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Link homology and Frobenius extensions

by

Mikhail Khovanov (New York)

Abstract. We explain how rank two Frobenius extensions of commutative rings lead
to link homology theories and discuss relations between these theories, Bar-Natan theories,
equivariant cohomology and the Rasmussen invariant.

Frobenius systems. Suppose ι : R→ A is an inclusion of commutative
rings, and ι(1) = 1. The restriction functor Res : A -mod → R -mod has left
and right adjoint functors: the induction functor Ind(M) = A⊗RM and the
coinduction functor CoInd(M) = HomR(A,M). Following Kadison [Ka] and
others, we say that ι is a Frobenius extension if the induction and coinduction
functors are isomorphic. Equivalently, ι is Frobenius if the restriction functor
has a biadjoint (two-sided adjoint). We note that Kadison [Ka] treats the
more general case of not necessarily commutative R and A. In this paper we
consider only commutative rings. The following proposition is well known
(or see [Ka, Section 4]).

Proposition 1. ι is a Frobenius extension iff there exists an A-bimodule

map ∆ : A → A ⊗R A and an R-module map ε : A → R such that ∆ is

coassociative and cocommutative, and (ε⊗ Id)∆ = Id.

A Frobenius extension, together with a choice of ε and ∆, will be denoted
F = (R,A, ε,∆) and called a Frobenius system (as in [Ka]).

A Frobenius system defines a 2-dimensional TQFT, a tensor functor from
oriented (1 + 1)-cobordisms to R-modules, by assigning R to the empty 1-
manifold, A to the circle, A⊗RA to the disjoint union of two circles, etc. The
structure maps ι, ε,∆,m (where m is the multiplication in A) are assigned
to basic two-dimensional cobordisms (see [A], [Ka], or [Kh1]).
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Each numbered formula (1), (2), etc. in this paper describes a Frobenius
system. We denote the Frobenius system associated with formula (i) by
Fi = (Ri, Ai, ε,∆).

Link homology. In [Kh1] we constructed an invariant of links, based
on a particular Frobenius system that we denote here by F1, with R1 = Z,
A1 = Z[X]/(X2), the counit and comultiplication

(1) ε(1) = 0, ε(X) = 1, ∆(1) = 1 ⊗X +X ⊗ 1, ∆(X) = X ⊗X.

To a plane diagram D of a link L we assigned a commutative cube of R1-
modules and R1-module homomorphisms, then passed to the total complex
of the cube and took its cohomology, which ended up being independent
of the choice of the diagram D. The construction works as well for the
Frobenius system F2 with R2 = Z[c], A2 = Z[X, c]/(X2) and

(2)
ε(1) = −c, ∆(1) = 1 ⊗X +X ⊗ 1 + cX ⊗X,

ε(X) = 1, ∆(X) = X ⊗X.

This system is graded, with deg(X) = 2, deg(c) = −2 (we follow the grading
conventions of [Kh2] rather than those of the earlier paper [Kh1]). The
multiplication, comultiplication, unit and counit maps have degrees 0, 2, 0
and −2 respectively. As a result, homology theories associated with this
Frobenius system and with F1 are bigraded.

In a recent paper [BN] Dror Bar-Natan defined several new homology
theories of links and tangles. One of his ideas, when viewed from an algebraic
viewpoint, is to modify the equation X2 = 0 to X2 = t, where t is a
formal variable (equal to one-eighth of his invariant of a closed genus 3
surface). Namely, a certain quotient of his link invariant [BN, Section 9.2] is
the homology theory assigned to the Frobenius system F3 with R3 = Z[t],
A3 = Z[X], X2 = t (i.e., ι : R3 → A3 maps t to X2) and

(3)
ε(1) = 0, ∆(1) = 1 ⊗X +X ⊗ 1,

ε(X) = 1, ∆(X) = X ⊗X + t1 ⊗ 1.

This theory is graded, with deg(t) = 4. The invariant of a link is a complex
of graded free Z[t]-modules, up to chain homotopy, and its homology is a
bigraded link homology theory.

Base change. Let F be a Frobenius system. Any homomorphism ψ :
R→ R′ of commutative rings with ψ(1) = 1 determines a Frobenius system
F ′ = (R′, A′, ε′, ∆′) where A′ = A ⊗R R′ and the comultiplication and
counit maps are induced from those for A by tensoring with the identity
endomorphism of R′. We will say that F ′ is obtained by base change from
F via ψ. For instance, the Frobenius system F1 is obtained by base change
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(with surjective ψ) from each of F2, F3. Specifically, adding the relation
t = 0 to F3 recovers the F1 theory (here ψ : Z[t] → Z, ψ(t) = 0), while
the ring homomorphism Z[t] → Q taking t to 1 produces the Frobenius
extension Q ⊂ Q[X]/(X2−1) leading to Lee’s theory [L] and an application
to slice genus [R]. The specialization t = 1 collapses the grading.

Dual system. The dual system of F is the Frobenius system F∗ =
(R,A∗, ι∗,m∗), where A∗ = HomR(A,R) and the unit, multiplication,
counit and comultiplication of F∗ are obtained by dualizing the counit, co-
multiplication, unit and multiplication of (R,A), respectively. We say that
F is self-dual if F∗ is isomorphic to F as an Frobenius system, i.e. there is an
R-module isomorphism A∗ ∼= A which identifies ι∗ with ε, m∗ with ∆, etc.

Proposition 2. The Frobenius systems (Ri, Ai) for i = 1, 2, 3 are self-

dual.

This is proved by a direct computation. Note that if a system is self-dual,
so are its base changes.

Twisting. Given a Frobenius system F and an invertible element y ∈ A,
we can twist the comultiplication and counit by y:

ε′(x) = ε(yx), ∆′(x) = ∆(y−1x).

This results in a Frobenius system F ′ = (R,A, ε′, ∆′). Twisting by invertible
elements of A is the only way to modify the counit and comultiplication in
Frobenius extensions (see [Ka, Theorem 1.6]).

To any Frobenius system F and a link diagram D we can assign a com-
plex of R-modules, denoted F(D), using the algorithm of [Kh1].

Proposition 3. The complexes F(D) and F ′(D) are isomorphic if F ′

is a twisting of F .
Proof. F(D) is the total complex of an n-cube VD,F , assigned to D

and F , where n is the number of crossings of D. At each vertex of the cube
stands a tensor power of A, and each arrow is either a multiplication or a
comultiplication map on some factors of A⊗k.

In fact, VD,F and VD,F ′ are isomorphic as cubes of R-modules. The
isomorphism is constructed by making it the identity on the source vertex
of the cube and extending it arrow by arrow to the whole cube. For each
vertex, the isomorphism A⊗k → A⊗k is a multiple of the identity map, with
the coefficient being a product of powers of y−1

i , 1 ≤ i ≤ k, where

yi = 1 ⊗ · · · ⊗ 1 ⊗ y ⊗ 1 ⊗ · · · ⊗ 1 ∈ A⊗k.

This isomorphism of cubes induces an isomorphism of the complexes F(D)
and F ′(D).



182 M. Khovanov

Corollary 1. If F ′ is a twisting of F then H(D,F) ∼= H(D,F ′).

Let us look at the F2 theory from this viewpoint. The element 1 + cX
in A2 is invertible, (1 + cX)(1 − cX) = 0. The twisting F ′

2 of F2 by this
element is a Frobenius system with the counit and comultiplication given by
formula (1). Therefore, F ′

2 is just the Frobenius system F1 with the ground
ring extended by adding a free variable c.

Corollary 2. For any link L and its diagram D the complexes F1(D)
⊗Z Z[c] and F2(D) are isomorphic. Consequently , there is an isomorphism

of cohomology groups

H(L,F2) ∼= H(L,F1) ⊗Z Z[c].

Therefore, adding c does not provide new information. Moreover, Ja-
cobsson [J] showed that the F2 theory is not invariant under cobordisms.
Multiplication by 1 + cX appears in his work as well.

Thus, twisting preserves link homology groups but not, in general, link
homology functors.

Invariance under the first Reidemeister move. We would like to
know for which Frobenius systems F the complexes F(D1) and F(D2) are
chain homotopy equivalent whenever D1, D2 are related by a Reidemeister
move. Any such system produces a homology theory of links (where to a
link L we assign the homology H(D,F) of the complex F(D) for a diagram
D of L).

The complex assigned to a one-crossing knot diagram is either

0 → A⊗R A
m→ A→ 0

or

0 → A
∆→ A⊗R A→ 0

depending on the crossing’s sign. Each of these complexes must be chain
homotopy equivalent to 0 → A → 0, via an R-linear, and, preferably, A-
linear homotopy. The unit map ι⊗Id is a section of m, and the first complex
decomposes as a sum of a contractible complex and 0 → ker(m) → 0. Hence,
we need an A-module isomorphism ker(m) ∼= A. Since

ker(m) ∼= coker(ι) ⊗R A ∼= (A/R) ⊗R A

(where A/R is the R-module quotient), the invariance follows if A/R is a
free R-module of rank 1. Assuming this and pulling back 1 ∈ R ∼= A/R to
A we get X ∈ A such that A ∼= R1 ⊕RX as R-modules.

We say that F has rank two if there existsX ∈ A such that A ∼= R1⊕RX.
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A universal rank two Frobenius system. Let F4 be the Frobenius
system with

R4 = Z[a, c, e, f, h, t]/(ae− cf, af + chf − cet− 1)

and A4 = R4[X]/(X2 − hX − t). The comultiplication and counit are

(4)

∆(1) = (et− hf)1 ⊗ 1 + eX ⊗X + f(1 ⊗X +X ⊗ 1),

∆(X) = ft1 ⊗ 1 + et(1 ⊗X +X ⊗ 1) + (f + eh)X ⊗X,

ε(1) = −c, ε(X) = a.

R4 and A4 are graded, with a, c, e, f, h, t,X in degrees 0,−2, −2, 0, 2, 4, 2
respectively.

Proposition 4. F4 is a rank two graded Frobenius system, universal in

the following sense. Suppose F ′ is a rank two Frobenius system, and X ′ ∈ A′

a splitting element , A′ ∼= R′1⊕R′X ′. There exists a unique homomorphism

ψ : A4 → A′ with ψ(X) = X ′ that realizes F ′ as a base change of F4.

Proof. That F4 is a graded rank two Frobenius system can be verified by
a direct computation. Furthermore, forX ′ as above, we have X ′2 = h′X ′+t′,
ε′(1) = −c′ and ε′(X ′) = a′ for unique h′, t′, a′, c′ ∈ R′. Write

∆′(1) = d′1 ⊗ 1 + e′X ′ ⊗X ′ + f ′(1 ⊗X ′ +X ′ ⊗ 1).

Since ∆′ is a map of A′-bimodules,

(X ′ ⊗ 1)∆′(1) = (1 ⊗X ′)∆′(1),

implying d′ = e′t′ − h′f ′. Define ψ by taking generators a, c, e, f, h, t,X of
A4 to the corresponding elements of A′.

Remark. This system has a geometric description in terms of dotted
surfaces (where a dot stands for multiplication by X). For instance, the
invariant of a sphere decorated by a dot is ε(X) = a. The relation X2 =
hX + t translates into the following skein relation: a disk decorated by two
dots equals a disk decorated by a single dot times h plus a disk times t. The
formula for ∆(1) translates into a surgery skein relation for a tube (compare
with [Kh3] and [BN, Section 11.2]). Adding a dot to a surface corresponds
to taking the connected sum of the surface with the torus and dividing by 2,
in the language of Bar-Natan [BN].

Since f + eX is invertible, with inverse a + ch − cX, and has degree 0,
we can twist by it. The comultiplication and counit become

(5)
ε(1) = 0, ∆(1) = 1 ⊗X +X ⊗ 1 − h1 ⊗ 1,

ε(X) = 1, ∆(X) = X ⊗X + t 1 ⊗ 1.

After the twist, all the structure maps depend on h and t only. Let F5 be
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the Frobenius system with

R5 = Z[h, t], A5 = R5[X]/(X2 − hX − t), deg(h) = 2, deg(t) = 4,

and ε,∆ given by (5). We have

Proposition 5. Any rank two Frobenius system is obtained from F5 by

a composition of a base change and a twist.

There is a map from Bar-Natan’s theory [BN] to F5 given by introducing
dotted surfaces and skein relations between them. The coefficients of skein
relations are the structure constants of F5. The decomposition of ∆(1) in
formula (5) becomes a skein relation for dotted surfaces that implies the 4Tu
relation of Bar-Natan. Although this map from Bar-Natan’s theory to F5

is neither surjective nor injective already for the empty link, his arguments
are universal, being instantly adoptable to F5 and any base change of the
latter. The next result follows from [BN] at once.

Proposition 6. The complexes F5(D1) and F5(D2) are isomorphic if

D1, D2 are two diagrams of the same oriented link. The Frobenius system

F5 determines a bigraded link homology theory which is functorial for link

cobordisms up to sign indeterminacy. Any (graded) Frobenius system ob-

tained by a (graded) base change from F5 determines a (bi)graded homology

theory of links, functorial for link cobordisms up to sign indeterminacy.

In view of Proposition 5, any rank two Frobenius system (after twisting,
if necessary) produces a cohomology theory of links. On the chain level, all
the information is already captured by F5, since F ′(D) ∼= F5(D) ⊗R R

′ for
any F ′ given by a base change from F5.

Bar-Natan’s theory [BN] cannot be immediately expressed in the lan-
guage of Frobenius systems. Indeed, for Frobenius systems the homology of
2-component unlink is A⊗R A, the second tensor power of the unknot’s ho-
mology A over the homologyR of the empty knot. In Bar-Natan’s framework
there is no such isomorphism. In particular, a tube (which should represent
∆(1)) cannot be decomposed into a union of surfaces separating the two
boundaries of the tube.

Examples. 1. The quotient of F5 by the ideal (h) produces the Frobe-
nius system F3 described earlier. The variable h can also be removed by
X → X − h/2 if 2 is made invertible in the ground ring (at the cost of
modifying t).

2. The Frobenius system F5 is almost self-dual. Namely, the dual of F5

is the system where h is changed to −h in the structure maps. In particular,
any base change ψ of F5 with ψ(2h) = 0 is self-dual. Dual Frobenius systems
make an appearance in knot homology, for there is an isomorphism of chain
complexes
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C(D!,F) ∼= C(D,F∗)∗

where D! is the mirror image ofD. If F is a rank two Frobenius extension, its
dual also has rank two, and the above equation descends to an isomorphism
of link invariants.

3. Link homology theory discovered by Bar-Natan in [BN, Section 9.3]
and investigated by Turner [T] is given by a Frobenius system F6 with

R6 = F2[H], A6 = R6[X]/(X2 −HX), deg(H) = 2,

where F2 is the 2-element field, and

(6)
ε(1) = 0, ∆(1) = 1 ⊗X +X ⊗ 1 +H1 ⊗ 1,

ε(X) = 1, ∆(X) = X ⊗X.

This system is self-dual. The base change ψ : R5 → R6 to this system is
given by ψ(h) = H, ψ(t) = 0.

4. Field extensions. Any field extension R ⊂ A of finite degree is Frobe-
nius, and any nonzero R-linear map A → R can serve as a counit ε. In
particular, any degree two field extension R ⊂ A gives rise to a link homol-
ogy theory. We do the base change R→ R, where R is the algebraic closure
of R. This base change preserves the dimension of homology groups (as R-,
respectively, R-vector spaces):

dimR H(L,F) = dimR H(L,F),

where F is the above base change of F = (R,A, ε,∆). Let A = A ⊗R R.
There are two cases to consider.

(a) The extension R ⊂ A is separable. Then A ∼= R×R, as an R-algebra,
and the resulting theory is the one studied by Lee [L] in characteristic 0,
and by Shumakovitch [Sh] in finite characteristic, with

dimR H(L,F) = 2m,

where m is the number of components of L. In particular, the total rank of
homology groups H(L,F) depends only on m.

(b) The extension R ⊂ A is inseparable. Then charR = 2 and A ∼=
R[y]/(y2 + t) where t ∈ R,

√
t /∈ R. We have A ∼= R[X]/(X2) where X =

y +
√
t, and

√
t ∈ R. Twisting ε, we can assume ε(1) = 0, ε(X) = 1. The

resulting theory F is obtained from F1 by the base change

Z → F2 → R.

The intermediate theory (with R = F2) is simply the original theory of [Kh1,
Section 7] with coefficients in the 2-element field. Denote it by H(L,F2). We
have

dimR H(L,F) = dimF2
H(L,F2)

for any F given by an inseparable degree two field extension R ⊂ A.
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Equivariant cohomology. The Frobenius extension F1 has a coho-
mological interpretation: R1

∼= Z is isomorphic to the cohomology ring of a
point, and A1

∼= Z[X]/(X2) to the cohomology ring of a 2-sphere. The trace
map ε is the integration along the fundamental cycle on S2.

Other extensions that we considered have similar interpretations via
equivariant cohomology. Suppose that a topological group G acts contin-
uously on S2. Define

RG
∼= H∗

G(p,Z) = H∗(BG,Z)

to be the G-equivariant cohomology ring of a point p (where BG is the
classifying space of G), and

AG
∼= H∗

G(S2,Z) = H∗(S2 ×G EG,Z)

the equivariant cohomology ring of the 2-sphere. Then, in several cases,
(RG, AG) is a rank 2 Frobenius extension, with ε induced by integration
along the fibers of the S2-fibration

S2 ×G EG→ BG.

Examples. 1. The standard action of G = SU(2) on C2 induces an
action on S2 (with −I acting trivially) and leads to the Frobenius system F3.
Indeed,

R3 = Z[t] ∼= H∗(BSU(2),Z) = H∗(HP∞,Z),

A3 = Z[X] ∼= H∗(S2 ×SU(2) ESU(2),Z) ∼= H∗(CP∞,Z), X2 = t.

X here is the two-dimensional cohomology class of CP∞ which evaluates
to 1 on CP1 ⊂ CP∞. We choose t ∈ H4(HP∞,Z) so that its pullback to
CP∞ equals X2. Also, ε(X) = 1. The geometric counterpart of the SU(2)-
equivariant theory was considered by Seidel and Smith [S].

2. Taking G to be the group U(2) with the usual action on S2 (so that
the center U(1) acts trivially), we get the Frobenius system F5:

R5 = Z[h, t] ∼= H∗(BU(2),Z) ∼= H(Gr(2,∞),Z),

A5 = Z[h,X] ∼= H∗(S2 ×U(2) EU(2),Z) ∼= H∗(BU(1) ×BU(1),Z).

Gr(2,∞) is the Grassmannian of complex planes C2 in C∞, its cohomology
ring is freely generated by h and t in degrees 2 and 4, while BU(1) ∼= CP∞.
Notice that A5 is the polynomial ring with generators X,Y = h−X, and R5

is the ring of symmetric functions in X and Y, with h and −t the elementary
symmetric functions.

3. G = U(1), the group of rotations of S2 about a fixed axis. In this case
we get a Frobenius system F7 which is the quotient of F5 by the ideal (t):
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(7)

R7 = Z[h], A7 = Z[X,h]/(X2 − hX),

ε(1) = 0, ∆(1) = 1 ⊗X +X ⊗ 1 − h1 ⊗ 1,

ε(X) = 1, ∆(X) = X ⊗X,

The system F6 is the modulo 2 specialization of F7 and can be described
via equivariant U(1)-cohomology with coefficients in F2.

If we change the coefficient ring of equivariant cohomology from Z to any
field k of characteristic other than 2, then the substitution X → X − h/2
takes us to the theory which is a base change of F3 (the latter also considered
over k) with t = −h2/4. The homology of the resulting theory is given by
suitably doubling (with a shift) the F3 homology (over k).

F5

F1

F3F7

F6

F4

F2

Lee’s 
theory

h=0t=0

t=0h=0

t=1

twisting

twisting

2=0

Bar−Natan’s theory

Fig. 1. A diagram of link homology theories

{1}

SU(2)U(1)

U(2)

Fig. 2. Some subgroups of U(2)

Each of the four theories F1,F3,F5,F7 at the vertices of the central
rombus in Figure 1 is the G-equivariant theory for some connected closed
subgroup of U(2) (see Figure 2). Group inclusion arrows in Figure 2 are
reversals of base change arrows in Figure 1.
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Bar-Natan’s theory and the Rasmussen invariant. To a diagram
D of an oriented link L we can associate the complex F3(D) of graded
free Z[t]-modules (recall that t is one-eighth of the closed genus three sur-
face in [BN], as well as a generator of H4(HP∞,Z)). The chain homotopy
equivalence class of this complex is an invariant of L. Denote the complex
F3(D) ⊗Z Q of graded free Q[t]-modules by Ct(D) and its cohomology by
Ht(D) (this is exactly Bar-Natan’s universal theory over Q). The cohomol-
ogy Ht(D) is a finitely generated graded Q[t]-module and thus a direct sum
of torsion modules Q[t]/(tm), for various m, and free modules Q[t]. De-
note by Tor(D) the torsion submodule of Ht(D) and by H′(D) the quotient
Ht(D)/Tor(D). We denote the corresponding link homologies by Tor(L) and
H′(L), respectively. Both of these theories are cobordism-friendly: given a
link cobordism S from L1 to L2 there are well defined (up to overall sign)
homomorphisms

Tor(S) : Tor(L1) → Tor(L2), H′(S) : H′(L1) → H′(L2).

To define H′(S) on an element α ∈ H′(L1), pull α back to H(L1) and ap-
ply the homomorphism Ht(S) composed with the quotient map Ht(L2) →
H′(L2). The map Tor(S) is simply the restriction of Ht(S) to the torsion
submodule of H(L1).

Proposition 7. H′(L) is a free Q[t]-module of rank 2m, where m is the

number of components of L.

Proof. This follows from Lee [L]. The quotient of the complex Ct(D) by
its subcomplex (t−1)Ct(D) has cohomology of dimension equal to the rank
of H′(L).

Assume now L is a knot. Then Ct(D) is naturally a complex of free
Q[X]-modules, where X2 = t.

Proposition 8. H′(L) is a free Q[X]-module of rank one concentrated

in cohomological degree 0.

Therefore, as a graded Q[X]-module, H′(L) ∼= Q[X]{−s′(L)−1} for some
even integer s′(L). Notice that Ht(L) is nontrivial only in odd q-degrees,
since L is a knot, hence the shift is by an odd degree. It is clear from the
definition that s′(L) is the Rasmussen invariant s(L), assuming that we
normalize as in [Kh2,4].

The quotient of H′(L) by the ideal (t − 1) gives Lee’s theory. In the
latter any connected knot cobordism induces a nontrivial homomorphism
(see [R]). Lifting to H′(L), we have

Proposition 9. Any connected genus g cobordism S between knots L1

and L2 induces a nonzero grading-preserving map

H′(S) : H′(L1) → H′(L2){−2g}.



Link homology and Frobenius extensions 189

All other results of Rasmussen [R] admit a natural interpretation via H ′

as well. The Frobenius system F3 allows working with graded rather than
filtered complexes, making Rasmussen structures slightly more explicit and
bundling up a number of invariance results from several papers into that for
F3 implied by Bar-Natan [BN].

The complex Ct(D)/tCt(D) is the original complex of [Kh1, Section 7]
with coefficients in Q, which we denote C(D). Since Q[X] has homological
dimension 1, the complex Ct(D) is isomorphic to the direct sum of complexes

(∗) 0 → Q[X]{2m+ i} Xm

→ Q[X]{i} → 0

for various m > 0, i ∈ Z, a contractible complex, and the complex

0 → Q[X]{−s(L) − 1} → 0.

Reducing modulo t, we see that C(D) is isomorphic, modulo contractible
complexes, to the direct sum of

0 → A{2m+ i} 0→ A{i} → 0,

for m > 1,

0 → A{2 + i} X→ A{i} → 0

(m = 1 case), and the complex 0 → A{−s(L) − 1} → 0. Here A =
Q[X]/(X2).

In particular, complexes

0 → A
X→ A

X→ · · · X→ A→ 0

of length greater than 1 (i.e. with more than two A’s) cannot appear as direct
summands of C(D), which settles one of the problems implicitly raised in

[Kh4, Section 3]. Thus, the rank of the reduced homology H̃(L) is always

less than the rank of H(L), with the difference dim H(L) − dim H̃(L) − 1
being twice the number of terms in Ct(D) of the form (∗) for m > 1.

Acknowledgments. I am grateful to Dror Bar-Natan and Dmitry
Fuchs for enlightening discussions. Many useful suggestions from the ref-
eree were incorporated into the final version of the paper. While writing
this paper, I was partially supported by the NSF grant DMS-0407784.

References

[A] L. Abrams, Two dimensional topological quantum field theories and Frobenius

algebras, J. Knot Theory Ramif. 5 (1996), 569–587.
[BN] D. Bar-Natan, Khovanov’s homology for tangles and cobordisms,

math.GT/0410495.
[J] M. Jacobsson, Khovanov’s conjecture over Z[c], math.GT/0308151.



190 M. Khovanov

[Ka] L. Kadison, New examples of Frobenius extensions, University Lecture Series 14,
Amer. Math. Soc., 1999.

[Kh1] M. Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101
(2000), 359–426.

[Kh2] —, A functor-valued invariant of tangles, Algebr. Geom. Topol. 2 (2002), 665–741.
[Kh3] —, sl(3) link homology I, ibid. 4 (2004) 1045-1081.
[Kh4] —, Patterns in knot cohomology I, Experiment. Math. 12 (2003), 365–374.
[L] E. S. Lee, An endomorphism of the Khovanov invariant, math.GT/0210213, Adv.

Math., to appear.
[R] J. Rasmussen, Khovanov homology and the slice genus, math.GT/0402131.
[Sh] A. Shumakovitch, Torsion of the Khovanov homology, math.GT/0405474.
[S] I. Smith, Talk at MSRI, March 2004.
[T] P. Turner, Calculating Bar-Natan’s characteristic two Khovanov homology,

math.GT/0411225.

Department of Mathematics
Columbia University
New York, NY 10027, U.S.A.
E-mail: khovanov@math.columbia.edu

Received 24 December 2004;

in revised form 22 October 2005


