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Maciej Niebrzydowski and Jozef H. Przytycki (Washington, DC)

Abstract. This paper is motivated by a general question: for which values of £ and
n is the universal Burnside kei Q(k,n) finite? It is known (starting from the work of
M. Takasaki (1942)) that Q(2,n) is isomorphic to the dihedral quandle Z, and Q(3,3)
is isomorphic to Z3 @& Zs. In this paper, we give a description of the algebraic structure
for Burnside keis Q(4,3) and Q(3,4). We also investigate some properties of arbitrary
quandles satisfying the universal Burnside relation a = ---a % b % - - - x a x b. Invariants of

links related to the Burnside kei Q(k, n) are invariant under n-moves.

1. Introduction. A kei, =, also called an involutory quandle, was in-
troduced by Mituhisa Takasaki in 1942 |Tak| as an abstract algebra (@, )
with a binary operation * : QQ x @@ — @ satisfying the following conditions:

(i) a*xa=a for any a € Q,

(ii) (a*b)*xb=a,

(i) (a*b)*xc= (ax*c)x*(bxc) (right distributivity).

We use a standard convention for products in nonassociative algebras, called
the left-normed convention, that is, whenever parentheses are omitted in a
product of elements a1, as,..., a, of @Q then

apxag* - kap = (- ((a1 xag) xag) *-++) kan_1) * an

(left association), for example, a * b* ¢ = (a * b) * c. The conditions given in
the above definition are related to Reidemeister moves (see Figure 1).
We will consider free keis with the universal relation

Tp: a=-+--axbx---xaxb,
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Fig. 1. Reidemeister moves and kei axioms

b a*b /a* *a*
XXX
a/ b*a*b a
mb* *b* *b b
a*b*a *b

b*a*™

Fig. 2. Correspondence between n-moves and relation r,,

in which there are n letters on the right hand side and a, b are any elements
of the quandle. We denote such a kei with k generators by Q(k,n) and call
it the universal Burnside kei.

In [Joy], D. Joyce associated an involutory quandle to a link. In a similar
way we can associate to every link L its nth Burnside kei, Q,, (L), by assigning
generators to arcs of a fixed diagram of L, writing the relation of the form
u*v = w for each crossing (here u and w are generators corresponding to

the under-arcs and v is assigned to the over-arc) and adding the universal
relation r,,.

The relation r, corresponds to local changes in a link diagram called
n-moves. It follows that @, (L) is invariant under Reidemeister moves and
n-moves. For example, r3: a = b * a * b corresponds to invariance under
3-moves and r4: @ = a * b * a * b makes Q4(L) invariant under 4-moves.
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Figure 2 illustrates this correspondence in the case n = 3,4. In fact, Q, (L)
is also invariant under rational n/m-moves [D-I-P].

We notice that the relation r3: a = b* a % b is equivalent to a x b = b x a,
in other words, Q(k, 3) is a free commutative kei on k generators (!).

PROBLEM 1. For which values of k and n is Q(k,n) finite? How many
elements does it have?

In this paper, we focus on finitely generated commutative keis and keis
satisfying the 4th universal Burnside relation a = a * b * a * b.

2. Commutative keis

2.1. EXAMPLES. Let us first recall that there are two well known classes
of examples of finite commutative keis:

(1) dihedral kei, Z3 (with i j = 2j —i = —j — ¢ modulo 3), correspond-
ing to Fox 3-colorings, and its direct sums Z§ with coordinatewise
operation;

(2) the 3rd Burnside group, B(k,3) = {z1,...,2x | w® = 1 for any
word w}, with the core operation a * b = ba~'b, and its quotients.

Notice that B(k,3) is a commutative kei as the equality a x b = b * a follows
from the identity ba~'b=ab~'a, which, in B(k, 3), is equivalent to (ba=1)3 =1,
Our motivation for Problem 1 is a theorem by Burnside [Bu] stating that
B(k,3) is a finite group.

2.2. Some properties of commutative keis. First, let us describe some
general properties of involutory quandles satisfying the relation rs. Any
quandle is distributive from the right, but in the case of commutative keis,
we also have distributivity from the left:

ckx(axb)=(axb)xc=(axc)x(bxc)=(c*xa)*(cxb).

From axiom (ii) in the definition of kei, it follows that for any a,b € @, there
exists a unique ¢ € @ such that a = ¢ x b (and obviously ¢ = a x b).

Here, we mention that if we replace axiom (ii) with the above statement
without the condition that ¢ = a b, we get a general definition of a quandle
(see |F-R] for a description of quandle theory from the historical perspective).
For a survey on knot invariants derived from quandles see [Kam)].

The equality a = ¢ * b is equivalent to

axc=b and c*a=0>0.

(*) The commutativity relation should not be confused with the abelian condition,
(a*b)* (c*xd) = (ax*c)x*(bxd), introduced in [Joy].
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It follows that any commutative kei is a quasigroup (?) and the set {a, b, c =
a * b} is a subquandle. If m denotes the size of a finite commutative kei,
then there are ("21) /3 such 3-element subquandles and each element x € @
belongs to (m — 1)/2 of them (choosing any element p € @ \ = determines
the third element of the quandle, x * p).

An involutory quandle @ is said to be algebraically connected if for each
pair a, b in @), there are aq,...,as € (Q such that

axaj*---*as =Db.

We say that an involutory quandle is strongly algebraically connected if it is
algebraically connected and s = 1 in the above definition.

LEMMA 2. Any kei satisfying the universal relation ry for some odd k is
strongly algebraically connected.

Proof. Our relation r; now has the form
a=bxaxbx---*xaxb.

Using the first axiom of a quandle and the relation zxy*zxy = x % (2 *xy),
we can write r; as

bx(bxax---*xax*b)
a=bxbxaxbx---xa*xb= or

bx(axbx*---%axb),

depending on how many letters a and b we have in the relation rj. In either
case, in order to get from a to b we need to use only one operator (that can
be written using (k + 1)/2 letters a and b). m

Every algebraically connected quandle (not necessarily involutory) is a
metric space if we define the distance between z,y € () as the minimal
number of operators needed to obtain one element from the other. A sig-
nificant class of algebraically connected quandles is the knot quandles (see
[Joy| for a definition). Since our metric is unchanged under isomorphism of
quandles, some properties of the metric space (for example its diameter) are
knot invariants. Lemma 2 states that the diameter of any quandle (that is,
the diameter of the corresponding metric space) satisfying r; for some odd
kis 1.

Two distinct elements x and y of a quandle Q are called behaviorally
equivalent if

zxx=zxy forall z€Q.

(2) A quasigroup is a set G together with a binary operation - with the property that
for each z,y € G, there are unique elements w, z € G such that x-w =y and z - x = y.
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It turns out that there are no behaviorally equivalent elements in quandles
of the sort considered above.

LEMMA 3. If Q is a kei satisfying the relation ri for some odd k, then it
has no behaviorally equivalent elements. Moreover, if z x x = z x y for some
z € Q, then z = y.

Proof. Assume that z x x = z x y for some z,y,z € Q. In the case of
a commutative kei we get the result immediately. Our assumption implies
that x * 2z = y* z and this forces the equality x = y. Let us consider the case
k > 3. Since the relation 7 holds for all elements, we have

z=wx*xzxx*---xz*xx (with k letters on the right),
which is equivalent to
Zkxxz=Tkzkxk---xzkx*kz*xxr (with k— 2 letters on the right)

and
Z=YKZHKYK k2K,
equivalent to
ZHRYKZ = YR ZRY Kk ZKY K 2K Y.
We can replace the initial assumption with
ZRTHRZ=ZkY*Z
and use the relation r; to change this equation to:
THRZHKT Kk K ZkTKZHRT =YkZKY*k -k 2RY*2ZKY;
TAkZHRT k- k2% (ZHT) SYZHYk -k ZRY*x2ZxY;
TxzkTx k2% (2%Y) =yYkzhysk---x2%kY*2*Y;
TkZKT Kk ZKYKRZRY =Yk ZRkY k- k2 KkY* 2 %Y.
Now we can cancel the last four letters on both sides of the last equation.
We repeat this reduction until we obtain x =y or x ¥ zxx = y* 2z xy. In the
latter case, we use the first quandle axiom to write:
TRT*ZKT =Y kY *2%Y;
xx(zxx)=yx*(2*xy),
and we reduce one more time to obtain x =y. =
For every quandle ), we can consider its operator group, Op(Q), gen-
erated by automorphisms f,: Q — Q defined by yf, = y * x. Behaviorally
equivalent elements of @ define equal elements in Op(Q). On the other hand,
if there are no behaviorally equivalent elements in @), then the map x — f,

is injective and () is isomorphic to the union of the conjugacy classes of the
images of the generators of @) in Op(Q) (see also [Joy]).
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COROLLARY 4. Any kei Q) satisfying the universal relation 1y, for some
odd k embeds into the conjugation quandle of its operator group, Conj(Op(Q))
(with the quandle operation f g =g~ 'fg, f,g € Conj(Op(Q))).

Absence of behaviorally equivalent elements enables us to prove the fol-
lowing theorem (3).

THEOREM 5. The order of a finite commutative kei QQ is a power of 3.

Proof. Let a,b € @ and let P be the 3-element subquandle {a,b,a * b}.
From the right distributivity property, it follows that for any x € @, the
set S := Pxx = {a*xz,bxx,(a*xb)xx} is also a subquandle. We ask:
what other elements of () send P to S? There can be at most three such
operators, sending a to a*x, bxx or (axb)*x (here we use the fact that two
operators x,y € @ acting in the same way on one element are the same).
Using Lemma 2, we can find them easily:

(1) ax(a*xx)=x;

(2) ax(bxx)=bxxxa=x*bx*a;

(3) a*x(axbxx)=axbxxxa=bkxaxxxa=bx*x(x+xa)=xx*xaxb.
From the left distributivity, it follows that the set of these three operators is
a subquandle. We still need to check that operators (2) and (3) send b and
ax*xbtolS:

bx(xsxbxa)=xxbxaxb=2xx*(a*xb) = (axb)xux;
(axb)* (xxbxa)=bkxax(xxbxa)=bkxaxaxbxrxbkxa=bxx*xbxa
=xxbxbxa=ax*uz
bx(xxaxb)=xz*xaxbxb=1x%xa=ax*uz;
(axb)* (xxaxb) =a*xbxbkxaxx*axb=axx*xaxb=x*a*xax*xb
=xzxb=>bxux.

In this way we obtain a partition of @) into 3-element disjoint subquandles
of the form {x,z *b*a,z*axb}, in which two elements belong to the same
triple if they send P to the same subquandle. This relation between elements
is an equivalence relation but not a congruence (u ~ v, s ~ t does not imply
u*x s ~ v*t), so we cannot simply form a quotient quandle. Instead, we
define a natural quandle operation on triples:

(x, xxbxa, xxa*xb)*(y, yxbxa, yxaxb) = (rxy, xxyxbxa, xxy*ax*b).

The set of such triples, with the operation %, forms a commutative kei that
is three times smaller than the original kei, (). Thus we can use the inductive
argument to conclude that the size of () is a power of 3. =

(3) After our paper appeared on the web, we received a very interesting e-mail from
Michael Kinyon [Kin]. In particular, he brought to our attention the fact that finite com-
mutative involutory quandles are exactly symmetric distributive quasigroups (or in com-
binatorial language, Hall triple systems) and such systems have order 3% for some k.
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2.3. Q(4,3) has 81 elements. It was shown by M. Takasaki [Tak| that
Q(2,n) is isomorphic to the dihedral quandle Z, and Q(3,3) is isomorphic
to Z3 ® Z3. Here we give a description of Q(4,3).

T. Ohtsuki wrote a computer program which helps to analyze the com-
mutative kei. Using this program he found that (4, 3) has 81 elements [Oht].
A different computation, involving the operator group of the quandle, was
made by the first author (4). Here we follow, in a crucial point, Ohtsuki’s
approach to obtain a computer free proof.

THEOREM 6. Q(4,3) has 81 elements.

As noted by Takasaki, every element of the kei can be written in a left-
normed form (usually not uniquely). For example, in Q(4,3), (a*b)x(cxd) =
axbkxcxdxc=axbxd+xcxd =bxaxcxd+xc=bxaxd*xcxd =cxdxaxbxa =
cxdxbxaxb=dxcxaxbxa=dxcxbxaxb. The length of a kei element
w associated to a particular kei presentation is the length of the shortest
left-normed word representing w, in the chosen generators of kei.

LEMMA 7.
(i) Every element of Q(4,3), in the generating set {a,b,c,d}, is of
length at most 7.

(ii) There are (at most) eight elements in Q(4,3) of length 7 and they
have representatives:

axbxcxdxbxcxd, axbxdxcxbxdxec,
bxaxcxdxaxcxd, bxaxdxcxaxdx*c,
cxaxbxdxaxbxd, cxaxdxbxaxdxb,
d¥a*xbsxckxaxbxc, dxaxcxbxaxcxb.

Proof. We use brackets [ | to stress for which group of letters our prop-
erties are used. The brackets [ | (unlike ( )) do not change the left-normed
convention. Let {x, z1, 22,23} = {a,b, ¢,d}. We have the following identities
in Q(4,3).

(1) To * T * T * To = To * T * X1.
Indeed, xg * X1 * T % Tog = T * T * To * Tg = o1 * (T * T2) = X * T * T1.
(2) W * T *k Tk Tg = W * T1 * Tg * T1.
Indeed, w * zg * 1 * g = w * (X1 * T9) = W * (To * T1) = W * T] * To * Tq.
(3) xoxxyp*kwokx3kxe = (To*x1)* (T2 *w3) = (T2 * 23) * (T * x1)
= T * T3 *k Ty * X1 * T(Q.
(*) Michael Kinyon kindly informed us that the fact that Q(4, 3) has 81 elements also

follows from the result that the smallest nonassociative commutative Moufang loop is of
order 81 (see [Bell).
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(4) @0 * m1 * 2 * x3 * T x z is reducible to a word of length 4 for x = x;,
i=0,1,2,3,

for example xo* 1 *Toxx3*xo*x1 = (To* 1) * (Toxx3)* X1 = To*T3* T *T(.
(5) T * T1 * To * T3 * TQ * T] = Tg * T1 * T3 ¥ To * Tg.

Indeed, xog* 1 xxox w3 *xwo* 21 %20 = ((To* 1) * (Taxx3)) kT2 * (xo*x1) =
($g*$3)*(l‘0*1‘1*$2) :(1‘0*:171*1‘2)*(1‘2*333) =T * T1 * T3 *T2.

(6) T * T1 * To * T3 * TQ * T3 = Tg * To * T * T3 * Tg.

©)
Indeed, xg * x1 * X9 * T3 * Tg * T3 = T1 * T * Tg * T3 * T * T3 = X1 * T * T *
(2
To*T3*xTyg = T *x T2 *T1 *xXT3 * T(.
(7) TQ * T1 % To % T3 * T * T = T3 * T * T1 * To * To * T1.

Indeed, g * x1 * To * 3 x x1 * k2 = ((xo * x1) * (2 *x x3)) * (x] * 2) =
((z3 % x2) * (x1 % 0)) * (T2 * 1) = T3 * To * T * To * T * T1.

(8) Tk L] * To * T3 * T1 % To * T3 = X * Lo * T3 * T1 * Tg * T3 * L1
=T *xT3*kT1 *xXT2*T3*xXT1 *T9.
Indeed,

T Kk Tk Tk Ty * T % [To % Ty % Ta] = (X0 * T1) * Ta * Tz * T * T3 * To * T3

—~
~

= (@1 % To * Ty * T3 * T1 * T'3) * To * T3

—
=

= (1 * @9 * T * Tz * T] * Ta) * T3

—~
ot
=~

T1 *Tg kX3 *XTg*xT1 *xT3

= X2 X XT1 * T3 *xTo*T1 *xT3

7
= Xo*xXT3*xT1 *Tg*T3*xI1

—~
~

as required.
(9) o * X1 * o * T3 * T1 *k T * T3 * To = T * T * T3 * To * T1 * T3 * To.

This equality is the most difficult and allows us to complete the proof of
Lemma 7. We follow Ohtsuki’s analysis of his computer computation. He
noticed that the key point is to use the commutation identity

(To * T1 % Tg * T3 * T * T * Tz * () * T
= g * (Lo * X1 * Tg * T3 * T1 * Tg * T3 * XT()

and to show that the last expression can be reduced to xg*x*x3*xo*x1*x3
by properties (1)—(8). This is done in Lemma 8 below. =

LEMMA 8. xg*(xo*xl *xQ*xg*xl*:CQ*xg*:co) = XXX *kTI*kTQ*kT1*T3.

Proof. To improve readability, we omit * in the presentation of words in
this proof. Using the identity wxyzr = w(yx) = w(zry) = wyzry seven times
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we obtain
:172(1‘0:171.%‘21‘33311‘21‘3330) = LQXOL3X2L1L3TL2L1XOL1LX2L3LLLQT3T(.

Now, after applying identities (1)—(8) several times, we obtain:

@®
(:L‘2:170:L‘3£L‘2):171£L‘3332:171£L‘0331:172.’L‘3£L‘1:172.’L‘3£L‘0 =T2X3X)L1X3TL2XL1LOL1L2XLZL1T2T3T(
= (T372207123T2) T1T0T1T2T3T1 027370

(%) (2)
= T3ToX1T0X3[T1T0T1]T2T3T1T223T0 = (T3T2L1TOL3L0)T1TOT2TITIT2T3LT0

(6) (%)
= ($3$1x2$0$3$1).1‘0.%'2.%'3.1‘1.%’2.%’3%0 = (1‘3.%'1).1‘0.73'2%31‘0.%’2.%’3%1.%‘2.%’3%0

)
= (.%'1$3$0.%'2$3$0)mgwgmlmgwgmo = mgxomgwlxo[.1‘3.%'2%3].771%21‘3.%’0

2
= (acgmo)xgxlxoacgwgmgxlmgmgxo = (.%'0%2.773.%’1mowg)x3$2$1x2$3$0

®)
= ($2$0)$1$3x0$3$2$1x2$3$0 = ($0x2$1$3x0$3)$2$1$2$3x0

(6 (2)
= ToT1X2X3%0[T2x1T2]T3T0 = (ToT1T2T3T0T1)T2T1T3T0

®) (6)
= (xomlxgacgmomg)xlmgxo = (momg)mlngomlwgmo = (mgxoxlmgxoxl)xgaco

@ @ _
= .%'2%1.770.%’3%1[.%‘0%31‘0] = (.%'2$1).%'0$3$1.%’3$0$3 = (.1‘1.%'2%01‘3.%‘1%3).%‘0.%’3

(6) ()
= (x1$0x2x3$1$0)1‘3 = ($1x0)$3x2x11‘3 = XOL1T3X2X1T3
as required. m

We proved, in Lemma 7, that Q(4,3) is finite, but in fact we can easily
build, using Lemmas 7 and 8 and their proofs, the multiplication table of
Q(4,3) with 81 elements. We still need to argue that the order of Q(4,3) is
not smaller than 81. One of the possible arguments is to show that applica-
tion of the relations present in (4, 3) does not lead to any further reductions
in the number of elements of Q(4,3). This argument is quite laborious and
mechanical as it requires a lot of similar computations, so it is suitable for
a computer verification. A more sophisticated argument uses the kei epi-
morphism p : Q(4,3) — Zg’. The epimorphism p is defined on generators of

Q(4,3) as follows:

p(a) =(0,0,0), p(b) =(1,0,0), p(c)=(0,1,0), p(d)=(0,0,1).
For example, we have p(axb) = (2,0,0), p(axc) = (0,2,0), p(axd) = (0,0, 2),
p(b*c) =1(2,2,0), p(bxd) = (2,0,2), p(cxd) = (0,2,2).

From Theorem 5, it follows that it is enough to prove that p is not a
monomorphism. We notice that
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p((axb)x(cxd)=(1,1,1) =p((a*xc)*x (bxd)) =p((a*xd)* (bxd)).

However, the elements (axb)x(cxd) and (axc)*(bxd) are distinct in Q(4, 3). To
show that, we define a new kei homomorphism ¢ : Q(4,3) — B(4,3) which
extends the identity map between the sets of generators. We have to check

whether g((a *b) * (cxd)) = q((a*c) * (bxd)). We have
q((axb) x (cxd)) = q(cxd)(qlaxb)Lg(cxd) = de td(b " ab~)de d,
and similarly
q((axc)x(bxd)) =db d(c ac ™ )db 1d.
Thus, we need to show that
q((axb)*(cxd))(q((axc)x(bxd))) ™! = de td(b tab™ ) de tbdtea™ted~1bd ™1

is not equal to 1 in B(4,3). We reduce this problem, after conjugating by
d—!, to the question whether

cldb tab e od teated M0 £ 1

in the Burnside group B(4, 3). The above relation was verified both by using
the computer algebra system GAP [GAP4], and by calculations in the asso-
ciated Lie algebra of B(4,3) made by Mietek Dabkowski [Dab]| (see [VL] for
background information on Burnside groups). Thus, we have shown that p
is not a monomorphism and Q(4,3) has exactly 81 elements.

REMARK (alternative approach). As mentioned before (see page 215),
the operator group of the quandle @, Op(Q), is generated by the images of
elements of () under the map z — f,. Because of the relation

fﬂc*y - fy_lfmfy:

which holds in the operator group for any z,y € @, Op(Q) is generated
by the images of the generators of (). In particular if () is generated by n
elements, then so is Op(Q).

As previously noted (see Corollary 4 and the comment preceding it),
Q(4,3) embeds into its operator group. To simplify notation, we use the
same symbols for quandle elements and their images in the corresponding
operator group. From the second kei axiom it follows that the squares of
generators (and therefore also the squares of conjugates of generators) are
equal to the identity in Op(Q(4,3)). The relation z %y = y* z, which is true
for all elements of Q(4, 3), yields the relation yzy = xyx (or zyryxry = 1) in

Qp(@(él, 3)), where = and y belong to conjugacy classes of the generators of
Q(4, 3). Therefore, Q(4,3) can be embedded into the (possibly bigger) group
a®

(a,b,e,d) with the following presentation:

{a,b,c,d\a2:b2=czzd2=17 ryryry = 1},
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where x and y are any conjugates of the generators a, b, ¢, d. Using GAP, we

found a finite presentation for GEg)
a,b,c,d

{a,b,c,d |a* =b0* = =d*> =1}
all relations of the form (w™'awv~!3v)? = 1, where o, 8 € {a,b, ¢, d} and w,
v are all possible two-letter words on the letters a, b, ¢, d. The group with this
presentation is finite, and we can check that all required relations between
conjugates of generators are satisfied (zyxyxy = 1 for any conjugates of
a, b, ¢, d). Again, using GAP, we computed that the order of this group
is 118098 = 2 - 3'0 and that the number of elements in the union of the
conjugacy classes of a, b, ¢ and d is 81 (which is also the order of Q(4,3)).
Elements of these conjugacy classes form a 4-generator commutative kei with
conjugation as a quandle operation, therefore their number cannot exceed

the order of the free kei (4, 3).

2.4. Q(4,3) as an extension of Z3 by Z3. We show that Q(4,3) is iso-
morphic to the quandle (Z3 x Z3, %), with the operation % defined as follows:

) as follows. We add to the presentation

(a1,21) * (ag,x2) = (a1 * ag + c(x1, x2), 21 * 2).
In this definition, 4+ denotes addition in Z3, * is the quandle operation de-
scribed in Example 2.1(1), and c(x1,22): Z3 x Z3 — Z3 is a function which
satisfies the following conditions (related to the definition of kei):

(i) c(z,z) =0;
(il) clz*y,y) = c(z,y);
(iii) c(xy* w3, w2 *23) — (11 * T2, 23) = —c(21, T2) + (12, T3) + (X1, X3);

(iv) c(z,y) = c(y, z).
The first condition corresponds to the first kei axiom, (a,x) * (a,z) = (a,x
The second condition is a consequence of the second kei axiom, ((a,z)

(b, y)) * (b,y) = (a,2).
Condition (iii) follows from the right distributivity:

)

((a1,21) * (a2, 22)) * (a3, x3) = ((a1,21) * (a3, 23)) * ((az, z2) * (a3, 3))
leads to the following, after first computing the left and right sides of the
above equation:

L = (a1 % ag + c(x1,22), x1 * x2) * (a3, x3)
= (a1 x ag * a3 — c(w1, x2) + (21 * T2, T3), T1 * T2 * T3),
R = (a1 xag + c(x1,x3), 1 * x3) * (a2 * a3 + c(v2, x3), T2 * T3)
= ((a1 % ag) * (ag * a3) + 2c(x2, v3) — c(21, 23)
+c(xy * x3, 2 * x3), (T1 * x3) * (2 * x3)).
From this we get

c(xy % x3, 2 x x3) — c(x1 * T2, x3) = —c(x1, 2) — 2¢(22, X3) + (21, T3).

Taking into account that we work modulo 3, we get condition (iii).
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The last condition follows from the fact that we work with a commutative
kei.

Condition (iii) turns each such cinto a twisted 2-cocycle in the second quan-
dle cohomology group of Z3 with Z3 coefficients. Twisted quandle (co)homo-
logy theory was introduced in [C-E-S]. The authors described there a general
method of obtaining a new quandle from a given quandle X and Alexander
quandle A, using a twisted 2-cocycle ¢. Such constructions, including the one
we are describing, are called Alexander extensions of X by (A, ¢).

An example of a function c¢ satisfying all of the above conditions, is pre-
sented below. In order to represent a cocycle ¢ as a matrix, let us order the
elements of Z3 as follows:

1. (0,0,0); 2. (0,0,1); 3. (0,0,2); 4. (0,1,0); 5. (0,1,1); 6. (0,1,2); 7. (0,2,0);

8. (0,2,1); 9. (0,2,2); 10. (1,0,0); 11. (1,0,1); 12. (1,0,2); 13. (1,1,0); 14. (1,1,1);

15. (1,1,2); 16. (1,2,0); 17. (1,2,1); 18. (1,2,2); 19. (2,0,0); 20. (2,0,1); 21. (2,0,2);
22. (2,1,0); 23. (2,1,1); 24. (2,1,2); 25. (2,2,0); 26. (2,2,1); 27. (2,2,2).

The entry m;; of the matrix M given below equals the value ¢(i, j) of the
cocycle ¢ on the ith and jth elements of Zg’.

<
Il
H NOFFNOFRFNONMFONMFONRFORFRDNONREREOREREO
R NMNOORFRNNOFNRFROONREFEFONORNNREORO -
N O R O NREFEFNOONRFRNRFREORFRODNORFRDNODNRFEQO = -
O R NDNNOFFFNONRFODONRFRFRONORFEOOOOROO
O R N FFNONOFRFONONRFDNDREFEORRFRFDNOOONR R
O R NOFNOFNONRFONRFONREFODNDNOOOONDNLDIN
O R N FFNONOFRFONONRFDNDREFEOOODONDINDONN-DNO
N O R NOFNOONRFONRFONREFOOONRRFRF =N
N O R FFNOOF NNRFOONRFRFRONOODOORFOOOR
O R N FFNONDNONORONRFOODONEFEFORFODNDNN-DNDO
O R N FFNOFOOOFNNRFOODODODODNRFENEFEOOOR
O R N FFNORFRFNRFRDNORFONODODOFONONNRFRF =N
R OO R RFRRREFRFRONRFROOONORRRERRERROIRO
N NDNDNMNNDNDNDNDNNRFREOOOOOFNINDNDDNDNDDNDDNDRFEN -
NNO OO ODODOOF ONOODORFNOODODOOOONONDN
H ONORF ONRF OOOONOFONRFOFNREFEDNDOROO
O N FEFNRFRFONOODODORFRFNNDFORFRDNDONORFDNRE R
N M OO NMNNONRFOOOFNORFONDINORFORDNDONDNNDN
H ONORFNOOORFNOONRFFODONORNDREFEOORRO
O N P NOODOONORFONRFDNDONRFEDNDORFODNDNNODN
N R ONOFRF OOCOOFFNONRFRFRFRFDNDODRFEDNODNNRFRFDNRE
O R NOOORF ONNNOONRFOOOODODONORFDINDNO
N OO OOONFNRFRONRFDNDNNNDDNDNDDNREFEDNDORF =N
N O R OOONF OO OONRFRFRRFRFRFRREFERFROREDNOO R
OO O F ONOF NOFNORFONNDNDRFEONDNDDNDDNDRE OO
OO OO NF FFNORFNONDNDNORRFRFONRERFERFRRFONDNLDN
OO O NRF ONOFNORFRNRPRFEFOODONRFEFOOOONRF
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The existence of an isomorphism between (Q(4,3) and (Z3 x Z3, %) follows
from the following facts:

(i) (Z3 x Z3,%) satisfies the kei axioms and relation r3;

(ii) (Z3 x Z3,%) has 81 elements;

(iii) (Z3 x Z3,%) is generated by four elements: (1,0,0,0), (0,1,0,0),
(0,0,1,0), (0,0,0,1) (for example it cannot be isomorphic to
Core(Z3), which has five generators as a kei).

3. Q(3,4) has 96 elements. The primary examples of keis satisfying
the universal Burnside relation, x = x * y * x * y, are the dihedral kei Z4, its
direct sums, and the fourth Burnside groups and their quotients (with the
core operation z x y = yr~ly).

To get a lower bound on the order of Q(3,4), we can consider the group

Ggi)b 0 with presentation

{a,b,c| d=v=c2=1, (xy)4 =1},

where x and y are any conjugates of the generators a, b, c. We obtain a finite

(4)

presentation for G(a,b,c) in a similar way to the one described on page 221.

Using GAP we checked that this group has 8192 = 2'3 elements and the size
of the union of the conjugacy classes of the generators is 96. The elements
of these conjugacy classes form a 3-generator quandle (with conjugation
as operation x) satisfying the relation z = = % y * x * y. Thus the order
of the free kei Q(3,4) cannot be less than 96. This time we cannot use
Lemma 3 to obtain an upper bound on the size of Q(3,4) (see the remark
after the proof of Theorem 6), so instead we will build a Cayley diagram
for this quandle. This diagram has 96 vertices, therefore Q(3,4) has order
96. Below, we calculate some relations needed to build that diagram. Again,
we use brackets [ ] to stress for which parts of words we use properties of
Q(3,4). None of these properties can replace the first letter in the left-normed
representatives of words in (3, 4). For example a left-normed word starting
with a never equals a word starting with b. It follows that the diagram will
consist of three disjoint parts that look the same when viewed as graphs (see
Figure 3). Here we prove the most difficult relations in the Cayley graph,
their numbers correspond to the numbers in Figure 3. The vertices of the
Cayley graph represent the elements of Q(3,4). The solid arcs represent
multiplication from the right by the generator a; two kinds of dashed arcs

denote multiplication by respectively b and c.

(1) We need to prove the relation

axbxcxa*xbxa=a*xbxcxax*b
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Fig. 3. A component of the Cayley diagram for Q(3,4)

(corresponding to a loop at the vertex representing the element axb*cxax*b):

[axb]xcxaxbxa=ax[bxaxcxaxbxa=ax*(cxax*xb)xa

=ax*(cxaxb)=

as desired.

(2) We have

[axbxa]lxcxaxb=axbxcxaxb

[axbl*xcxaxcxa=axbx[axcxaxcxal =axbx[(a*xcx*a)

=axbx[(axc)=axbxcxaxc.

(3) Similar to (2).
(4) Similar to (1).



Burnside kei 225

(5) We have to check that axbxcxaxbxcxa=axcxbxaxcxbor
equivalently that a = axcxb*xaxcxb*xaxc*b*ax*cxb. Indeed,

[axclxbkaxcxkbraxcxbxaxckxb=ax[cxaxbkxaxc|xbxaxcxbkaxc*b

=a*x(bxaxc)|xbsxaxcxbxaxcx*b
=ax[(bxa*xc)*xaxbxaxcxbxa*xcxb
=ax[cxaxbxaxcxaxbxaxcxbxaxcxb
=ax[(cx(bxa)xc)]xbxaxcxb=ax[(c*(bxa))|*xbxaxcxb
—axaxbsakcrax[xbxakxbral*ckb
=laxalxbxaxcxlaxalxbxaxbxcxb=[axbxa|xcxbxaxbxcxb
=ax[bxckbxaxbxcxb =ax(ax(cxb)) =a.

(6) We prove that axbxcxbxc*xa*xbxa=a*b*c*b*c*ax*b. Indeed,

axbxckbxcxaxbxa=axbxcxbxcxbx[bxaxbxal
=ax[bxcxbxcxbxaxbxaxb
=laxcxbxcxalxbxaxb

=ax[ckbxcxbxaxb=axbkxcxbxcxaxb.

() ax[bxcxbxc]*xa*xcxa=axcxbxcxbkxax*cx*a and then as in (6)
(the roles of b and ¢ are exchanged).

(8) We need axbxcxaxbxcxb =axbxcxaxbxcxbxa or
axbxcxaxbxcxbxaxbxckxbxaxcxb=a We compute as follows:

[axblxcxaxbxcxbxaxbxcxbxaxcxb

=ax[bxaxcxaxblxcxbkxaxbxcxbxaxcxb
=lax(cxaxb)|xcxbxaxbkxcxbxaxcxb
=ax[(cxaxb)xaxcxbxaxbxcxbraxcxb
=axbxaxcxaxbxaxcxbxaxbxcxbxa*xcxb
=axbxaxckxaxbxaxcxax[axbkxaxbxcxbxaxcxb
=ax[bxaxcxaxbxaxcxaxb xaxbxaxcxbxaxcxb
=ax[(bx(c*xa)*xb)|*xaxbxaxcxbkxa*xcxb
=ax[(bxaxcxa)]xaxbkxaxcxbrxaxcxb
=laxal*xcxaxbxaxcx[axalxbxaxcxbxaxcxb
=laxckalxbkxaxcxbxaxcxbkxaxcxb

(5)
=axcxbkxaxcxbxaxcxbxaxc*xb = a.
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(9) axbxcxaxcxbxc=axbxc*ax*xc*bx*cxa is equivalent to
axbxcxaxcxbkcxaxc*b*xcxa*c*xb=a, which is proved as follows:

[axbxcxaxckbl*xcxaxcxbxcxaxcx*b

=axbxcxaxcxkbx[axcxaxcxbxckxaxcxb
=axbxcxaxcxbxcxaxcxaxbxcxaxc*b
=ax[bxckaxckbxcxaxcxbxbkxaxbxcxaxcxb
=ax[(bx(axc)*b)]xbxaxbxcka*xc*b
=laxckalxcxbxcxaxcxbkxaxbxckxa*xc*b
=ax[ckclkbkcxaxcxbxaxbkckaxcxb
=axbxckxaxcxbrxaxbxcxaxcxb
=ax(axbxcxaxcxb)=ax(ax(a*xcxb))=a.

(10) As in (9) with b and c interchanged.

(11) As in (8) with b and ¢ interchanged.

(12) axbxcxaxbxcxbxcxa=a*xbxckxbxc*axbx*cis equivalent to
axbxcxbxcxaxbxcxaxcxbxcxbxa*xcxb = a, which we prove as follows:

[axblxcxbxcxaxbxckxaxcxbxcxbxaxcxb

=ax[bxaxckbxcxaxbxckxaxcxbxcxbxaxcxb
=a*x(bxcxaxb)|*xcxaxcxbxcxbxakxcxb
=ax[(bxckxaxb)xaxcxaxcxkbxcxbxaxcxb
=axbxaxcxkbxcxaxbxaxcxax[cxbxcxbxaxcxb
=laxbxalxcxbxcxaxbkaxckxaxbxcxbxcxaxcxb
=laxbsxcxbxckaxbxaxcxaxbkcxbxcxa*xcxb
=axbxcx[bxaxcxaxbxaxckaxbxcxbxcxaxcxb
=axbxcx[(bx(cxa)xb)*xcxbxcxaxcxbaxbxcxaxckaxb
xaxcxa*xckxbxcxaxcxb
=axbxcxaxckxaxbxaxbx[bxckakxcxbsxcxaxcxb
=laxblxcxaxcxaxbxaxbkckaxcxbxcxaxc
=axbx[axcxaxcxa]xbxaxbxcxaxcxbxcxaxc
=ax[bxckakxcxbxaxbsxckxaxcxbxcxaxc

=ax(ax(axc*xb))ckxaxc=axcxax*c=a.

(13) Follows from (12).
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(14) Instead of axbxcxbxcxaxbsxcxbxa=axbxcxbxcxa*xb*xcxb
we consider a = axbxcxbkckxaxbxcxbxaxbxckxbxaxckxbxcxkb,
proved as follows:

axbxcxbxcxfaxbxcxbxaxbxcxbxalxcxbxcxb

=ax[bxcxkbxcxbxcxbxaxbxckbxcxbxcxl]
=ax*(ax(cx(cxb)))=a.
(15) Follows from (14), since

ax[bxcxbxclxaxcxbxcxa=axcxbkxcxbxaxcxbxcxa.

(16) Since a*b*c*a*b*c*a@a*c*b*a*c*b, we have

axbx[cxbxc]xaxbx[cxbxclxa=axbx(bxc)xaxbx(bxc)xa
=ax[(bxc)|xbxax[(bxc)|xb
=ax[ckbxcxb xax[cxbxcxb

=a*xbxcxbxcxaxbxcxbx*c.

The oldest open problem concerning n-moves is the Nakanishi 4-move
conjecture (see [Prz]).

CONJECTURE 9 (Nakanishi, 1979). Every knot is 4-move equivalent to
the trivial knot.

Our hope was that the fourth Burnside kei of a knot could be used to
detect a potential counterexample to this conjecture. However, the following
theorem suggests this is not likely to be the case.

THEOREM 10. Every algebraically connected quotient of Q(3, 4) is a triv-
ial quandle (a quandle with one element).

Proof. Let @ be the algebraically connected quotient of Q(3,4), f: Q(3,4)
— Cj be the quotient homomorphism, and S, Sz, S5 denote the algebraically
connected components of Q(S, 4). We claim that é is contained in each image
f(S;) fori=1,2,3.

Assume that there exists z € Q with f~!(z) N S; = 0 for some j. Let
a € Sj and y = f(a). Then from the algebraic connectivity of @ it follows
that © =y xx1 % --- x 2}, for some z1,...,21 € Cj Now we choose arbitrary
zi € fNw;), i =1,...,k. Let 2 = a2 *--- % z,. Then z € S} and
f(z) = f(a)* f(z1) %% f(zk) = y*x1 % xx) = x, which contradicts the
assumption that f~1(z) N S; = 0.

Each subquandle S;, when considered as a quandle itself, has eight 4-
element components (orbits) 77,...,Ts and, just as before, we can prove
that @ is the image of each T; (and can have at most 4 elements). But every
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such T; is a trivial quandle (z x y = x for any x,y € T;) and @ must be the
image of just one element. =

Since knot quandles are algebraically connected, we have the following
result.

COROLLARY 11. Let K be a knot such that the minimal number of gen-
erators of its fundamental quandle is less than or equal to 3. Then its fourth
Burnside quandle, Q4(K), has only one element.

For example, Q4(K) will not detect a potential counterexample to the
Nakanishi 4-move conjecture among 3-bridge knots.
It seems plausible that the order of Q4(K) is 1 for any knot K.
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