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Arc-presentations of links: Monotonic simplification

by

I. A. Dynnikov (Moscow)

Abstract. In the early 90’s J. Birman and W. Menasco worked out a nice technique
for studying links presented in the form of a closed braid. The technique is based on certain
foliated surfaces and uses tricks similar to those that were introduced earlier by D. Ben-
nequin. A few years later P. Cromwell adapted Birman–Menasco’s method for studying
so-called arc-presentations of links and established some of their basic properties. Here we
further develop that technique and the theory of arc-presentations, and prove that any
arc-presentation of the unknot admits a (non-strictly) monotonic simplification by elemen-
tary moves; this yields a simple algorithm for recognizing the unknot. We also show that
the problem of recognizing split links and that of factorizing a composite link can be solved
in a similar manner. We also define two easily checked sufficient conditions for knottedness.
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INTRODUCTION

The most important problem of knot theory is the classification of knots
and links. To construct an algorithm that, for any two given links, decides
whether they are isotopic or not is known to be a very hard problem.
A solution published in [13] uses contributions of many mathematicians
including W. Haken, F. Waldhausen, W. Jaco, P. Shalen, K. Johannson,
G. Hemion, W. Thurston, and S. Matveev. The previously announced so-
lution by G. Hemion was shown to be incomplete by S. Matveev. It is not
difficult to construct an algorithm that enumerates all diagrams of links,
which, in conjunction with the previously mentioned algorithm, makes it
possible to generate a list of diagrams in which each isotopy class of links
is presented exactly once and, for any other diagram, to locate the corre-
sponding isotopy class in the list.

The algorithm for recognizing links mentioned above is extremely com-
plex and gives only a theoretical solution of the problem. It actually deals
with three-manifolds which are link complements provided with a meridian-
longitude pair in each connected component of the boundary. Up to now,
this algorithm cannot be used in practice because of the huge number of op-
erations needed for its implementation, even for links with a small number
of crossings.

At the same time, a theoretical solution of the problem will be given
if, for some computable function f(n) (say, exp(exp(exp(n!)))), one shows
that any two diagrams of the same link type that have ≤ n crossings can
be obtained from each other by ≤ f(n) Reidemeister moves. However, an
explicit formula for such a function is still unknown.

It seems to be widely understood that the following problems, which are
important ingredients of the general classification problem, are simpler from
the practical point of view:

1) recognizing the trivial knot;
2) recognizing a split link and presenting it as the distant union of two

non-empty links;
3) recognizing a composite non-split link and presenting it as the con-

nected sum of two non-trivial links.

We shall call the aggregate of these three problems the decomposition prob-

lem, since a solution of all three allows one to express any given link in
terms of prime non-split links and the unknot by using the connected sum
and distant union operations. Such a decomposition is known to be essen-
tially unique, but to solve the general classification problem, one must also
construct an algorithm for comparing isotopy classes of two prime non-split
links that are presented by their diagrams.



Arc-presentations of links 31

The decomposition problem was solved by W. Haken [10] and H. Schu-
bert [18] by using Haken’s method of normal surfaces, which plays a very
important rôle in modern three-dimensional topology. (In particular, normal
surfaces are used in the algorithm for recognizing Haken manifolds men-
tioned above and in the Rubinstein–Thompson algorithm for recognizing
the three-sphere).

Finding normal surfaces seems to be an exponentially hard problem.
At least, the known realizations are that hard, both theoretically and in
practice. So, any algorithm that uses Haken’s technique has almost no chance
to be implementable in a reasonable time.

In recent years, a few attempts have been made to find an algorithm
for recognizing the trivial knot by using some monotonic simplification. By
the latter we mean the following. One chooses a way of presenting knots
by diagrams of certain type and introduces the notion of complexity c(D)
of a diagram. For the chosen type of presentation, one also fixes a set of
elementary moves that do not alter the topological type of a knot. Then,
for a given diagram D of a knot, one searches for a sequence of diagrams

(1) D0 = D,D1, D2, . . .

such that, for each i, the diagram Di+1 is obtained from Di by an elemen-
tary move and we have c(Di+1) ≤ c(Di) (or c(Di+1) < c(Di), in which case
we shall speak of a strictly monotonic simplification). If there exists an algo-
rithm that, for any D, produces such a sequence D0 = D,D1, . . . , DN = D′

in which the last diagram D′ cannot be simplified any more, we shall say
that D is monotonically simplifiable to D′. Such an algorithm certainly
exists if, for any n, there are only finitely many diagrams D such that
c(D) < n (which will be the case for arc-presentations) because, in this case,
we can find all monotonic simplification sequences in finite time by using an
exhaustive search. If, for any diagram D of the unknot, the diagram D′ ob-
tained from D by a simplification algorithm is always the trivial diagram, we
shall speak about the recognition of the unknot by monotonic simplification.

It is well known that, in the case of ordinary planar diagrams with Reide-
meister moves as elementary moves and the crossing number as the measure
of complexity, recognizing the unknot by monotonic simplification is not
possible because there exist diagrams of the unknot that cannot be simpli-
fied to the trivial circle by using only Reidemeister moves not increasing the
crossing number.

According to A. E. Hatcher’s solution of the Smale conjecture [11], there
is no topological obstruction to the existence of a flow ω on the space of knots
such that any unknotted curve will evolve under ω to a round circle. Such a
flow may be the gradient flow of some energy function, which plays the rôle
of the measure of complexity. An appropriate discretization of the flow may
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lead to a strictly monotonic simplification algorithm. Some investigation of
the gradient flows on the knot space and numerical experiments have been
done in the literature (see, e.g., [16], [9], [12]).

A monotonic simplification procedure for spines of three-manifolds has
been worked out by S. V. Matveev in [14] for recognizing three-manifolds.
It can also be used for recognizing the unknot: for a given knot one first
constructs a spine of the knot complement and then applies the simplifi-
cation algorithm. Numerical experiments of this kind have been done by
E. Fominykh.

In [8], the author introduced three-page presentations of knots. The com-
plexity of a three-page knot is defined to be the number of vertices at the
binding line of the three-page book. A simplification procedure for three-
page knots has been tested on a series of examples.

In all three situations mentioned above, it has not been proved that a
monotonic simplification to a trivial circle is always possible for any pre-
sentation of the unknot, but no counterexamples have been found either,
though attempts have been made.

The first successful attempt to find a measure of complexity with respect
to which any presentation of the unknot admits a monotonic simplification
was made by J. Birman and W. Menasco in [4]. They studied presentations
of a knot as the closure of a braid and showed that the number of strands in
a non-trivial braid presenting the unknot can always be reduced by moves
of certain types. The moves include the Markov moves that do not increase
the number of strands (i.e., braid conjugations and “destabilizations”, which
are the Markov moves that reduce the number of strands) and so-called
exchange moves, which preserve the number of strands. The ideas of [4]
and the known solution of the conjugacy problem for braid groups were
used by J. Birman and M. Hirsch in [2] to construct a new algorithm for
recognizing the unknot. This algorithm, however, does not have the form
of a monotonic simplification algorithm in our sense, and it is not clear
whether the straightforward idea of monotonic simplification can be used
here, since no algorithm is known to decide whether a given braid conjugacy
class admits a destabilization after finitely may exchanges.

The problem of recognizing the unknot happens to be very closely re-
lated to two other problems: recognizing split links and recognizing com-
posite links. In many cases, the same technique allows one to solve all three
problems. The distant union and connected sum operations can be defined
at the level of diagrams. But a split (or composite) link can usually be pre-
sented by a non-split (respectively, prime) diagram. So, the general question
is this: for a given diagram D, can one apply finitely many elementary moves
without increasing the complexity so that the final diagram is obtained by
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the distant union and connected sum operations from trivial diagrams and
diagrams of prime non-split links? J. Birman and W. Menasco have shown
in [3] that the answer is positive in the case of closed braids (there is a gap
in the proof of the result on composite links, but the assertion is true).

At first sight, arc-presentations, which we study in this paper, seem to
have nothing in common with braids. However, the braid foliation technique
that J. Birman and W. Menasco developed in a series of papers including [3]
and [4] turned out to be very well adapted for studying arc-presentations of
knots. The fact that the Birman–Menasco foliated surface technique can be
extended to arc-presentations was discovered by P. Cromwell in [6], where
he proved the additivity of the arc index under the connected sum oper-
ation. The possibility of a monotonic simplification and other algorithmic
questions are not discussed in [6], but a sequence of moves preserving the
complexity appears in the proof. The generalized type I move of [6] can be
easily decomposed into elementary moves (Proposition 5 of this paper). In
conjunction with this remark, the arguments of [6] would suffice for a proof
of recognizibility of split links by monotonic simplification. As for recogniz-
ing composite links, there is a gap in the final part of the proof of the main
result of [6], which is covered in this paper. We also provide some technical
details that are not mentioned in [6].

In addition to this, we extend the foliated surface technique to spanning
discs of arc-presentations of the unknot. Compared to the case of a split-
ting or factorizing sphere, spanning discs require care in considering their
behaviour near the boundary.

In the earlier version of the present manuscript, the treatment of the
boundary was not careful enough, and a gap occurred in the proof of the
main result. The mistake was discovered by W. Menasco and A. Sikora
who also suggested an idea for filling the gap. We use their suggestion in a
modified form.

The main result of this paper is the following.

Theorem 1. The decomposition problem of arc-presentations is solvable

by monotonic simplification.

In order to make this claim less abstract in this superficial introduction,
we explain it in a very elementary language. Let a rectangular diagram be
an ordinary planar diagram D of a link satisfying the following restrictions:

1) D consists only of vertical and horizontal straight line segments, which
we call edges;

2) at each crossing of D, the vertical arc is overcrossing and the hori-
zontal one undercrossing;

3) no two edges are collinear (see Fig. 1).
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b b

bbbb
bb

b b

bbbb

b b

Fig. 1. A rectangular diagram

Two such diagrams are called combinatorially equivalent if they are iso-
topic in the plane via an ambient isotopy h that has the form h(x, y) =
(f(x), g(y)).

Since the type of a crossing is determined by its position, there is no need
to indicate in figures which arc is overcrossing and which one undercrossing.

Clearly, any planar diagram of a link is isotopic to a rectangular diagram
(see below).

The following transforms of rectangular diagrams are elementary moves:

0) cyclic permutation of horizontal (vertical) edges (see Fig. 2);

aa
a a

a a
aa

←−−−−−−→

Fig. 2. Cyclic permutation of vertical edges

1) stabilization and destabilization (Fig. 3);
2) interchanging neighbouring edges if their pairs of endpoints do not

interleave (Fig. 4).

Figures 2–4 illustrate particular cases of the moves. To obtain all the other
cases, one should apply all possible rotations by πk/2, k ∈ Z, and reflections
in horizontal and vertical lines if necessary.

The complexity c(D) of a rectangular diagramD is the number of vertical
edges in D. The only operations changing the complexity are stabilization
(which increases it by 1) and destabilization (inverse to stabilization). We
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aaa
←−−−−−−−

stabilization

−−−−−−−→
destabilization

a
−−−−−−−→

stabilization

←−−−−−−−
destabilization

aa a
aa a

←−−−−−−−
stabilization

−−−−−−−→
destabilization

a
−−−−−−−→

stabilization

←−−−−−−−
destabilization

aaa
Fig. 3. Stabilization and destabilization moves

b b b b ←−−−−−−→ b b b b
b bb b ←−−−−−−→ b bb b

Fig. 4. Interchanging horizontal edges

stress that the number of crossings is not taken into account in the defi-
nition of complexity. The number of crossings of a rectangular diagram of
complexity n is bounded from above by (n − 1)2/2. The simplest possi-
ble rectangular diagram, the trivial diagram, is an ordinary rectangle. Its
complexity is 2.

A rectangular diagram D is a distant union of diagrams D1, D2 if there
is a vertical line l that does not intersect D and splits it into two non-trivial
parts which are equivalent to D1, D2. We write D = D1 ⊔D2 in this case.

A rectangular diagram D is a connected sum of diagrams D1 and D2 if
there exists a rectangular disk R with vertical and horizontal sides whose
boundary ∂R meets D in two points so that the rectangular diagrams D1

and D2 (in either order) are obtained from R ∩ D and (R2 \ R) ∩ D by
connecting the two points of (∂R) ∩ D by a simple path lying outside or
inside R, respectively. In this case, we say that the diagram D is composite

and write D = D1#D2. In particular, a rectangular diagram D is composite
if there is a vertical or horizontal line intersecting D in exactly two points
such that on both its sides there are at least four vertices of D.

As we shall see in 1.3, rectangular diagrams are just another way of
thinking about arc-presentations. Thus, the assertion of Theorem 1 is ac-
tually this. For any given rectangular diagram D, one can find a sequence
of elementary moves D 7→ D1 7→ · · · 7→ DN , not including stabilization,
such that the final diagram DN is obtained by the connected sum and dis-
tant union operations from diagrams of prime non-trivial non-split links and
trivial diagrams.
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The idea of specifying arc-presentations by drawing the corresponding
rectangular diagrams is not new. It is already present in P. Cromwell’s
work [6], where he calls them “loops and lines” diagrams and uses them
to show that any link has an arc-presentation. A similar result is proved
in the manuscript [17] for graphs embedded in R

3 by using an appropriate
generalization of the notion of rectangular diagram.

1. PRELIMINARIES

1.1. Definition of arc-presentations. We shall regard a three-di-
mensional sphere S3 as the join of two circles: S3 = S1 ∗ S1, and use the
coordinate system (ϕ, τ, θ) on S3, where ϕ and θ are coordinates on the
circles, ϕ, θ ∈ R/(2πZ), and τ takes values in the interval [0, 1]. We have
(ϕ, 0, θ1) ∼ (ϕ, 0, θ2) and (ϕ1, 1, θ) ∼ (ϕ2, 1, θ) for all ϕ,ϕ1, ϕ2, θ, θ1, θ2 ∈ S1.
In order to distinguish between the circles τ = 0 and τ = 1, we shall denote
them by S1

ϕ and S1
θ , respectively. The circle S1

ϕ will be called the binding

circle. We shall denote by Dt the open disk defined by θ = t, τ > 0. Such a
disk will be called a page. We have ∂Dt = S1

ϕ.

We shall regard ϕ and θ as functions on S3. As a rule, we use the notation
s, s′, s1, s2, . . . for points from S1

ϕ and t, t′, t1, t2, . . . for points from S1
θ .

Let L be a link in S3. By an arc-presentation of L we shall mean a link
L′ in S3 isotopic to L such that the set L′ ∩ S1

ϕ, whose elements are called

vertices, is finite, and, for any t ∈ S1, the intersection of L′ with any page
Dt is either empty or an open arc approaching two distinct vertices.

Remark 1. The term “arc-presentation” was introduced by J. Birman
and W. Menasco, though the object itself appeared already in [5]. However,
it received almost no attention before P. Cromwell’s paper [6].

1.2. Duality of arc-presentations. Two arc-presentations, say L1 and
L2, are not distinguished if they have the same set of vertices, and, for any
t ∈ S1

θ , we have either L1∩Dt = L2∩Dt = ∅, or L1∩Dt and L2∩Dt are arcs
with the same endpoints. Having agreed about this, we may assume without
loss of generality that any arc L ∩ Dt of an arc-presentation L consists of
two radii of the disk Dt. This means that L is a link consisting of segments
of the form P ∗ Q ⊂ S1

ϕ ∗ S1
θ , where P ∈ S1

ϕ, Q ∈ S1
θ . Notice that, in this

definition, the rôles of the circles S1
ϕ and S1

θ are the same, and L can be
considered as an arc-presentation with respect to both circles. Vertices of
one of the presentations are the centers of arcs of the other.

So, there is a duality operation on the set of arc-presentations, which
is defined by the mapping ξ : S3 → S3 written in our coordinate system
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as ξ(ϕ, τ, θ) = (θ, 1 − τ, ϕ). The rôles of arcs and vertices are interchanged
under this duality.

Remark 2. There is a triangulation T (L) of S3 associated naturally
with any arc-presentation L having n ≥ 2 vertices. T (L) has n2 simplices
that have the form I ′∗I ′′, where I ′ ⊂ S1

ϕ (respectively, I ′′ ⊂ S1
θ ) is an interval

between neighbouring vertices of the arc-presentation L (respectively, ξ(L)).
In this construction, L is a subset of the 1-skeleton of T (L) containing all
the vertices. The main result of this paper can be proved by using normal
surfaces if one chooses T (L) as the main triangulation. In this case, the
reasoning becomes “self-dual” with respect to ξ. However, it seems to us
that Birman–Menasco’s approach, which “breaks the symmetry”, is easier
to use in our case.

1.3. Arc-presentations and rectangular diagrams

Proposition 1. Let L be an arc-presentation of a link , and D a rect-

angular diagram (see the Introduction) with vertices at all points (x, y) ∈
[0, 2π)× [0, 2π) such that L∩Dy is an arc one of whose endpoints is (x, 0, 0)
∈ S1

ϕ. Then D presents the same link as L does.

The correspondence L 7→ D between arc-presentations and rectangular

diagrams in [0, 2π) × [0, 2π) is one-to-one.

Proof. The definition ofD makes sense, since each arc has two endpoints,
and two arcs are attached to each vertex. Thus, in any vertical or horizontal
straight line in the (x, y)-plane, we will have either none or two vertices. In
the latter case, we connect them by a straight line segment, obtaining the
rectangular diagram D.

It is easy to see that one can obtain D from L by cutting S3 along disks
D0 and ξ(D0) and then projecting the result appropriately to the plane
τ = 1/2. For more explanations, see [6].

The last assertion of the proposition is obvious.

We shall regard rectangular diagrams as a convenient way for depicting
arc-presentations. Vertical edges of a rectangular diagram correspond to
vertices, and horizontal edges to arcs of an arc-presentation. We shall often
draw appropriate rectangular diagrams to illustrate properties or transforms
of arc-presentations.

1.4. Arc-presentations and closed braids. There is also an easy way
to convert a rectangular diagram (an arc-presentation) to a closed braid. An
arc presentation or a rectangular diagram can be endowed with an orien-
tation as an ordinary link or an ordinary planar link diagram, respectively.
For an oriented rectangular diagram D, we shall call a horizontal edge of D
negative if its orientation is opposite to the orientation of the x-axis.
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Proposition 2. Let D be an oriented rectangular diagram in [0, 2π) ×
[0, 2π). Replace each negative horizontal edge in D of the form [x1, x2] × y,
x1 < x2, by the union of two straight line segments ([−ε, x1] ∪ [x2, 2π]) × y,
where ε > 0. As before, at each crossing , we interpret the vertical arc as

overcrossing and the horizontal one as undercrossing. After a small defor-

mation of the resulting picture, we can get a planar diagram of a braid ,
say bD. Then the closure of bD is a link equivalent to the one defined by D.

Any diagram of a braid can be obtained from some rectangular diagram

by the method just described.a - a
aa

a a
a a
aa

aa →

a a
aa

a a
a a
aa

aa →

Fig. 5. Converting a rectangular diagram to a braid

The idea is illustrated in Fig. 5. We skip the easy proof. See also [6].

1.5. Elementary moves. Actually, elementary moves of arc-presenta-
tions have already been introduced in the language of rectangular diagrams
(see the Introduction). Here we describe them directly.

Throughout this section, we assume that each arc of any arc-presentation
L consists of two radii of a disk Dt. Thus, we have t ∈ S1

θ ∩ L if and only if
the page Dt contains an arc of L.

Suppose that we have a continuous family L(u) of arc presentations,
i.e., such that the sets L(u) ∩ S1

ϕ and L(u) ∩ S1
θ depend on u continuously.

Then all the links L(u) are isotopic to each other via isotopies of the form
(ϕ, τ, θ) 7→ (f(ϕ), τ, g(θ)). Let us see what happens to the corresponding
rectangular diagrams D(u) when u changes. If no point in L(u) ∩ S1

ϕ and

L(u) ∩ S1
θ passes through the origin 0 ∈ S1, the diagram D(u) also changes

continuously, and the combinatorial type of D(u) stays unchanged. If one of
the points in L(u) ∩ S1

ϕ (respectively, L(u) ∩ S1
θ ) passes through the origin,

the corresponding rectangular diagram is changed by a cyclic permutation
of vertical (respectively, horizontal) edges. Two arc-presentations that can
be included into such a continuous family are said to be combinatorially

equivalent.
The following assertion, although quite obvious, is very important from

the algorithmic point of view.

Proposition 3. For any n, there are only finitely many classes of com-

binatorially equivalent arc-presentations of complexity n.
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Remark 3. One can show that the number N(n) of pairwise distinct
classes of combinatorially equivalent arc-presentations of complexity n sat-
isfies the inequalities ((n− 1)!)2/(2n) < N(n) ≤ ((n− 1)!)2.

For three distinct points x1, x2, x3 of S1, we shall write x2 ∈ (x1, x3)
if, when going in the positive direction of S1 we meet the points xi in this
order: . . . , x1, x2, x3, x1, x2, . . . . We shall write x2 ∈ [x1, x3] if we have either
x2 ∈ (x1, x3) or x2 ∈ {x1, x3}. By γt,s,s′ we shall denote an arc in Dt such that
∂γt,s,s′ = {s, s′} ⊂ S1

ϕ. When using this notation, we shall not distinguish
between two arcs lying in the same page and having the same endpoints.
Thus, we write γt,s,s′ ⊂ L whenever we want to say that L∩Dt contains an
arc with endpoints s, s′.

Let α = γt,s1,s2 be an arc of an arc-presentation L. For sufficiently small
ε > 0, there is no arc of L other than α in Dt′ if t′ ∈ (t − ε, t + ε), and
there is no vertex of L other than s1 in (s1 − ε, s1 + ε) ⊂ S1

ϕ. Replacing α
by the arcs γt,s1+ε1,s2 and γt+ε2,s1,s1+ε1 , where ε1,2 ∈ {ε,−ε}, will be called
a stabilization move. The inverse operation will be called a destabilization

move. In the language of rectangular diagrams, these operations coincide
with stabilization and destabilization moves of rectangular diagrams, re-
spectively, provided that 0 /∈ (s1 − ε, s1 + ε) and 0 /∈ (t− ε, t+ ε), which can
always be achieved by a small perturbation of L and taking ε sufficiently
small.

Notice that a (de)stabilization move is self-dual with respect to ξ.
Let α1, α2 be two arcs of an arc-presentation L, αi ⊂ Dti , and suppose

there is no arc of L in
⋃

t∈(t1,t2) Dt or in
⋃

t∈(t2,t1) Dt. In this case, we shall
say that the arcs α1 and α2 are neighbouring.

Let α1 and α2 be neighbouring arcs, s1, s2 ∈ S1
ϕ the endpoints of α1, and

s3, s4 be the endpoints of α2, ∂α1∩∂α2 = ∅. We say that the arcs α1, α2 are
non-interleaved if we have either s1, s2 ∈ (s3, s4) or s1, s2 ∈ (s4, s3). Other-
wise, they are said to be interleaved. In other words, arcs are interleaved if
the corresponding chords of S1 intersect each other (see Fig. 6).

&%
'$rr r
r

s1 s2

s3

s4

&%
'$rr r
r

�
�

�
�

s1 s3

s2

s4

Fig. 6. Interleaved arcs (left) and non-interleaved arcs (right)

If α1 ⊂ Dt1 , α2 ⊂ Dt2 are non-interleaved neighbouring arcs, we define
an arc exchange move on L as replacing α1, α2 by arcs α′

1 ∈ Dt2 , α
′
2 ∈ Dt1

such that ∂α′
i = ∂αi. This operation corresponds to interchanging horizontal
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edges of a rectangular diagram, probably combined with a cyclic permuta-
tion of horizontal edges.

We define a vertex exchange move to be the operation dual via ξ to
an arc exchange move. It corresponds to interchanging vertical edges of
a rectangular diagram, probably combined with a cyclic permutation of
vertical edges. We shall use the term “exchange move” for both operations,
an arc exchange move and a vertex exchange move.

In what follows, stabilization, destabilization, and exchange moves will
be referred to as elementary moves. When appropriate, we shall not distin-
guish between combinatorially equivalent arc-presentations and think about
elementary operations as being performed on the corresponding combinato-
rial classes.

Proposition 4. Any link in S3 has an arc-presentation. Two arc-pre-

sentations L1, L2 of the same link can be obtained from each other by finitely

many elementary moves.

Proof. We only sketch the argument, as the details are very elementary
and standard. (In [6], one can find a proof that uses Markov’s theorem.
The latter seems to us to be much less elementary than the assertion to be
proved. We prefer to use Reidemeister’s theorem.)

As already mentioned, any planar diagram of a link is isotopic to a
rectangular diagram. Indeed, for a given planar diagram, one can first deform
it near crossings so that overcrossing arcs become vertical and undercrossing
arcs horizontal. Then one can approximate the rest of the diagram by a step-
line consisting of vertical and horizontal straight line segments. In the generic
case, there will be no collinear segments. In order to deform such a diagram
into an isotopic one, we might need to add more edges or contract some,
which is achieved by (de)stabilization moves, and pass through codimension
one degenerations, when two non-overlapping edges become collinear. The
latter is achieved by exchange moves.

In order to prove the second assertion, one shows first that rotating a
crossing by π as shown in Fig. 7 can be performed by applying finitely

↔

Fig. 7. Rotating a crossing
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↔ ↔ ↔

Fig. 8. A realization of the Reidemeister moves

many elementary moves. Then one does the same with Reidemeister moves,
assuming that the crossings involved are already positioned as one wishes
(see Fig. 8).

Remark 4. In [6], the set of allowed (de)stabilization-type moves in the
formulations of an analogue of Proposition 4 is larger. We shall now see that
those, more general, moves can be expressed in terms of our elementary
moves.

1.6. Generalized moves. Let α ∈ Dt be an arc of an arc-presentation
L and s ∈ S1

ϕ be a point distinct from the vertices of L. Let s1, s2 ∈ S1
ϕ

be the endpoints of α. Replacing α by the arcs γt,s1,s and γt+ε,s,s2 , where
ε > 0 is sufficiently small, will be called a generalized stabilization move.
(In [6], it is called a type IV move. The dual operation, which we shall not
need, is called a type III move in [6].) The operation inverse to a generalized
stabilization move is called a generalized destabilization move.

Let L be an arc-presentation, and s1, s2, s3 three points of S1
ϕ distinct

from the vertices of L such that s2 ∈ (s1, s3). Suppose that for some
t1, t2 ∈ S1

θ , the link L does not intersect any of the arcs γt,s1,s2 if t ∈ [t1, t2]
and γt,s2,s3 if t ∈ [t2, t1]. In this case, we shall call the operation consist-
ing in interchanging the intervals (s1, s2) and (s2, s3) a generalized (vertex )
exchange move. This operation can be described more formally as follows.
Define a function f : S1

ϕ → S1
ϕ by

s 7→





s+ s3 − s2 if s ∈ (s1, s2),

s+ s1 − s2 if s ∈ (s2, s3),

s otherwise.

Then the generalized exchange move just defined consists in replacing each
arc of the form γt,s,s′ by the arc γt,f(s),f(s′). (In [6], this operation is called
a generalized type I move.) The dual operation, a generalized arc exchange
move, will not be needed here.

Proposition 5. Any generalized (de)stabilization move can be presented

as the composition of one ordinary (de)stabilization move and a few exchange

moves. Any generalized exchange move can be presented as the composition

of ordinary exchange moves.
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Proof. We illustrate the idea of the proof in Figures 9 and 10 by using
corresponding rectangular diagrams. The details are easy.

2. PROOF OF THE MAIN RESULT

Recall that a rectangular diagram D is said to be trivial if it consists of
four edges. It is split if there is a vertical line l not intersecting the diagram
such that D has edges on both sides of l.

In this section, a rectangular diagram D is said to be composite if there
is a vertical line l intersecting D in two points such that D has horizontal
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edges on both sides of l. This is a particular case of the definition given in
the Introduction.

An arc-presentation whose rectangular diagram is trivial, split, or com-
posite is called trivial, split, or composite, respectively.

The assertion of Theorem 1 will be a consequence of the following three
propositions.

Proposition 6. If L is an arc-presentation of the unknot , then there

exists a finite sequence of exchange and destabilization moves L 7→ L1 7→
· · · 7→ Ln such that the arc-presentation Ln is trivial.

Proposition 7. If L is an arc-presentation of a split link , then there

exists a finite sequence of exchange and destabilization moves L 7→ L1 7→
· · · 7→ Ln such that the arc-presentation Ln is split.

Proposition 8. If L is an arc-presentation of a non-split composite

link , then there exists a finite sequence of exchange and destabilization moves

L 7→ L1 7→ · · · 7→ Ln such that the arc-presentation Ln is composite.

The proof of these three propositions follows the same scheme, only the
technical details are different. So, we shall be proving all three statements
simultaneously. The strategy and methods of the proof are very close to
those in Birman–Menasco works [3], [4]. However, we need to concentrate
on many technical details, which are specific to our case. This forces us to
write out a complete proof instead of just using existing results.

To begin with, we describe the general outline of the proof.

1) The assumptions of Propositions 6–8 imply the existence of a certain
surface M : a disk whose boundary is L, a two-sphere that does not
intersect L and is such that there are non-trivial parts of L on both
sides of M , or a two-sphere that intersects L in two points and cuts
L in two non-trivial tangles. We show that such a surface M , which
we call a characteristic surface, can be isotoped to satisfy certain
restrictions. Compared to the previous works [3, 4, 6], a new thing
here is only a restriction on the behaviour of the spanning disk near
the boundary in the case of the unknot.

2) We consider the foliation F on M defined by the equation dθ = 0. We
define the complexity c(M) ∈ Z of the characteristic surface and show
that, if c(M) > 0, then the foliation F contains certain patterns. In
the case when M is a two-sphere we just follow [3, 4], and extend the
argument to the case of the disk.

3) We show that, if F contains a pattern defined at the previous step,
then there exists an arc-presentation L′ and a surface M ′ such that
L′ is obtained from L by finitely many exchange and destabilization
moves, the pair (L′,M ′) is isotopic to (L,M), the surface M ′ satisfies
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the restrictions introduced at Step 1, and we have either c(L′) < c(L)
or c(L′) = c(L) and c(M ′) < c(M). Similarly to [3, 4, 6], this is done
by using two tricks that are closely related to those introduced by
D. Bennequin in [1]. In the unknot case we also need one more, easier,
trick that allows us to simplify the boundary of a spanning disk.

4) We notice that, if c(F ) = 0, then we are done, i.e., the arc-presenta-
tion L is trivial, split, or composite, respectively.

2.1. Characteristic surfaces. Let L be an arc-presentation satisfying
the assumptions of one of Propositions 6–8. From now on, we shall assume
that each arc of the form L ∩ Dt is smooth, which was not the case under
the agreement of Section 1. Let M ⊂ S3 be

• an embedded two-dimensional disk whose boundary is L if L is an
arc-presentation of the unknot;

• an embedded two-sphere splitting L into two non-empty links if L is
a split link;

• a factorizing sphere, i.e., an embedded sphere that meets L in two
points, cutting L into two non-trivial tangles, if L is a composite non-
split link.

In this case, we call M a characteristic surface for L.

We say that a characteristic surface M is admissible if

• the surface M is smooth everywhere up to the boundary, except at
(∂M) ∩ S1

ϕ;

• M \ ∂M intersects the binding circle S1
ϕ transversely in finitely many

points;
• the foliation F on M \ S1

ϕ defined by dθ = 0 has only finitely many
singularities, which are points of tangency of M with pages Dt;

• all singularities of F are of Morse type, i.e., local extrema (Fig. 11b) or
saddle critical points (Fig. 11c) of the (multivalued) function θ|M\S1

ϕ
;

• near any point p ∈ (∂M)∩S1
ϕ, the foliation F is radial (see Fig. 11d);

• there is at most one point p ∈ (∂M)∩S1
ϕ at which |

T
γ
dθ| > 2π, where

γ ⊂ M is a proper arc in a small neighbourhood of p such that the
endpoints of γ lie in ∂M on different sides of p. Such a point is called
a winding vertex ;

• there is at most one point p ∈ (∂M)\S1
ϕ at which the surface M is not

transversal to the corresponding page Dθ(p); at the exceptional point,
the foliation F must have a saddle critical point (see Fig. 11e). If such
a saddle and a winding vertex are both present, then the winding
vertex is an endpoint of the edge containing the saddle;
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• each page Dt contains no more than one of the following:

– an arc of L;
– a singularity of F|M\∂M ;

• if L is a non-split composite link, the two intersection points L ∩M
are not vertices of L.

The behaviour of F near a point from (M \∂M)∩S1
ϕ is shown in Fig. 11a.

The points of intersection of M with the binding circle, where the foliation
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Fig. 11. Vertices and singularities of F

F is not defined, will be called vertices of F . Sometimes we will distinguish
between interior and boundary vertices that lie in M \ ∂M and ∂M , re-
spectively. The singularities of F shown in Fig. 11b,c,e will be called a pole,
a(n interior) saddle, and a boundary saddle, respectively.

Lemma 1. For any arc-presentation satisfying the assumptions of one

of Propositions 6–8, there exists an admissible characteristic surface.

Proof. In the case of a split link or a composite link, there is almost
nothing to prove: a characteristic surface is admissible if it is in general
position with respect to the binding circle, to the link, and to the foliation
of S3 \ S1

ϕ by disks Dt.
In the case of unknot, the admissibility ofM means something more than

just general position. By a small perturbation of an arbitrary characteristic
surface M , we can achieve that M satisfies almost all the restrictions. The
only thing that we may not avoid in this way is that F may have many

boundary saddles, whereas we allow it to have just one.
Notice that if the number of vertices of an arc-presentation of the unknot

is odd, then the foliation on the spanning disk is forced to have a boundary
saddle, since the parity of the number of boundary saddles should be equal
to that of the number of boundary vertices. Indeed, the coorientation of
∂M defined by grad θ flips at each vertex and at each boundary saddle, so
in total there should be an even number of them.

In order to avoid the occurrence of many boundary saddles, we shall
construct the disk M , starting from a small neighbourhood of the boundary.
We construct initially a narrow ribbon R ∼= [0, 1]×S1 such that ∂R = L∪L′,
where L′ is a circle unlinked with L, and the foliation on R defined by dθ = 0
has the desired behaviour near L. Then we attach a two-dimensional disk
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along L′, obtaining a characteristic surface M . Finally, we deform M slightly
if necessary, keeping it fixed in a small neighbourhood of L = ∂M , so that,
after deformation, M \ ∂M will be in general position. So, the only thing to
explain is how to construct the ribbon R.

Notice that constructing the ribbon R is not equivalent to specifying a
trivial framing of L. It would have been so if L were a smooth curve.

We start by enumerating the vertices s1, . . . , sn ∈ S1
ϕ and arcs α1, . . . , αn

of L in the order that they follow in L:

∂αi = {si, si+1} if i = 1, . . . , n− 1, and ∂αn = {sn, s1}.

Denote by ru the rotation of S3 about the binding circle by the angle u:
ru(ϕ, τ, θ) = (ϕ, τ, θ + u). For an arc α ⊂ Dt, we denote by dε(α) the disk

⋃

u∈[0,ε]

ru(α) if ε > 0, and
⋃

u∈[ε,0]

ru(α) if ε < 0.

Take a point p in the arc αn. Let α′
n, α

′′
n be the two parts of the arc α

cut by p: ∂α′
n = {sn, p}, ∂α

′′
n = {p, s1}. Pick an ε > 0 which is smaller than

the θ-distance between any two neighbouring arcs. Consider the union R1

of the following disks:

dε(α1), d−ε(α2), dε(α3), . . . , d(−1)nε(αn−1), d(−1)n+1ε(α
′
n), d−ε(α

′′
n).

If n is even, the last two disks form the disk d−ε(αn). If n is odd, then the
intersection of R1 with a neighbourhood of the point p will look as shown
in Fig. 12 (left). We attach a small disk “perpendicular” to αn along the
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Fig. 12. The ribbon R near a boundary saddle

segment {ru(p)}u∈[−ε,ε] and then smooth the obtained surface as shown in
Fig. 12 (right), still denoting the result by R1. The point p will be the only
boundary saddle of F .

The union R1 of disks is only a part of the ribbon under construction.
Near any vertex, R1 looks as in Fig. 13 (left). We transform it into a ribbon
as shown in Fig. 13 (middle), attaching a sector of a small disk transversal to
the binding circle. If we do this near each vertex, then, possibly, the ribbon
obtained will be twisted, that is, the connected components of ∂R will be
linked. We can compensate this by twisting the ribbon around the binding
circle “in the opposite direction” at an arbitrarily chosen vertex as shown in



Arc-presentations of links 47

b
E
E
E
EE

hhhhh
b
E
EE

hhh� b���
��
� �
��
� 
'$
"

Fig. 13. The ribbon R near a vertex of L

Fig. 13 (right). This will create a winding vertex, so, if a boundary saddle is
present, we do this at one of the boundary vertices adjacent to the saddle.

2.2. Moves of the characteristic surface. We will think about an
admissible characteristic surface M of an arc-presentation L as a periodic
flow of planar pictures that are intersections of M with the pages Dt, t ∈ S1.
The pages Dt containing singularities of F and arcs of L will be called
singular, and the corresponding values of t critical. All the others are regular.

For simplicity, we assume in this subsection that F has no poles and no
closed regular fibres. The notions and claims of this subsection will be used
only when poles and closed fibres are absent.

If Dt is a regular page, then the intersection Dt ∩ (L∪M) is the union of
pairwise non-intersecting arcs having endpoints on the binding circle S1

ϕ =
∂Dt. Notice that two arcs in Dt∩M may have a common endpoint if L is an
arc-presentation of the unknot (refer to the right picture in Fig. 13), but no
arc forms a loop, which follows from an orientation argument. Each section
Dt ∩ (L ∪M) will be regarded up to a homeomorphism of Dt fixed on ∂Dt,
which we shall express by saying that we consider the combinatorial type

of the section Dt ∩ (L ∪M). This combinatorial type can be specified by
listing pairs of endpoints of all arcs in Dt, like: si1si2 , si3si4 , si5si6 , . . . . The
notation sisj will be used for any arc with endpoints si, sj ∈ S1

ϕ. Notice that
sisj = sjsi, but (si, sj)∩(sj, si) = ∅. We shall also refer to the combinatorial
type of a section Dt ∩ (L ∪M) as a state of (L,M).

We leave the following statement, which is standard, without proof.

Proposition 9. Let M and M ′ be admissible characteristic surfaces for

arc-presentations L and L′, respectively , such that we have L∩S1
ϕ = L′∩S1

ϕ,

M ∩ S1
ϕ = M ′ ∩ S1

ϕ, and for all t ∈ S1
θ , the sections Dt ∩ (L ∪ M) and

Dt ∩ (L′ ∪M ′) have the same combinatorial type. Then there is an isotopy

f fixed on S1
ϕ, preserving each page Dt, and taking (L,M) to (L′,M ′).

If Dt is a regular page, then the combinatorial type of the section Dt ∩
(L ∪M) does not change if t varies slightly. In addition to simple arcs, a
singular page may contain one of the following:

1) a T-joint, which is a boundary saddle of F with three arcs attached;



48 I. A. Dynnikov

2) an X-joint, which is either an interior saddle of F with four arcs
attached or a regular fibre of F crossed by an arc of L (in the case of
a composite link).

When t passes a critical value, the state of (L,M) changes. We shall call
such a change an event. Below is the list of all possible events.

Event Singularity Case

a single arc appears and im-
mediately disappears

an arc of L split link, composite
link

a single arc appears an arc of L unknot

a single arc disappears an arc of L unknot

an arc s1s2 is replaced by
some arc s2s3

an arc s1s3 of L con-
taining a boundary
saddle

unknot

two arcs s1s2, s3s4 are re-
placed by s1s4, s2s3

a saddle of F any

If an arc with endpoints s, s′ ∈ S1
ϕ is contained in Dt ∩ (L ∪M), where

Dt is a singular page, but there is no arc with endpoints s, s′ “just before”
or “just after” the corresponding events, i.e., in the section Dt−ε ∩ (L ∪M)
or Dt+ε ∩ (L∪M), where ε is sufficiently small, we shall say that the arc ss′

participates in the corresponding event.
Clearly, if we know the state of (L,M) just before an event and have

a description of the event in terms of the participating arcs, then we can
recover the state of (L,M) right after the event. So, in order to specify the
combinatorial type of an arc-presentation L with a characteristic surface M ,
we must describe the state of (L,M) at just one non-critical moment and
provide the ordered list of all the events that occur when t runs over the
circle. Such a state with a list of events will be called a combinatorial de-

scription of (L,M).
We shall use combinatorial descriptions whenever we will need to change

the surface M or an arc-presentation L. Of course, an arbitrary initial state
equipped with an ordered list of events does not necessarily define an arc-
presentation and a characteristic surface; the combinatorial data must be
consistent. It is easy, but tedious, to list all the requirements for the data to
be consistent. Here are some of them: the final state (to which we come after
all the events) must coincide with the initial one, an arc that is supposed
to disappear in a forthcoming event must be present just before the event,
etc. In each case when we change the combinatorial description of the pair
(L,M), it will be clear that the combinatorial data remain consistent.

Lemma 2. Let E1, E2 be successive events such that no arc participating

in E1 coincides or interleaves with an arc participating in E2. If both events
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correspond to arcs of L, we assume additionally that those arcs do not have

a common endpoint. Then the events can be interchanged , which will have

no effect on the foliation F and the isotopy class of (L,M). If both singu-

lar pages corresponding to the events E1, E2 contain an arc of L, then the

exchange of events will result in one arc exchange move on L. Otherwise,
there will be no effect on the combinatorial type of L.

Proof. More precisely, the first assertion means the following. Let t1 =
θ(E1) and t2 = θ(E2) be the time of the events. Then there exists an arc-
presentation L′ and an admissible characteristic surface M ′ for L′ such that,
for all t ∈ (t2, t1), the states of (L,M) and (L′,M ′) at time t coincide. At
moments t1, t2, the events E2, E1, respectively, happen with Dt ∩ (L′ ∪M ′),
and there is no event in between.

By saying that a transform has no effect on the foliation F , we mean
that the new foliation F ′ is equivalent to F via a homeomorphism M →M ′.

The assumptions of the lemma imply that there exists a continuous fam-
ily of arcs γt,s1,s2 ⊂ Dt, t ∈ (t1 − ε, t2 + ε), ∂γt,s1,s2 = {s1, s2} ⊂ S1

ϕ, forming
an open disk d that does not intersect the surface M and the link L, such
that the event E1 occurs “on the right” of the disk d and the event E2 occurs
“on the left” of d. The latter means, in particular, that all arcs participating
in E1 (respectively, E2) have both endpoints in the interval [s1, s2] (respec-
tively, in [s2, s1]). It is not forbidden that an arc participating in the events
has one or both endpoints in {s1, s2}. If s1 and s2 are the endpoints of an arc
participating in E1 or E2, the interior of the arc must be on the appropriate
side of γt,s1,s2 , where the corresponding event occurs.

Now we can define a self-homeomorphism f of S3 \ d preserving the
foliation dθ = 0 by making the time θ “go faster” on the left of d and “go
slower” on the right of d, which will result in E2 occurring before E1. In the
pages Dt with t ∈ [t2+ε, t1−ε] the mapping f is assumed to be identical. The
mapping f will send the surface M to another one, preserving the foliation.
Clearly, the mapping f can be adjusted in a small neighbourhood of d to
become a self-homeomorphism of the whole S3.

The last two assertions of the lemma are obvious.

Remark 5. We do not exclude the case when an arc participating in E1

has a common endpoint with one participating in E2. This may occur when
L is an arc-presentation of the unknot, ∂M = L, and the common end of
two arcs is a winding vertex of F (refer again to Fig. 13). This is why we
wrote [s1, s2] and [s2, s1] instead of (s1, s2), (s2, s1) in the above proof.

Whereas the transform described in Lemma 2 generalizes an arc exchange
move to the case of an arc-presentation endowed with an admissible char-
acteristic surface, the following construction is an analogue of a generalized
exchange move.
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Lemma 3. Let s1, s2, s3 be three points of S1
ϕ disjoint from L and M

such that s2 ∈ (s1, s3). Suppose that there exist time instances t1, t2 ∈ S1
θ

such that no arc in Dt ∩ (L∪M) interleaves with s1s2 if t ∈ [t1, t2] and with

s2s3 if t ∈ [t2, t1]. Then one can interchange all the vertices of L and F lying

in (s1, s2) with those in (s2, s3), keeping the relative order of vertices in each

of the intervals fixed , without changing the foliation F and the isotopy class

of (L,M).

Interchanging the vertices should be understood in the same way as
described in 1.6.

Proof. Denote by dt1,t2,s1,s2,s3 a closed two-dimensional disk whose in-
terior consists of the vertex s2 and the following four disks d1, d2, d3, d4

adjacent to s2:

d1 =
⋃

t∈(t1,t2)

γt,s1,s2 , d2 =
⋃

t∈(t2,t1)

γt,s2,s3 ,

and d3 and d4 are the two “triangles” bounded by γti,s1,s2 , γti,s2,s3 , γti,s1,s3 ,
where i = 1, 2.

The assumptions of the lemma imply that the disk

d(1) = dt1,t2,s1,s2,s3

is disjoint from L and M . Let L′ and M ′ be the arc-presentation and the
surface obtained after the transform. Then the disk

d(2) = dt2,t1,s1,s1+s3−s2,s3

is disjoint from L′ and M ′. It is easy to see that there exists a homeomor-
phism f : S3 \ d(1) → S3 \ d(2) preserving each page Dt and interchanging
the intervals (s1, s2) and (s2, s3) of the binding circle. We have f(L) = (L′)
and f(M) = M ′. There is a small neighbourhood U of d(1) that does not
meet L and M . By adjusting f in U we can make f a self-homeomorphism
of the whole sphere S3.

2.3. Patterns of F that are always present. Let L be an arc-
presentation, M an admissible characteristic surface of L, and F the fo-
liation on M defined by dθ = 0. We define the complexity c(M) of M as the
total number of singularities of F .

Fibres of F are of the following types:

• a closed circle;
• an open arc connecting two vertices;
• an open arc connecting a vertex to a saddle or a saddle to itself (we

call such a fibre a separatrix );
• a singular point of F .
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Two regular fibres connecting the same pair of vertices will called parallel

if they are included into a continuous family of such fibres (i.e. enclose a disk
with no singularity inside). Any other two fibres connecting vertices will be
called non-parallel.

For a vertex v of F , we call the closure of the union of all fibres of F ap-
proaching v the star of v. By the valence of v we mean the number of separa-
trices in the star of v, which coincides with the number of saddles in the star.

An interior vertex v of F is said to be bad in three cases: 1) the star of
v contains at least two non-parallel fibres each connecting v to a boundary
vertex; 2) the star of v is pierced by L; 3) the star of v contains a winding
vertex. If a vertex is not bad, it is said to be good.

Each saddle x will be endowed with an orientation, which is the cir-
cular order of the separatrices approaching x induced by the order of the
corresponding vertices on the axis S1

ϕ (see Fig. 14).
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Fig. 14. Orientation of a saddle

Now we consider the star of a winding vertex in more detail.

Remark 6. It was brought to the author’s attention by Bill Menasco
and Adam Sikora that the presence of a winding vertex in the star of a good
two-valent vertex may produce an obstruction to applying the corresponding
generalized exchange move in the proof of Lemma 6. The definitions of the
characteristic surface and a bad vertex have been changed, the new Lemma 4
below has been added, Lemma 5 and the proof of Lemma 6 have been
modified by introducing new cases 6–8 in order to correct the mistake in the
earlier version of the paper.

Suppose that M has a winding vertex. Denote it by sw and its star by
σw. Let sw1 , . . . , s

w
q be the vertices, and xw

1 , . . . , x
w
q−1 the interior saddles in

∂σw \ sw numbered so that xw
i lies between swi and swi+1, i = 1, . . . , q − 1. If

there is a boundary saddle, we assume that it is adjacent to swq and denote
it by xw

q . Thus, the valence of sw is equal to

q′ =

{
q − 1 if there is no boundary saddle,

q otherwise.

Note that if a vertex from σw is connected to sw by two or more non-
parallel fibres, it will appear in the sequence sw1 , . . . , s

w
q more than once. So,

some of the swi may coincide.
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We also introduce the orientation of the winding vertex, which is either
a locally θ-increasing or a locally θ-decreasing linear ordering ≺ of fibres
approaching sw. (This orientation is not the one induced by the orientation
of S1

θ , which is often used in the work of Birman and Menasco.) Take an
arbitrary page Dt such that at least two arcs in Dt ∩ M have sw as an
endpoint. Let α = γt,sw,sw

i
, β = γt,sw,sw

j
, be such arcs. We orient sw so as

to have α ≺ β if and only if swi ∈ (sw, swj ) (see Fig. 15). This orientation
does not depend on the choice of the page Dt and of the pair α, β in Dt,
and can be described informally as follows. A small part of the surface M
near the winding vertex forms a “screw” whose axis is S1

ϕ. The orientation
of sw indicates which way this screw must rotate in order to screw up in the
direction opposite to the orientation of S1

ϕ.
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Fig. 15. Orientation of the winding vertex

Now we put δi = +1 if the saddle xw
i is coherently oriented with the

winding vertex, and δi = −1 otherwise.

Lemma 4. If two successive interior vertices swi and swi+1 in the star of

the winding vertex are both two-valent , then δi = +1.

Proof. Let s be the vertex in the stars of swi and swi+1 different from sw.
The union of these stars is shown in Fig. 16 (left). Let ψ1 be the “θ-angle”
between the separatrices swxw

i−1 and swxw
i+1 at sw, i.e., the absolute value

of the integral of dθ along an arc indicated in the picture. Similarly, let ψ2

be the θ-angle between the separatrices sxw
i−1 and sxw

i+1 at s.
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Fig. 16. Two successive two-valent vertices in σw (ψ1 = θ1 + θ2, ψ2 = θ3 + θ4, θ1 + θ3 =
θ2 + θ4 = 2π)
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It is not hard to see that ψ1 + ψ2 = 4π (see Fig. 16). Since s is not a
winding vertex, we have ψ2 < 2π. Therefore, ψ1 > 2π, which implies that
some page Dt contains both arcs γt,sw,sw

i
and γt,sw,sw

i+1
.

If swi ∈ (sw, swi+1), then the orientations of the saddle xw
i and of the wind-

ing vertex are both clockwise (according to Fig. 16). If swi+1 ∈ (sw, swi ), then
both orientations are counterclockwise. So, in both cases they are coherent.

The following lemma is a generalization of Lemma 2 of [3]. (Although
closed braids are now replaced with arc-presentations, the argument of [3]
does not need to be changed to establish the claim below in the case of a
split or composite link.)

Lemma 5. If c(M) > 0, then the foliation F has at least one of the

following :

1) a pole;
2) a univalent boundary vertex ;
3) a good two-valent interior vertex ;
4) a good three-valent interior vertex ;
5) two pairs of two-valent vertices, in each the vertices are connected by

a fibre of F intersecting L;
6) a winding vertex and a three-valent interior vertex swi in σw;
7) a winding vertex and a two-valent boundary vertex swi in σw such

that δi−1 = δi;
8) a winding vertex and a four-valent interior vertex swi in σw such that

δi−1 = δi.

Proof. We denote by χ the Euler characteristic of M , χ ∈ {1, 2}. We
also set ǫ = 1 if F has a boundary saddle, and ǫ = 0 otherwise. Denote
the number of interior vertices of valence k by Vk, the number of boundary
vertices of valence k by V b

k , the number of interior saddles by S, and the
number of poles by P . By the definition of complexity, we have

(2) S + P + ǫ = c(M).

Notice that we always have V1 = 0. Indeed, the opposite would mean
that there is an event E in the flow Dt ∩ (L∪M) corresponding to a saddle
such that some arc participating in E and existing just before the event
survives after the event, which is impossible. Notice also that either V0 > 0
or V b

0 > 0 implies c(M) = 0: if there is no singularity in the star of a vertex,
then this star is the whole surface M , and there are exactly two vertices,
either interior or boundary ones.

Thus, we may assume that V0 = V b
0 = V1 = 0. If P > 0, then case 1

takes place, and we are done. So, we assume P = 0.
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Counting the topological indices of singularities gives

(3)
∑

k

Vk +
1

2

∑

k

V b
k − S −

ǫ

2
= χ.

Counting the number of separatrices in two different ways gives

(4)
∑

k

k(Vk + V b
k ) = 4S + 3ǫ.

From (3) and (4) we get

(5)
∑

k

(4 − k)Vk +
∑

k

(2 − k)V b
k = 4χ− ǫ.

(i) First, consider the case of a split link, which is the simplest one
because, in this case, there are no boundary vertices and no bad vertices.
Relation (5) can be rewritten as

(6) 2V2 + V3 = 8 +
∑

k≥4

(k − 4)Vk,

which implies

(7) 2V2 + V3 ≥ 8.

We have either V2 > 0 or V3 > 0, which are cases 3 and 4 of the lemma.
(ii) The case of a composite link is similar, but now the inequality (7)

does not imply that there exists a good three- or two-valent vertex, because
some vertices are bad. There may be at most four bad vertices. So, either
there exists a good three- or two-valent vertex or we have V2 + V3 ≤ 4. In
conjunction with (7), the latter implies V2 = 4, V3 = 0, i.e., all bad vertices
are two-valent. This is case 5 of the lemma.

Remark 7. In this case, we also have V5 = V6 = · · · = 0, but not
necessarily V4 = 0. One can show that V4 must be even, but it can be
arbitrarily large. The case V4 > 0 is missing in [3] and also in [6].

(iii) Now we consider the case of the unknot. Relation (5) reads

(8) 2V2 + V3 + V b
1 = 4 − ǫ+

∑

k≥4

(k − 4)Vk +
∑

k≥2

(k − 2)V b
k .

If V b
1 > 0, then case 2 of the lemma takes place.
Suppose that V b

1 = 0. Then it follows from (8) that 2V2 + V3 > 0. If all
vertices are good (and hence there is no winding vertex), we are done: either
case 3 or 4 of the lemma occurs.

(iii.a) Assume that some vertices of F are bad, but there is no winding
vertex. In each family of parallel fibres of F connecting a bad vertex with
a boundary vertex, we select one fibre and cut the surface M along all the
selected arcs (see Fig. 17). Let d1, . . . , dl be the resulting disks. We say that
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Fig. 17. Cutting the disk M

a disk di is terminal if there is exactly one bad vertex of F in ∂di. Clearly,
there should be at least two terminal disks (e.g., there are six in Fig. 17).
Therefore, we can find a terminal disk di such that ∂di does not contain the
boundary saddle of F . Let d1 be that disk.

Consider the restriction F̃ of the foliation F to the disk d1. Let Ṽk and Ṽ b
k

be the number of interior and boundary k-valent vertices of F̃ , respectively.
By analogy with (8), we have

2Ṽ2 + Ṽ3 + Ṽ b
1 = 4 +

∑

k≥4

(k − 4)Ṽk +
∑

k≥2

(k − 2)Ṽ b
k ≥ 4.

Since V b
1 = 0 and the disk d1 is terminal, we have Ṽ b

1 ≤ 3, which implies

2Ṽ2 + Ṽ3 ≥ 1. Thus, there is at least one two- or three-valent interior vertex
in d1. By construction, this vertex is a good vertex of F , so either case 3
or 4 takes place.

(iii.b) Now assume that there is a winding vertex, but no boundary
saddle (i.e. ǫ = 0). Assume also that all vertices swi in σw are pairwise
distinct and that cases 6–8 do not occur. Let V w

k (respectively, V bw
k ) be the

number of k-valent interior (respectively, boundary) vertices of F that lie
in σw. Consider the sequence ∆ = (δ1, . . . , δq′) of ±1s defined above. Let
m+ (respectively, m−) be the number of +1s (respectively, −1s) in ∆, and
let m−− be the number of subsequences (−1,−1) in ∆. We have

(9) m−− ≥ m− −m+ − 1.

Whenever we have a subsequence of the form (δi−1, δi) = (−1,−1) in ∆, the
vertex swi cannot be

• a two-valent interior vertex, since two saddles in the star of such a
vertex must be incoherently oriented (see [3]);

• a k-valent interior vertex with 2 < k < 5 or a two-valent boundary
vertex, by the assumption that cases 6–8 do not occur.

Thus the vertex swi can only be a k-valent interior vertex with k ≥ 5 or a
k-valent boundary vertex with k ≥ 3. Taking into account that the winding
vertex itself has valence q′ = m+ +m− ≥ 2, we infer from (9) that

(10)
∑

k≥5

(k − 4)V w
k +

∑

k≥3

(k − 2)V bw
k ≥ m−− + q′ − 2 ≥ 2m− − 3.
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It follows from Lemma 4 that

(11) V w
2 ≤ m−.

Combining (5), (10), (11), and recalling that V b
1 = 0, we obtain

2(V2 − V w
2 ) + V3 = 4 +

∑

k≥5

(k − 4)Vk +
∑

k≥3

(k − 2)V b
k − 2V w

2

≥ 4 +
∑

k≥5

(k − 4)V w
k +

∑

k≥3

(k − 2)V bw
k − 2V w

2 ≥ 1,

which implies that there is a two- or three-valent interior vertex in M \ σw.
We are done unless there are bad vertices in M \ σw. In the latter case, we
apply the same cutting as in case (iii.a) and note that the presence of a bad
vertex in M \ σw implies that one can find a terminal disk whose interior
is disjoint from σw. Since the winding vertex is away from such a terminal
disk, we can apply the same argument as in case (iii.a).

(iii.c) Now let both a winding vertex and a boundary saddle be present,
but still assume that the vertices swi are all distinct. Recall that, in this case,
the boundary saddle lies in σw by construction. Now we have ǫ = 1 and

2(V2 − V w
2 ) + V3 = 3 +

∑

k≥5

(k − 4)Vk +
∑

k≥3

(k − 2)V b
k − 2V w

2 = A+B + C,

where

A =
∑

k≥5

(k − 4)(Vk − V w
k ) +

∑

k≥3

(k − 2)(V b
k − V bw

k ),

B =
∑

k≥5

(k − 4)V w
k +

∑

k≥3

(k − 2)V bw
k − 2m− + 3,

C = 2m− − 2V bw
2 .

By the same argument as in case (iii.b), we have B,C ≥ 0, and by construc-
tion A ≥ 0. So, we need to show that at least one of A, B, C is non-zero.

Suppose the opposite, i.e.,

(12) A = B = C = 0.

If B = 0, then (9) must be sharp, which implies δq = −1. The equalities
C = 0, δq = −1, and Lemma 4 imply that swq is two-valent. Let s be the
boundary vertex different from sw adjacent to the boundary saddle. This
vertex is not in σw, so its valence must be two (otherwise we would have
A > 0). Therefore, the star of s does not contain any saddle except xw

q and
xw

q−1, which implies that swq−1 is a boundary vertex connected to s by an arc
of L (see Fig. 18). It should be at least two-valent, which implies q ≥ 3.

Let r be the smallest integer with 2 ≤ r ≤ q−1 such that swr ∈ ∂M = L.
As we have just seen, the existence of such an r follows from (12). Let us
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Fig. 19. The smaller disks d and d′

cut the disk M along a regular fibre connecting sw and swr into two disks.
Let d be the one of the two that contains sw1 (see Fig. 19).

If sw becomes a univalent boundary vertex of d (i.e., r = 2), then its star
σw ∩ d in d contains no interior vertices, and F|d has at most two univalent
boundary vertices, so we can apply the argument of case (iii.a) to show that
there is a good two- or three-valent interior vertex in d. Assume that the
valence of sw in d is larger than one.

If swr is not a univalent boundary vertex of d, then we can apply the
argument of case (iii.b) to d without any change.

If swr is a univalent boundary vertex of d, let s′ be the vertex adjacent
to xw

r−1 but different from sw, swr−1, s
w
r . Let us cut off a “triangle” whose

“hypotenuse” consists of separatrices connecting xw
r−1 to sw and to s′ from
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the disk d. By assumption, after the cutting, sw and s′ become boundary
vertices of valence at least two. Thus, the restriction of F to the smaller
disk has a boundary saddle and no univalent boundary vertices. So, we can
repeat our reasoning above for this disk and show that swr−1 is a boundary
vertex, a contradiction.

(iii.d) Finally, suppose that some of the vertices swi , i = 1, . . . , q, coincide.
Choose swi = swj with j− i > 0 smallest possible. Let d be a disk enclosed by
two non-parallel fibres connecting sw with swi = swj such that swk ∈ d if and
only if i < k < j. The disk d has only two boundary vertices. The vertex
swi cannot be a univalent boundary vertex of d because otherwise we would
have swi+1 = swj−1, so the argument of case (iii.b) applies to d.

2.4. Simplifying the characteristic surface. This is the final part
of the proof of Propositions 6–8 and Theorem 1.

Lemma 6. Let L be an arc-presentation satisfying the assumptions of

one of Propositions 6–8, and M an admissible characteristic surface for

L such that c(M) > 0. Then there exist an arc-presentation L′ and an

admissible characteristic surface M ′ for L′ such that one of the following

holds:

1) L′ is obtained from L by finitely many exchange moves, and we have

c(M ′) < c(M);
2) L′ is obtained from L by finitely many exchange moves and one desta-

bilization move.

Proof. It suffices to show how to obtain L′,M ′ in each case listed in
Lemma 5. In Cases 1, 3, 4 we just follow [3, 4, 6] and show additionally
that the transformation L 7→ L′ can be decomposed into elementary moves.
Case 2 is specific in our situation. In Cases 5–8 our actions will be similar to
those in Cases 3 and 4. In Case 5, we also consider a situation not covered
by [3, 4, 6]. Two tricks play an important rôle here: changing the valence of
a vertex (Cases 4 through 8) and reducing a pair of vertices one of which
is two-valent (Cases 3 and 5) by using a “global exchange” from Lemma 3.
These tricks are the same in nature as those that were used by Bennequin
in [1] to prove an inequality relating the knot genus, the number of strands,
and the crossing number of a braid representing the knot.

Remark 8. The Reeb foliation in S3, which Bennequin considers, is
different from ours and from the one used in [3, 4, 6]. Our foliation dθ = 0
can be obtained from the Reeb foliation by contracting one of the solid tori
bounded by the compact leaf into a circle, which becomes our circle S1

ϕ. This
difference between foliations turns out to be unimportant for the arguments
that are used to show that the foliation F can be modified in a prescribed
way once we know that it contains a certain pattern.
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Case 1: F has a pole. We remove all poles and closed fibres of the folia-
tion F . The surface obtained has new boundary components, each consisting
of a saddle and a separatrix and lying in a page Dt. For such boundary com-
ponent γ, we attach a disk bounded by γ that lies in Dt to the surface
and then deform the result slightly to obtain a smooth surface. The saddle
singularity at γ disappears (see Fig. 20). The complexity of the surface is
decreased, the surface remains admissible, the link L is untouched.

r
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&���

'$
�����&���

Fig. 20. Removing poles and closed fibres

In what follows we assume that there are no poles, and hence, no closed
regular fibres in F .

Case 2: F has a univalent boundary vertex. Let s1 be a univalent bound-
ary vertex, s2, s3 the neighbouring vertices to s1 at the knot L, α and β the
two arcs of L that connect s1 with s2 and s3, respectively, and x the saddle
connected with s1 by a separatrix. The saddle x may be a boundary saddle
as well as an interior one.

Suppose x is a boundary saddle. We may assume without loss of gener-
ality that x ∈ β. The behaviour of the foliation near s1 is shown in Fig. 21
(left). There is no topological obstruction to slide the arc α over M toward
x in such a way that, at any time, α coincides with a regular fibre of F with
endpoints s1, s2.
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Fig. 21. A univalent vertex of F

As a result of the sliding finitely many arc exchange moves will occur.
We move α until α and β become neighbouring arcs. When α and β become
neighbours, we apply a generalized destabilization move.
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If x is not a boundary saddle, then we do the same thing, but with both
arcs α and β. The star of s1 is shown in Fig. 21 (right). We slide α and
β toward x until it becomes possible to apply a generalized destabilization
move.

Remark 9. Note that, once we have applied a destabilization move
and the arc-presentation L has become simpler, we forget the surface M
and search for a completely new admissible characteristic surface for the
resulting arc-presentation. However, the new characteristic surface can be
found by a modification of the old one, which may yield in some optimization
of the simplification procedure. We do not discuss this in detail because the
optimization questions are out of the scope of this paper.

Case 3: F has a good two-valent interior vertex. Let s1 be a good two-
valent interior vertex and let x1, x2 be the two saddles in the star of s1.
There must also be two vertices in the star of s1. Denote them by s2, s3.
We may assume without loss of generality that s2 is also an interior vertex.
The star of s1 is shown in Fig. 22. Let t1 = θ(x1), t2 = θ(x2). We may also
assume that the section Dt ∩M contains the arc γt,s1,s2 when t ∈ (t1, t2)
and the arc γt,s1,s3 when t ∈ (t2, t1), and we have s1 ∈ (s2, s3). The other
cases are obtained by flipping the orientation of S1

ϕ and/or S1
θ .
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Fig. 22. A good two-valent vertex of F

It was pointed out by Bill Menasco and Adam Sikora that it is important
to know here that s3 is not a winding vertex. That is why we consider all
interior vertices in the star of a winding vertex to be bad by definition.

Pick a small ε > 0. No arc in Dt∩(L∪M) will be interleaved with the arc
(s2+ε)(s1−ε) if t ∈ [t1, t2] and with (s1−ε)(s3+ε) if t ∈ (t2, t1). Clearly, if no
arc in Dt∩(L∪M) is interleaved with an arc ss′, then this remains true under
a small variation of t. So, if ε is small enough, then no connected component
of Dt∩(L∪M) is interleaved with the arc (s2 +ε)(s1−ε) if t ∈ [t1−ε, t2 +ε]
and with (s1 − ε)(s3 + ε) if t ∈ [t2 + ε, t1 − ε]. Thus, the arc-presentation
L and the surface M satisfy the assumptions of Lemma 3, where we should
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replace s1, s2, s3, t1, t2 by s2 + ε, s1 − ε, s3 + ε, t1 − ε, t2 + ε, respectively, and
we can exchange the intervals (s2 + ε, s1 − ε) and (s1 − ε, s3 + ε).

The new arc-presentation L′ is obtained from L by a generalized ex-
change move, which, according to Proposition 5, is the composition of ordi-
nary exchange moves. As a result of the exchange, the vertex s1 is moved
to s′1 = s2 + 2ε. There is no other vertex of L or F in (s2, s

′
1). The foliation

of the surface is not changed, therefore, there still exists a regular fibre α
connecting the vertices s2 and s′1. We can now isotope the surface so that the
resulting surface M ′ is admissible and we have |M ′ ∩S1

ϕ| = |M ∩S1
ϕ| − 2. In

order to see that there is no obstruction, we can do the following. First, we
replace the interval (s2−ε, s

′
1+ε) of the binding circle by an arc parallel to α

(see Fig. 23). Then we apply an isotopy that will restore the binding circle.
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Fig. 23. Simplifying the surface M

Under this isotopy, the boundary of the surface stays unchanged. We
may also assume that the surface M ′ is in general position (thus, it is still
admissible) and there are no poles of the foliation F ′ on M ′ defined by
dθ = 0. Indeed, if there is one, we can apply the procedure described in
Case 1 and get rid of all poles and closed fibres of the foliation.

In the case P = 0, from (2) and (3) we have

c(M) =
∑

k

Vk +
1

2

∑

k

V b
k +

ǫ

2
− χ.

Since the number of boundary vertices of F ′ is the same as that of F ,
and the number of interior vertices of F ′ is less than that of F , we have
c(M ′) < c(M).

Remark 10. The operation of removing the vertices s2, s
′
1 has the fol-

lowing effect on the combinatorial description of M : in all pages Dt with
t ∈ (t1, t2) the arc s2s

′
1 disappears, in all regular pages Dt with t ∈ (t2, t1) a

pair of arcs one of which is s′1s
′
3 and the other has the form s2s is replaced

by the arc s′3s, the events at t = t1, t2 disappear, the events at t ∈ (t2, t1)
are adjusted by replacing s2 with s′3.

Case 4: F has a good three-valent interior vertex. Let s1 be a good
three-valent vertex and let s2, s3, s4 be the other vertices of the star of s1
enumerated so that s2 ∈ (s1, s3), s4 ∈ (s3, s1). Let x1 (respectively, x2)
be the saddle (from the star of s1) connected by separatrices to s2, s3 (re-
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spectively, s3, s4). The star of s1 cannot contain a boundary saddle, since
otherwise there would be two boundary vertices in the star, which would
contradict the goodness of s1. Thus, neither of the points x1, x2 is a bound-
ary saddle. Let s5 and s6 be the vertices other than s1, s2, s3, s4 connected
by separatrices to x1 and x2, respectively (see Fig. 24).
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Fig. 24. Turning a three-valent vertex of F into a two-valent one

Let t1 = θ(x1) and t2 = θ(x2). We may assume without loss of gener-
ality that θ increases when we go from x1 to x2 transversely to the fibres
connecting s1 and s3. In other words, we have γt,s1,s3 ⊂M if t ∈ (t1, t2). Let
us now see what we know about the flow of the sections Dt ∩ (L,M) when
t runs over [t1, t2]. The following events occur:

• t = t1: the arcs s1s2 and s3s5 are replaced by s1s3 and s2s5;
• t ∈ (t1, t2): some unknown events happen, but none of them involves

the arc s1s3;
• t = t2: the arcs s1s3 and s4s6 are replaced by s1s4 and s3s6.

Together with our assumptions, this implies that the following pairs of
arcs are non-interleaving: (s1s2, s3s5), (s1s3, s2s5), (s1s3, s4s6), (s1s4, s3s6),
which yields the following circular order of the vertices in the binding circle:
s1, s2, s5, s3, s6, s4.

Since the unknown events that happen in (t1, t2) do not involve the arc
s1s3, all the arcs participating in them must have both endpoints either in
(s1, s3) or in (s3, s1). In the first case, there is no topological obstruction
to moving these events “to the future” so that they happen after t2. In the
latter case, we can move them “to the past”, i.e., before t1.

As a result, finitely many arc exchange moves are applied to L, and an
isotopy preserving the foliation F is applied to M . The main achievement
is this:

1) there is no event between t1 and t2;
2) all three arcs s1s2, s3s5 and s4s6 are present just before time t1;
3) all three arcs s2s5, s3s6 s1s4 are present right after time t2.
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Remark 11. There is a minor mistake in [6], in the proof of Lemma 3:
it is claimed (in different terms) that the only obstruction to an isotopy
making the events corresponding to x1, x2 successive are arcs of L. This is
not necessarily so, the events in the time interval (t1, t2) can be arbitrary,
including those corresponding to saddles. In particular, before the exchanges,
the arc s2s5, which must be present in Dt1+ε∩M for a small εmay be already
absent in Dt2 ∩M , being destroyed at some t ∈ (t1, t2).

Now we replace the couple of events

(s1s2, s3s5) 7→ (s1s3, s2s5) followed by (s1s3, s4s6) 7→ (s1s4, s3s6)

by the following couple of events:

(s3s5, s4s6) 7→ (s3s6, s4s5) followed by (s1s2, s4s5) 7→ (s1s4, s2s5).

This results in an isotopy of the surface M and changing the foliation as
shown in Fig. 24 (right). For more explanations and figures illustrating the
change of the surface, see [3].

After the change of the foliation, the vertex s1 becomes two-valent. It
remains good because the star of s1 becomes smaller. So, we can now proceed
as in the case of a good two-valent vertex (Case 3).

Case 5: F has two pairs two-valent vertices, in each the vertices are

connected by a fibre intersecting L. This case may occur only when L is a
composite link and M is a factorizing sphere. This case was not considered
in full generality in [6], so here we also fill a gap in the proof given in [6] of
the additivity of arc-index.

Let s1, s2 be a pair of two-valent vertices connected by a fibre α of F that
intersects L. Since there are exactly two such pairs of vertices and exactly
two points in L ∩M , the union U of the stars of s1 and s2 is pierced only
once. The structure of F in U is shown in Fig. 25. The “∗” in the figure
stands for the point L ∩ U . Let β be the arc of L that pierces U and x1, x2

be the saddles in U . Let t1 = θ(x1), t2 = θ(x2), t3 = θ(∗).
Let ∂β = {s5, s6}. Since the arcs s1s2 and s5s6 interleave, we may assume

s5 ∈ (s1, s2) and s6 ∈ (s2, s1). Denote by β′ the arc of L attached to s5 but
different from β. Let s3 be the vertex from the star of s1 other than s2, and

b b b b
r

r
∗

s3 s1 s2 s4

x1

x2

Fig. 25. A pierced region
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s4 the vertex from the star of s2 other than s1. We can always achieve the
following by adjusting notation: s1 ∈ (s3, s2), s2 ∈ (s1, s4), t3 ∈ (t1, t2).

Suppose that the interval (s1, s2) of the binding circle does not intersect
the surface M . Let A1 (respectively, A2) be the set of arcs in L that lie in
the sector θ ∈ (t1, t3) (respectively, θ ∈ (t3, t2)) and have both endpoints
in (s1, s2). By using arc exchange moves, we can shift all the arcs from A1

“to the past” (t1 − ε, t1) and the arcs from A2 “to the future” (t2, t2 + ε),
keeping the relative order of arcs in each family Ai.

b bb∗
s5

�
�
�

A
A

A
S1

ϕ

M β′

β

s′1 s′2
→ b

�� AA

∗ S1
ϕ

M ′

Fig. 26. Simplifying the surface M near a piercing point

Now, for a sufficiently small ε, we can exchange the intervals of the
binding circle: (s1 + ε, s5 − ε) with (s3 − ε, s1 + ε), and (s5 + ε, s2 − ε) with
(s2−ε, s4+ε), since the assumptions of Lemma 3 are satisfied. As a result of
the exchanges, the vertices s1, s2 are moved to s′1 = s5−2ε and s′2 = s5+2ε,
respectively, becoming neighbouring to s5. We can now reduce the number
of vertices of F in the same way as we did in Case 3. The intersection point
∗ slides over L from the arc β to β′ (see Fig. 26). The rest of the argument
is the same as in Case 3.

It remains to consider the situation in which M intersects the inter-
val (s1, s2) ⊂ S1

ϕ. Actually, the procedure that has just been considered
may work in this case, too. One should include in A1, respectively A2, all
the events in (t1, t3), respectively (t3, t2), involving arcs with endpoints in
(s1, s2). But there is one really bad case, which indeed can take place: the
arc β can intersect the surface M in two points. If the second intersection
point lies in the segment of β between s5 and ∗, we cannot exchange the
intervals. We now show that, in the case when M intersects (s1, s2) ⊂ S1

ϕ,
the surface M can be simplified by using a different method.

As we have seen in the proof of Lemma 5, if none of Cases 1–4 occurs,
then four of the vertices of the foliation F are two-valent and all the others
are four-valent. It is not difficult to see that, in this case, the surface M can
be cut along regular non-separatrix fibres of F into two disks and a number
of annuli in which the foliation looks as shown in Fig. 27. In the figure, i runs
from 1 through k, where 2k is the total number of vertices of F . Certainly,
we have k ≥ 3, since the vertices s3, s4 do not lie in (s1, s2) by construction.
Notice that we have chosen the notation for s1, s2, s3, s4 to be as before; ∗1

and ∗2 stand for the points of L ∩M .
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Fig. 27. Patterns of F in Case 5

For a moment, we step back to Case 4 and Figure 24. What assumption
did we use in the proof that the foliation can be changed as shown in Fig. 24
(right)? Examining the proof, one sees that we only needed that the region
filled by arcs connecting s1 and s3 was not pierced by L and the arcs s2s5
and s4s6 were separated from each other in the binding circle S1

ϕ by the arc
s1s3, which is equivalent to saying that the saddles x1 and x2 in Figure 24
are coherently oriented. In the case of a three-valent vertex, we achieved
this by appropriately numbering the vertices s2, s3, and s4. But, clearly, we
can apply the same procedure in the case of a vertex s1 such that the three
vertices s2, s3, s4 in the star of s1 viewed from s1 in this order satisfy the
condition s3 ∈ (s2, s4). The effect on the foliation is that the valence of s1
is decreased by 1 and the complexity of M is unchanged.
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Fig. 28. Turning a four-valent vertex into a two-valent one

Now we return to the case of the foliation shown in Fig. 27. For any
i = 1, . . . , k − 2 the foliation F has two copies of the pattern shown in
Fig. 28 (left). If the arcs s2i−1s2i and s2i+3s2i+4 are separated from each
other in S1

ϕ by the arc s2i+1s2i+2, then we can change the foliation as shown
in Fig. 28 (right) by applying the same procedure as in Case 4 to both copies.
The vertices s2i+1 and s2i+2 will become two-valent, and we can simplify the
surface M as in Case 3.

So, the only possibility left is that the arcs s2i−1s2i and s2i+3s2i+4 are
not separated by s2i+1s2i+2 for all i = 1, . . . , k − 2. We now show that,
in this case, the interval (s1, s2) is disjoint from M , which contradicts the
assumption.

In order to help the imagination, we explain informally what the surface
M looks like in the case under consideration. Let C be a simple non-closed
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curve in S3 with endpoints in S1
ϕ consisting of k − 1 arcs, each lying in a

separate page Dt. Let S be the boundary of a small neighbourhood of C. If
the neighbourhood has been chosen appropriately, then the foliation dθ = 0
on S looks exactly as that on M . Actually, the surface M can be isotoped
to such an S without changes in the foliation and combinatorial structure
of L for an appropriately chosen curve C.

Let Ij be the following interval of the binding circle:

Ij =

{
(s2j−1, s2j) if j is odd,

(s2j , s2j−1) if j is even.

We want to show that Ii ∩ Ij = ∅ if i 6= j, which will imply (s1, s2) ∩M =
I1∩M = ∅. Recall that the vertices s1, s2, s3, s4 have been numbered so that
I1 ∩ I2 = ∅.

Suppose that we have Ii ∩ Ii+1 = ∅, i ≤ k − 2. There is a saddle of F
that is connected by separatrices to the vertices s2i+1, s2i+2, s2i+4, s2i+3 in
this circular order. These vertices must appear in S1

ϕ in the same or opposite
circular order. Since the arcs s2i−1s2i and s2i+3s2i+4 are not separated by
s2i+1s2i+2, we see that the vertices s2i+1, s2i+2, s2i, s2i−1 go in S1

ϕ in the
same circular order as the vertices s2i+1, s2i+2, s2i+4, s2i+3 do. Therefore,
the assumption Ii ∩ Ii+1 = ∅ implies Ii+1 ∩ Ii+2 = ∅. Since I1 ∩ I2 = ∅, we
have Ii ∩ Ii+1 = ∅ for all i = 1, . . . , k − 1.

Now, we show by induction that, for i < j, we have either Ii ∩ Ij = ∅ or
Ii ⊂ Ij . This is true for i = 1, j = 2. Suppose this is true for all i < j ≤ m.
We have already shown that Im ∩ Im+1 = ∅. Let i ∈ {1, . . . ,m− 1}. In any
regular page Dt one of the following is present:

1) the arc s2i−1s2i, which separates Ii from the rest of the binding circle;
2) the arcs s2i−1s2i+1 and s2is2i+2, which separate Ii∪Ii+1 from the rest

of the circle;
3) the arcs s2i−3s2i−1 and s2i−2s2i, which separate Ii∪Ii−1 from the rest

of the circle.

In order to see this, refer to the stars of s2i−1 and s2i. One of regular pages
contains the arcs s2m−1s2m+1 and s2ms2m+2. By the induction hypothesis,
the vertices s2m−1 and s2m are outside Ii−1∪Ii∪Ii+1. Therefore, the vertices
s2m+1 and s2m+2 are outside Ii. This implies Ii ∩ Im+1 = ∅ or Ii ⊂ Im+1.

By symmetry, we conclude that, for any i > j, we also have either
Ii ∩ Ij = ∅ or Ii ⊂ Ij . Therefore, Ii ∩ Ij = ∅ for all i 6= j. This concludes the
proof of the lemma in the case of a composite link.

Case 6: F has a three-valent interior vertex swi in the star of a winding

vertex sw. Assume for the moment that there is no boundary saddle. We
apply the same trick as in Case 4, changing the valence of the vertex swi to
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two. The result depends on whether δi−1 = δi or not. Refer again to Fig. 24,
where s1 is the vertex swi .

If δi−1 = δi, then according to Fig. 24 the winding vertex must be s3.
As a result of the change of the foliation, the vertex s1, which becomes
two-valent, escapes the star of sw. If it becomes good, we proceed as in
Case 3. If it is still bad, we can apply the same argument as in case (iii.b)
of the proof of Lemma 5 to show that there is a good two- or three-valent
interior vertex or a one-valent boundary vertex somewhere else, and proceed
as in Case 2, 3, or 4 above.

If δi−1 6= δi, then according to Fig. 24 the winding vertex must be s2
or s4. We may assume that it is s4. As a result of the change of the foliation
the valence of sw increases, whereas the complexity of the disk M does not
change. So, after finitely many such operations either all three-valent interior
vertices will be removed from σw or we get a good interior vertex of valence
≤ 3 or a univalent boundary vertex.

A slight complication occurs in the case of boundary saddle present, when
the three-valent vertex under consideration is swq , and we have δq−1 = δq.
Similarly to Case 4, one can show that now the change of the foliation
indicated in Fig. 29 is possible. The vertex swq will escape the star of sw and
become two-valent, so we can proceed as above.
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Fig. 29. The case when swq is three-valent and xw
q is a boundary saddle

Case 7: F contains a two-valent vertex swi in the star of a winding vertex,
and δi−1 = δi. By the same trick as in Case 4 we can change the valence of
the vertex swi to one, and then simplify the knot as in Case 2.

Case 8: F contains a four-valent interior vertex swi in the star of a

winding vertex, and δi−1 = δi. By changing the valence of the vertex swi
to three, we also remove it from the star of the winding vertex. So, either
it becomes good and we can proceed as in Case 4, or it is still bad and
then there must be a good two- or three-valent interior vertex or a univalent
boundary vertex somewhere else.

In order to complete the proof of Propositions 6–8, we need only consider
the case c(M) = 0. If L is an arc-presentation of the unknot, then (2) and
(3) imply c(L) = V b

2 = 2.
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If L is a split or composite link, we may assume without loss of generality
that L ∩ S1

ϕ = {0, π}. Then the line x = π will be splitting or factorizing,
respectively, for the rectangular diagram of L.

A couple of remarks are in order.

Remark 12. The assertions of Propositions 7 and 8 can be strengthened
a little by skipping destabilization moves in the formulation. Indeed, it is
trivial to show that, for any sequence L0 7→ L1 7→ · · · 7→ LN of exchange and
destabilization moves, there exists a sequence L0 7→ L′

1 7→ · · · 7→ L′
N ′−1 7→

L′
N ′ = LN in which the first k moves are exchanges and the last N ′ − k

ones destabilizations. If LN is split or composite, then L′
k is also split or

composite, respectively.

Remark 13. One can easily show that, for any two sequences

D
(1)
0 7→ D

(1)
1 7→ · · · 7→ D

(1)
N1

and D
(2)
0 7→ D

(2)
1 7→ · · · 7→ D

(2)
N2

of cyclic permutation, exchange, and destabilization moves of rectangular
diagrams, there exists a sequence

D
(1)
0 #D

(2)
0 7→ D1 7→ · · · 7→ DN = D

(1)
N1

#D
(2)
N2

of cyclic permutation, exchange, and destabilization moves. A similar state-
ment is true for the distant union operation. Thus, we can obtain a complete

decomposition of an arc-presentation by using exchange and destabilization
moves.

3. APPLICATIONS

3.1. An algorithm for recognizing the unknot, recognizing split

links, and link factorization. Propositions 6–8 allow us to construct a
simple algorithm for recognizing the unknot, decomposing a given link into
the distant union of non-split links, and factorizing a non-split link into
prime links. The algorithm works as follows.

We search for all arc-presentations obtained by finite sequences of ex-
change moves from a given one. Since, for any n, the number of combinatorial
classes of arc-presentations of complexity n is finite, the process will termi-
nate in finitely many steps. Let L1, . . . , LN be the arc-presentations found. If
some Li admits a destabilization move Li 7→ L′, we replace L by L′ and pro-
ceed as before. In finitely many steps, we get a list of arc-presentations none
of which can be simplified any more. Denote them again by L1, . . . , LN and
their rectangular diagrams by D1, . . . , DN . For each i = 1, . . . , N we find a
maximal decomposition

Di = (Di1# · · ·#Dip) ⊔ · · · ⊔ (Diq# · · ·#Dir) ⊔Di,r+1 ⊔ · · · ⊔Di,Ni
,
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where all diagrams Di1, . . . , Dir are non-trivial. We choose i so as to have Ni

maximal possible. Then all diagrams Di1, . . . , Dir will represent non-trivial
links, and all Di,r+1, . . . , DiNi

prime non-split links or trivial knots.

Remark 14. It is natural to ask how fast the algorithm just described is.
Unfortunately, the answer is not optimistic in the sense that the algorithm
is too hard to be implemented in practice: we cannot provide an estimation
for the running time much better than n2n, where n is the complexity of
the given diagram. However, we think that the algorithm can be improved
considerably. We describe this point very briefly.

We say that an arc-presentation L is simplifiable if there exists a sequence
of exchange moves L 7→ L1 7→ · · · 7→ Lk such that a destabilization move
can be applied to Lk. So, the problem is actually this: how to detect that a
given arc-presentation is simplifiable and find the corresponding sequence of
exchanges as fast as possible? Also, we need a fast method to decide whether
a given non-simplifiable arc-presentation can be transformed into a split or
composite one by using exchange moves. There is a hope that a solution
much better than an exhaustive search might exist. So far, this problem has
not been investigated.

3.2. An upper bound on the crossing number needed for un-

tangling. We shall use the notation c×(D) for the crossing number of a
planar diagram D. We shall also denote by carc(D) the complexity of the
arc-presentation corresponding to a rectangular diagram D. We introduce
two different notations, because a rectangular diagram can be viewed in
both ways, as an arc-presentation and as an ordinary planar diagram.

Theorem 2. Let D0 be an ordinary planar diagram of either a trivial

knot , a split link , or a composite link. Then there exists a sequence of Reide-

meister moves D0 7→ D1 7→ · · · 7→ DN such that the diagram DN is trivial ,
split , or composite, respectively , and we have c×(Di) ≤ 2(c×(D0) + 1)2 for

all i.

Proof. It is shown in [7] that there is an algorithm for converting a planar
diagram D0 to an arc-presentation that has no more than c×(D0) + 2 arcs
provided that D0 satisfies certain restrictions. By using the same method,
one can show that the estimation 2c×(D0) + 2 works for any connected
diagram D0. Let D(1) be the corresponding rectangular diagram. Following
the lines of the conversion procedure, one sees that there is a sequence of
Reidemeister moves D0 7→ D1 7→ · · · 7→ Di1 = D(1) such that c×(Di) ≤
c×(D(1)) for all i = 1, . . . , i1.

Notice that a cyclic permutation of horizontal (vertical) edges of a rect-
angular diagram can be decomposed into one stabilization move, a few ex-
change moves, and one destabilization move (see Fig. 30). Therefore, we can
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Fig. 30. Cyclic permutation via stabilization, exchanges, and destabilization

find a sequence of (de)stabilization and exchange moves D(1) 7→ · · · 7→ D(m)

such that the final diagram D(m) is trivial, split, or composite, respectively,
and, for all j = 1, . . . ,m, we have carc(D

(j)) ≤ 2c×(D0) + 3.
It is easy to show that, for any rectangular diagram D, we have

c×(D) ≤ (carc(D) − 1)2/2.

It remains to notice that, for any exchange or (de)stabilization move D(j) 7→
D(j+1), there exists a finite sequence of Reidemeister moves

D(j) 7→ Dij+1 7→ Dij+2 7→ · · · 7→ Dij+1 = D(j+1)

such that c×(Dij+l) ≤ max(c×(D(j)), c×(D(j+1))) for 1 ≤ l ≤ ij+1 − ij .

3.3. Results of Birman and Menasco on closed braids. The re-
sults of [3] and [4] on closed braid representatives of links can be deduced
from the main result of this paper, which is not a surprise because we used
a modification of a technique that was originally worked out by Birman and
Menasco for studying closed braids.

First of all, we briefly recall what the elementary moves for braids are:

1) conjugation

b 7→ cbc−1, b, c ∈ Bn;

2) stabilization

b 7→ bσ±1
n ∈ Bn+1, b ∈ Bn ⊂ Bn+1;

3) destabilization

bσ±1
n 7→ b, b ∈ Bn ⊂ Bn+1;

4) exchange

b1σ
±1
n b2σ

∓1
n 7→ b1σ

∓1
n b2σ

±1
n , b1, b2 ∈ Bn ⊂ Bn+1.

Moves 1)–3) are Markov’s moves; the exchange moves were introduced by
J. Birman and W. Menasco. In [3], [4] a more general transform is called
an exchange move. However, one can easily show that the more general,
“multistrand”, exchange move can be decomposed into a finite number of
“elementary” exchange moves and braid isotopies.

An exchange move can be decomposed into a finite sequence of Markov’s
moves, but not always within the class of braids with the same or smaller
number of strands. The main result of [3] and [4] is the following.
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Theorem 3 (Birman and Menasco). If b0 is a braid whose closure is

a trivial knot , then there exists a finite sequence b0 7→ b1 7→ · · · 7→ bN of

conjugations, destabilizations, and exchanges such that bN is a trivial braid

on one strand.

If b0 is a braid whose closure is either a split link or a composite link ,
there exists a finite sequence b0 7→ b1 7→ · · · 7→ bN of conjugations and

exchanges such that bN is a split braid or a composite braid , respectively.

For the definition of split and composite braids, see [3].

Proof. We give a sketch only, inviting the reader to fill in the details.
The construction of 1.4 applied to a split or a composite rectangular

diagram D gives a braid bD which is conjugate to a split or composite braid,
respectively.

By a straightforward check one establishes the following:

• if D 7→ D′ is an exchange of vertical edges, then bD = bD′ ;
• if D 7→ D′ is a cyclic permutation of edges, then either bD 7→ bD′ is a

conjugation or we have bD = bD′ ;
• if D 7→ D′ is an exchange of the upper two horizontal edges, then
bD 7→ bD′ is either a conjugation or an exchange, depending on the
orientation of the edges and their relative position (it is assumed that
we enumerate the braid strands from bottom to top);

• if D 7→ D′ is a destabilization move involving the upper two horizontal
edges of D, then either bD 7→ bD′ is a destabilization move or we have
bD = bD′ , depending on the orientation of the edges.

Let b be a braid whose closure is a trivial knot. According to Proposi-
tion 2 there exists a rectangular diagram D such that b = bD. From Propo-
sition 6 we know that there exists a sequence D 7→ D1 7→ · · · 7→ DN of
exchanges, cyclic permutations, and destabilizations which takes the dia-
gram D to a trivial diagram DN .

Each exchange move Di 7→ Di+1 can be decomposed into a number
of cyclic permutations of horizontal edges and an exchange move that in-
volves the upper two edges. Similarly, each destabilization Di 7→ Di+1 can
be decomposed into a number of cyclic permutations and a destabilization
involving the upper two horizontal edges. Therefore, the braid bDN

, which
is the unit of B1, can be obtained from the initial braid b by finitely many
exchanges, conjugations, and destabilizations.

For split and composite braids, the proof is similar. One should use
Propositions 7 and 8, respectively, and also Remark 12 (to show that desta-
bilizations are not needed in this case).

Remark 15. Notice that, as a by-product, we obtained a new proof of
Markov’s theorem, which is now a corollary to Proposition 4.
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3.4. Two tests for knottedness. How does one usually conclude that
a given knot is truly knotted? The standard way to prove that a given knot is
non-trivial is to compute some knot invariant like the Alexander polynomial
or Jones polynomial. Such computations seem to be hard for large knots.
The algorithms known up to now for computing polynomial invariants take
at least exponential time in the complexity of a link diagram.

However, there is (at least) one well known exception from the above
mentioned situation: if an alternating planar diagram of a knot has no sepa-
rating vertex, then it presents a non-trivial knot or a non-split link (see [15]).
To check that a given diagram is alternating and has no separating vertex
is very easy.

Here, we provide two sufficient conditions for knottedness in terms of arc-
presentations (rectangular diagrams). Verification of the conditions requires
not more than quadratic time in the complexity of the diagram provided
that the diagram is encoded in a reasonable way.

From Propositions 6–8 one concludes the following

Corollary 1. If no exchange and no destabilization move can be ap-

plied to a non-trivial arc-presentation L, then L is a non-trivial non-split

prime link.

Proof. We need only comment on why L is prime, i.e., non-composite.
The point is that, if L is composite as a link, then Proposition 8 implies that
L is composite as an arc-presentation. This contradicts the assumption, since
a composite arc-presentation always admits exchange moves.

The assumption of Corollary 1 means that L does not have “trivial” arcs,
i.e., arcs connecting two neighbouring vertices, and any two neighbouring
arcs (vertices) of L interleave. In terms of the corresponding rectangular
diagram, this means that any two neighbouring vertical (horizontal) edges
interleave provided that we regard the rightmost and leftmost (top and
bottom) edges also as neighbouring. Diagrams of this kind will be said to
be rigid.

There are numerous examples of rigid diagrams. Any torus knot or link
can be presented by a rigid diagram. A rigid diagram of the Whitehead
link is displayed on the left of Fig. 31. Notice that, in contrast to the case
of alternating planar diagrams, rigid and non-rigid rectangular diagrams of
the same complexity can present equivalent prime links. For example, the
diagram of the Whitehead link on the right of Fig. 31 is not rigid, though
it has the same complexity as the one on the left.

In Fig. 32 we show a rigid diagram of a two-component link with zero
multivariable Alexander polynomial and zero linking number. (The latter
two invariants are often used to establish non-splitness. The example was
constructed in response to a question by Józef Przytycki, who asked the
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bb b b

bb
b b

bb

b b

bb
b b

bb

bb
b b
bb

Fig. 31. Two rectangular diagrams of the Whitehead link: a rigid diagram (left) and a
non-rigid diagram (right)

author whether rigid diagrams always have non-zero Alexander polynomial.
So, the answer is ‘no’. Recall that the non-triviality of alternating links was
proved in [15] by showing that they have non-trivial Jones polynomial.)

b b
bb

b b
b b
bb b b
b b
bb

b bbb
Fig. 32. A rigid diagram of a link with zero Alexander polynomial

The second test for knottedness uses an analogue of the writhe. Let us
denote by f+

ε and f−ε the self-homeomorphisms of S3 defined by

f±ε (ϕ, τ, θ) = (ϕ− ε, τ, θ ± ε).

Let L be an arc-presentation of an oriented link. Pick an ε > 0 less than the
ϕ-distance between any two vertices of L and the θ-distance between any
two arcs of L. Then the link f±ε (L) will be disjoint from L.

We define the upper (respectively, lower) writhe of L to be the linking
number of L with f+

ε (L) (respectively, f−ε (L)). We denote the upper and
lower writhes of L by w+(L) and w−(L), respectively. By the writhe of L
we shall mean the couple (w−(L), w+(L)).

The numbers w±(L) can be easily computed from the knowledge of a
rectangular diagram D of L. We divide the set of crossings and the set of
turns of the diagram D into two types, which we call positive and negative,
according to Figures 33 and 34.
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6
�

?

-
6

-

?

�

Fig. 33. Positive crossings (left) and negative crossings (right)

b b b b
Fig. 34. Positive turns (left) and negative turns (right)

We define the writhe w(D) of a rectangular link diagram D in the stan-
dard way: w(D) is the number of positive crossings less the number of nega-
tive crossings in D. Denote by n+(D) and n−(D), respectively, the numbers
of positive and negative turns in D. The following three facts are established
by a straightforward check.

Proposition 10. Let L be an arc-presentation of an oriented link , and

D the corresponding rectangular diagram. Then

(13) w+(L) = w(D) +
n+(D)

2
, w−(L) = w(D) −

n−(D)

2
,

which implies, in particular , that

(14) w+(L) − w−(L) = c(L).

Proposition 11. The writhe of an arc-presentation does not change

under exchange moves.

Equivalently, the right-hand side of any of the formulae (13) is not
changed under cyclic permutation of vertical or horizontal edges and in-
terchange of non-interleaved neighbouring vertical or horizontal edges of D.

Proposition 12. Let L be an arc-presentation of an oriented link , and

L 7→ L′ a stabilization move. Then either

w+(L′) = w+(L) + 1, w−(L′) = w−(L′),

or

w−(L′) = w−(L) − 1, w+(L′) = w+(L).

For the trivial arc-presentation L of the unknot, we have w+(L) = 1,
w−(L) = −1. For the distant union L1 ⊔ L2 of two arc-presentations, we
have w±(L1 ⊔L2) = w±(L1) +w±(L2). In conjunction with Propositions 6,
7, 11, and 12, this implies the following.

Corollary 2. If L is an arc-presentation of the trivial link of k com-

ponents, then

(15) w−(L) ≤ −k, k ≤ w+(L).
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It happens very often that w−(L) ≥ 0 or w+(L) ≤ 0, which immediately
implies that link L is non-trivial. For example, the torus link of type (p, q)
has an arc-presentation Lp,q whose arcs are

γ
− 2πk

p+q
, 2πk
p+q

,
2π(k+p)

p+q

,

where k = 1, . . . , p+ q. A simple calculation gives

w−(Lp,q) = pq − p− q, w+(Lp,q) = pq.

If both p and q are large, then the interval (w−, w+) stays far away from 0,
and this remains true after a certain number of modifications of the diagram
of Lp,q.
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87–161.

[2] J. Birman and M. Hirsch, A new algorithm for recognizing the unknot, Geom. Topol.
2 (1998), 175–220.

[3] J. Birman and W. Menasco, Studying links via closed braids IV : Composite links

and split links, Invent. Math. 102 (1990), 115–139.
[4] —, —, Studying links via closed braids V : Closed braid representatives of the unlink,

Trans. Amer. Math. Soc. 329 (1992), 585–606.
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