
THEOREM 2 (cf. [4, Theorem 5.4]). The set of B_k -equivalence classes, denoted by \mathcal{K}/B_k , of oriented knots in S^3 forms an abelian group under connected sum of oriented knots.

THEOREM 3 (cf. [12, Theorem 1.2]). Let $l \geq 2$ and $k_1, \ldots, k_l \geq 2$) be integers, and $k - 1 = (k_1 - 1) + \cdots + (k_l - 1)$. Then the projection $p_k : \mathcal{K} \to \mathcal{K}/B_k$ is a finite type invariant of type $B(k_1, \ldots, k_l)$.

REMARK. Since a C_k -move is the same as a B_{k+1} -move, Theorem 2 follows from [4, Theorem 5.4]. Theorem 3 is similar to [12, Theorem 1.2]. In order to give a self-contained proof of Theorem 1, we will give self-contained proofs of Theorems 2 and 3. Although the reasonings given in the proofs of Theorems 2 and 3 are analogous to those in [4] (and also in [11] and [12]) we provide simpler and shorter arguments.

2. Band description. It is known that any knot can be expressed as a "band sum" of the trivial knot and a split union of some Hopf links [8], [13] (or Borromean rings [14]). K. Taniyama and the author showed that if two knots are C_k -equivalent, then one can be expressed as a band sum of the other and a split union of certain (k+1)-component Brunnian links [11], [12]. By similar arguments to those in [11], we describe a relation between B_k -equivalence and a certain band sum.

Let (T_1, T_2) be a k-component Brunnian local move. Let $T \subset B^3$ be the trivial k-string tangle illustrated in Figure 1, and let D be the disjoint union of the k disks bounded by T and arcs in ∂B^3 (see Figure 2). Since T_2 is a trivial tangle, there is a tangle S such that (S, T) and (T_1, T_2) are equivalent. Then the pair $(S, \partial D - T)$ is called a B_k -link model (see Figure 3).



Let (α_i, β_i) be $B_{\varrho(i)}$ -link models $(i = 1, \ldots, l)$, and K an oriented knot (respectively a tangle). Let $\psi_i : B^3 \to S^3$ (respectively $\psi_i : B^3 \to \operatorname{int} B^3$) be an orientation preserving embedding for $i = 1, \ldots, l$, and let $b_{1,1}, \ldots, b_{1,\varrho(1)}$, $b_{2,1}, \ldots, b_{2,\varrho(2)}, \ldots, b_{l,1}, \ldots, b_{l,\varrho(l)}$ be mutually disjoint disks embedded in S^3 (respectively B^3). Suppose that they satisfy the following conditions;

- (1) $\psi_i(B^3) \cap \psi_j(B^3) = \emptyset$ if $i \neq j$,
- (2) $\psi_i(B^3) \cap K = \emptyset$ for each i,
- (3) $b_{i,k} \cap K = \partial b_{i,k} \cap K$ is an arc for each i, k,
- (4) $b_{i,k} \cap \bigcup_{j=1}^{l} \psi_j(B^3) = \partial b_{i,k} \cap \psi_i(B^3)$ is a component of $\psi_i(\beta_i)$ for each i, k.

Let J be an oriented knot (respectively a tangle) defined by

$$J = K \cup \left(\bigcup_{i,k} \partial b_{i,k}\right) \cup \left(\bigcup_{i=1}^{l} \psi_i(\alpha_i)\right) - \bigcup_{i,k} \operatorname{int}(\partial b_{i,k} \cap K) - \bigcup_{i=1}^{l} \psi_i(\operatorname{int} \beta_i),$$

where the orientation of J coincides with that of K on $K - \bigcup_{i,k} b_{i,k}$ if K is oriented. We call each $b_{i,k}$ a band. Each image $\psi_i(B^3)$ is called a link ball. We set $\mathcal{B}_i = ((\alpha_i, \beta_i), \psi_i, \{b_{i,1}, \ldots, b_{i,\varrho(i)}\})$ and call \mathcal{B}_i a $\mathcal{B}_{\varrho(i)}$ -chord. We denote J by $J = \Omega(K; \{\mathcal{B}_1, \ldots, \mathcal{B}_l\})$, and say that J is a band sum of K and chords $\mathcal{B}_1, \ldots, \mathcal{B}_l$, or a band sum of K and $\{\mathcal{B}_1, \ldots, \mathcal{B}_l\}$.

From now on we consider knots up to ambient isotopy of S^3 and tangles up to ambient isotopy of B^3 relative to ∂B^3 without explicit mention.

By the definitions of a B_k -move and a B_k -link model, we have:

SUBLEMMA 4 (cf. [12, Sublemmas 3.3 and 3.5]).

- (1) A local move (T_1, T_2) is a B_k -move if and only if T_1 is a band sum of T_2 and a B_k -link model.
- (2) A knot J is obtained from a knot K by a single B_k-move if and only if K is a band sum of J and a B_k-link model.

Note that, by Sublemma 4(1), a set **K** of knots is a singular knot of type $B(k_1, \ldots, k_l)$ if and only if there is a knot K and a band sum $J = \Omega(K; \{\mathcal{B}_1, \ldots, \mathcal{B}_l\})$ of K and B_{k_i} -chords \mathcal{B}_i $(i = 1, \ldots, l)$ such that

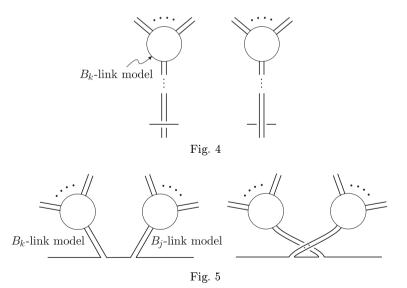
$$\mathbf{K} = \left\{ \Omega\left(K; \bigcup_{i \in P} \{\mathcal{B}_i\}\right) \middle| P \subset \{1, \dots, l\} \right\}.$$

SUBLEMMA 5 (cf. [12, Sublemma 3.5]). Let K, J and I be oriented knots (or tangles). Suppose that $J = \Omega(K; \{\mathcal{B}_1, \ldots, \mathcal{B}_l\})$ for some chords $\mathcal{B}_1, \ldots, \mathcal{B}_l$ and $I = \Omega(J; \{\mathcal{B}\})$ for some \mathcal{B}_k -chord \mathcal{B} . Then there is a \mathcal{B}_k -chord \mathcal{B}' such that $I = \Omega(K; \{\mathcal{B}_1, \ldots, \mathcal{B}_l, \mathcal{B}'\})$. Moreover, if for a subset P of $\{1, \ldots, l\}$ the link ball or the bands of \mathcal{B} intersect either the link ball or the bands of \mathcal{B}_i only when $i \in P$, then $\Omega(\Omega(K; \bigcup_{i \in P} \{\mathcal{B}_i\}); \{\mathcal{B}\}) = \Omega(K; (\bigcup_{i \in P} \{\mathcal{B}_i\}) \cup \{\mathcal{B}'\})$. Proof. If the bands and the link ball of \mathcal{B} are disjoint from those of $\mathcal{B}_1, \ldots, \mathcal{B}_l$ then $I = \Omega(K; \{\mathcal{B}_1, \ldots, \mathcal{B}_l, \mathcal{B}\})$. If not, then we deform I up to ambient isotopy as follows. By thinning and shrinking the bands and the link ball of \mathcal{B} respectively, we may assume that the link ball of \mathcal{B} intersects neither the bands nor the link balls of $\mathcal{B}_1, \ldots, \mathcal{B}_l$. And by sliding the bands of \mathcal{B} along J, we may also assume that the intersection of the bands with J is disjoint from the bands and the link balls of $\mathcal{B}_1, \ldots, \mathcal{B}_l$. Then we sweep the bands of \mathcal{B} out of the link balls of $\mathcal{B}_1, \ldots, \mathcal{B}_l$. Note that this is always possible since the tangles of a local move are trivial. Finally, we sweep the intersection of the bands of $\mathcal{B}_1, \ldots, \mathcal{B}_l$ and K. Let \mathcal{B}' be the result of the deformation of \mathcal{B} described above. Then it is not hard to see that \mathcal{B}' is the desired chord.

By repeated applications of Sublemmas 4 and 5 we immediately have the following lemma.

LEMMA 6 (cf. [12, Lemma 3.6]). Let k be a positive integer and let K and J be oriented knots (or tangles). Then K and J are B_k -equivalent if and only if J is a band sum of K and some B_k -link models.

Since the local moves illustrated in Figures 4 and 5 are a B_{k+1} -move and B_{j+k-1} -move respectively, the following two lemmas follow from Sublemma 5.



LEMMA 7 (cf. [12, Lemma 3.8]). Let $K, J = \Omega(K; \{\mathcal{B}_1, \ldots, \mathcal{B}_l, \mathcal{B}_0\})$ and $I = \Omega(K; \{\mathcal{B}_1, \ldots, \mathcal{B}_l, \mathcal{B}'_0\})$ be oriented knots, where $\mathcal{B}_1, \ldots, \mathcal{B}_l$ are chords and $\mathcal{B}_0, \mathcal{B}'_0$ are \mathcal{B}_k -chords. Suppose that J and I differ locally as illustrated in Figure 4, i.e., I is obtained from J by a crossing change between K and a band

of \mathcal{B}_0 . Then I is obtained from J by a B_{k+1} -move. Moreover, there is a B_{k+1} chord \mathcal{B} such that $\Omega(K; (\bigcup_{i \in P} \{\mathcal{B}_i\}) \cup \{\mathcal{B}_0\}) = \Omega(K; (\bigcup_{i \in P} \{\mathcal{B}_i\}) \cup \{\mathcal{B}'_0, \mathcal{B}\})$ for any subset P of $\{1, \ldots, l\}$.

LEMMA 8 (cf. [12, Lemma 3.9]). Let $K, J = \Omega(K; \{\mathcal{B}_1, \ldots, \mathcal{B}_l, \mathcal{B}_{0j}, \mathcal{B}_{0k}\})$ and $I = \Omega(K; \{\mathcal{B}_1, \ldots, \mathcal{B}_l, \mathcal{B}'_{0j}, \mathcal{B}'_{0k}\})$ be oriented knots, where $\mathcal{B}_1, \ldots, \mathcal{B}_l$ are chords and $\mathcal{B}_{0j}, \mathcal{B}'_{0j}$ (respectively $\mathcal{B}_{0k}, \mathcal{B}'_{0k}$) are \mathcal{B}_j -chords (respectively \mathcal{B}_k -chords). Suppose that J and I differ locally as illustrated in Figure 5. Then I is obtained from J by a \mathcal{B}_{j+k-1} -move. Moreover, there is a \mathcal{B}_{j+k-1} -chord \mathcal{B} such that $\Omega(K; (\bigcup_{i \in P} \{\mathcal{B}_i\}) \cup \{\mathcal{B}_{0j}, \mathcal{B}_{0k}\}) = \Omega(K; (\bigcup_{i \in P} \{\mathcal{B}_i\}) \cup \{\mathcal{B}'_{0j}, \mathcal{B}'_{0k}, \mathcal{B}\})$ for any subset P of $\{1, \ldots, l\}$.

We call the change from J to I in Lemma 8 a band exchange.

For a C_k -move, "band description" is also defined, and Sublemmas 4, 5, Lemmas 6, 7 and 8 hold [12]. However, the proofs given in [12] are not as obvious as ours. In fact, more complicated arguments are needed. In contrast, we need some arguments to prove the following lemma, which is trivial for a C_k -move.

LEMMA 9. Let (T_1, T_2) be a B_k -move. For any integer $l (\leq k)$, T_2 is obtained from T_1 by B_l -moves. In particular, B_k -equivalent knots are B_l -equivalent.

Proof. Let t_1, \ldots, t_k and u_1, \ldots, u_k be the components with $\partial t_i = \partial u_i$ $(i = 1, \ldots, k)$ of T_1 and T_2 respectively. We may assume that (T_1, T_2) has a diagram in the unit disk such that $T_1 - t_1$ and T_2 have no crossings.

Since $(T_1 - t_2, T_2 - u_2)$ is a trivial local move, T_2 is obtained from T_1 by B_2 -moves that correspond to crossing changes between t_1 and t_2 . By Lemma 6, T_1 is a band sum, $\Omega(T_2; \mathbf{B}_2)$, of T_2 and a set \mathbf{B}_2 of B_2 -chords. Note that no band of B_2 -chords intersects $T_2 - (u_1 \cup u_2)$.

Since $(\Omega(T_2; \mathbf{B}_2) - t_3, T_2 - u_3) = (T_1 - t_3, T_2 - u_3)$ is a trivial local move, T_2 is obtained from T_1 by B_3 -moves that correspond to crossing changes between t_3 and some bands of B_2 -chords. By Lemma 6, T_1 is a band sum $\Omega(T_2; \mathbf{B}_3)$ of T_2 and a set \mathbf{B}_3 of B_3 -chords. Note that no bands of B_3 -chords intersects $T_2 - (u_1 \cup u_2 \cup u_3)$.

Continuing this process we obtain the conclusion.

3. Proofs of Theorems 1, 2 and 3

Proof of Theorem 3. Let K_0 be a knot and K_1 a band sum of K_0 and B_{k_i} -chords $\mathcal{B}_{k_i,j}$ (j = 1, ..., l). It is sufficient to show that

$$\sum_{P \subset \{1,\dots,l\}} (-1)^{|P|} \Big[\Omega\Big(K_0; \bigcup_{j \in P} \{\mathcal{B}_{k_j,j}\}\Big) \Big] = 0 \in \mathcal{K}/B_k,$$

where [K] is the B_k -equivalence class which contains the knot K.

Set

$$K_P = \Omega\left(K_0; \bigcup_{j \in P} \{\mathcal{B}_{k_j, j}\}\right).$$

CLAIM. The knot K_1 (= $K_{\{1,...,l\}}$) is B_k -equivalent to a band sum of K_0 (= K_{\emptyset}) and a set $\bigcup_{i,j} \{\mathcal{B}_{i,j}\}$ of local chords such that

(1) $\mathcal{B}_{i,j}$ is a B_i -chord (i < k) and it has an associated subset $\omega(\mathcal{B}_{i,j}) \subset \{1, \ldots, l\}$ with $\sum_{t \in \omega(\mathcal{B}_{i,j})} (k_t - 1) \leq i - 1$, (2) for each $P \subset \{1, \ldots, l\}$,

$$[K_P] = \left\lfloor \Omega\left(K_0; \bigcup_{\omega(\mathcal{B}_{i,j}) \subset P} \{\mathcal{B}_{i,j}\}\right) \right\rfloor.$$

Here a chord $\mathcal{B}_{i,j}$ is called a *local chord* if there is a 3-ball B such that B contains all the bands and the link ball of $\mathcal{B}_{i,j}$, B does not intersect any other bands or link balls, and $(B, B \cap K_0)$ is a trivial ball-arc pair.

Before proving the Claim, we will finish the proof of Theorem 3. Suppose K_1 is B_k -equivalent to a band sum of K_0 and some local chords $\mathcal{B}_{i,j}$. Each $\mathcal{B}_{i,j}$ represents a knot $K_{i,j}$ which is connected summed with K_0 . So the band sum is a connected sum of K_0 and $K_{i,j}$'s. Then we have

$$\sum_{P \subset \{1,...,l\}} (-1)^{|P|} \left[\Omega\left(K_0; \bigcup_{\omega(\mathcal{B}_{i,j}) \subset P} \{\mathcal{B}_{i,j}\}\right) \right]$$

=
$$\sum_{P \subset \{1,...,l\}} (-1)^{|P|} \left([K_0] + \sum_{\omega(\mathcal{B}_{i,j}) \subset P} [K_{i,j}] \right)$$

=
$$\sum_{P \subset \{1,...,l\}} (-1)^{|P|} [K_0] + \sum_{P \subset \{1,...,l\}} (-1)^{|P|} \left(\sum_{\omega(\mathcal{B}_{i,j}) \subset P} [K_{i,j}] \right)$$

=
$$0 + \sum_{i,j} \left(\sum_{P \subset \{1,...,l\}, \, \omega(\mathcal{B}_{i,j}) \subset P} (-1)^{|P|} \right) [K_{i,j}].$$

We consider the coefficient of $[K_{i,j}]$. Since $\sum_{t \in \omega(\mathcal{B}_{i,j})} (k_t - 1) < k - 1$, $\omega(\mathcal{B}_{i,j})$ is a proper subset of $\{1, \ldots, l\}$. We may assume that $\omega(\mathcal{B}_{i,j})$ does not contain $a \in \{1, \ldots, l\}$. Then

$$\sum_{P \subset \{1,\dots,l\},\,\omega(\mathcal{B}_{i,j}) \subset P} (-1)^{|P|} = \sum_{\substack{P \subset \{1,\dots,l\} \setminus \{a\},\,\omega(\mathcal{B}_{i,j}) \subset P \\ + \sum_{\substack{P \subset \{1,\dots,l\} \setminus \{a\},\,\omega(\mathcal{B}_{i,j}) \subset P \\ }} (-1)^{|P \cup \{a\}|} = 0.$$

Thus, we have the conclusion. \blacksquare

Now we will show the Claim.

A. Yasuhara

Proof of Claim. We first set $\omega(\mathcal{B}_{k_j,j}) = \{j\}$ for $j = 1, \ldots, l$. Then we have $\sum_{t \in \omega(\mathcal{B}_{k_j,j})} (k_t - 1) = k_j - 1 < k - 1$ and

$$K_P = \Omega\Big(K_0; \bigcup_{\omega(\mathcal{B}_{k_j,j}) \subset P} \{\mathcal{B}_{k_j,j}\}\Big).$$

Note that a crossing change between bands can be realized by crossing changes between K_0 and a band as illustrated in Figure 6. Therefore we can deform each chord into a local chord by (i) crossing changes between K_0 and bands, and (ii) band exchanges.

(i) When we perform a crossing change between K_0 and a B_p -band of a B_p -chord $\mathcal{B}_{p,q}$ with $p \leq k-2$, by using Lemma 7, we introduce a new B_{p+1} -chord $\mathcal{B}_{p+1,r}$ and we set $\omega(\mathcal{B}_{p+1,r}) = \omega(\mathcal{B}_{p,q})$ so that conditions (1) and (2) still hold. By Lemma 7, a crossing change between K_0 and a B_{k-1} -band is realized by a B_k -move and therefore does not change the B_k -equivalence class.

(ii) If we perform a band exchange between a B_p -chord $\mathcal{B}_{p,q}$ and a B_r -chord $\mathcal{B}_{r,s}$ with $p + r \leq k$, then, by using Lemma 8, we introduce a new B_{p+r-1} -chord $\mathcal{B}_{p+r-1,n}$ and set $\omega(\mathcal{B}_{p+r-1,n}) = \omega(\mathcal{B}_{p,q}) \cup \omega(\mathcal{B}_{r,s})$ so that conditions (1) and (2) still hold. By Lemmas 8 and 9, a band exchange between a B_p -chord $\mathcal{B}_{p,q}$ and a B_r -chord $\mathcal{B}_{r,s}$ with $p + r \geq k + 1$ does not change the B_k -equivalence class.

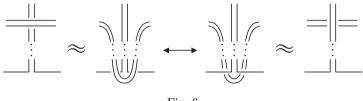


Fig. 6

Proof of Theorem 2. It is sufficient to show the existence of an inverse element for a given knot K. Suppose that there is a knot J such that K # Jis B_k -equivalent to a trivial knot O. Then, by Lemma 6, O is a band sum of K # J and some B_k -chords. By using Lemma 7, we deform O up to B_{k+1} -equivalence so that the B_k -chords are local chords. Then the result is a connected sum of K # J and some knots K_1, \ldots, K_n that correspond to local chords. Hence $K \# J \# K_1 \# \cdots \# K_n$ is B_{k+1} -equivalent to O. Thus $J \# K_1 \# \cdots \# K_n$ is the desired knot.

Proof of Theorem 1. It is not hard to see that B_{l+1} -equivalent knots are also *l*-similar [9] ((l-1)-equivalent [1]).

By Theorem 3, the projection $p_{l+1} : \mathcal{K} \to \mathcal{K}/B_{l+1}$ is a Vassiliev invariant of order $\leq l-1$. If two knots have the same values of any Vassiliev invariant of order $\leq l-1$, then they are B_{l+1} -equivalent. Acknowledgements. The author would like to thank the referee for his/her useful comments.

References

- M. Gusarov, On n-equivalence of knots and invariants of finite degree, in: O. Viro (ed.), Topology of Manifolds and Varieties, Providence, RI, Amer. Math. Soc., 1994, 173-192.
- [2] —, Variations of knotted graphs. The geometric technique of n-equivalence, Algebra i Analiz 12 (2000), 79–125 (in Russian); English transl.: St. Petersburg Math. J. 12 (2001), 569–604.
- K. Habiro, Aru musubime no kyokusyo sousa no zoku ni tuite, Master thesis, Tokyo Univ., 1994 (in Japanese).
- [4] —, Claspers and finite type invariants of links, Geom. Topol. 4 (2000), 1–83.
- [5] —, Brunnian links, claspers and Goussarov-Vassiliev finite type invariants, preprint.
- [6] H. A. Miyazawa and A. Yasuhara, Classification of n-component Brunnian links up to C_n -move, Topology Appl., to appear.
- H. Murakami and Y. Nakanishi, On a certain move generating link-homology, Math. Ann. 284 (1989), 75–89.
- [8] S. Suzuki, Local knots of 2-spheres in 4-manifolds, Proc. Japan Acad. 45 (1969), 34-38.
- K. Taniyama, On similarity of links, Gakujutsu Kenkyu, School of Education, Waseda University, Series of Matematics, 41 (1993), 33–36.
- [10] K. Taniyama and A. Yasuhara, Realization of knots and links in a spatial graph, Topology Appl. 112 (2001), 87–109.
- [11] —, —, Local moves on spatial graphs and finite type invariants, Pacific J. Math. 211 (2003), 183–200.
- [12] —, —, Band description of knots and Vassiliev invariants, Math. Proc. Cambridge Philos. Soc. 133 (2002), 325–343.
- M. Yamamoto, Knots in spatial embeddings of the complete graph on four vertices, Topology Appl. 36 (1990), 291–298.
- [14] A. Yasuhara, Delta-unknotting operation and adaptability of certain graphs, in: Knots '96 (Tokyo), S. Suzuki (ed.), World Sci., 1997, 115–121.

Department of Mathematics Tokyo Gakugei University Nukuikita 4-1-1, Koganei, Tokyo 184-8501, Japan E-mail: yasuhara@u-gakugei.ac.jp

> Received 26 March 2005; in revised form 22 January 2006