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Abstra
t. This paper is motivated by a general question: for whi
h values of k and

n is the universal Burnside kei Q(k, n) �nite? It is known (starting from the work ofM. Takasaki (1942)) that Q(2, n) is isomorphi
 to the dihedral quandle Zn and Q(3, 3)is isomorphi
 to Z3 ⊕ Z3. In this paper, we give a des
ription of the algebrai
 stru
turefor Burnside keis Q(4, 3) and Q(3, 4). We also investigate some properties of arbitraryquandles satisfying the universal Burnside relation a = · · · a ∗ b ∗ · · · ∗ a ∗ b. Invariants oflinks related to the Burnside kei Q(k, n) are invariant under n-moves.1. Introdu
tion. A kei, , also 
alled an involutory quandle, was in-trodu
ed by Mituhisa Takasaki in 1942 [Tak℄ as an abstra
t algebra (Q, ∗)with a binary operation ∗ : Q × Q → Q satisfying the following 
onditions:(i) a ∗ a = a for any a ∈ Q,(ii) (a ∗ b) ∗ b = a,(iii) (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c) (right distributivity).We use a standard 
onvention for produ
ts in nonasso
iative algebras, 
alledthe left-normed 
onvention, that is, whenever parentheses are omitted in aprodu
t of elements a1, a2, . . . , an of Q then
a1 ∗ a2 ∗ · · · ∗ an = ((· · · ((a1 ∗ a2) ∗ a3) ∗ · · ·) ∗ an−1) ∗ an(left asso
iation), for example, a ∗ b ∗ c = (a ∗ b) ∗ c. The 
onditions given inthe above de�nition are related to Reidemeister moves (see Figure 1).We will 
onsider free keis with the universal relation

rn : a = · · · a ∗ b ∗ · · · ∗ a ∗ b,2000 Mathemati
s Subje
t Classi�
ation: Primary 57M25; Se
ondary 55N99, 20D99.Key words and phrases: kei, quandle, involutory quandle, Burnside kei, Burnsidegroup, n-move, quasigroup, Nakanishi Conje
ture.[211℄
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in whi
h there are n letters on the right hand side and a, b are any elementsof the quandle. We denote su
h a kei with k generators by Q(k, n) and 
allit the universal Burnside kei.In [Joy℄, D. Joy
e asso
iated an involutory quandle to a link. In a similarway we 
an asso
iate to every link L its nth Burnside kei, Qn(L), by assigninggenerators to ar
s of a �xed diagram of L, writing the relation of the form
u ∗ v = w for ea
h 
rossing (here u and w are generators 
orresponding tothe under-ar
s and v is assigned to the over-ar
) and adding the universalrelation rn.The relation rn 
orresponds to lo
al 
hanges in a link diagram 
alled
n-moves. It follows that Qn(L) is invariant under Reidemeister moves and
n-moves. For example, r3: a = b ∗ a ∗ b 
orresponds to invarian
e under
3-moves and r4: a = a ∗ b ∗ a ∗ b makes Q4(L) invariant under 4-moves.



Burnside kei 213Figure 2 illustrates this 
orresponden
e in the 
ase n = 3, 4. In fa
t, Qn(L)is also invariant under rational n/m-moves [D-I-P℄.We noti
e that the relation r3: a = b ∗ a ∗ b is equivalent to a ∗ b = b ∗ a,in other words, Q(k, 3) is a free 
ommutative kei on k generators (1).Problem 1. For whi
h values of k and n is Q(k, n) �nite? How manyelements does it have?In this paper, we fo
us on �nitely generated 
ommutative keis and keissatisfying the 4th universal Burnside relation a = a ∗ b ∗ a ∗ b.2. Commutative keis2.1. Examples. Let us �rst re
all that there are two well known 
lassesof examples of �nite 
ommutative keis:(1) dihedral kei, Z3 (with i ∗ j = 2j − i = −j − i modulo 3), 
orrespond-ing to Fox 3-
olorings, and its dire
t sums Zn
3 with 
oordinatewiseoperation;(2) the 3rd Burnside group, B(k, 3) = {x1, . . . , xk | w3 = 1 for anyword w}, with the 
ore operation a ∗ b = ba−1b, and its quotients.Noti
e that B(k, 3) is a 
ommutative kei as the equality a ∗ b = b ∗ a followsfrom the identity ba−1b=ab−1a, whi
h, inB(k, 3), is equivalent to (ba−1)3 =1.Our motivation for Problem 1 is a theorem by Burnside [Bu℄ stating that

B(k, 3) is a �nite group.2.2. Some properties of 
ommutative keis. First, let us des
ribe somegeneral properties of involutory quandles satisfying the relation r3. Anyquandle is distributive from the right, but in the 
ase of 
ommutative keis,we also have distributivity from the left:
c ∗ (a ∗ b) = (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c) = (c ∗ a) ∗ (c ∗ b).From axiom (ii) in the de�nition of kei, it follows that for any a, b ∈ Q, thereexists a unique c ∈ Q su
h that a = c ∗ b (and obviously c = a ∗ b).Here, we mention that if we repla
e axiom (ii) with the above statementwithout the 
ondition that c = a ∗ b, we get a general de�nition of a quandle(see [F-R℄ for a des
ription of quandle theory from the histori
al perspe
tive).For a survey on knot invariants derived from quandles see [Kam℄.The equality a = c ∗ b is equivalent to

a ∗ c = b and c ∗ a = b.

(1) The 
ommutativity relation should not be 
onfused with the abelian 
ondition,
(a ∗ b) ∗ (c ∗ d) = (a ∗ c) ∗ (b ∗ d), introdu
ed in [Joy℄.
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kiIt follows that any 
ommutative kei is a quasigroup (2) and the set {a, b, c =
a ∗ b} is a subquandle. If m denotes the size of a �nite 
ommutative kei,then there are (

m
2

)
/3 su
h 3-element subquandles and ea
h element x ∈ Qbelongs to (m − 1)/2 of them (
hoosing any element p ∈ Q \ x determinesthe third element of the quandle, x ∗ p).An involutory quandle Q is said to be algebrai
ally 
onne
ted if for ea
hpair a, b in Q, there are a1, . . . , as ∈ Q su
h that

a ∗ a1 ∗ · · · ∗ as = b.We say that an involutory quandle is strongly algebrai
ally 
onne
ted if it isalgebrai
ally 
onne
ted and s = 1 in the above de�nition.Lemma 2. Any kei satisfying the universal relation rk for some odd k isstrongly algebrai
ally 
onne
ted.Proof. Our relation rk now has the form
a = b ∗ a ∗ b ∗ · · · ∗ a ∗ b.Using the �rst axiom of a quandle and the relation x ∗ y ∗ z ∗ y = x ∗ (z ∗ y),we 
an write rk as

a = b ∗ b ∗ a ∗ b ∗ · · · ∗ a ∗ b =





b ∗ (b ∗ a ∗ · · · ∗ a ∗ b)or
b ∗ (a ∗ b ∗ · · · ∗ a ∗ b),depending on how many letters a and b we have in the relation rk. In either
ase, in order to get from a to b we need to use only one operator (that 
anbe written using (k + 1)/2 letters a and b).Every algebrai
ally 
onne
ted quandle (not ne
essarily involutory) is ametri
 spa
e if we de�ne the distan
e between x, y ∈ Q as the minimalnumber of operators needed to obtain one element from the other. A sig-ni�
ant 
lass of algebrai
ally 
onne
ted quandles is the knot quandles (see[Joy℄ for a de�nition). Sin
e our metri
 is un
hanged under isomorphism ofquandles, some properties of the metri
 spa
e (for example its diameter) areknot invariants. Lemma 2 states that the diameter of any quandle (that is,the diameter of the 
orresponding metri
 spa
e) satisfying rk for some odd

k is 1.Two distin
t elements x and y of a quandle Q are 
alled behaviorallyequivalent if
z ∗ x = z ∗ y for all z ∈ Q.

(2) A quasigroup is a set G together with a binary operation · with the property thatfor ea
h x, y ∈ G, there are unique elements w, z ∈ G su
h that x · w = y and z · x = y.



Burnside kei 215It turns out that there are no behaviorally equivalent elements in quandlesof the sort 
onsidered above.Lemma 3. If Q is a kei satisfying the relation rk for some odd k, then ithas no behaviorally equivalent elements. Moreover , if z ∗ x = z ∗ y for some
z ∈ Q, then x = y.Proof. Assume that z ∗ x = z ∗ y for some x, y, z ∈ Q. In the 
ase ofa 
ommutative kei we get the result immediately. Our assumption impliesthat x ∗ z = y ∗ z and this for
es the equality x = y. Let us 
onsider the 
ase
k > 3. Sin
e the relation rk holds for all elements, we have

z = x ∗ z ∗ x ∗ · · · ∗ z ∗ x (with k letters on the right),whi
h is equivalent to
z ∗ x ∗ z = x ∗ z ∗ x ∗ · · · ∗ z ∗ x ∗ z ∗ x (with k − 2 letters on the right)and

z = y ∗ z ∗ y ∗ · · · ∗ z ∗ y,equivalent to
z ∗ y ∗ z = y ∗ z ∗ y ∗ · · · ∗ z ∗ y ∗ z ∗ y.We 
an repla
e the initial assumption with

z ∗ x ∗ z = z ∗ y ∗ zand use the relation rk to 
hange this equation to:
x ∗ z ∗ x ∗ · · · ∗ z ∗ x ∗ z ∗ x = y ∗ z ∗ y ∗ · · · ∗ z ∗ y ∗ z ∗ y;

x ∗ z ∗ x ∗ · · · ∗ z ∗ (z ∗ x) = y ∗ z ∗ y ∗ · · · ∗ z ∗ y ∗ z ∗ y;

x ∗ z ∗ x ∗ · · · ∗ z ∗ (z ∗ y) = y ∗ z ∗ y ∗ · · · ∗ z ∗ y ∗ z ∗ y;

x ∗ z ∗ x ∗ · · · ∗ z ∗ y ∗ z ∗ y = y ∗ z ∗ y ∗ · · · ∗ z ∗ y ∗ z ∗ y.Now we 
an 
an
el the last four letters on both sides of the last equation.We repeat this redu
tion until we obtain x = y or x ∗ z ∗x = y ∗ z ∗ y. In thelatter 
ase, we use the �rst quandle axiom to write:
x ∗ x ∗ z ∗ x = y ∗ y ∗ z ∗ y;

x ∗ (z ∗ x) = y ∗ (z ∗ y),and we redu
e one more time to obtain x = y.For every quandle Q, we 
an 
onsider its operator group, Op(Q), gen-erated by automorphisms fx: Q → Q de�ned by yfx = y ∗ x. Behaviorallyequivalent elements of Q de�ne equal elements in Op(Q). On the other hand,if there are no behaviorally equivalent elements in Q, then the map x 7→ fxis inje
tive and Q is isomorphi
 to the union of the 
onjuga
y 
lasses of theimages of the generators of Q in Op(Q) (see also [Joy℄).
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kiCorollary 4. Any kei Q satisfying the universal relation rk for someodd k embeds into the 
onjugation quandle of its operator group, Conj(Op(Q))(with the quandle operation f ∗ g = g−1fg, f, g ∈ Conj(Op(Q))).Absen
e of behaviorally equivalent elements enables us to prove the fol-lowing theorem (3).Theorem 5. The order of a �nite 
ommutative kei Q is a power of 3.Proof. Let a, b ∈ Q and let P be the 3-element subquandle {a, b, a ∗ b}.From the right distributivity property, it follows that for any x ∈ Q, theset S := P ∗ x = {a ∗ x, b ∗ x, (a ∗ b) ∗ x} is also a subquandle. We ask:what other elements of Q send P to S? There 
an be at most three su
hoperators, sending a to a∗x, b∗x or (a∗ b)∗x (here we use the fa
t that twooperators x, y ∈ Q a
ting in the same way on one element are the same).Using Lemma 2, we 
an �nd them easily:(1) a ∗ (a ∗ x) = x;(2) a ∗ (b ∗ x) = b ∗ x ∗ a = x ∗ b ∗ a;(3) a ∗ (a ∗ b ∗ x) = a ∗ b ∗ x ∗ a = b ∗ a ∗ x ∗ a = b ∗ (x ∗ a) = x ∗ a ∗ b.From the left distributivity, it follows that the set of these three operators isa subquandle. We still need to 
he
k that operators (2) and (3) send b and
a ∗ b to S:

b ∗ (x ∗ b ∗ a) = x ∗ b ∗ a ∗ b = x ∗ (a ∗ b) = (a ∗ b) ∗ x;

(a ∗ b) ∗ (x ∗ b ∗ a) = b ∗ a ∗ (x ∗ b ∗ a) = b ∗ a ∗ a ∗ b ∗ x ∗ b ∗ a = b ∗ x ∗ b ∗ a

= x ∗ b ∗ b ∗ a = a ∗ x;

b ∗ (x ∗ a ∗ b) = x ∗ a ∗ b ∗ b = x ∗ a = a ∗ x;

(a ∗ b) ∗ (x ∗ a ∗ b) = a ∗ b ∗ b ∗ a ∗ x ∗ a ∗ b = a ∗ x ∗ a ∗ b = x ∗ a ∗ a ∗ b

= x ∗ b = b ∗ x.In this way we obtain a partition of Q into 3-element disjoint subquandlesof the form {x, x ∗ b ∗ a, x ∗ a ∗ b}, in whi
h two elements belong to the sametriple if they send P to the same subquandle. This relation between elementsis an equivalen
e relation but not a 
ongruen
e (u ∼ v, s ∼ t does not imply
u ∗ s ∼ v ∗ t), so we 
annot simply form a quotient quandle. Instead, wede�ne a natural quandle operation on triples:
(x, x ∗ b ∗a, x ∗a ∗ b) ∗̂ (y, y ∗ b ∗a, y ∗a ∗ b) = (x ∗ y, x ∗ y ∗ b ∗a, x ∗ y ∗a ∗ b).The set of su
h triples, with the operation ∗̂, forms a 
ommutative kei thatis three times smaller than the original kei, Q. Thus we 
an use the indu
tiveargument to 
on
lude that the size of Q is a power of 3.

(3) After our paper appeared on the web, we re
eived a very interesting e-mail fromMi
hael Kinyon [Kin℄. In parti
ular, he brought to our attention the fa
t that �nite 
om-mutative involutory quandles are exa
tly symmetri
 distributive quasigroups (or in 
om-binatorial language, Hall triple systems) and su
h systems have order 3k for some k.



Burnside kei 2172.3. Q(4, 3) has 81 elements. It was shown by M. Takasaki [Tak℄ that
Q(2, n) is isomorphi
 to the dihedral quandle Zn and Q(3, 3) is isomorphi
to Z3 ⊕ Z3. Here we give a des
ription of Q(4, 3).T. Ohtsuki wrote a 
omputer program whi
h helps to analyze the 
om-mutative kei. Using this program he found that Q(4, 3) has 81 elements [Oht℄.A di�erent 
omputation, involving the operator group of the quandle, wasmade by the �rst author (4). Here we follow, in a 
ru
ial point, Ohtsuki'sapproa
h to obtain a 
omputer free proof.Theorem 6. Q(4, 3) has 81 elements.As noted by Takasaki, every element of the kei 
an be written in a left-normed form (usually not uniquely). For example, in Q(4, 3), (a∗b)∗(c∗d) =
a∗b∗c∗d∗c = a∗b∗d∗c∗d = b∗a∗c∗d∗c = b∗a∗d∗c∗d = c∗d∗a∗b∗a =
c ∗ d ∗ b ∗ a ∗ b = d ∗ c ∗ a ∗ b ∗ a = d ∗ c ∗ b ∗ a ∗ b. The length of a kei element
w asso
iated to a parti
ular kei presentation is the length of the shortestleft-normed word representing w, in the 
hosen generators of kei.Lemma 7.(i) Every element of Q(4, 3), in the generating set {a, b, c, d}, is oflength at most 7.(ii) There are (at most) eight elements in Q(4, 3) of length 7 and theyhave representatives:

a ∗ b ∗ c ∗ d ∗ b ∗ c ∗ d, a ∗ b ∗ d ∗ c ∗ b ∗ d ∗ c,

b ∗ a ∗ c ∗ d ∗ a ∗ c ∗ d, b ∗ a ∗ d ∗ c ∗ a ∗ d ∗ c,

c ∗ a ∗ b ∗ d ∗ a ∗ b ∗ d, c ∗ a ∗ d ∗ b ∗ a ∗ d ∗ b,

d ∗ a ∗ b ∗ c ∗ a ∗ b ∗ c, d ∗ a ∗ c ∗ b ∗ a ∗ c ∗ b.Proof. We use bra
kets [ ℄ to stress for whi
h group of letters our prop-erties are used. The bra
kets [ ℄ (unlike ( )) do not 
hange the left-normed
onvention. Let {x0, x1, x2, x3} = {a, b, c, d}. We have the following identitiesin Q(4, 3).
x0 ∗ x1 ∗ x2 ∗ x0 = x0 ∗ x2 ∗ x1.(1)Indeed, x0 ∗ x1 ∗ x2 ∗ x0 = x1 ∗ x0 ∗ x2 ∗ x0 = x1 ∗ (x0 ∗ x2) = x0 ∗ x2 ∗ x1.

w ∗ x0 ∗ x1 ∗ x0 = w ∗ x1 ∗ x0 ∗ x1.(2)Indeed, w ∗ x0 ∗ x1 ∗ x0 = w ∗ (x1 ∗ x0) = w ∗ (x0 ∗ x1) = w ∗ x1 ∗ x0 ∗ x1.
x0 ∗ x1 ∗ x2 ∗ x3 ∗ x2 = (x0 ∗ x1) ∗ (x2 ∗ x3) = (x2 ∗ x3) ∗ (x0 ∗ x1)(3)

= x2 ∗ x3 ∗ x0 ∗ x1 ∗ x0.

(4) Mi
hael Kinyon kindly informed us that the fa
t that Q(4, 3) has 81 elements alsofollows from the result that the smallest nonasso
iative 
ommutative Moufang loop is oforder 81 (see [Bel℄).
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ki(4) x0 ∗ x1 ∗ x2 ∗ x3 ∗ x2 ∗ x is redu
ible to a word of length 4 for x = xi,
i = 0, 1, 2, 3,for example x0∗x1∗x2∗x3∗x2∗x1 = (x0∗x1)∗(x2∗x3)∗x1 = x2∗x3∗x1∗x0.

x0 ∗ x1 ∗ x2 ∗ x3 ∗ x0 ∗ x1 = x0 ∗ x1 ∗ x3 ∗ x2 ∗ x0.(5)Indeed, x0 ∗x1 ∗x2 ∗x3 ∗x0 ∗x1 ∗x0 = ((x0 ∗x1) ∗ (x2 ∗x3)) ∗x2 ∗ (x0 ∗x1) =
(x2 ∗ x3) ∗ (x0 ∗ x1 ∗ x2) = (x0 ∗ x1 ∗ x2) ∗ (x2 ∗ x3) = x0 ∗ x1 ∗ x3 ∗ x2.

x0 ∗ x1 ∗ x2 ∗ x3 ∗ x0 ∗ x3 = x0 ∗ x2 ∗ x1 ∗ x3 ∗ x0.(6)Indeed, x0 ∗ x1 ∗ x2 ∗ x3 ∗ x0 ∗ x3 = x1 ∗ x0 ∗ x2 ∗ x3 ∗ x0 ∗ x3
(1)
= x1 ∗ x0 ∗ x2 ∗

x0 ∗ x3 ∗ x0
(2)
= x0 ∗ x2 ∗ x1 ∗ x3 ∗ x0.

x0 ∗ x1 ∗ x2 ∗ x3 ∗ x1 ∗ x2 = x3 ∗ x2 ∗ x1 ∗ x0 ∗ x2 ∗ x1.(7)Indeed, x0 ∗ x1 ∗ x2 ∗ x3 ∗ x1 ∗ x2 = ((x0 ∗ x1) ∗ (x2 ∗ x3)) ∗ (x1 ∗ x2) =
((x3 ∗ x2) ∗ (x1 ∗ x0)) ∗ (x2 ∗ x1) = x3 ∗ x2 ∗ x1 ∗ x0 ∗ x2 ∗ x1.

x0 ∗ x1 ∗ x2 ∗ x3 ∗ x1 ∗ x2 ∗ x3 = x0 ∗ x2 ∗ x3 ∗ x1 ∗ x2 ∗ x3 ∗ x1(8)
= x0 ∗ x3 ∗ x1 ∗ x2 ∗ x3 ∗ x1 ∗ x2.Indeed,

x0 ∗ x1 ∗ x2 ∗ x3 ∗ x1 ∗ [x2 ∗ x3 ∗ x2]
(2)
= (x0 ∗ x1) ∗ x2 ∗ x3 ∗ x1 ∗ x3 ∗ x2 ∗ x3

= (x1 ∗ x0 ∗ x2 ∗ x3 ∗ x1 ∗ x3) ∗ x2 ∗ x3

(6)
= (x1 ∗ x2 ∗ x0 ∗ x3 ∗ x1 ∗ x2) ∗ x3

(5)
= x1 ∗ x2 ∗ x3 ∗ x0 ∗ x1 ∗ x3

= x2 ∗ x1 ∗ x3 ∗ x0 ∗ x1 ∗ x3

(7)
= x0 ∗ x3 ∗ x1 ∗ x2 ∗ x3 ∗ x1as required.

x0 ∗ x1 ∗ x2 ∗ x3 ∗ x1 ∗ x2 ∗ x3 ∗ x0 = x0 ∗ x1 ∗ x3 ∗ x2 ∗ x1 ∗ x3 ∗ x2.(9)This equality is the most di�
ult and allows us to 
omplete the proof ofLemma 7. We follow Ohtsuki's analysis of his 
omputer 
omputation. Henoti
ed that the key point is to use the 
ommutation identity
(x0 ∗ x1 ∗ x2 ∗ x3 ∗ x1 ∗ x2 ∗ x3 ∗ x0) ∗ x2

= x2 ∗ (x0 ∗ x1 ∗ x2 ∗ x3 ∗ x1 ∗ x2 ∗ x3 ∗ x0)and to show that the last expression 
an be redu
ed to x0∗x1∗x3∗x2∗x1∗x3by properties (1)�(8). This is done in Lemma 8 below.Lemma 8. x2∗(x0∗x1∗x2∗x3∗x1∗x2∗x3∗x0) = x0∗x1∗x3∗x2∗x1∗x3.Proof. To improve readability, we omit ∗ in the presentation of words inthis proof. Using the identity wxyx = w(yx) = w(xy) = wyxy seven times



Burnside kei 219we obtain
x2(x0x1x2x3x1x2x3x0) = x2x0x3x2x1x3x2x1x0x1x2x3x1x2x3x0.Now, after applying identities (1)�(8) several times, we obtain:

(x2x0x3x2)x1x3x2x1x0x1x2x3x1x2x3x0
(1)
=x2x3x0x1x3x2x1x0x1x2x3x1x2x3x0

= (x3x2x0x1x3x2)x1x0x1x2x3x1x2x3x0

(5)
= x3x2x1x0x3[x1x0x1]x2x3x1x2x3x0

(2)
= (x3x2x1x0x3x0)x1x0x2x3x1x2x3x0

(6)
= (x3x1x2x0x3x1)x0x2x3x1x2x3x0

(5)
= (x3x1)x0x2x3x0x2x3x1x2x3x0

= (x1x3x0x2x3x0)x2x3x1x2x3x0
(7)
= x2x0x3x1x0[x3x2x3]x1x2x3x0

(2)
= (x2x0)x3x1x0x2x3x2x1x2x3x0 = (x0x2x3x1x0x2)x3x2x1x2x3x0

(5)
= (x2x0)x1x3x0x3x2x1x2x3x0 = (x0x2x1x3x0x3)x2x1x2x3x0

(6)
= x0x1x2x3x0[x2x1x2]x3x0

(2)
= (x0x1x2x3x0x1)x2x1x3x0

(5)
= (x0x1x3x2x0x2)x1x3x0

(6)
= (x0x3)x1x2x0x1x3x0 = (x3x0x1x2x0x1)x3x0

(7)
= x2x1x0x3x1[x0x3x0]

(2)
= (x2x1)x0x3x1x3x0x3 = (x1x2x0x3x1x3)x0x3

(6)
= (x1x0x2x3x1x0)x3

(5)
= (x1x0)x3x2x1x3 = x0x1x3x2x1x3as required.We proved, in Lemma 7, that Q(4, 3) is �nite, but in fa
t we 
an easilybuild, using Lemmas 7 and 8 and their proofs, the multipli
ation table of

Q(4, 3) with 81 elements. We still need to argue that the order of Q(4, 3) isnot smaller than 81. One of the possible arguments is to show that appli
a-tion of the relations present in Q(4, 3) does not lead to any further redu
tionsin the number of elements of Q(4, 3). This argument is quite laborious andme
hani
al as it requires a lot of similar 
omputations, so it is suitable fora 
omputer veri�
ation. A more sophisti
ated argument uses the kei epi-morphism p : Q(4, 3) → Z3
3 . The epimorphism p is de�ned on generators of

Q(4, 3) as follows:
p(a) = (0, 0, 0), p(b) = (1, 0, 0), p(c) = (0, 1, 0), p(d) = (0, 0, 1).For example, we have p(a∗b) = (2, 0, 0), p(a∗c) = (0, 2, 0), p(a∗d) = (0, 0, 2),

p(b ∗ c) = (2, 2, 0), p(b ∗ d) = (2, 0, 2), p(c ∗ d) = (0, 2, 2).From Theorem 5, it follows that it is enough to prove that p is not amonomorphism. We noti
e that
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p((a ∗ b) ∗ (c ∗ d)) = (1, 1, 1) = p((a ∗ c) ∗ (b ∗ d)) = p((a ∗ d) ∗ (b ∗ d)).However, the elements (a∗b)∗(c∗d) and (a∗c)∗(b∗d) are distin
t in Q(4, 3). Toshow that, we de�ne a new kei homomorphism q : Q(4, 3) → B(4, 3) whi
hextends the identity map between the sets of generators. We have to 
he
kwhether q((a ∗ b) ∗ (c ∗ d)) = q((a ∗ c) ∗ (b ∗ d)). We have

q((a ∗ b) ∗ (c ∗ d)) = q(c ∗ d)(q(a ∗ b))−1q(c ∗ d) = dc−1d(b−1ab−1)dc−1d,and similarly
q((a ∗ c) ∗ (b ∗ d)) = db−1d(c−1ac−1)db−1d.Thus, we need to show that

q((a∗b)∗(c∗d))(q((a∗c)∗(b∗d)))−1 = dc−1d(b−1ab−1)dc−1bd−1ca−1cd−1bd−1is not equal to 1 in B(4, 3). We redu
e this problem, after 
onjugating by
d−1, to the question whether

c−1db−1ab−1dc−1bd−1ca−1cd−1b 6= 1in the Burnside group B(4, 3). The above relation was veri�ed both by usingthe 
omputer algebra system GAP [GAP4℄, and by 
al
ulations in the asso-
iated Lie algebra of B(4, 3) made by Mietek D¡bkowski [Dab℄ (see [VL℄ forba
kground information on Burnside groups). Thus, we have shown that pis not a monomorphism and Q(4, 3) has exa
tly 81 elements.
Remark (alternative approa
h). As mentioned before (see page 215),the operator group of the quandle Q, Op(Q), is generated by the images ofelements of Q under the map x 7→ fx. Be
ause of the relation

fx∗y = f−1
y fxfy,whi
h holds in the operator group for any x, y ∈ Q, Op(Q) is generatedby the images of the generators of Q. In parti
ular if Q is generated by nelements, then so is Op(Q).As previously noted (see Corollary 4 and the 
omment pre
eding it),

Q(4, 3) embeds into its operator group. To simplify notation, we use thesame symbols for quandle elements and their images in the 
orrespondingoperator group. From the se
ond kei axiom it follows that the squares ofgenerators (and therefore also the squares of 
onjugates of generators) areequal to the identity in Op(Q(4, 3)). The relation x ∗ y = y ∗x, whi
h is truefor all elements of Q(4, 3), yields the relation yxy = xyx (or xyxyxy = 1) in
Op(Q(4, 3)), where x and y belong to 
onjuga
y 
lasses of the generators of
Q(4, 3). Therefore, Q(4, 3) 
an be embedded into the (possibly bigger) group
G

(3)
(a,b,c,d) with the following presentation:

{a, b, c, d | a2 = b2 = c2 = d2 = 1, xyxyxy = 1},
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onjugates of the generators a, b, c, d. Using GAP, wefound a �nite presentation for G
(3)
(a,b,c,d) as follows. We add to the presentation

{a, b, c, d | a2 = b2 = c2 = d2 = 1}all relations of the form (w−1αwv−1βv)3 = 1, where α, β ∈ {a, b, c, d} and w,
v are all possible two-letter words on the letters a, b, c, d. The group with thispresentation is �nite, and we 
an 
he
k that all required relations between
onjugates of generators are satis�ed (xyxyxy = 1 for any 
onjugates of
a, b, c, d). Again, using GAP, we 
omputed that the order of this groupis 118098 = 2 · 310 and that the number of elements in the union of the
onjuga
y 
lasses of a, b, c and d is 81 (whi
h is also the order of Q(4, 3)).Elements of these 
onjuga
y 
lasses form a 4-generator 
ommutative kei with
onjugation as a quandle operation, therefore their number 
annot ex
eedthe order of the free kei Q(4, 3).2.4. Q(4, 3) as an extension of Z3

3 by Z3. We show that Q(4, 3) is iso-morphi
 to the quandle (Z3×Z3
3 , ∗̂), with the operation ∗̂ de�ned as follows:

(a1, x1) ∗̂ (a2, x2) = (a1 ∗ a2 + c(x1, x2), x1 ∗ x2).In this de�nition, + denotes addition in Z3, ∗ is the quandle operation de-s
ribed in Example 2.1(1), and c(x1, x2): Z3
3 × Z3

3 → Z3 is a fun
tion whi
hsatis�es the following 
onditions (related to the de�nition of kei):(i) c(x, x) = 0;(ii) c(x ∗ y, y) = c(x, y);(iii) c(x1 ∗x3, x2 ∗x3)− c(x1 ∗x2, x3) = −c(x1, x2)+ c(x2, x3)+ c(x1, x3);(iv) c(x, y) = c(y, x).The �rst 
ondition 
orresponds to the �rst kei axiom, (a, x) ∗̂ (a, x) = (a, x).The se
ond 
ondition is a 
onsequen
e of the se
ond kei axiom, ((a, x) ∗̂
(b, y)) ∗̂ (b, y) = (a, x).Condition (iii) follows from the right distributivity:

((a1, x1) ∗̂ (a2, x2)) ∗̂ (a3, x3) = ((a1, x1) ∗̂ (a3, x3)) ∗̂ ((a2, x2) ∗̂ (a3, x3))leads to the following, after �rst 
omputing the left and right sides of theabove equation:
L = (a1 ∗ a2 + c(x1, x2), x1 ∗ x2) ∗̂ (a3, x3)

= (a1 ∗ a2 ∗ a3 − c(x1, x2) + c(x1 ∗ x2, x3), x1 ∗ x2 ∗ x3),
R = (a1 ∗ a3 + c(x1, x3), x1 ∗ x3) ∗̂ (a2 ∗ a3 + c(x2, x3), x2 ∗ x3)

= ((a1 ∗ a3) ∗ (a2 ∗ a3) + 2c(x2, x3) − c(x1, x3)
+ c(x1 ∗ x3, x2 ∗ x3), (x1 ∗ x3) ∗ (x2 ∗ x3)).From this we get

c(x1 ∗ x3, x2 ∗ x3) − c(x1 ∗ x2, x3) = −c(x1, x2) − 2c(x2, x3) + c(x1, x3).Taking into a

ount that we work modulo 3, we get 
ondition (iii).
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kiThe last 
ondition follows from the fa
t that we work with a 
ommutativekei.Condition (iii) turns ea
h su
h c into a twisted 2-
o
y
le in the se
ond quan-dle 
ohomology group of Z3
3 with Z3 
oe�
ients. Twisted quandle (
o)homo-logy theory was introdu
ed in [C-E-S℄. The authors des
ribed there a generalmethod of obtaining a new quandle from a given quandle X and Alexanderquandle A, using a twisted 2-
o
y
le φ. Su
h 
onstru
tions, in
luding the onewe are des
ribing, are 
alled Alexander extensions of X by (A, φ).An example of a fun
tion c satisfying all of the above 
onditions, is pre-sented below. In order to represent a 
o
y
le c as a matrix, let us order theelements of Z3

3 as follows:1. (0,0,0); 2. (0,0,1); 3. (0,0,2); 4. (0,1,0); 5. (0,1,1); 6. (0,1,2); 7. (0,2,0);8. (0,2,1); 9. (0,2,2); 10. (1,0,0); 11. (1,0,1); 12. (1,0,2); 13. (1,1,0); 14. (1,1,1);15. (1,1,2); 16. (1,2,0); 17. (1,2,1); 18. (1,2,2); 19. (2,0,0); 20. (2,0,1); 21. (2,0,2);22. (2,1,0); 23. (2,1,1); 24. (2,1,2); 25. (2,2,0); 26. (2,2,1); 27. (2,2,2).The entry mij of the matrix M given below equals the value c(i, j) of the
o
y
le c on the ith and jth elements of Z3
3 .

M =




0 1 1 0 1 2 0 2 1 0 1 2 0 1 2 0 1 2 0 2 1 0 2 1 0 2 11 0 1 0 1 2 2 1 0 2 0 1 1 2 0 0 1 2 1 0 2 2 1 0 0 2 11 1 0 1 2 0 2 1 0 2 0 1 0 1 2 1 2 0 0 2 1 2 1 0 1 0 20 0 1 0 0 0 0 1 0 2 0 1 1 2 0 0 1 2 0 2 1 1 0 2 2 1 01 1 2 0 0 0 2 1 1 0 1 2 1 2 0 2 0 1 1 0 2 0 2 1 2 1 02 2 0 0 0 0 2 2 0 1 2 0 1 2 0 1 2 0 2 1 0 2 1 0 2 1 00 2 2 0 2 2 0 0 0 0 1 2 1 2 0 2 0 1 1 0 2 0 2 1 2 1 02 1 1 1 1 2 0 0 0 1 2 0 1 2 0 1 2 0 0 2 1 0 2 1 0 2 11 0 0 0 1 0 0 0 0 2 0 1 1 2 0 0 1 2 2 1 0 0 2 1 1 0 20 2 2 2 0 1 0 1 2 0 0 0 1 2 0 1 0 2 0 2 2 0 2 1 2 1 01 0 0 0 1 2 1 2 0 0 0 0 0 1 2 2 1 0 0 0 1 0 2 1 2 1 02 1 1 1 2 0 2 0 1 0 0 0 2 0 1 0 2 1 1 2 1 0 2 1 2 1 00 1 0 1 1 1 1 1 1 1 0 2 0 0 0 1 2 0 1 1 1 1 1 1 0 0 11 2 1 2 2 2 2 2 2 2 1 0 0 0 0 0 1 2 2 2 2 2 2 2 1 2 12 0 2 0 0 0 0 0 0 0 2 1 0 0 0 2 0 1 0 0 0 0 0 0 0 2 20 0 1 0 2 1 2 1 0 1 2 0 1 0 2 0 0 0 0 1 2 0 1 0 2 0 11 1 2 1 0 2 0 2 1 0 1 2 2 1 0 0 0 0 2 0 1 2 1 1 1 2 02 2 0 2 1 0 1 0 2 2 0 1 0 2 1 0 0 0 1 2 0 2 2 0 0 1 20 1 0 0 1 2 1 0 2 0 0 1 1 2 0 0 2 1 0 0 0 2 1 0 2 0 12 0 2 2 0 1 0 2 1 2 0 2 1 2 0 1 0 2 0 0 0 0 2 1 1 2 01 2 1 1 2 0 2 1 0 2 1 1 1 2 0 2 1 0 0 0 0 1 0 2 0 1 20 2 2 1 0 2 0 0 0 0 0 0 1 2 0 0 2 2 2 0 1 0 0 0 2 1 02 1 1 0 2 1 2 2 2 2 2 2 1 2 0 1 1 2 1 2 0 0 0 0 0 2 11 0 0 2 1 0 1 1 1 1 1 1 1 2 0 0 1 0 0 1 2 0 0 0 1 0 20 0 1 2 2 2 2 0 1 2 2 2 0 1 0 2 1 0 2 1 0 2 0 1 0 0 02 2 0 1 1 1 1 2 0 1 1 1 0 2 2 0 2 1 0 2 1 1 2 0 0 0 01 1 2 0 0 0 0 1 2 0 0 0 1 1 2 1 0 2 1 0 2 0 1 2 0 0 0



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e of an isomorphism between Q(4, 3) and (Z3 × Z3
3 , ∗̂) followsfrom the following fa
ts:(i) (Z3 × Z3

3 , ∗̂) satis�es the kei axioms and relation r3;(ii) (Z3 × Z3
3 , ∗̂) has 81 elements;(iii) (Z3 × Z3
3 , ∗̂) is generated by four elements: (1, 0, 0, 0), (0, 1, 0, 0),

(0, 0, 1, 0), (0, 0, 0, 1) (for example it 
annot be isomorphi
 to
Core(Z4

3 ), whi
h has �ve generators as a kei).
3. Q(3, 4) has 96 elements. The primary examples of keis satisfyingthe universal Burnside relation, x = x ∗ y ∗ x ∗ y, are the dihedral kei Z4, itsdire
t sums, and the fourth Burnside groups and their quotients (with the
ore operation x ∗ y = yx−1y).To get a lower bound on the order of Q(3, 4), we 
an 
onsider the group

G
(4)
(a,b,c) with presentation

{a, b, c | a2 = b2 = c2 = 1, (xy)4 = 1},where x and y are any 
onjugates of the generators a, b, c. We obtain a �nitepresentation for G
(4)
(a,b,c) in a similar way to the one des
ribed on page 221.Using GAP we 
he
ked that this group has 8192 = 213 elements and the sizeof the union of the 
onjuga
y 
lasses of the generators is 96. The elementsof these 
onjuga
y 
lasses form a 3-generator quandle (with 
onjugationas operation ∗) satisfying the relation x = x ∗ y ∗ x ∗ y. Thus the orderof the free kei Q(3, 4) 
annot be less than 96. This time we 
annot useLemma 3 to obtain an upper bound on the size of Q(3, 4) (see the remarkafter the proof of Theorem 6), so instead we will build a Cayley diagramfor this quandle. This diagram has 96 verti
es, therefore Q(3, 4) has order

96. Below, we 
al
ulate some relations needed to build that diagram. Again,we use bra
kets [ ] to stress for whi
h parts of words we use properties of
Q(3, 4). None of these properties 
an repla
e the �rst letter in the left-normedrepresentatives of words in Q(3, 4). For example a left-normed word startingwith a never equals a word starting with b. It follows that the diagram will
onsist of three disjoint parts that look the same when viewed as graphs (seeFigure 3). Here we prove the most di�
ult relations in the Cayley graph,their numbers 
orrespond to the numbers in Figure 3. The verti
es of theCayley graph represent the elements of Q(3, 4). The solid ar
s representmultipli
ation from the right by the generator a; two kinds of dashed ar
sdenote multipli
ation by respe
tively b and c.(1) We need to prove the relation

a ∗ b ∗ c ∗ a ∗ b ∗ a = a ∗ b ∗ c ∗ a ∗ b
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a

a*b

a*b*c

a*b*c*b

a*b*c*b*c

a*c*b*c

a*c*b

a*c

a*b*c*a

a*b*c*a*c

a*b*c*a*c*b

a*b*c*a*c*b*c

a*b*c*a*b*c*b*c

a*b*c*a*b

a*b*c*a*b*c

a*b*c*a*b*c*b

a*c*b*a

a*c*b*a*c

a*c*b*a*c*b

a*c*b*a*c*b*c

a*c*b*a*b*c*b*c

a*c*b*a*b*c*b

a*c*b*a*b*c

a*c*b*a*b

a*b*c*b*c*a

a*b*c*b*c*a*b

a*b*c*b*c*a*b*c

a*b*c*b*c*a*b*c*b

a*b*c*b*c*a*b*c*b*c

a*b*c*b*c*a*c

a*b*c*b*c*a*c*b

a*b*c*b*c*a*c*b*c

a

b

c

(1) (2)(3) (4)

(5)

(6)(7)

(8) (9)(10) (11)

(12)(13)

(14)(15)

(16)

Fig. 3. A 
omponent of the Cayley diagram for Q(3, 4)

(
orresponding to a loop at the vertex representing the element a∗b∗c∗a∗b):
[a ∗ b] ∗ c ∗ a ∗ b ∗ a = a ∗ [b ∗ a ∗ c ∗ a ∗ b] ∗ a = a ∗ (c ∗ a ∗ b) ∗ a

= a ∗ (c ∗ a ∗ b) = [a ∗ b ∗ a] ∗ c ∗ a ∗ b = a ∗ b ∗ c ∗ a ∗ bas desired.(2) We have
[a ∗ b] ∗ c ∗ a ∗ c ∗ a = a ∗ b ∗ [a ∗ c ∗ a ∗ c ∗ a] = a ∗ b ∗ [(a ∗ c ∗ a)]

= a ∗ b ∗ [(a ∗ c)] = a ∗ b ∗ c ∗ a ∗ c.(3) Similar to (2).(4) Similar to (1).



Burnside kei 225(5) We have to 
he
k that a ∗ b ∗ c ∗ a ∗ b ∗ c ∗ a = a ∗ c ∗ b ∗ a ∗ c ∗ b orequivalently that a = a ∗ c ∗ b ∗ a ∗ c ∗ b ∗ a ∗ c ∗ b ∗ a ∗ c ∗ b. Indeed,
[a ∗ c] ∗ b ∗ a ∗ c ∗ b ∗ a ∗ c ∗ b ∗ a ∗ c ∗ b = a ∗ [c ∗ a ∗ b ∗ a ∗ c] ∗ b ∗ a ∗ c ∗ b ∗ a ∗ c ∗ b

= [a ∗ (b ∗ a ∗ c)] ∗ b ∗ a ∗ c ∗ b ∗ a ∗ c ∗ b

= a ∗ [(b ∗ a ∗ c)] ∗ a ∗ b ∗ a ∗ c ∗ b ∗ a ∗ c ∗ b

= a ∗ [c ∗ a ∗ b ∗ a ∗ c ∗ a ∗ b ∗ a ∗ c] ∗ b ∗ a ∗ c ∗ b

= a ∗ [(c ∗ (b ∗ a) ∗ c)] ∗ b ∗ a ∗ c ∗ b = a ∗ [(c ∗ (b ∗ a))] ∗ b ∗ a ∗ c ∗ b

= a ∗ a ∗ b ∗ a ∗ c ∗ a ∗ [∗b ∗ a ∗ b ∗ a] ∗ c ∗ b

= [a ∗ a] ∗ b ∗ a ∗ c ∗ [a ∗ a] ∗ b ∗ a ∗ b ∗ c ∗ b = [a ∗ b ∗ a] ∗ c ∗ b ∗ a ∗ b ∗ c ∗ b

= a ∗ [b ∗ c ∗ b ∗ a ∗ b ∗ c ∗ b] = a ∗ (a ∗ (c ∗ b)) = a.(6) We prove that a ∗ b ∗ c ∗ b ∗ c ∗ a ∗ b ∗ a = a ∗ b ∗ c ∗ b ∗ c ∗ a ∗ b. Indeed,
a ∗ b ∗ c ∗ b ∗ c ∗ a ∗ b ∗ a = a ∗ b ∗ c ∗ b ∗ c ∗ b ∗ [b ∗ a ∗ b ∗ a]

= a ∗ [b ∗ c ∗ b ∗ c ∗ b] ∗ a ∗ b ∗ a ∗ b

= [a ∗ c ∗ b ∗ c ∗ a] ∗ b ∗ a ∗ b

= a ∗ [c ∗ b ∗ c ∗ b] ∗ a ∗ b = a ∗ b ∗ c ∗ b ∗ c ∗ a ∗ b.(7) a ∗ [b ∗ c ∗ b ∗ c] ∗ a ∗ c ∗ a = a ∗ c ∗ b ∗ c ∗ b ∗ a ∗ c ∗ a and then as in (6)(the roles of b and c are ex
hanged).(8) We need a ∗ b ∗ c ∗ a ∗ b ∗ c ∗ b = a ∗ b ∗ c ∗ a ∗ b ∗ c ∗ b ∗ a or
a ∗ b ∗ c ∗ a ∗ b ∗ c ∗ b ∗ a ∗ b ∗ c ∗ b ∗ a ∗ c ∗ b = a. We 
ompute as follows:

[a ∗ b] ∗ c ∗ a ∗ b ∗ c ∗ b ∗ a ∗ b ∗ c ∗ b ∗ a ∗ c ∗ b

= a ∗ [b ∗ a ∗ c ∗ a ∗ b] ∗ c ∗ b ∗ a ∗ b ∗ c ∗ b ∗ a ∗ c ∗ b

= [a ∗ (c ∗ a ∗ b)] ∗ c ∗ b ∗ a ∗ b ∗ c ∗ b ∗ a ∗ c ∗ b

= a ∗ [(c ∗ a ∗ b)] ∗ a ∗ c ∗ b ∗ a ∗ b ∗ c ∗ b ∗ a ∗ c ∗ b

= a ∗ b ∗ a ∗ c ∗ a ∗ b ∗ a ∗ c ∗ b ∗ a ∗ b ∗ c ∗ b ∗ a ∗ c ∗ b

= a ∗ b ∗ a ∗ c ∗ a ∗ b ∗ a ∗ c ∗ a ∗ [a ∗ b ∗ a ∗ b] ∗ c ∗ b ∗ a ∗ c ∗ b

= a ∗ [b ∗ a ∗ c ∗ a ∗ b ∗ a ∗ c ∗ a ∗ b] ∗ a ∗ b ∗ a ∗ c ∗ b ∗ a ∗ c ∗ b

= a ∗ [(b ∗ (c ∗ a) ∗ b)] ∗ a ∗ b ∗ a ∗ c ∗ b ∗ a ∗ c ∗ b

= a ∗ [(b ∗ a ∗ c ∗ a)] ∗ a ∗ b ∗ a ∗ c ∗ b ∗ a ∗ c ∗ b

= [a ∗ a] ∗ c ∗ a ∗ b ∗ a ∗ c ∗ [a ∗ a] ∗ b ∗ a ∗ c ∗ b ∗ a ∗ c ∗ b

= [a ∗ c ∗ a] ∗ b ∗ a ∗ c ∗ b ∗ a ∗ c ∗ b ∗ a ∗ c ∗ b

= a ∗ c ∗ b ∗ a ∗ c ∗ b ∗ a ∗ c ∗ b ∗ a ∗ c ∗ b
(5)
= a.
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a ∗ b ∗ c ∗ a ∗ c ∗ b ∗ c ∗ a ∗ c ∗ b ∗ c ∗ a ∗ c ∗ b = a, whi
h is proved as follows:

[a ∗ b ∗ c ∗ a ∗ c ∗ b] ∗ c ∗ a ∗ c ∗ b ∗ c ∗ a ∗ c ∗ b

= a ∗ b ∗ c ∗ a ∗ c ∗ b ∗ [a ∗ c ∗ a ∗ c] ∗ b ∗ c ∗ a ∗ c ∗ b

= a ∗ b ∗ c ∗ a ∗ c ∗ b ∗ c ∗ a ∗ c ∗ a ∗ b ∗ c ∗ a ∗ c ∗ b

= a ∗ [b ∗ c ∗ a ∗ c ∗ b ∗ c ∗ a ∗ c ∗ b] ∗ b ∗ a ∗ b ∗ c ∗ a ∗ c ∗ b

= a ∗ [(b ∗ (a ∗ c) ∗ b)] ∗ b ∗ a ∗ b ∗ c ∗ a ∗ c ∗ b

= [a ∗ c ∗ a] ∗ c ∗ b ∗ c ∗ a ∗ c ∗ b ∗ a ∗ b ∗ c ∗ a ∗ c ∗ b

= a ∗ [c ∗ c] ∗ b ∗ c ∗ a ∗ c ∗ b ∗ a ∗ b ∗ c ∗ a ∗ c ∗ b

= a ∗ [b ∗ c ∗ a ∗ c ∗ b ∗ a ∗ b ∗ c ∗ a ∗ c ∗ b]

= a ∗ (a ∗ b ∗ c ∗ a ∗ c ∗ b) = a ∗ (a ∗ (a ∗ c ∗ b)) = a.(10) As in (9) with b and c inter
hanged.(11) As in (8) with b and c inter
hanged.(12) a ∗ b ∗ c ∗ a ∗ b ∗ c ∗ b ∗ c ∗ a = a ∗ b ∗ c ∗ b ∗ c ∗ a ∗ b ∗ c is equivalent to
a∗ b∗ c∗ b∗ c∗a∗ b∗ c∗a∗ c∗ b∗ c∗ b∗a∗ c∗ b = a, whi
h we prove as follows:
[a ∗ b] ∗ c ∗ b ∗ c ∗ a ∗ b ∗ c ∗ a ∗ c ∗ b ∗ c ∗ b ∗ a ∗ c ∗ b

= a ∗ [b ∗ a ∗ c ∗ b ∗ c ∗ a ∗ b] ∗ c ∗ a ∗ c ∗ b ∗ c ∗ b ∗ a ∗ c ∗ b

= [a ∗ (b ∗ c ∗ a ∗ b)] ∗ c ∗ a ∗ c ∗ b ∗ c ∗ b ∗ a ∗ c ∗ b

= a ∗ [(b ∗ c ∗ a ∗ b)] ∗ a ∗ c ∗ a ∗ c ∗ b ∗ c ∗ b ∗ a ∗ c ∗ b

= a ∗ b ∗ a ∗ c ∗ b ∗ c ∗ a ∗ b ∗ a ∗ c ∗ a ∗ [c ∗ b ∗ c ∗ b] ∗ a ∗ c ∗ b

= [a ∗ b ∗ a] ∗ c ∗ b ∗ c ∗ a ∗ b ∗ a ∗ c ∗ a ∗ b ∗ c ∗ b ∗ c ∗ a ∗ c ∗ b

= [a ∗ b ∗ c ∗ b] ∗ c ∗ a ∗ b ∗ a ∗ c ∗ a ∗ b ∗ c ∗ b ∗ c ∗ a ∗ c ∗ b

= a ∗ b ∗ c ∗ [b ∗ a ∗ c ∗ a ∗ b ∗ a ∗ c ∗ a ∗ b] ∗ c ∗ b ∗ c ∗ a ∗ c ∗ b

= a ∗ b ∗ c ∗ [(b ∗ (c ∗ a) ∗ b)] ∗ c ∗ b ∗ c ∗ a ∗ c ∗ ba ∗ b ∗ c ∗ a ∗ c ∗ a ∗ b

∗ a ∗ c ∗ a ∗ c ∗ b ∗ c ∗ a ∗ c ∗ b

= a ∗ b ∗ c ∗ a ∗ c ∗ a ∗ b ∗ a ∗ b ∗ [b ∗ c ∗ a ∗ c ∗ b ∗ c ∗ a ∗ c ∗ b]

= [a ∗ b] ∗ c ∗ a ∗ c ∗ a ∗ b ∗ a ∗ b ∗ c ∗ a ∗ c ∗ b ∗ c ∗ a ∗ c

= a ∗ b ∗ [a ∗ c ∗ a ∗ c ∗ a] ∗ b ∗ a ∗ b ∗ c ∗ a ∗ c ∗ b ∗ c ∗ a ∗ c

= a ∗ [b ∗ c ∗ a ∗ c ∗ b ∗ a ∗ b ∗ c ∗ a ∗ c ∗ b] ∗ c ∗ a ∗ c

= a ∗ (a ∗ (a ∗ c ∗ b))c ∗ a ∗ c = a ∗ c ∗ a ∗ c = a.(13) Follows from (12).



Burnside kei 227(14) Instead of a ∗ b ∗ c ∗ b ∗ c ∗ a ∗ b ∗ c ∗ b ∗ a = a ∗ b ∗ c ∗ b ∗ c ∗ a ∗ b ∗ c ∗ bwe 
onsider a = a ∗ b ∗ c ∗ b ∗ c ∗ a ∗ b ∗ c ∗ b ∗ a ∗ b ∗ c ∗ b ∗ a ∗ c ∗ b ∗ c ∗ b,proved as follows:
a ∗ b ∗ c ∗ b ∗ c ∗ [a ∗ b ∗ c ∗ b ∗ a ∗ b ∗ c ∗ b ∗ a] ∗ c ∗ b ∗ c ∗ b

= a ∗ [b ∗ c ∗ b ∗ c ∗ b ∗ c ∗ b ∗ a ∗ b ∗ c ∗ b ∗ c ∗ b ∗ c ∗ b]

= a ∗ (a ∗ (c ∗ (c ∗ b))) = a.(15) Follows from (14), sin
e
a ∗ [b ∗ c ∗ b ∗ c] ∗ a ∗ c ∗ b ∗ c ∗ a = a ∗ c ∗ b ∗ c ∗ b ∗ a ∗ c ∗ b ∗ c ∗ a.(16) Sin
e a ∗ b ∗ c ∗ a ∗ b ∗ c ∗ a

(5)
= a ∗ c ∗ b ∗ a ∗ c ∗ b, we have

a ∗ b ∗ [c ∗ b ∗ c] ∗ a ∗ b ∗ [c ∗ b ∗ c] ∗ a = a ∗ b ∗ (b ∗ c) ∗ a ∗ b ∗ (b ∗ c) ∗ a

= a ∗ [(b ∗ c)] ∗ b ∗ a ∗ [(b ∗ c)] ∗ b

= a ∗ [c ∗ b ∗ c ∗ b] ∗ a ∗ [c ∗ b ∗ c ∗ b]

= a ∗ b ∗ c ∗ b ∗ c ∗ a ∗ b ∗ c ∗ b ∗ c.The oldest open problem 
on
erning n-moves is the Nakanishi 4-move
onje
ture (see [Prz℄).Conje
ture 9 (Nakanishi, 1979). Every knot is 4-move equivalent tothe trivial knot.Our hope was that the fourth Burnside kei of a knot 
ould be used todete
t a potential 
ounterexample to this 
onje
ture. However, the followingtheorem suggests this is not likely to be the 
ase.Theorem 10. Every algebrai
ally 
onne
ted quotient of Q(3, 4) is a triv-ial quandle (a quandle with one element).Proof. Let Q̃ be the algebrai
ally 
onne
ted quotient of Q(3, 4), f : Q(3, 4)

→ Q̃ be the quotient homomorphism, and S1, S2, S3 denote the algebrai
ally
onne
ted 
omponents of Q(3, 4). We 
laim that Q̃ is 
ontained in ea
h image
f(Si) for i = 1, 2, 3.Assume that there exists x ∈ Q̃ with f−1(x) ∩ Sj = ∅ for some j. Let
a ∈ Sj and y = f(a). Then from the algebrai
 
onne
tivity of Q̃ it followsthat x = y ∗ x1 ∗ · · · ∗ xk for some x1, . . . , xk ∈ Q̃. Now we 
hoose arbitrary
zi ∈ f−1(xi), i = 1, . . . , k. Let z = a ∗ z1 ∗ · · · ∗ zk. Then z ∈ Sj and
f(z) = f(a) ∗ f(z1) ∗ · · · ∗ f(zk) = y ∗x1 ∗ · · · ∗ xk = x, whi
h 
ontradi
ts theassumption that f−1(x) ∩ Sj = ∅.Ea
h subquandle Si, when 
onsidered as a quandle itself, has eight 4-element 
omponents (orbits) T1, . . . , T8 and, just as before, we 
an provethat Q̃ is the image of ea
h Ti (and 
an have at most 4 elements). But every
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kisu
h Ti is a trivial quandle (x ∗ y = x for any x, y ∈ Ti) and Q̃ must be theimage of just one element.Sin
e knot quandles are algebrai
ally 
onne
ted, we have the followingresult.Corollary 11. Let K be a knot su
h that the minimal number of gen-erators of its fundamental quandle is less than or equal to 3. Then its fourthBurnside quandle, Q4(K), has only one element.For example, Q4(K) will not dete
t a potential 
ounterexample to theNakanishi 4-move 
onje
ture among 3-bridge knots.It seems plausible that the order of Q4(K) is 1 for any knot K.A
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