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Coordinatewise deomposition, Borel ohomology,and invariant measuresbyBenjamin D. Miller (Los Angeles, CA)
Abstrat. Given Polish spaes X and Y and a Borel set S ⊆ X × Y with ountablesetions, we desribe the irumstanes under whih a Borel funtion f : S → R is of theform f(x, y) = u(x) + v(y), where u : X → R and v : Y → R are Borel. This turns out tobe a speial ase of the problem of determining whether a real-valued Borel oyle on aountable Borel equivalene relation is a oboundary. We use several Glimm�E�ros styledihotomies to give a solution to this problem in terms of ertain σ-�nite measures on theunderlying spae. The main new tehnial ingredient is a haraterization of the existeneof type III measures of a given oyle.Suppose that S ⊆ X × Y and G is a group. A oordinatewise deomposi-tion of a funtion f : S → G is a pair (u, v), where u : X → G, v : Y → G,and

∀(x, y) ∈ S (f(x, y) = u(x)v(y)).If X and Y are Polish spaes, G is a standard Borel group, and u and v areBorel, then we say that (u, v) is a Borel oordinatewise deomposition of f .Our main goal here is to show that when S is a Borel set with ountablesetions, f : S → G is Borel, and G = 〈R, +〉, the existene of a Borel o-ordinatewise deomposition an be haraterized in terms of ertain σ-�nitemeasures on the disjoint union of X and Y (by a measure on a Polish spae,we shall always mean a measure on its Borel subsets). Before getting to this,however, we �rst onsider the existene of oordinatewise deompositions,without imposing any de�nability restritions.For the sake of notational onveniene, we assume that X ∩ Y = ∅.Assoiated with eah set S ⊆ X × Y is the set ZS = X ∪ Y , the graph
GS = S ∪ S−1 on ZS , the equivalene relation ES on ZS whose equivalenelasses are the onneted omponents of GS , and the groupoid ΓS of all2000 Mathematis Subjet Classi�ation: Primary 03E15; Seondary 28D05.Key words and phrases: good sets, Glimm�E�ros style dihotomies.The author was supported in part by NSF VIGRE Grant DMS-0502315.[81℄



82 B. D. Millerpaths through GS . We use γ−1 to denote the reversal of a path γ, and γ1γ2to denote the onatenation of paths γ1 and γ2. Observe that eah funtion
f : S → G extends to a unique groupoid homomorphism, i.e., there is aunique funtion ϕf : ΓS → G suh that:(1) ∀(x, y) ∈ S (ϕf (〈x, y〉) = f(x, y)).(2) ∀γ ∈ ΓS (ϕf (γ−1) = ϕf (γ)−1).(3) ∀γ, γ1, γ2 ∈ ΓS (γ = γ1γ2 ⇒ ϕf (γ) = ϕf (γ1)ϕf (γ2)).We say that γ ∈ ΓS is a loop if its initial and terminal points oinide. Thefollowing fat was proven essentially by Cowsik�Kªopotowski�Nadkarni [1℄:Proposition 1. Suppose that X and Y are disjoint , S ⊆ X × Y , G isa group, and f : S → G. Then the following are equivalent :(1) f admits a oordinatewise deomposition.(2) ∀γ ∈ ΓS (γ is a loop ⇒ ϕf (γ) = 1G).Proof. To see (1)⇒(2), suppose that (u, v) is a oordinatewise deompo-sition of f and γ is a loop. If γ = 〈x0, y0, . . . , xn, yn, x0〉, then
ϕf (γ) = f(x0, y0)f(x1, y0)

−1 · · · f(xn, yn)f(x0, yn)−1

= (u(x0)v(y0))(u(x1)v(y0))
−1 · · · (u(xn)v(yn))(u(x0)v(yn))−1 = 1G.The ase that γ = 〈y0, x0, . . . , yn, xn, y0〉 is handled similarly.To see (2)⇒(1), �x a transversal B ⊆ ZS of ES (i.e., a set whih intersetsevery ES-lass in exatly one point), and let d be the graph metri assoiatedwith GS . Fix g : ZS \ B → ZS suh that

∀z ∈ ZS \ B ((z, g(z)) ∈ GS and d(g(z), B) < d(z, B)),and de�ne reursively u : X → G and v : Y → G by
u(x) =

{

1G if x ∈ B,
f(x, g(x))v(g(x))−1 otherwise,

v(y) =

{

1G if y ∈ B,
u(g(y))−1f(g(y), y) otherwise.To see that (u, v) is a oordinatewise deomposition of f , note �rst that if

g(x) = y, then u(x) = f(x, y)v(y)−1, thus f(x, y) = u(x)v(y). Similarly, if
g(y) = x, then v(y) = u(x)−1f(x, y), thus f(x, y) = u(x)v(y).Finally, suppose that (x0, y0) ∈ S \ (graph(g) ∪ graph(g−1)), and �x aloop γ = 〈x0, y0, . . . , xn, yn, x0〉 suh that, with the exeption of (x0, y0),suessive pairs along γ are in graph(g)∪graph(g−1). Then γ = γ1γ2, where
γ1 = 〈x0, y0, x1〉 and γ2 = 〈x1, y1, . . . , xn, yn, x0〉. Observe now that

ϕf (γ2) = f(x1, y1)f(x2, y1)
−1 · · · f(xn, yn)f(x0, yn)−1

= u(x1)v(y1)(u(x2)v(y1))
−1 · · ·u(xn)v(yn)(u(x0)v(yn))−1

= u(x1)u(x0)
−1.



Coordinatewise deomposition 83As ϕf (γ1)ϕf (γ2) = ϕf (γ) = 1, it follows that ϕf (γ1) = ϕf (γ2)
−1, thus

u(x0)u(x1)
−1 = ϕf (γ1) = f(x0, y0)f(x1, y0)

−1 = f(x0, y0)(u(x1)v(y0))
−1,and it easily follows that f(x0, y0) = u(x0)v(y0).We now turn bak to our main question, whih, in the speial ase that

G = 〈C, +〉, was onsidered earlier by Cowsik�Kªopotowski�Nadkarni [1℄:Question 2. Suppose that X and Y are disjoint Polish spaes, S ⊆
X×Y is Borel , G is a standard Borel group, and f : S → G is Borel. Underwhat irumstanes does f admit a Borel oordinatewise deomposition?Suppose that X is a Polish spae, E is an equivalene relation on X, and
G is a standard Borel group. We say that ̺ : E → G is a oyle if

∀xEyEz (̺(x, z) = ̺(x, y)̺(y, z)).We say that oyles ̺1, ̺2 : E → G are (Borel) ohomologous if there is aBorel funtion w : X → G suh that ∀xEy (̺1(x, y) = w(x)̺2(x, y)w(y)−1),and a oyle ̺ : E → G is a (Borel) oboundary if it is ohomologous tothe trivial oyle, i.e., if there is a Borel funtion w : X → G suh that
∀xEy (̺(x, y) = w(x)w(y)−1). Note that if G is abelian, then ̺1, ̺2 : E → Gare ohomologous if and only if ̺(x, y) = ̺1(x, y)̺2(x, y)−1 is a oboundary.As we have already answered the non-desriptive version of Question 2,let us assume that f admits a oordinatewise deomposition. In this ase,Proposition 1 ensures that if γ1, γ2 ∈ ΓS have the same initial and terminalpoints, then ϕf (γ1) = ϕf (γ2), so we an de�ne ̺f : ES → G by

̺f (x, y) = ϕf (γ),where γ ∈ ΓS is any path from x to y. As ϕf is a groupoid homomorphism,it follows that ̺f is a oyle. Note also that if ES is Borel (whih holds, forexample, if S has ountable setions), then so too is ̺f .Proposition 3. Suppose that X and Y are disjoint Polish spaes, S ⊆
X × Y is Borel , G is a standard Borel group, and f : S → G is a Borelfuntion that admits a oordinatewise deomposition. Then the following areequivalent :(1) f admits a Borel oordinatewise deomposition.(2) ̺f is a oboundary.Proof. To see (1)⇒(2), suppose that (u, v) is a Borel oordinatewise de-omposition of f , de�ne w : ZS → G by

w(z) =

{

u(z) if z ∈ X,
v(z)−1 if z ∈ Y ,and set Γ = {〈z1, . . . , zn〉 ∈ ΓS : ϕf (〈z1, . . . , zn〉) = w(z1)w(zn)−1}. If
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(x, y) ∈ S, then

ϕf (〈x, y〉) = f(x, y) = u(x)v(y) = w(x)w(y)−1,thus 〈x, y〉 ∈ Γ . As Γ is losed under reversal and onatenation, it followsthat Γ = ΓS . As any two ES-related points z1, z2 ∈ ZS are onneted by apath γ ∈ ΓS from z1 to z2, it follows that
̺f (z1, z2) = ϕf (γ) = w(z1)w(z2)

−1,thus ̺f is a oboundary.To see (2)⇒(1), suppose that w : ZS → G is a Borel funtion suh that
∀z1ESz2 (̺f (z1, z2) = w(z1)w(z2)

−1),de�ne u : X → G and v : Y → G by
u(x) = w(x) and v(y) = w(y)−1,and note that for all (x, y) ∈ S,

f(x, y) = ϕf (〈x, y〉) = ̺f (x, y) = w(x)w(y)−1 = u(x)v(y),thus (u, v) is a Borel oordinatewise deomposition of f .Proposition 3 shows that Question 2 is a speial ase of:Question 4. Under what irumstanes is a oyle a oboundary?We will answer the speial ase of Question 4 in whih E is a ountableBorel equivalene relation, ̺ : E → G is Borel, and G = 〈R, +〉. This will,in turn, give also an answer to the speial ase of Question 2 in whih Shas ountable setions and G = 〈R, +〉. For notational onveniene, we workwith 〈(0,∞), ·〉 instead of 〈R, +〉.We begin by noting a simple measure-theoreti restrition imposed uponohomologous Borel oyles. We use [E] to denote the group of all Borelautomorphisms f : X → X suh that graph(f) ⊆ E. A measure µ on X is
E-invariant if every element of [E] is µ-preserving, and µ is ̺-invariant iffor every Borel funtion ϕ : X → (0,∞) and f ∈ [E], we have\

ϕ(x) df∗µ(x) =
\
ϕ(x)̺(f−1(x), x) dµ(x).When ̺ is the trivial oyle, this says exatly that µ is E-invariant.Proposition 5. Suppose that X is a Polish spae, E is a ountableBorel equivalene relation on X, and ̺1, ̺2 : E → (0,∞) are ohomologousBorel oyles. Then every ̺1-invariant , σ-�nite measure is equivalent to a

̺2-invariant , σ-�nite measure.Proof. Suppose that µ1 is a ̺1-invariant, σ-�nite measure, �x a Borelfuntion w : X → (0,∞) suh that ∀xEy (̺2(x, y)/̺1(x, y) = w(x)/w(y)),



Coordinatewise deomposition 85and set µ2 =
T
w dµ1. It is lear that µ1 ∼ µ2 and µ2 is σ-�nite, and if

ϕ : X → (0,∞) is Borel and f ∈ [E], then\
ϕ(x) df∗µ2(x) =

\
ϕ(f(x)) dµ2(x) =

\
ϕ(f(x))w(x) dµ1(x)

=
\
ϕ(x)w(f−1(x)) df∗µ1(x)

=
\
ϕ(x)w(f−1(x))̺1(f

−1(x), x) dµ1(x)

=
\
ϕ(x)̺2(f

−1(x), x)w(x) dµ1(x)

=
\
ϕ(x)̺2(f

−1(x), x) dµ2(x),thus µ2 is ̺2-invariant.In partiular, we obtain the following:Corollary 6. Suppose that X is a Polish spae, E is a ountable Borelequivalene relation on X, and ̺ : E → (0,∞) is a Borel oyle. If ̺ isa oboundary , then for every σ-�nite measure µ on X, the following areequivalent :(1) There is a σ-�nite, E-invariant measure equivalent to µ.(2) There is a σ-�nite, ̺-invariant measure equivalent to µ.The main result of this paper is that onversely, if onditions (1) and(2) of Corollary 6 are equivalent, then ̺ is a oboundary. The proof onsistsessentially of haining together 3 di�erent Glimm�E�ros style dihotomies,eah of whih haraterizes the irumstanes under whih E admits a σ-�nite measure of a partiular type, in terms of appropriate σ-ideals on theunderlying spae. We desribe next these dihotomy theorems whih, for thesake of larity, we atually state as equivalenes.A set A ⊆ X is a partial transversal of E if it intersets every equivalenelass of E in at most one point. Let Ismooth denote the σ-ideal generated bythe Borel partial transversals of E. Given x ∈ X, we use [x]E to denote the
E-lass of x, and we say that a set A ⊆ X is E-invariant if for all x ∈ A, theset [x]E is ontained in A. A measure µ on X is E-ergodi if every E-invariantBorel set is µ-null or µ-onull. Shelah�Weiss [5℄ have shown essentially thefollowing:Theorem 7. Suppose that X is a Polish spae and E is a ountableBorel equivalene relation on X. Then the following are equivalent :(1) X /∈ Ismooth.(2) There is an atomless, E-ergodi, E-invariant , σ-�nite measure.A set A ⊆ X is ̺-disrete if there exists ε > 0 suh that

∀x, y ∈ A (xEy ⇒ (x = y or ̺(x, y) ≤ 1/(1 + ε) or ̺(x, y) ≥ 1 + ε)).Let Idiscrete denote the σ-ideal generated by the ̺-disrete Borel sets.



86 B. D. MillerA measure µ is E-quasi-invariant if every f ∈ [E] sends µ-null sets to
µ-null sets. As noted in �2 of Miller [4℄, every E-quasi-invariant, σ-�nitemeasure is invariant with respet to some Borel oyle ̺ : E → (0,∞), andmoreover, this oyle is unique modulo E-invariant null sets. The familyof E-ergodi, E-quasi-invariant, σ-�nite measures an be broken into threetypes. We say that µ is of type I if it is atomi, µ is of type II if it isequivalent to an atomless, E-invariant, E-ergodi, σ-�nite measure on X,and µ is of type III otherwise. The following fat was shown essentially in�3 of Miller [4℄:Theorem 8. Suppose that X is a Polish spae, E is a ountable Borelequivalene relation on X, and ̺ : E → (0,∞) is a Borel oyle. Then thefollowing are equivalent :(1) X /∈ Idiscrete.(2) There is a ̺-invariant measure of type II.(3) There is a ̺-invariant measure of type II or III.We will atually need only the easy diretion of Theorem 8; the full resultis stated above so as to present a more detailed piture of the interationbetween the σ-ideal generated by the ̺-disrete Borel sets and the set ofmeasures on the underlying spae.A set A ⊆ X is ̺-bounded if there exists ε > 0 suh that

∀x, y ∈ A (xEy ⇒ 1/(1 + ε) ≤ ̺(x, y) ≤ 1 + ε).Let Ibounded denote the σ-ideal generated by the ̺-bounded Borel sets.Proposition 9. Suppose that X is a Polish spae, E is a ountableBorel equivalene relation on X, and ̺ : E → (0,∞) is a Borel oyle.Then the following are equivalent :(1) X ∈ Ibounded.(2) ̺ is a oboundary.Proof. To see (1)⇒(2), suppose that B0, B1, . . . ⊆ X are ̺-bounded Borelsets suh that X =
⋃

n∈N
Bn, assoiate with eah x ∈ X the least n(x) ∈ Nsuh that Bn(x) ∩ [x]E 6= ∅, and de�ne w : X → (0,∞) by

w(x) = sup{̺(x, z) : z ∈ Bn(x) ∩ [x]E}.Suppose now that x, y lie in the same E-lass C. Fix ε > 0, hoose z ∈ Csuh that w(x) ≤ ̺(x, z)(1 + ε) and w(y) ≤ ̺(y, z)(1 + ε), and observe that
̺(x, z)/̺(y, z)(1 + ε) ≤ w(x)/w(y)

≤ ̺(x, z)(1 + ε)/̺(y, z).As ̺(x, z)/̺(y, z) = ̺(x, y) and ε > 0 was arbitrary, it follows that ̺(x, y) =
w(x)/w(y), thus ̺ is a oboundary.



Coordinatewise deomposition 87To see (2)⇒(1), suppose that w : X → (0,∞) is a Borel funtion suhthat ̺(x, y) = w(x)/w(y), and observe that the sets w−1([1/n, n]) for n ∈ Z
+are ̺-bounded and over X.This leads to the last of our three dihotomies, whih is also the only onethat is new, and onsequently, the only one that we shall prove here. We willstate this dihotomy in terms of the σ-ideal

Ibounded ∨ Idiscrete = {A ∪ B : A ∈ Ibounded and B ∈ Idiscrete}.Theorem 10. Suppose that X is a Polish spae, E is a ountable Borelequivalene relation on X, and ̺ : E → (0,∞) is a Borel oyle. Then thefollowing are equivalent :(1) X /∈ Ibounded ∨ Idiscrete.(2) There is a ̺-invariant measure of type III.Proof. The E-saturation of a set A ⊆ X is given by
[A]E = {x ∈ X : ∃y ∈ A (xEy)}.In �3 of Miller [4℄, it is shown that Idiscrete is losed under E-saturation.While we ould get away with just this, it seems worth noting the following:Lemma 11. Ibounded is losed under E-saturation.Proof. It is enough to show that the E-saturation of every ̺-boundedBorel set is in Ibounded. Towards this end, suppose that A ⊆ X is a ̺-boundedBorel set, and note that the sets

An = {x ∈ X : ∃y ∈ A (1/n ≤ ̺(y, x) ≤ n)}are ̺-bounded and over [A]E, thus [A]E ∈ Ibounded.To see ¬(1)⇒¬(2) of Theorem 10, suppose that X ∈ Ibounded ∨ Idiscrete,and note that Lemma 11 ensures the existene of an E-invariant Borel set
B ∈ Idiscrete suh that X \ B ∈ Ibounded. Theorem 8 ensures that there areno ̺|B-invariant measures of types II or III, and Corollary 6 and Proposition9 ensure that there are no ̺|(X \ B)-invariant measures of type III.It remains to show (1)⇒(2). Roughly speaking, we will produe an em-bedding of a spei� sort of oyle into ̺, and then push an appropriatemeasure through this embedding in order to obtain the measure we desire.To better motivate the sort of embedding we will produe, we desribe �rsta family of measures of type III whih ontains the measure that we shallpush forward.For k ∈ Z

+, let µk be the probability measure on {0, . . . , k} given by
µk({i}) =

{

1/2 if i = 0,
1/2k otherwise.



88 B. D. MillerFor k = 〈kn〉n∈N in (Z+)N, set Xk =
∏

n∈N
{0, . . . , kn}, de�ne µk on Xk by

µk =
∏

n∈N
µkn

, and de�ne Ek on Xk by
αEkβ ⇔ ∃n ∈ N ∀m ≥ n (α(m) = β(m)).Set ̺k(i, j) = µk({i})/µk({j}), and de�ne ̺k : Ek → (0,∞) by

̺k(α, β) =
∏

n∈N

̺kn
(α(n), β(n)).

It follows from Proposition 2.4 of Miller [4℄ that µk is ̺k-invariant.Lemma 12. If lim supn→∞ kn = ∞, then (Xk, Ek, µk) is of type III.Proof. It is lear that µk is atomless, and it follows from the analogof the Lebesgue density theorem in Xk (see �2 of Miller [4℄) that µk is
Ek-ergodi. Suppose, towards a ontradition, that there is an Ek-invariant,
σ-�nite measure µ ∼ µk. Fix a Borel funtion w : Xk → (0,∞) suh that
µk =

T
w dµ, and note that if ϕ : X → (0,∞) is Borel and f ∈ [Ek], then\

ϕ(α) df∗µk(α) =
\
ϕ(f(α)) dµk(α) =

\
ϕ(f(α))w(α) dµ(α)

=
\
ϕ(f(α))(w(α)/w(f(α)))w(f(α)) dµ(α)

=
\
ϕ(α)(w(f−1(α))/w(α))w(α) dµ(α)

=
\
ϕ(α)(w(f−1(α))/w(α)) dµk(α).We an therefore assume that ̺k(α, β) = w(α)/w(β).Fix 0 < ε < 1 su�iently small that the set B = w−1([ε, 1/ε]) is of

µk-measure stritly greater than 1/2. Fix n ∈ N suh that kn > 1/ε2, andfor eah i ≤ kn, de�ne fi ∈ [Ek] by
[fi(α)](j) =







0 if j = n and α(n) = i,
i if j = n and α(n) = 0,
α(j) otherwise.Let A = {α ∈ Xk : α(n) = 0}, and note that if α ∈ A and i ∈ {1, . . . , kn},then ̺k(α, fi(α)) = ̺kn

(0, i) = kn > 1/ε2. In partiular, if α ∈ A ∩ B, thennone of f1(α), . . . , fkn
(α) are in B. This, in turn, implies that

∑

i≤kn

χB(fi(α))̺k(fi(α), α) ≤
1

2

∑

i≤kn

̺k(fi(α), α)

for all α ∈ A. It now follows that
µk(B) =

∑

i≤kn

µk(fi(A) ∩ B) =
∑

i≤kn

µk(fi(A ∩ f−1
i (B)))
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=

∑

i≤kn

\
A∩f−1

i
(B)

̺k(fi(α), α) dµk(α)

=
\
A

∑

i≤kn

χB(fi(α))̺k(fi(α), α) dµk(α)

≤
1

2

\
A

∑

i≤kn

̺k(fi(α), α) dµk(α) =
1

2

∑

i≤kn

µk(fi(A)) =
1

2
,whih is the desired ontradition.An ε-embedding of ̺k into ̺ is an embedding π : Xk → X of Ek into Esuh that ∀αEkβ (̺k(α, β)/(1 + ε) ≤ ̺(π(α), π(β)) ≤ ̺k(α, β)(1 + ε)). Wewill omplete the proof of Theorem 10 by showing �rst the following desrip-tive strengthening:Theorem 13. Suppose that X is a Polish spae, E is a ountable Borelequivalene relation on X, ̺ : E → (0,∞) is a Borel oyle, and ε > 0.Then the following are equivalent :(1) X /∈ Ibounded ∨ Idiscrete.(2) There is a ontinuous ε-embedding of ̺k into ̺ for some k = 〈kn〉n∈Nsuh that limn→∞ kn = ∞.Proof. In order to see that ¬(1)⇒¬(2) suppose, towards a ontradition,that both ¬(1) and (2) hold. Note that pre-images under ε-embeddings pre-serve the bounded and disrete σ-ideals, so that the join of the bounded anddisrete σ-ideals orresponding to ̺k trivializes. However, Lemma 12 impliesthat µk is a ̺k-invariant measure of type III, thus (2)⇒(1) of Theorem 10implies that the the join of the bounded and disrete σ-ideals orrespondingto ̺k does not trivialize, whih is the desired ontradition.It remains to show (1)⇒(2). By Theorem 1 of Feldman�Moore [2℄, thereis a ountable group Γ ≤ [E] suh that E = EX

Γ . By hange of topologyresults (see, for example, �13 of Kehris [3℄), there is a �ner zero-dimensionalPolish topology τ , ompatible with the underlying Borel struture of X, withrespet to whih Γ ats by homeomorphisms and eah of the sets {x ∈ X :
k ≤ ̺(x, γ · x) < r} is open, where γ ∈ Γ , k ∈ Z

+, and r ∈ (k,∞). Fix
εn > 0, for n ∈ N, suh that

∏

n∈N

(1 + εn) ≤ 1 + ε,as well as �nite, symmetri sets {1Γ } = Γ0 ⊆ Γ1 ⊆ · · · ⊆ Γ suh that
Γ =

⋃

n∈N
Γn. It will be onvenient to set I = Ibounded ∨ Idiscrete for theremainder of the proof.We will reursively �nd τ -lopen sets Bn ⊆ X, kn ∈ Z

+, and γn,k ∈ Γ , for
n ∈ N and k ≤ kn. Assoiated with these are the sets Xn =

∏

i<n{0, . . . , ki},



90 B. D. Millerthe group elements γs =
∏

i<n γi,s(i) for s ∈ Xn, and the sets
∆n = {γ−1

s γγt : γ ∈ Γn and s, t ∈ Xn}.We will ensure that, for all n ∈ N, the following onditions are satis�ed:(1) Bn 6∈ I.(2) kn ≥ n.(3) γn,0 = 1Γ .(4) ∀x ∈ Bn+1 ∀k ≤ kn (̺kn
(0, k) ≤ ̺(x, γn,k · x) < ̺kn

(0, k)(1 + εn)).(5) ∀s ∈ Xn+1 (diam(γs(Bn+1)) ≤ 1/n).(6) ∀j < k ≤ kn (∆nγn,j(Bn+1) ∩ γn,k(Bn+1) = ∅).(7) ∀k ≤ kn (γn,k(Bn+1) ⊆ Bn).We begin by setting B0 = X. Suppose now that we have B0 ⊇ B1 ⊇ · · ·
· · · ⊇ Bn, as well as ki and γi,k for k ≤ ki and i < n. Set C0 = Bn.Lemma 14. There is an I-positive, τ -open set C1 ⊆ C0, γn,1 ∈ Γ , and
kn ≥ n suh that , for all x ∈ C1, the following onditions are satis�ed :(a) γn,1 · x ∈ C0 \ ∆n · x.(b) ̺kn

(0, 1) ≤ ̺(x, γn,1 · x) < ̺kn
(0, 1)(1 + εn).Proof. For eah γ ∈ Γ and k ≥ max(n, 1/εn), de�ne Cγ,k ⊆ C0 by

Cγ,k = {x ∈ C0 : γ · x ∈ C0 \ ∆n · x and k ≤ ̺(x, γ · x) < k + 1},and set C = C0 \
⋃

{Cγ,k : γ ∈ Γ and k ≥ max(n, 1/εn)}.Sublemma 15. C ∈ Ibounded.Proof. De�ne w : C → [1,∞] by
w(x) = sup{̺(x, y) : y ∈ C ∩ [x]E},and given x ∈ C, note that if y ∈ C ∩ [x]E and ̺(x, y) ≥ max(n, 1/εn) + 1,then y ∈ ∆n · x. In partiular, it follows that ∀x ∈ C (w(x) < ∞), thus

C =
⋃

n∈Z+ w−1([1, n]). As eah of the sets w−1([1, n]) is ̺-bounded, itfollows that C ∈ Ibounded.Consequently, there exist γ∈Γ and k ≥ max(n, 1/εn) suh that Cγ,k 6∈ I.Put C1 = Cγ,k, γn,1 = γ, and kn = k, and note that ̺kn
(0, 1) = kn and

̺kn
(0, 1)(1 + εn) ≥ kn(1 + 1/kn) = kn + 1,thus ∀x ∈ C1 (̺kn

(0, 1) ≤ ̺(x, γn,1 · x) < ̺kn
(0, 1)(1 + εn)).Suppose now that 1 ≤ k < kn and we have found I-positive, τ -open sets

C0 ⊇ C1 ⊇ · · · ⊇ Ck and γn,0, γn,1, . . . , γn,k ∈ Γ . Set
∆n,k = {δγn,i : δ ∈ ∆n and i ≤ k}.Lemma 16. There is an I-positive, τ -open set Ck+1 ⊆ Ck and γn,k+1 ∈ Γsuh that , for all x ∈ Ck+1, the following onditions are satis�ed :



Coordinatewise deomposition 91(a) γn,k+1 · x ∈ γn,k(Ck) \ ∆n,k · x.(b) ̺kn
(0, k + 1) ≤ ̺(x, γn,k+1 · x) < ̺kn

(0, k + 1)(1 + εn).Proof. For eah γ ∈ Γ , let Dγ be the set of x ∈ γn,k(Ck) suh that
γγ−1

n,k · x ∈ γn,k(Ck) \∆n,kγ
−1
n,k · x and kn ≤ ̺(γ−1

n,k · x, γγ−1
n,k · x) < kn(1 + εn),and set D = γn,k(Ck) \

⋃

γ∈Γ Dγ .Sublemma 17. D ∈ Idiscrete.Proof. De�ne F ⊆ E by
xFy ⇔ (xEy and ̺(x, y) = 1).Given x ∈ D, note that kn ≤ ̺(γ−1

n,k ·x, x) < kn(1+ εn), so there exists δ > 0suh that if y ∈ D ∩ [x]E and 1 ≤ ̺(x, y) < 1 + δ, then y ∈ ∆n,kγ
−1
n,k · x. Inpartiular, it follows that every equivalene lass of F |D is of ardinality atmost |∆n,k|, hene there are Borel partial transversals D′

i of F , for i < |∆n,k|,whose union is D. For eah i < |∆n,k| and j ∈ N, let D′
i,j be the set of all

x ∈ D′
i suh that
∀y ∈ D′

i ∩ [x]E (x = y or ̺(x, y) ≥ 1 + 1/j or ̺(y, x) ≥ 1 + 1/j).These are learly ̺-disrete Borel sets whih over D, thus D ∈ Idiscrete.It now follows that there exists γ ∈ Γ suh that the set Dγ is I-positive.Put Ck+1 = γ−1
n,k(Dγ) and γn,k+1 = γ, and observe that ̺kn

(0, k + 1) = kn,thus ∀x ∈ Ck+1 (̺kn
(0, k + 1) ≤ ̺(x, γn,k+1 · x) < ̺kn

(0, k + 1)(1 + εn)).This ompletes the desription of C0, C1, . . . , Ckn
and γn,0, γn,1, . . . , γn,kn

.As Ckn
is the union of ountably many τ -lopen sets D ⊆ Ckn

whih satisfythe analogs of onditions (5) and (6) in whih Bn+1 is replaed with D, itfollows that there is an I-positive, τ -lopen set Bn+1 ⊆ Ckn
whih satis�esonditions (1)�(7).This ompletes the reursive onstrution. For eah s ∈ Xn, set As =

γs(Bn). Put k = 〈kn〉n∈N, and note that for eah α ∈ Xk, onditions (5) and(7) ensure that Aα(0), Aα(0)α(1), . . . is a dereasing sequene of lopen setswith vanishing diameter. It follows that their intersetion onsists of a singlepoint. Let π(α) denote this point. By onditions (5) and (6), the funtion
π : Xk → X is a ontinuous injetion.To see αEkβ ⇒ π(α)Eπ(β), it is enough to observe the following:Lemma 18. If n ∈ N, s ∈ Xn, and sα ∈ Xk, then π(sα) = γs · π(0nα).
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{π(sα)} =

⋂

i≥n

A(sα)|i =
⋂

i∈N

γsγ0n(α|i)(Bi+n) = γs

(

⋂

i∈N

γ0n(α|i)(Bi+n)
)

= γs

(

⋂

i≥n

A0n(α|i)

)

= {γs · π(0nα)},

thus π(sα) = γs · π(0nα).To see (α, β) 6∈ Ek ⇒ (π(α), π(β)) 6∈ E, it is enough to hek the follow-ing:Lemma 19. If α(n) 6= β(n), then ∀γ ∈ Γn (γ · π(α) 6= π(β)).Proof. Suppose, towards a ontradition, that there exists γ ∈ Γn with
γ ·π(α) = π(β). By reversing the roles of α and β if neessary, we an assumethat α(n) < β(n). Set s = α|n and t = β|n, and put

x = γ−1
n,α(n)γ

−1
s · π(α), y = γ−1

n,β(n)γ
−1
t · π(β),noting that these are both elements of Bn+1. As γγsγn,α(n) ·x = γtγn,β(n) · y,it follows that γ−1

t γγsγn,α(n) · x = γn,β(n) · y, thus
∆nγn,α(n)(Bn+1) ∩ γn,β(n)(Bn+1) 6= ∅,whih ontradits ondition (6).It only remains to hek that if αEkβ, then

(†) ̺k(α, β)/(1 + ε) ≤ ̺(π(α), π(β)) ≤ ̺k(α, β)(1 + ε).Towards this end, suppose that αEkβ, �x n ∈ N suh that ∀m > n (α(m) =
β(m)), put x = π(α) and y = π(β), and set s = α(0)α(1) . . . α(n) and
t = β(0)β(1) . . . β(n), noting that γ−1

s · x = γ−1
t · y, by Lemma 18. Put

δ0 = 1Γ , and for i < n, set δi+1 = γ−1
i,s(i)δi. Then

̺(γ−1
s · x, x) = ̺(γ−1

n,s(n) · · · γ
−1
0,s(0) · x, x) =

∏

i≤n

̺(γ−1
i,s(i)δi · x, δi · x),

thus ondition (4) ensures that
∏

i≤n

̺ki
(0, s(i)) ≤ ̺(γ−1

s · x, x) <
∏

i≤n

̺ki
(0, s(i))(1 + εi).An idential argument shows that

∏

i≤n

̺ki
(0, t(i)) ≤ ̺(γ−1

t · y, y) <
∏

i≤n

̺ki
(0, t(i))(1 + εi),
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t · y, y)/̺(γ−1

s · x, x), it follows that
∏

i≤n

̺ki
(0, t(i))/̺ki

(0, s(i))(1 + εi) ≤ ̺(x, y)

≤
∏

i≤n

̺ki
(0, t(i))(1 + εi)/̺ki

(0, s(i)).

As ∏

i≤n ̺ki
(0, t(i))/̺ki

(0, s(i)) =
∏

i≤n ̺ki
(s(i), t(i)) = ̺k(α, β), we obtain

̺k(α, β)/
∏

i≤n

(1 + εi) ≤ ̺(x, y) ≤ ̺k(α, β)
∏

i≤n

(1 + εi),and (†) follows. This �nishes the proof of Theorem 13.We an now omplete the proof of (1)⇒(2) of Theorem 10. Fix ε > 0. ByTheorem 13, there is a ontinuous ε-embedding π : Xk → X of ̺k into ̺,for some k ∈ N
N suh that limn→∞ kn = ∞. It follows from Lemma 12that µk is of type III, thus so too is the measure π∗µk on π(Xk). As theoyle π∗̺k/̺|(E|π(Xk)) is bounded, it follows from Proposition 9 thatthe oyles π∗̺k and ̺|(E|π(Xk)) are ohomologous, thus Proposition 5ensures that there is a ̺|(E|π(Xk))-invariant, σ-�nite measure µ ∼ π∗µk.By Theorem 1 of Feldman�Moore [2℄, there is a ountable group of Borelautomorphisms whih generates E, and using this, we an easily extend µto a ̺-invariant, σ-�nite measure on X of type III.With this �nal dihotomy result in hand, we an �nally prove:Theorem 20. Suppose that X is a Polish spae, E is a ountable Borelequivalene relation on X, and ̺ : E → (0,∞) is a Borel oyle. Then thefollowing are equivalent :(1) ̺ is a oboundary.(2) For every σ-�nite measure µ on X, the following are equivalent :(a) There is a σ-�nite, E-invariant measure equivalent to µ.(b) There is a σ-�nite, ̺-invariant measure equivalent to µ.Proof. As Corollary 6 gives (1)⇒(2), it is enough to show (2)⇒(1). To-wards this end, suppose that ondition (2) holds, so that there are no ̺-invariant, σ-�nite measures of type III, whih by Theorem 10 implies that

X ∈ Ibounded ∨ Idiscrete. By Lemma 11, there is an E-invariant Borel set
B ∈ Idiscrete suh that X \ B ∈ Ibounded. Theorem 8 ensures that thereare no atomless, E|B-ergodi, ̺|B-invariant, σ-�nite measures, and ondi-tion (2) then implies that there are no atomless, E|B-ergodi, E|B-invariant,
σ-�nite measures. It then follows from Theorem 7 that B ∈ Ismooth, and sine
Ismooth ⊆ Ibounded, it follows that X ∈ Ibounded, and Proposition 9 �nallyimplies that ̺ is a Borel oboundary.



94 B. D. MillerAknowledgements. I would like to thank Mahendra Nadkarni, who�rst inspired me to explore the problem of oordinatewise deomposition.I would like to thank also Clinton Conley and the anonymous referee, whomade stylisti suggestions and brought to my attention typos in earlier draftsof this paper.
Referenes[1℄ R. C. Cowsik, A. Kªopotowski, and M. G. Nadkarni, When is f(x, y) = u(x)+v(y)? ,Pro. Indian Aad. Si. Math. Si. 109 (1999), 57�64.[2℄ J. Feldman and C. Moore, Ergodi equivalene relations, ohomology , and von Neu-mann algebras. I , Trans. Amer. Math. So. 234 (1977), 289�324.[3℄ A. Kehris, Classial Desriptive Set Theory , Grad. Texts in Math. 156, Springer,New York, 1995.[4℄ B. Miller. On the existene of quasi-invariant measures of a given oyle, preprint,2004; available at http://www.math.ula.edu/�bdm.[5℄ S. Shelah and B. Weiss, Measurable reurrene and quasi-invariant measures, IsraelJ. Math. 43 (1982), 154�160.Department of MathematisUniversity of California520 Portola PlazaLos Angeles, CA, 90095-1555, U.S.A.E-mail: bdm�math.ula.edu Reeived 9 Deember 2005;in revised form 17 February 2006


