Brunnian local moves of knots and Vassiliev invariants

by
Akira Yasuhara (Tokyo)
Dedicated to Professor Takao Matumoto for his 60th birthday

Abstract

K. Habiro gave a neccesary and sufficient condition for knots to have the same Vassiliev invariants in terms of C_{k}-moves. In this paper we give another geometric condition in terms of Brunnian local moves. The proof is simple and self-contained.

1. Introduction. We will define local moves via tangles. Our definition follows [11], [12]. A tangle T is a disjoint union of properly embedded arcs in the unit 3 -ball B^{3}. Here T contains no closed arcs. A tangle T is trivial if there exists a properly embedded disk in B^{3} that contains T. A local move is a pair of trivial tangles $\left(T_{1}, T_{2}\right)$ with $\partial T_{1}=\partial T_{2}$ such that for each component t of T_{1} there exists a component u of T_{2} with $\partial t=\partial u$. Two local moves $\left(T_{1}, T_{2}\right)$ and $\left(U_{1}, U_{2}\right)$ are equivalent, denoted by $\left(T_{1}, T_{2}\right) \cong\left(U_{1}, U_{2}\right)$, if there is an orientation preserving self-homeomorphism $\psi: B^{3} \rightarrow B^{3}$ such that $\psi\left(T_{i}\right)$ and U_{i} are ambient isotopic in B^{3} relative to ∂B^{3} for $i=1,2$. A local move $\left(T_{1}, T_{2}\right)$ is trivial if $\left(T_{1}, T_{2}\right)$ is equivalent to the local move $\left(T_{1}, T_{1}\right)$. Note that $\left(T_{1}, T_{2}\right)$ is trivial if and only if T_{1} and T_{2} are ambient isotopic in B^{3} relative to ∂B^{3}.

Let $\left(T_{1}, T_{2}\right)$ be a local move, and let t_{1}, \ldots, t_{k} and u_{1}, \ldots, u_{k} be the components of T_{1} and T_{2} respectively with $\partial t_{i}=\partial u_{i}(i=1, \ldots, k)$. We call $\left(T_{1}, T_{2}\right)$ a k-component Brunnian local move $(k \geq 2)$, or B_{k}-move, if each local move $\left(T_{1}-t_{i}, T_{2}-u_{i}\right)$ is trivial $(i=1, \ldots, k)$ [10]. If $\left(T_{1}, T_{2}\right)$ is Brunnian, then $\left(T_{2}, T_{1}\right)$ is also Brunnian. For example, a crossing change is a B_{2}-move, the delta-move defined in [7] is a B_{3}-move, and a C_{k}-move defined in [3], [4] is a B_{k+1}-move.

[^0]Let K_{1} and K_{2} be oriented knots in the three-sphere S^{3} with a fixed orientation. We say that K_{2} is obtained from K_{1} by a local move $\left(T_{1}, T_{2}\right)$ if there is an orientation preserving embedding $h: B^{3} \rightarrow S^{3}$ such that $\left(h^{-1}\left(K_{1}\right), h^{-1}\left(K_{2}\right)\right) \cong\left(T_{1}, T_{2}\right)$ and $K_{1}-h\left(B^{3}\right)=K_{2}-h\left(B^{3}\right)$ as oriented tangles. Two oriented knots K_{1} and K_{2} are B_{k}-equivalent if K_{2} is obtained from K_{1} by a finite sequence of B_{k}-moves and ambient isotopies. This relation is an equivalence relation on knots.

We have the following geometric condition for knots to have the same value of Vassiliev invariant.

Theorem 1 (cf. Goussarov-Habiro Theorem [4], [2]). Two knots K_{1} and K_{2} are B_{l+1}-equivalent if and only if their values of any Vassiliev invariant of order $\leq l-1$ are equal.

REmark. The authors of [5] and [6] showed independently that $B_{l+1^{-}}$ and C_{l}-equivalence classes coincide. Therefore, the theorem above and the Goussarov-Habiro Theorem are consequences of each other. Although Theorem 1 can be obtained as a corollary of the Goussarov-Habiro Theorem the author believes that a new and self-contained proof is worth presenting. Moreover, the arguments used in our proof are shorter and simpler compared to those given in [4], [2] and [12] for the proof of the Goussarov-Habiro Theorem.

Let l be a positive integer and let $k_{1}, \ldots, k_{l}(\geq 2)$ be integers. Suppose that for each $P \subset\{1, \ldots, l\}$ we have an oriented knot K_{P} in S^{3} and there are orientation preserving embeddings $h_{i}: B^{3} \rightarrow S^{3}(i=1, \ldots, l)$ such that:
(1) $h_{i}\left(B^{3}\right) \cap h_{j}\left(B^{3}\right)=\emptyset$ if $i \neq j$,
(2) $K_{P}-\bigcup_{i=1}^{l} h_{i}\left(B^{3}\right)=K_{P^{\prime}}-\bigcup_{i=1}^{l} h_{i}\left(B^{3}\right)$ for all $P, P^{\prime} \subset\{1, \ldots, l\}$,
(3) $\left(h_{i}^{-1}\left(K_{\emptyset}\right), h_{i}^{-1}\left(K_{\{1, \ldots, l\}}\right)\right)$ is a $B_{k_{i}}$-move $(i=1, \ldots, l)$, and
(4) $K_{P} \cap h_{i}\left(B^{3}\right)= \begin{cases}K_{\{1, \ldots, l\}} \cap h_{i}\left(B^{3}\right) & \text { if } i \in P, \\ K_{\emptyset} \cap h_{i}\left(B^{3}\right) & \text { otherwise. }\end{cases}$

Then we call the set $\left\{K_{P} \mid P \subset\{1, \ldots, l\}\right\}$ of oriented knots a singular knot of type $B\left(k_{1}, \ldots, k_{l}\right)$. Let \mathcal{K} be the set of knots, A an abelian group, and $\varphi: \mathcal{K} \rightarrow A$ an invariant. We say that φ is a finite type invariant of type $B\left(k_{1}, \ldots, k_{l}\right)$ if for any singular knot $\left\{K_{P} \mid P \subset\{1, \ldots, l\}\right\}$ of type $B\left(k_{1}, \ldots, k_{l}\right)$,

$$
\sum_{P \subset\{1, \ldots, l\}}(-1)^{|P|} \varphi\left(K_{P}\right)=0
$$

Since a B_{2}-move is realized by some crossing changes we see that an invariant $\varphi: \mathcal{K} \rightarrow A$ is a finite type invariant of type $B(\underbrace{2, \ldots, 2})$ if and only if it is a Vassiliev invariant of order $\leq l-1$.

In order to prove Theorem 1, we need the following theorems.

Theorem 2 (cf. [4, Theorem 5.4]). The set of B_{k}-equivalence classes, denoted by \mathcal{K} / B_{k}, of oriented knots in S^{3} forms an abelian group under connected sum of oriented knots.

Theorem 3 (cf. [12, Theorem 1.2]). Let $l(\geq 2)$ and $k_{1}, \ldots, k_{l}(\geq 2)$ be integers, and $k-1=\left(k_{1}-1\right)+\cdots+\left(k_{l}-1\right)$. Then the projection $p_{k}: \mathcal{K} \rightarrow \mathcal{K} / B_{k}$ is a finite type invariant of type $B\left(k_{1}, \ldots, k_{l}\right)$.

REmark. Since a C_{k}-move is the same as a B_{k+1}-move, Theorem 2 follows from [4, Theorem 5.4]. Theorem 3 is similar to [12, Theorem 1.2]. In order to give a self-contained proof of Theorem 1, we will give self-contained proofs of Theorems 2 and 3. Although the reasonings given in the proofs of Theorems 2 and 3 are analogous to those in [4] (and also in [11] and [12]) we provide simpler and shorter arguments.
2. Band description. It is known that any knot can be expressed as a "band sum" of the trivial knot and a split union of some Hopf links [8], [13] (or Borromean rings [14]). K. Taniyama and the author showed that if two knots are C_{k}-equivalent, then one can be expressed as a band sum of the other and a split union of certain $(k+1)$-component Brunnian links [11], [12]. By similar arguments to those in [11], we describe a relation between B_{k}-equivalence and a certain band sum.

Let $\left(T_{1}, T_{2}\right)$ be a k-component Brunnian local move. Let $T \subset B^{3}$ be the trivial k-string tangle illustrated in Figure 1 , and let D be the disjoint union of the k disks bounded by T and arcs in ∂B^{3} (see Figure 2). Since T_{2} is a trivial tangle, there is a tangle S such that (S, T) and $\left(T_{1}, T_{2}\right)$ are equivalent. Then the pair $(S, \partial D-T)$ is called a B_{k}-link model (see Figure 3).

Fig. 1

Fig. 2

Fig. 3

Let $\left(\alpha_{i}, \beta_{i}\right)$ be $B_{\varrho(i)}$-link models $(i=1, \ldots, l)$, and K an oriented knot (respectively a tangle). Let $\psi_{i}: B^{3} \rightarrow S^{3}$ (respectively $\psi_{i}: B^{3} \rightarrow \operatorname{int} B^{3}$) be an orientation preserving embedding for $i=1, \ldots, l$, and let $b_{1,1}, \ldots, b_{1, \varrho(1)}$, $b_{2,1}, \ldots, b_{2, \varrho(2)}, \ldots, b_{l, 1}, \ldots, b_{l, \varrho(l)}$ be mutually disjoint disks embedded in S^{3} (respectively B^{3}). Suppose that they satisfy the following conditions;
(1) $\psi_{i}\left(B^{3}\right) \cap \psi_{j}\left(B^{3}\right)=\emptyset$ if $i \neq j$,
(2) $\psi_{i}\left(B^{3}\right) \cap K=\emptyset$ for each i,
(3) $b_{i, k} \cap K=\partial b_{i, k} \cap K$ is an arc for each i, k,
(4) $b_{i, k} \cap \bigcup_{j=1}^{l} \psi_{j}\left(B^{3}\right)=\partial b_{i, k} \cap \psi_{i}\left(B^{3}\right)$ is a component of $\psi_{i}\left(\beta_{i}\right)$ for each i, k.

Let J be an oriented knot (respectively a tangle) defined by

$$
J=K \cup\left(\bigcup_{i, k} \partial b_{i, k}\right) \cup\left(\bigcup_{i=1}^{l} \psi_{i}\left(\alpha_{i}\right)\right)-\bigcup_{i, k} \operatorname{int}\left(\partial b_{i, k} \cap K\right)-\bigcup_{i=1}^{l} \psi_{i}\left(\operatorname{int} \beta_{i}\right)
$$

where the orientation of J coincides with that of K on $K-\bigcup_{i, k} b_{i, k}$ if K is oriented. We call each $b_{i, k}$ a band. Each image $\psi_{i}\left(B^{3}\right)$ is called a link ball. We set $\mathcal{B}_{i}=\left(\left(\alpha_{i}, \beta_{i}\right), \psi_{i},\left\{b_{i, 1}, \ldots, b_{i, \varrho(i)}\right\}\right)$ and call \mathcal{B}_{i} a $B_{\varrho(i)}$-chord. We denote J by $J=\Omega\left(K ;\left\{\mathcal{B}_{1}, \ldots, \mathcal{B}_{l}\right\}\right)$, and say that J is a band sum of K and chords $\mathcal{B}_{1}, \ldots, \mathcal{B}_{l}$, or a band sum of K and $\left\{\mathcal{B}_{1}, \ldots, \mathcal{B}_{l}\right\}$.

From now on we consider knots up to ambient isotopy of S^{3} and tangles up to ambient isotopy of B^{3} relative to ∂B^{3} without explicit mention.

By the definitions of a B_{k}-move and a B_{k}-link model, we have:
Sublemma 4 (cf. [12, Sublemmas 3.3 and 3.5]).
(1) A local move $\left(T_{1}, T_{2}\right)$ is a B_{k}-move if and only if T_{1} is a band sum of T_{2} and a B_{k}-link model.
(2) A knot J is obtained from a knot K by a single B_{k}-move if and only if K is a band sum of J and a B_{k}-link model.

Note that, by Sublemma 4(1), a set \mathbf{K} of knots is a singular knot of type $B\left(k_{1}, \ldots, k_{l}\right)$ if and only if there is a knot K and a band sum $J=$ $\Omega\left(K ;\left\{\mathcal{B}_{1}, \ldots, \mathcal{B}_{l}\right\}\right)$ of K and $B_{k_{i}}$-chords $\mathcal{B}_{i}(i=1, \ldots, l)$ such that

$$
\mathbf{K}=\left\{\Omega\left(K ; \bigcup_{i \in P}\left\{\mathcal{B}_{i}\right\}\right) \mid P \subset\{1, \ldots, l\}\right\}
$$

Sublemma 5 (cf. [12, Sublemma 3.5]). Let K, J and I be oriented knots (or tangles). Suppose that $J=\Omega\left(K ;\left\{\mathcal{B}_{1}, \ldots, \mathcal{B}_{l}\right\}\right)$ for some chords $\mathcal{B}_{1}, \ldots, \mathcal{B}_{l}$ and $I=\Omega(J ;\{\mathcal{B}\})$ for some B_{k}-chord \mathcal{B}. Then there is a B_{k}-chord \mathcal{B}^{\prime} such that $I=\Omega\left(K ;\left\{\mathcal{B}_{1}, \ldots, \mathcal{B}_{l}, \mathcal{B}^{\prime}\right\}\right)$. Moreover, if for a subset P of $\{1, \ldots, l\}$ the link ball or the bands of \mathcal{B} intersect either the link ball or the bands of \mathcal{B}_{i} only when $i \in P$, then $\Omega\left(\Omega\left(K ; \bigcup_{i \in P}\left\{\mathcal{B}_{i}\right\}\right) ;\{\mathcal{B}\}\right)=\Omega\left(K ;\left(\bigcup_{i \in P}\left\{\mathcal{B}_{i}\right\}\right) \cup\left\{\mathcal{B}^{\prime}\right\}\right)$.

Proof. If the bands and the link ball of \mathcal{B} are disjoint from those of $\mathcal{B}_{1}, \ldots, \mathcal{B}_{l}$ then $I=\Omega\left(K ;\left\{\mathcal{B}_{1}, \ldots, \mathcal{B}_{l}, \mathcal{B}\right\}\right)$. If not, then we deform I up to ambient isotopy as follows. By thinning and shrinking the bands and the link ball of \mathcal{B} respectively, we may assume that the link ball of \mathcal{B} intersects neither the bands nor the link balls of $\mathcal{B}_{1}, \ldots, \mathcal{B}_{l}$. And by sliding the bands of \mathcal{B} along J, we may also assume that the intersection of the bands with J is disjoint from the bands and the link balls of $\mathcal{B}_{1}, \ldots, \mathcal{B}_{l}$. Then we sweep the bands of \mathcal{B} out of the link balls of $\mathcal{B}_{1}, \ldots, \mathcal{B}_{l}$. Note that this is always possible since the tangles of a local move are trivial. Finally, we sweep the intersection of the bands of \mathcal{B} and the bands of $\mathcal{B}_{1}, \ldots, \mathcal{B}_{l}$ out of the intersection of the bands of $\mathcal{B}_{1}, \ldots, \mathcal{B}_{l}$ and K. Let \mathcal{B}^{\prime} be the result of the deformation of \mathcal{B} described above. Then it is not hard to see that \mathcal{B}^{\prime} is the desired chord.

By repeated applications of Sublemmas 4 and 5 we immediately have the following lemma.

Lemma 6 (cf. [12, Lemma 3.6]). Let k be a positive integer and let K and J be oriented knots (or tangles). Then K and J are B_{k}-equivalent if and only if J is a band sum of K and some B_{k}-link models.

Since the local moves illustrated in Figures 4 and 5 are a B_{k+1}-move and B_{j+k-1}-move respectively, the following two lemmas follow from Sublemma 5.

Fig. 4

Fig. 5
Lemma 7 (cf. [12, Lemma 3.8]). Let $K, J=\Omega\left(K ;\left\{\mathcal{B}_{1}, \ldots, \mathcal{B}_{l}, \mathcal{B}_{0}\right\}\right)$ and $I=\Omega\left(K ;\left\{\mathcal{B}_{1}, \ldots, \mathcal{B}_{l}, \mathcal{B}_{0}^{\prime}\right\}\right)$ be oriented knots, where $\mathcal{B}_{1}, \ldots, \mathcal{B}_{l}$ are chords and $\mathcal{B}_{0}, \mathcal{B}_{0}^{\prime}$ are B_{k}-chords. Suppose that J and I differ locally as illustrated in Figure 4, i.e., I is obtained from J by a crossing change between K and a band
of \mathcal{B}_{0}. Then I is obtained from J by a B_{k+1}-move. Moreover, there is a $B_{k+1^{-}}$ chord \mathcal{B} such that $\Omega\left(K ;\left(\bigcup_{i \in P}\left\{\mathcal{B}_{i}\right\}\right) \cup\left\{\mathcal{B}_{0}\right\}\right)=\Omega\left(K ;\left(\bigcup_{i \in P}\left\{\mathcal{B}_{i}\right\}\right) \cup\left\{\mathcal{B}_{0}^{\prime}, \mathcal{B}\right\}\right)$ for any subset P of $\{1, \ldots, l\}$.

Lemma 8 (cf. [12, Lemma 3.9]). Let $K, J=\Omega\left(K ;\left\{\mathcal{B}_{1}, \ldots, \mathcal{B}_{l}, \mathcal{B}_{0 j}, \mathcal{B}_{0 k}\right\}\right)$ and $I=\Omega\left(K ;\left\{\mathcal{B}_{1}, \ldots, \mathcal{B}_{l}, \mathcal{B}_{0 j}^{\prime}, \mathcal{B}_{0 k}^{\prime}\right\}\right)$ be oriented knots, where $\mathcal{B}_{1}, \ldots, \mathcal{B}_{l}$ are chords and $\mathcal{B}_{0 j}, \mathcal{B}_{0 j}^{\prime}$ (respectively $\mathcal{B}_{0 k}, \mathcal{B}_{0 k}^{\prime}$) are B_{j}-chords (respectively B_{k} chords). Suppose that J and I differ locally as illustrated in Figure 5. Then I is obtained from J by a B_{j+k-1}-move. Moreover, there is a B_{j+k-1}-chord \mathcal{B} such that $\Omega\left(K ;\left(\bigcup_{i \in P}\left\{\mathcal{B}_{i}\right\}\right) \cup\left\{\mathcal{B}_{0 j}, \mathcal{B}_{0 k}\right\}\right)=\Omega\left(K ;\left(\bigcup_{i \in P}\left\{\mathcal{B}_{i}\right\}\right) \cup\left\{\mathcal{B}_{0 j}^{\prime}, \mathcal{B}_{0 k}^{\prime}, \mathcal{B}\right\}\right)$ for any subset P of $\{1, \ldots, l\}$.

We call the change from J to I in Lemma 8 a band exchange.
For a C_{k}-move, "band description" is also defined, and Sublemmas 4, 5, Lemmas 6, 7 and 8 hold [12]. However, the proofs given in [12] are not as obvious as ours. In fact, more complicated arguments are needed. In contrast, we need some arguments to prove the following lemma, which is trivial for a C_{k}-move.

Lemma 9. Let $\left(T_{1}, T_{2}\right)$ be a B_{k}-move. For any integer $l(\leq k), T_{2}$ is obtained from T_{1} by B_{l}-moves. In particular, B_{k}-equivalent knots are $B_{l^{-}}$ equivalent.

Proof. Let t_{1}, \ldots, t_{k} and u_{1}, \ldots, u_{k} be the components with $\partial t_{i}=\partial u_{i}$ $(i=1, \ldots, k)$ of T_{1} and T_{2} respectively. We may assume that $\left(T_{1}, T_{2}\right)$ has a diagram in the unit disk such that $T_{1}-t_{1}$ and T_{2} have no crossings.

Since $\left(T_{1}-t_{2}, T_{2}-u_{2}\right)$ is a trivial local move, T_{2} is obtained from T_{1} by B_{2}-moves that correspond to crossing changes between t_{1} and t_{2}. By Lemma $6, T_{1}$ is a band sum, $\Omega\left(T_{2} ; \mathbf{B}_{2}\right)$, of T_{2} and a set \mathbf{B}_{2} of B_{2}-chords. Note that no band of B_{2}-chords intersects $T_{2}-\left(u_{1} \cup u_{2}\right)$.

Since $\left(\Omega\left(T_{2} ; \mathbf{B}_{2}\right)-t_{3}, T_{2}-u_{3}\right)=\left(T_{1}-t_{3}, T_{2}-u_{3}\right)$ is a trivial local move, T_{2} is obtained from T_{1} by B_{3}-moves that correspond to crossing changes between t_{3} and some bands of B_{2}-chords. By Lemma $6, T_{1}$ is a band sum $\Omega\left(T_{2} ; \mathbf{B}_{3}\right)$ of T_{2} and a set \mathbf{B}_{3} of B_{3}-chords. Note that no bands of B_{3}-chords intersects $T_{2}-\left(u_{1} \cup u_{2} \cup u_{3}\right)$.

Continuing this process we obtain the conclusion.

3. Proofs of Theorems 1, 2 and 3

Proof of Theorem 3. Let K_{0} be a knot and K_{1} a band sum of K_{0} and $B_{k_{j}}$-chords $\mathcal{B}_{k_{j}, j}(j=1, \ldots, l)$. It is sufficient to show that

$$
\sum_{P \subset\{1, \ldots, l\}}(-1)^{|P|}\left[\Omega\left(K_{0} ; \bigcup_{j \in P}\left\{\mathcal{B}_{k_{j}, j}\right\}\right)\right]=0 \in \mathcal{K} / B_{k}
$$

where $[K]$ is the B_{k}-equivalence class which contains the knot K.

Set

$$
K_{P}=\Omega\left(K_{0} ; \bigcup_{j \in P}\left\{\mathcal{B}_{k_{j}, j}\right\}\right)
$$

Claim. The knot $K_{1}\left(=K_{\{1, \ldots, l\}}\right)$ is B_{k}-equivalent to a band sum of K_{0} $\left(=K_{\emptyset}\right)$ and a set $\bigcup_{i, j}\left\{\mathcal{B}_{i, j}\right\}$ of local chords such that
(1) $\mathcal{B}_{i, j}$ is a B_{i}-chord $(i<k)$ and it has an associated subset $\omega\left(\mathcal{B}_{i, j}\right) \subset$ $\{1, \ldots, l\}$ with $\sum_{t \in \omega\left(\mathcal{B}_{i, j}\right)}\left(k_{t}-1\right) \leq i-1$,
(2) for each $P \subset\{1, \ldots, l\}$,

$$
\left[K_{P}\right]=\left[\Omega\left(K_{0} ; \bigcup_{\omega\left(\mathcal{B}_{i, j}\right) \subset P}\left\{\mathcal{B}_{i, j}\right\}\right)\right]
$$

Here a chord $\mathcal{B}_{i, j}$ is called a local chord if there is a 3 -ball B such that B contains all the bands and the link ball of $\mathcal{B}_{i, j}, B$ does not intersect any other bands or link balls, and $\left(B, B \cap K_{0}\right)$ is a trivial ball-arc pair.

Before proving the Claim, we will finish the proof of Theorem 3. Suppose K_{1} is B_{k}-equivalent to a band sum of K_{0} and some local chords $\mathcal{B}_{i, j}$. Each $\mathcal{B}_{i, j}$ represents a knot $K_{i, j}$ which is connected summed with K_{0}. So the band sum is a connected sum of K_{0} and $K_{i, j}$'s. Then we have

$$
\begin{aligned}
& \sum_{P \subset\{1, \ldots, l\}}(-1)^{|P|}\left[\Omega\left(K_{0} ; \bigcup_{\omega\left(\mathcal{B}_{i, j}\right) \subset P}\left\{\mathcal{B}_{i, j}\right\}\right)\right] \\
&=\sum_{P \subset\{1, \ldots, l\}}(-1)^{|P|}\left(\left[K_{0}\right]+\sum_{\omega\left(\mathcal{B}_{i, j}\right) \subset P}\left[K_{i, j}\right]\right) \\
&=\sum_{P \subset\{1, \ldots, l\}}(-1)^{|P|}\left[K_{0}\right]+\sum_{P \subset\{1, \ldots, l\}}(-1)^{|P|}\left(\sum_{\omega\left(\mathcal{B}_{i, j}\right) \subset P}\left[K_{i, j}\right]\right) \\
&=0+\sum_{i, j}\left(\sum_{P \subset\{1, \ldots, l\}, \omega\left(\mathcal{B}_{i, j}\right) \subset P}(-1)^{|P|}\right)\left[K_{i, j}\right]
\end{aligned}
$$

We consider the coefficient of $\left[K_{i, j}\right]$. Since $\sum_{t \in \omega\left(\mathcal{B}_{i, j}\right)}\left(k_{t}-1\right)<k-1, \omega\left(\mathcal{B}_{i, j}\right)$ is a proper subset of $\{1, \ldots, l\}$. We may assume that $\omega\left(\mathcal{B}_{i, j}\right)$ does not contain $a \in\{1, \ldots, l\}$. Then

$$
\begin{aligned}
\sum_{P \subset\{1, \ldots, l\}, \omega\left(\mathcal{B}_{i, j}\right) \subset P}(-1)^{|P|}= & \sum_{P \subset\{1, \ldots, l\} \backslash\{a\}, \omega\left(\mathcal{B}_{i, j}\right) \subset P}(-1)^{|P|} \\
& +\sum_{P \subset\{1, \ldots, l\} \backslash\{a\}, \omega\left(\mathcal{B}_{i, j}\right) \subset P}(-1)^{|P \cup\{a\}|}=0 .
\end{aligned}
$$

Thus, we have the conclusion.
Now we will show the Claim.

Proof of Claim. We first set $\omega\left(\mathcal{B}_{k_{j}, j}\right)=\{j\}$ for $j=1, \ldots, l$. Then we have $\sum_{t \in \omega\left(\mathcal{B}_{k_{j}, j}\right)}\left(k_{t}-1\right)=k_{j}-1<k-1$ and

$$
K_{P}=\Omega\left(K_{0} ; \bigcup_{\omega\left(\mathcal{B}_{k_{j}, j}\right) \subset P}\left\{\mathcal{B}_{k_{j}, j}\right\}\right)
$$

Note that a crossing change between bands can be realized by crossing changes between K_{0} and a band as illustrated in Figure 6. Therefore we can deform each chord into a local chord by (i) crossing changes between K_{0} and bands, and (ii) band exchanges.
(i) When we perform a crossing change between K_{0} and a B_{p}-band of a B_{p}-chord $\mathcal{B}_{p, q}$ with $p \leq k-2$, by using Lemma 7 , we introduce a new $B_{p+1^{-}}$ chord $\mathcal{B}_{p+1, r}$ and we set $\omega\left(\mathcal{B}_{p+1, r}\right)=\omega\left(\mathcal{B}_{p, q}\right)$ so that conditions (1) and (2) still hold. By Lemma 7, a crossing change between K_{0} and a B_{k-1}-band is realized by a B_{k}-move and therefore does not change the B_{k}-equivalence class.
(ii) If we perform a band exchange between a B_{p}-chord $\mathcal{B}_{p, q}$ and a $B_{r^{-}}$ chord $\mathcal{B}_{r, s}$ with $p+r \leq k$, then, by using Lemma 8 , we introduce a new B_{p+r-1}-chord $\mathcal{B}_{p+r-1, n}$ and set $\omega\left(\mathcal{B}_{p+r-1, n}\right)=\omega\left(\mathcal{B}_{p, q}\right) \cup \omega\left(\mathcal{B}_{r, s}\right)$ so that conditions (1) and (2) still hold. By Lemmas 8 and 9 , a band exchange between a B_{p}-chord $\mathcal{B}_{p, q}$ and a B_{r}-chord $\mathcal{B}_{r, s}$ with $p+r \geq k+1$ does not change the B_{k}-equivalence class.

Fig. 6
Proof of Theorem 2. It is sufficient to show the existence of an inverse element for a given knot K. Suppose that there is a knot J such that $K \# J$ is B_{k}-equivalent to a trivial knot O. Then, by Lemma $6, O$ is a band sum of $K \# J$ and some B_{k}-chords. By using Lemma 7 , we deform O up to B_{k+1}-equivalence so that the B_{k}-chords are local chords. Then the result is a connected sum of $K \# J$ and some knots K_{1}, \ldots, K_{n} that correspond to local chords. Hence $K \# J \# K_{1} \# \cdots \# K_{n}$ is B_{k+1}-equivalent to O. Thus $J \# K_{1} \# \cdots \# K_{n}$ is the desired knot.

Proof of Theorem 1. It is not hard to see that B_{l+1}-equivalent knots are also l-similar [9] $((l-1)$-equivalent [1]).

By Theorem 3, the projection $p_{l+1}: \mathcal{K} \rightarrow \mathcal{K} / B_{l+1}$ is a Vassiliev invariant of order $\leq l-1$. If two knots have the same values of any Vassiliev invariant of order $\leq l-1$, then they are B_{l+1}-equivalent.

Acknowledgements. The author would like to thank the referee for his/her useful comments.

References

[1] M. Gusarov, On n-equivalence of knots and invariants of finite degree, in: O. Viro (ed.), Topology of Manifolds and Varieties, Providence, RI, Amer. Math. Soc., 1994, 173-192.
[2] -, Variations of knotted graphs. The geometric technique of n-equivalence, Algebra i Analiz 12 (2000), 79-125 (in Russian); English transl.: St. Petersburg Math. J. 12 (2001), 569-604.
[3] K. Habiro, Aru musubime no kyokusyo sousa no zoku ni tuite, Master thesis, Tokyo Univ., 1994 (in Japanese).
[4] -, Claspers and finite type invariants of links, Geom. Topol. 4 (2000), 1-83.
[5] -, Brunnian links, claspers and Goussarov-Vassiliev finite type invariants, preprint.
[6] H. A. Miyazawa and A. Yasuhara, Classification of n-component Brunnian links up to C_{n}-move, Topology Appl., to appear.
[7] H. Murakami and Y. Nakanishi, On a certain move generating link-homology, Math. Ann. 284 (1989), 75-89.
[8] S. Suzuki, Local knots of 2-spheres in 4-manifolds, Proc. Japan Acad. 45 (1969), 34-38.
[9] K. Taniyama, On similarity of links, Gakujutsu Kenkyu, School of Education, Waseda University, Series of Matematics, 41 (1993), 33-36.
[10] K. Taniyama and A. Yasuhara, Realization of knots and links in a spatial graph, Topology Appl. 112 (2001), 87-109.
[11] —, —, Local moves on spatial graphs and finite type invariants, Pacific J. Math. 211 (2003), 183-200.
[12] -, —, Band description of knots and Vassiliev invariants, Math. Proc. Cambridge Philos. Soc. 133 (2002), 325-343.
[13] M. Yamamoto, Knots in spatial embeddings of the complete graph on four vertices, Topology Appl. 36 (1990), 291-298.
[14] A. Yasuhara, Delta-unknotting operation and adaptability of certain graphs, in: Knots '96 (Tokyo), S. Suzuki (ed.), World Sci., 1997, 115-121.

Department of Mathematics
Tokyo Gakugei University
Nukuikita 4-1-1, Koganei, Tokyo 184-8501, Japan
E-mail: yasuhara@u-gakugei.ac.jp

[^0]: 2000 Mathematics Subject Classification: Primary 57M25.
 Key words and phrases: Brunnian move, Vassiliev invariant, band sum.

