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Deompositions of saturated models of stable theoriesbyM. C. Laskowski (College Park, MD) andS. Shelah (Jerusalem and New Brunswik, NJ)
Abstrat. We haraterize the stable theories T for whih the saturated models of

T admit deompositions. In partiular, we show that ountable, shallow, stable theorieswith NDOP have this property.In [7℄, prior to his work lassifying the unountable models of ertain the-ories, the seond author proved a struture theorem for the lass of a-models(i.e., Fa
κr(T )-saturated models in the notation of [7℄) of a superstable theorywith NDOP. Spei�ally, in Chapter X of [7℄ he proved that an a-model ofsuh a theory is a-prime and a-minimal over a normal tree of models, whereeah node is a-prime over its predeessor and the realization of a regulartype. Thus, among superstable theories, the notion of NDOP provides a di-hotomy: Either the number of nonisomorphi a-models in eah ardinality

≥ 2|T | is maximal, or every a-model is determined up to isomorphism by atree of invariants. It is natural to ask whether a similar dihotomy an befound for the larger lass of stable theories. The main obstrution is that anarbitrary stable theory need not have many regular types. Beause of thiswe relax the regularity requirement in De�nition 1.7. Our main result, The-orem 1.8, haraterizes the stable theories for whih large saturated modelsadmit deompositions in this weaker sense.The �rst setion of the paper states our �ndings. Setion 2 gives somepreparatory lemmas that hold for arbitrary stable theories. In Setion 3we work over a single independent tree and haraterize when the a-primemodel is a-minimal. In Setion 4 we prove Theorem 1.8. Finally, in Setion 52000 Mathematis Subjet Classi�ation: 03C45, 03C50.Key words and phrases: stable theory, saturated model.Researh of M. C. Laskowski partially supported by NSF Grants DMS 0071746 andDMS 0300080.Researh of S. Shelah partially supported by U.S.-Israel Binational Siene FoundationGrant no. 2002323 and Israel Siene Foundation Grant no. 242/03. Publiation no. 851.[95℄



96 M. C. Laskowski and S. Shelahwe investigate the e�et of restriting to a ountable language. By usingmethods of desriptive set theory we derive unexpeted (to us) onsequenesof NDOP (Theorem 1.11 and Corollary 1.12).We assume some familiarity with the notions and notational onventionsof stability theory, spei�ally the forking alulus and orthogonality. Knowl-edge of the material in any of the basi artiles or texts in stability (e.g., [1℄,[5℄, or [6℄) should be su�ient. Also, sine many of the arguments that ap-pear here are variants of what ours in the superstable, NDOP situation, itmight be helpful for the reader to skim Chapter X of [7℄. We assume that weare working in a large, saturated struture C and that our language admitselimination of quanti�ers, so the notions of submodel and elementary sub-model are interhangeable. To ease notation we do not distinguish betweenelements of C and �nite tuples. We write S(A) to denote the union of theStone spaes Sn(A) of omplete types over A in n free variables. For brevitywe sometimes write AB in plae of A ∪B.Aknowledgements. Both authors are extremely grateful to the anony-mous referee for spotting several errors and vastly improving the larity ofthe exposition.1. Statement of results
Hypothesis. Throughout this paper all theories T are stable and κ alwaysdenotes the ardinal κr(T ).We work in the ategory of a-models of T . That is, M is an a-model ifand only if every type that is almost over a subset of M of size less than κ isrealized in M . An a-model M is a-prime over a set X if M embeds over Xinto any a-model N that ontains X. We rely heavily on Theorems IV 3.12and 4.14 of [7℄, whih assert that a-prime models exist over any set X, andare unique up to isomorphism over X. An a-model M is a-minimal over Xif there is no proper a-submodel of M ontaining X.We �rst desribe two speies of trees of a-models and haraterize whenthe a-prime model over the union of suh a tree is in fat a-minimal over theunion.Definition 1.1. A tree I is a nonempty, downward losed subset of <ωδfor some ordinal δ. For η, ν ∈ I, we write η E ν if η is an initial segmentof ν. For η 6= 〈〉, η− denotes the (unique) immediate predeessor of η.Definition 1.2. An independent tree of sets is a set {Xη : η ∈I} indexedby a tree I suh that Xη ⊆Xν whenever η E ν and Xη ⌣

X
η−

⋃
{Xν : η 5 ν}for all η 6= 〈〉. We set XJ =

⋃
{Xη : η ∈ J} for any subtree J ⊆ I.An independent tree is normal if, in addition, tp(Xν/Xη) ⊥ Xη− for all

η, ν ∈ I satisfying η 6= 〈〉 and η = ν−.



Deompositions of saturated models 97Theorem 1.3. Let {Mη : η ∈ I} be any independent tree of a-models andlet M∗
I be a-prime over MI . Then the following properties are equivalent :(i) M∗

I is a-minimal over MI ;(ii) M∗
I does not ontain any in�nite indisernible sequenes over MI ;(iii) For all nonalgebrai p ∈ S(M∗

I ), p 6⊥Mη for some η ∈ I;(iv) For all types p, if p 6⊥M∗
I then p 6⊥Mη for some η ∈ I.Two orollaries follow easily from this theorem.Corollary 1.4. Let {Mη : η ∈ I} be any independent tree of a-modelsand let M∗

I be a-prime over MI . If M∗
I is a-minimal over MI then M∗

J isa-minimal over MJ for any subtree J ⊆ I.Corollary 1.5. Fix a ardinal λ ≥ κ. Let {Mη : η ∈ I} be any inde-pendent tree of λ-saturated models and let M∗
I be a-prime over MI . If M∗

I isa-minimal over MI then M∗
I is λ-saturated.Next we desribe lasses of theories T for whih a-prime models overertain speies of trees are always a-minimal. The strongest suh property isthe minimality property for independent trees, whih asserts that for a giventheory T , the a-prime model over any independent tree of a-models of T isa-minimal. We say that T has the minimality property for normal trees ifthis holds for all normal trees. We will see below that these notions oinide.The following de�nitions are weakenings of these global notions. Theyonly require that a-prime models be a-minimal for independent trees indexedby some very simple index sets.Definition 1.6. For α any ordinal, let Iα be the tree of height twowith a unique root and whose suessors are indexed by α. In partiular, I2denotes the 3-element tree with two inomparable elements. Let J denotethe linearly ordered tree of length ω.A theory T has NDOP if a-prime models over any independent tree ofa-models indexed by I2 are neessarily a-minimal. For µ any in�nite ardinal,

T has µ-NDOP if for all α < µ, every a-prime model over every independenttree of a-models indexed by Iα is a-minimal. T has NDIDIP if a-prime modelsover independent trees of a-models indexed by J are a-minimal. T has normalNDIDIP if a-prime models over a normal tree of a-models indexed by J area-minimal.The reader who is disgusted with the phrase �normal NDIDIP� anrelax�for stable theories with κ-NDOP, it is equivalent to NDIDIP.An easy indutive argument shows that if T has NDOP, then T has
ω-NDOP. Additionally, sine every type over an a-model is based and sta-tionary over a set of size < κ, it follows from Theorem 1.3 that if T has
κ-NDOP then T has µ-NDOP for all ardinals µ. In partiular, when T is



98 M. C. Laskowski and S. Shelahsuperstable the notions of NDOP and µ-NDOP oinide. However, when Tis stritly stable there may be a gap between NDOP and κ-NDOP. It was asurprise to us to disover (see Theorem 1.11) that in fat the gap does notexist when T is ountable.The following notions are entral to our attempts at �nding invariantsfor a-models of stable theories.Definition 1.7. A partial deomposition of an a-model M is a normaltree of a-submodels {Mη : η ∈ J} of M , where M〈〉 is a-prime over ∅ andfor every η 6= 〈〉, Mη is a-prime over Mη− ∪ {aη} for some �nite tuple aη. Adeomposition of M is a partial deomposition of M suh that M is a-primeand a-minimal over MJ . A partial deomposition is small if |M∗
J | < |M |.We say that the partial deomposition {Nη : η ∈ I} extends {Mη : η ∈ J}simply if J is a subtree of I and Nη = Mη for all η ∈ J .Theorem 1.8. The following are equivalent for a stable theory T :(i) T has the minimality property for independent trees;(ii) Every small partial deomposition of every saturated N of size > 2|T |extends to a deomposition of N ;(iii) T has κ-NDOP and NDIDIP ;(iv) T has κ-NDOP and normal NDIDIP ;(v) T has the minimality property for normal trees.Reall that a tree I is well-founded if it does not have an in�nite branh.Proposition 1.9. Suppose that T has κ-NDOP and {Mη : η ∈ I} is anindependent tree of a-models where the index tree I is well-founded. Thenevery a-prime model over MI is a-minimal over MI .A (stable) theory T is shallow if there is no inreasing sequene 〈Mn :

n ∈ ω〉 of a-models of T suh that Mn+1 is a-prime over Mn ∪{an} for sometuple an for every n and tp(Mn+1/Mn) ⊥ Mn−1 for all n > 0. Clearly, if Tis shallow and {Mη : η ∈ I} is a deomposition of an a-model M , then theindexing tree I is well-founded.Corollary 1.10. If T has κ-NDOP and is shallow , then T has the min-imality property for independent trees. In partiular , suh a theory satis�esNDIDIP.Until this point, the ardinality of the language of T was not relevant. Byontrast, the ountability of T plays a ruial role in the following theorem,as it allows us to employ methods of desriptive set theory (spei�ally thatevery analyti subset of a Borel set has the property of Baire).Theorem 1.11. If T is ountable, then NDOP implies ω1-NDOP (hene
µ-NDOP for all ardinals µ).



Deompositions of saturated models 99Our �nal orollary follows immediately from the two preeding results.Corollary 1.12. T ountable, NDOP , shallow implies NDIDIP.2. Lemmas about saturation, nonforking and orthogonality. Inthis setion we prove some assorted lemmas about stable theories that willbe used in the following setions. The �rst is an easy haraterization of
λ-saturation of models when λ ≥ κ.Lemma 2.1. Suppose that λ ≥ κ and M is an a-model suh that forevery subset A ⊆M with |A| < λ and every nonalgebrai p ∈ S(A), there isa forking extension q ∈ S(M). Then M is λ-saturated.Proof. The de�nition of an a-model implies that M is κ-saturated, soassume that λ > κ. Choose any A ⊆ M with |A| < λ and hoose anynonalgebrai p ∈ S(A). Clearly, if there is any set B with A ⊆ B ⊆ M andany type p′ ∈ S(B) extending p that is algebrai, then p is realized inM . But,if we assume by way of ontradition that this is not the ase, there wouldbe no di�ulty in onstruting (by indution on α) a ontinuous, inreasingsequene 〈Aα : α < κ〉 of subsets ofM , together with a sequene 〈pα : α < κ〉of types, suh that A0 = A, p0 = p, eah pα ∈ S(Aα), |Aα| ≤ |A| + κ, and
pβ is a forking extension of pα for all α < β < κ. As stability ontradits theexistene of suh a sequene, the lemma is proved.Definition 2.2. Let {Xη : η ∈ I} be an independent tree of sets. A set
B is self-based on {Xη : η ∈ I} if tp(B/XH) does not fork over B ∩XH forall subtrees H ⊆ I.The following lemma is straightforward.Lemma 2.3. If X and A are any sets and |A| < κ, then there is a set
B ⊇ A suh that |B| < κ, B \ A ⊆ X, and tp(B/X) does not fork over
B ∩ X. Furthermore, if B′ ⊇ B and B′ \ B ⊆ X, then tp(B′/X) does notfork over B′ ∩X.Proof. Given A and X, let C ⊆ X be suh that |C| < κ and tp(A/X) isbased on C. Let B = A ∪ C.The next lemma is more substantial.Lemma 2.4. For every �nite index tree I, for every independent tree
{Xη : η ∈ I} of models, and for every set A of size < κ, there is a set B ⊇ Asuh that |B| < κ, B \A ⊆ XI , and B is self-based on {Xη : η ∈ I}.Proof. We argue by indution on |I|. If |I| = 1, this is immediate byLemma 2.3. So assume that |I| ≥ 2 and I = J ∪ {η∗}, where η∗ is a leafof I. Let {Xη : η ∈ I} be any independent tree of sets. We assume that theonlusion of the lemma holds for {Xη : η ∈ J}. Fix any set A with |A| < κ.By Lemma 2.3 hoose B0 ⊇ A suh that |B0| < κ, B0 \ A ⊆ XI , and



100 M. C. Laskowski and S. Shelah
tp(B0/XI) does not fork over B0 ∩XI . Now apply the indutive hypothesisto B0 to get B ⊇ B0 suh that |B| < κ, B \ B0 ⊆ XJ (hene B \ A ⊆ XI),and B is self-based on {Xη : η ∈ J}. Finally, by employing Lemma 2.3 lg(η∗)times, beginning at η∗ and working downward to 〈〉, hoose a set C suh that
B ∩Xη∗ ⊆ C ⊆ Xη∗ , |C| < κ, and tp(C/Xν) does not fork over C ∩Xν forall ν E η∗.We argue that the set BC is self-based on {Xη : η ∈ I}. To see this we setsome notation. Let µ = (η∗)−. For H ⊆ J a subtree, let H ′ be the smallestsubtree of J ontaining H and µ, and let H∗ = H ∪ {η∗}. Note that for anysubtree H ⊆ J , X(H′)∗ = XH∗ and XH∗ = XHXη∗ = XH′Xη∗ . Furthermore,sine B ∩ Xη∗ ⊆ C, (B ∩ XH) ∪ C = (B ∩ XH′) ∪ C. We begin with thefollowing laim.
Claim. For all subtrees H ⊆ J , B ⌣

(B∩XH)C
XH∗.Proof. Fix a subtree H ⊆ J . From our observations above we an replae

H by H ′ without hanging XH∗ or (B ∩XH)C. Thus, we may assume that
µ ∈ H. Sine XI = XJXη∗ and sine tp(B/XI) does not fork over B ∩XI ,we have

B ⌣
(B∩XJ )(B∩Xη∗)

XJXη∗ .Let D = (B ∩XJ) \XH , so B ∩XJ = D ∪ (B ∩XH). Thus(1) Xη∗ ⌣
XHD(B∩Xη∗)

B.Sine the tree {Xη : η ∈ I} is independent, tp(XJ/Xη∗) does not forkover Xµ. Sine µ ∈ H, we have Xµ ⊆ XH , so XHD⌣
Xµ

Xη∗ , so tp(D/XHXη∗)does not fork over XH . Combining this with (1) and applying transitivity ofnonforking yields(2) Xη∗ ⌣
XH(B∩Xη∗)

B.Sine B is self-based on {Xη : η∈J}, tp(B/XH) does not fork over B∩XH , so
B ⌣

(B∩XH)(B∩Xη∗)
XH .Transitivity and (2) imply

B ⌣
(B∩XH)(B∩Xη∗)

XHXη∗ ,so the Claim follows sine B ∩Xη∗ ⊆ C ⊆ Xη∗ .Now �x an arbitrary subtreeH ⊆ J . We will show that tp(BC/XH∗) doesnot fork over (BC)∩XH∗ and tp(BC/XH) does not fork over (BC)∩XH . Theformer statement follows immediately from the Claim sine (BC) ∩XH∗ =
(B∩XH)C. For the latter, hoose the shortest ν E η∗ suh that tp(XH/Xη∗)



Deompositions of saturated models 101does not fork over Xν . Sine tp(C/Xν) does not fork over C ∩Xν and sine
C ⊆ Xη∗ , tp(C/XH) does not fork over C ∩Xν , hene

XH ⌣
(B∩XH)(C∩Xν)

C.So the Claim and the transitivity of nonforking give
XH ⌣

(B∩XH)(C∩Xν)
BC,whih su�es sine (BC) ∩XH = (B ∩XH) ∪ (C ∩Xν).Proposition 2.5. Suppose that {Xη : η ∈ I} is an independent tree ofsets with |I| < κ and suppose that |A| < κ. Then there is a set B ⊇ A suhthat |B| < κ, B \ A ⊆ XI , and B is self-based on {Xη : η ∈ I}.Proof. When κ = ℵ0 this is preisely Lemma 2.4, so assume κ > ℵ0. Webegin by indutively onstruting an inreasing sequene 〈Bn : n ∈ ω〉 ofsets, eah of size < κ, suh that B0 = A, Bn \A ⊆ XI , and tp(Bn/XJ) doesnot fork over Bn+1 ∩ XJ for all �nite subtrees J ⊆ I. This is possible byrepeated use of Lemma 2.4, sine there are fewer than κ �nite subtrees of I.Let B∗ =

⋃
{Bn : n ∈ ω}. Sine κ is regular and unountable, |B∗| < κ.We argue that B∗ is self-based on {Xη : η ∈ I}. Choose an arbitrary subtree

H ⊆ I and a �nite tuple b from B∗. To show that tp(b/XH) does not forkover B∗ ∩XH , hoose a �nite tuple c from XH and a formula ϕ(x, y) over
B∗ ∩ XH suh that ϕ(b, c) holds. In order to show that ϕ(x, c) does notfork over B∗ ∩XH we show that ϕ(x, c) does not k-divide over B∗ ∩XH forany k ∈ ω. If, by way of ontradition, ϕ(x, c) did k-divide over B∗ ∩ XH ,then hoose n ∈ ω and a �nite subtree J ⊆ H suh that b ∈ Bn, c ∈ XJ ,and ϕ(x, y) is over Bn+1 ∩ XH . If 〈cn : n ∈ ω〉 were a witness to ϕ(x, c)
k-dividing over B∗ ∩ XH (i.e., tp(cn/B

∗ ∩ XH) = tp(c/B∗ ∩ XH) for all
n ∈ ω and {ϕ(x, cn) : n ∈ ω} is k-inonsistent) then the same sequenewould witness ϕ(x, c) k-dividing (hene forking) over Bn+1 ∩ XJ . But thiswould imply tp(Bn/XJ) forks over Bn+1 ∩ XJ , whih is ontrary to ouronstrution of Bn+1.Our third group of results uses the ideas in [8℄ (whih in turn were moti-vated by ideas in [2℄) to prove a tehnial fat (Proposition 2.11) for arbitrarystable theories. Note that there is a muh shorter proof of this when T issuperstable, whih is due to the ubiquity of regular types over a-models.Definition 2.6. Let P ⊆ S(M) be a set of types over a model M . A set
B is weakly dominated by P over M if there is an independent set I over Monsisting of realizations of P suh that B is dominated by I over M . (It ispossible that I ontains many realizations of the same type in P.)Definition 2.7. Let M be any a-model. A omplete type p is an a-typeabove M if the domain of p is an a-model ontaining M . A lass P of a-types



102 M. C. Laskowski and S. Shelahabove M is M -determined if for every p ∈ P, either p does not fork over Mor p ⊥M . A lass P of a-types aboveM is dense above M if, for all a-models
N ⊇ M , every nonalgebrai type over N is nonorthogonal to some elementof P ∩ S(N).Definition 2.8. Let P be a lass of a-types aboveM . A P-sequene over
M is a sequene 〈Mi, aj : i ≤ α, j < α〉, where 〈Mi : i ≤ α〉 is an inreasingsequene of a-models, M0 = M , for all i < α, tp(ai/Mi) ∈ P and Mi+1 isa-prime over Mi∪{ai}, and Mi is a-prime over ⋃

j<iMj for all limit ordinals
i ≤ α.Lemma 2.9. If P is an M -determined lass of a-types above M and
〈Mi, aj : i ≤ α, j < α〉 is a P-sequene overM , thenMα is weakly dominatedover M by {tp(aj/Mj)|M : j < α, tp(aj/Mj) does not fork over M}.Proof. Fix an M -determined lass P of a-types above M . We will prove(by simultaneous indution on α) that if 〈Mi, aj : i ≤ α, j < α〉 isa P-sequene over M , I = {aj : tp(aj/Mj) does not fork over M} and
J = {aj : tp(aj/Mj) ⊥M}, then(i) I is independent over M ;(ii) Mα is dominated by I over M .The onlusions are vauous when α = 0 and are trivially veri�ed when α isa limit ordinal. So assume that the two onditions hold for the P-sequene
〈Mi, aj : i ≤ α, j < α〉. Choose any a∗ suh that tp(a∗/Mα) ∈ P and let M∗be a-prime over Mαa

∗. We argue that the two onditions also hold for theonatenation of the original P-sequene with 〈M∗, a∗〉. Let p = tp(a∗/Mα).We �rst hek that (i) ontinues to hold: If p ⊥M , then there is nothingto hek. On the other hand, if p does not fork overM , then tp(a∗/MI) doesnot fork over M , hene I ∪ {a∗} is independent over M .We now hek that (ii) ontinues to hold in both ases. First, assumethat p ⊥M . Then if any set X does not fork with I over M , then it followsfrom our indutive assumption that X does not fork with Mα over M . Sine
p ⊥M , tp(a∗/MαX) does not fork overMα. SineM∗ is a-prime overMαa

∗,this implies that X does not fork with M∗ over Mα. Hene X does not forkwithM∗ over M by transitivity. On the other hand, suppose that p does notfork over M . In this ase, assume that X does not fork with Ia∗ over M .Then, sine I∪{a∗} is independent overM , a∗X does not fork with I overM .By our indutive hypothesis this implies that a∗X does not fork with Mαover M . In partiular, X does not fork with Mαa
∗ over M . So, X does notfork with M∗ over M , sine a∗ dominates M∗ over Mα.Lemma 2.10. Suppose that a lass P of a-types above M is dense above

M . Then for every b ∈ C, there is a P-sequene over M of length α < κ suhthat b ∈Mα.



Deompositions of saturated models 103Proof. Construt a P-sequene 〈Mi, aj : i ≤ α, j < α〉 over M of maxi-mal length suh that tp(aj/Mjb) forks overMj for every j < α. For any suhsequene tp(b/Mj+1) forks over Mj for all j < α, hene α < κ. But, sine Pis dense above M , the only way the proess an terminate is if tp(b/Mα) isalgebrai, so b ∈Mα.Proposition 2.11. Suppose that {Xj : j ∈ λ} is any olletion of subsetsof an a-model N . If a type p is not orthogonal to N but p ⊥ Xj for all j < λ,then there is a type q ∈ S(N) suh that q 6⊥ p, but q ⊥ Xj for all j.Proof. Choose an a-model N0 ⊇ N with dom(p) ⊆ N0 and let p0 be thenonforking extension of p to N0. Choose A0 ⊆ N0 of size < κ suh that
p0 is de�nable over A0. Choose C ⊆ N of size < κ suh that tp(A0/N) isde�nable over C. Choose a set {Ni : i < κ} of a-models to be independentover N with tp(Ni/N) = tp(N0/N) for all i < κ. For eah 0 < i < κ hoosean automorphism σi of C �xing N pointwise and sending N0 onto Ni. Let
Ai = σi(A0) and pi = σi(p0). Sine p0 6⊥ N it follows that pi 6⊥ pj forall i < j < κ (see, e.g., 1.4.3.3 of [6℄). Let N∗ be an a-model ontaining⋃
{Ni : i < κ} and let

P0 = {r : r an a-type above N and {i < κ : r 6⊥ pi} has size < κ}.
Claim. Some nonalgebrai q ∈ S(N) is orthogonal to every r ∈ P0.Proof. We �rst argue that P0 is not dense above N∗. Suppose it were. Let

p+
0 denote the nonforking extension of p0 to N∗ and let b be any realizationof p+

0 . By Lemma 2.10 there would be a P0-sequene 〈Mi, aj : i ≤ α, j < α〉over N∗ of length α < κ suh that b ∈ Mα. For eah j < α let rj =
tp(aj/Mj). Sine α < κ and eah rj ∈ P0 we ould �nd m < κ suh that
rj ⊥ pm for every j < α. But now, if e is any realization of p+

m (the nonforkingextension of pm to N∗) then we argue by indution on i ≤ α that tp(e/Mi)does not fork over N∗. In partiular, tp(e/Mα) does not fork over N∗, hene
p+

m and p+
0 would be almost orthogonal over N∗. But this would ontradit

p0 6⊥ pm sine N∗ is an a-model.So P0 is not dense above N∗. Fix an a-model N ′ ⊇ N∗ and a nonalgebraitype q′ ∈ S(N ′) suh that q′ is orthogonal to every r ∈ P0 ∩ S(N ′). Choose
D′ of size < κ satisfying C ⊆ D′ ⊆ N ′ over whih q′ is de�nable and hoose
D ⊆ N suh that there is an automorphism f of C �xing C pointwise with
D = f(D′). Let q be the nonforking extension of f(q′|D′) to S(N).To see that q satis�es the Claim, hoose any r ∈ P0. Say r ∈ S(N ′′).Choose any E ⊆ N ′′ of size < κ on whih r is de�ned, and hoose anautomorphism τ of C suh that τ |D = f−1|D (so τ �xes C pointwise and
τ(q) is parallel to q′) and τ(E) ⊆ N ′. Let r′ ∈ S(N ′) be parallel to τ(r).Sine E ∪ τ(E) is independent of Ai over C for almost all i < κ (i.e., fewerthan κ exeptions) and sine r ∈ P0, it follows that {i < κ : τ(r) 6⊥ pi}



104 M. C. Laskowski and S. Shelahhas size < κ, so r′ ∈ S(N ′) ∩ P0. If, by way of ontradition, q 6⊥ r, thensine nonorthogonality is parallelism invariant, it would follow that q′ 6⊥ r′,ontraditing our hoie of q′. Thus q ⊥ r for all r ∈ P0.We argue that any suh q ∈ S(N) satis�es the onlusions of the propo-sition. Fix suh a q and hoose any j < λ. Let r ∈ S(N) be the nonforkingextension of any strong type over Xj . Sine p ⊥ Xj and sine {pi : i ∈ κ}are onjugate over N , r ⊥ pi for all i, hene r ∈ P0. Thus q ⊥ r. That is,
q ⊥ Xj for all j < λ.It remains to show that q 6⊥ p. Let q+ and p+

i (i < κ) denote thenonforking extensions of q and pi (respetively) to N∗. Let P+ = {p+
i :

i < κ}, let
P⊥⊥

0 = {p ∈ S(N∗) : p is orthogonal to every type s that isorthogonal to every type in P0}and let
P1 = {s : s is an a-type above N∗ suh that either s ⊥ N∗ or

s is a nonforking extension of an element of P+ ∪ P⊥⊥
0 }.In a moment we will show that P1 is dense above N∗, but we �rst showthat this su�es. One it is, then sine P1 is N∗-determined, it follows fromLemmas 2.9 and 2.10 that q+ is weakly dominated over N∗ by P+ ∪ P⊥⊥

0 .Sine q+ is nonalgebrai, q+ (and hene q) is nonorthogonal to at least oneelement of P+ ∪ P⊥⊥
0 . Sine q is orthogonal to every element of P0, q is alsoorthogonal to every element of P⊥⊥

0 , so q 6⊥ pi for some i < κ. But, sine the
pi's are all onjugate over N and sine q ∈ S(N), it follows that q 6⊥ p0, so
q 6⊥ p.Thus, it su�es to show that P1 is dense above N∗. Choose any a-model
M ′ ⊇ N∗ and any nonalgebrai r ∈ S(M ′). We argue that r is nonorthogonalto some element of P1 ∩S(M ′). We may assume that r 6⊥ N∗ and r ⊥ pi forall i < κ, otherwise r itself would be a witness. We omplete the proof byonstruting a onjugate type r∗ ∈ P⊥⊥

0 suh that r 6⊥ r∗. To aomplish this,�rst note that r ∈ P0, hene r is orthogonal to every type that is orthogonalto every type in P0. Sine r 6⊥ N∗, we an hoose a type t ∈ S(N∗) suhthat r 6⊥ t. Next, hoose sets D ⊆ M ′ and E ⊆ N∗ suh that |D| < κ,
E = D∩N∗, C ⊆ E, t is de�nable over E, and r is de�nable over D. Finally,hoose D′ ⊆ N∗ suh that D and D′ realize the same strong type over E andare independent over E and let r∗ ∈ S(N∗) be de�nable over D′ in the samemanner that r is over D. Sine r 6⊥ E, r 6⊥ r∗. Also, sine D and D′ realizethe same type over C, r∗ is also orthogonal to every type that is orthogonalto every element of P0. Thus, r∗ ∈ P⊥⊥

0 , so s, the nonforking extension of r∗to S(M ′), is nonorthogonal to r and is in P1 ∩ S(M ′).



Deompositions of saturated models 105Our �nal group of results is aimed at proving Proposition 2.16, whih is avariant on the more familiar fat that if {Bi : i ∈ κ} are independent over aset A and a stationary type p is nonorthogonal to every Bi, then p 6⊥ A. Thebuildup to the proof of this proposition develops the notion of nonforking inan ultrapower of the monster model. For the rest of this setionFix a nonprinipal ultra�lter D on ω and let C
∗ =

∏
C/D.We abuse notation slightly and onsider C

∗ to be an elementary extensionof C. Spei�ally, we identify an element a ∈ C with the diagonal element
〈a : i ∈ ω〉/D ∈ C

∗. For a subset X ⊆ C we let X∗ denote ∏
X/D. By ournotational onvention X ⊆ X∗ ⊆ C

∗.Lemma 2.12. For any a ∈ C and B ⊆ C, tp(a/B∗) does not fork over B.Proof. Choose any model M suh that B ⊆ M ⊆ C and tp(a/M) doesnot fork over B. It learly su�es to show that tp(a/M∗) does not forkover M . So suppose that θ(a, b∗) holds (in C
∗, where a is identi�ed with itsdiagonal element) for some formula θ(x, y) with no hidden parameters. By�nite satis�ability, it su�es to �nd some b ∈ M suh that θ(a, b) holds.Choose a representation b∗ = 〈bi : i ∈ ω〉/D with eah bi ∈M . Sine θ(a, b∗)holds, {i ∈ ω : θ(a, bi)} ∈ D, so is nonempty.Lemma 2.13. Suppose that A ⊆ Bi ⊆ C for all i ∈ ω, and {Bi : i ∈ ω}is independent over A. Then C⌣

A
B, where B =

∏
i∈ω Bi/D.Proof. Choose any d ∈ C and a model M satisfying A ⊆ M ⊆ C and

M⌣
A

⋃
{Bi : i ∈ ω}d. Then {Bi : i ∈ ω} is independent over M and bytransitivity it su�es to prove that tp(d/MB) does not fork over M . Let

θ(x, y) be an L(M)-formula suh that θ(d, b∗) holds for some b∗ ∈ B. By�nite satis�ability it su�es to �nd some m ∈M suh that θ(d,m) holds.Let E = M ∪ {Bi : i ∈ ω}. Sine tpθ(d/E) is de�nable, there is an
L-formula ψ(y, z) and an e ∈ E suh that(3) θ(d, c) ↔ ψ(c, e)for all c ∈ E. Choose a representation 〈bi : i ∈ ω〉/D for b∗ with bi ∈ Bi forall i ∈ ω. Sine θ(d, b∗) holds, {i ∈ ω : θ(d, bi)} ∈ D. Sine D is nonprinipaland e is �nite, and {Bi : i ∈ ω} is independent overM , there is an i ∈ ω suhthat both θ(d, bi) holds and e⌣

M
bi. Sine bi ∈ E, (3) implies that ψ(bi, e)holds. Thus, by symmetry and �nite satis�ability there is m ∈M suh that

ψ(m, e) holds. By (3) again, θ(d,m) holds and we �nish.Lemma 2.14. Suppose that {ai : i ∈ ω} ⊆ C, N ⊆ C is a model , andfor eah i ∈ ω, Mi ⊆ N is a model suh that tp(ai/N) does not fork over
Mi. Then tp(a∗/N∗) does not fork over M , where a∗ = 〈ai : i ∈ ω〉/D and
M =

∏
i∈ω Mi/D.



106 M. C. Laskowski and S. ShelahProof. First, note that M is itself a submodel of C
∗. Let θ(x, y) be any

L-formula and let c∗ ∈ N∗ be any element suh that θ(a∗, c∗) holds. By�nite satis�ability it su�es to �nd b∗ ∈ M suh that θ(a∗, b∗). Choose arepresentation 〈ci : i ∈ ω〉/D for c∗ with eah ci ∈ N . Let R = {i ∈ ω :
θ(ai, ci)}. Sine θ(a∗, c∗) holds, R ∈ D. We onstrut a sequene 〈bi : i ∈ ω〉as follows: For eah i ∈ R, hoose bi ∈Mi suh that θ(ai, bi). (This is possiblesine tp(ai/N) does not fork over Mi.) For any i 6∈ R, let bi be an arbitraryelement of Mi. Let b∗ = 〈bi : i ∈ ω〉/D. Then b∗ ∈M and θ(a∗, b∗) holds.We apply these three lemmas in the proof of Proposition 2.16 below.Definition 2.15. Let ∆ be a �nite set of (partitioned) L-formulas andlet B be any set. A stationary type p is ∆-nonorthogonal to B, written
p 6⊥∆ B, if there is a set D ⊇ dom(p) ∪ B, ϕ(x, yz) ∈ ∆, and elements arealizing p|D, b ∈ D, and c ∈ C suh that tp(c/D) does not fork over B,
ϕ(a, bc) holds, and R∆(p|D ∪ {ϕ(x, bc)}) < R∆(p).Clearly, p 6⊥ B if and only if p 6⊥∆ B for some �nite ∆. Also, if B ⊆ B′and p 6⊥∆ B then p 6⊥∆ B′.Proposition 2.16. Let ∆ be a �nite set of formulas and let p be anystationary type. If {Bi : i ∈ ω} are independent over A and p 6⊥∆ Bi foreah i ∈ ω, then p 6⊥ A.Proof. To begin we indutively �nd submodels {Mi : i ∈ ω} of C suhthat Bi ⊆Mi (hene p 6⊥∆ Mi) for eah i, yet {Mi : i ∈ ω} are independentover A. For eah i, hooseDi ontaining dom(p)∪Mi as in the de�nition of∆-nonorthogonality and let N be a substruture of C ontaining ⋃

{Di : i ∈ ω}.By replaing p by its nonforking extension to N , we may assume that p ∈
S(N). Let D be any nonprinipal ultra�lter on ω, let M =

∏
i∈ω Mi/D andlet N∗ =

∏
N/D. It follows immediately from Lemma 2.13 that N ⌣

A
M .So, in light of X 1.1 of [7℄, in order to onlude that p 6⊥ A it su�es toshow that p 6⊥ M . In fat we will show that p is ∆-nonorthogonal to M bydemonstrating that N∗ is a suitable hoie of D in De�nition 2.15.Let a be any realization of p. It follows from Lemma 2.12 that a realizesthe nonforking extension p∗ of p to N∗. Let k = R∆(p) = R∆(p∗). Foreah i ∈ ω, sine Di ⊆ N we an �nd ϕi ∈ ∆, bi ∈ N , and ci ∈ C suh that

ϕi(a, bici) holds, tp(ci/N) does not fork overMi and R∆(p∪{ϕi(x, bici)})<k.Sine ∆ is �nite we may assume that ϕi is identially ϕ for all i. Let b∗ = 〈bi :
i ∈ ω〉/D and c∗ = 〈ci : i ∈ ω〉/D. Then b∗ ∈ N∗ and ϕ(a, b∗c∗) holds. Sine
p is stationary, its ∆-multipliity is 1, hene {yz : R∆(p ∪ {ϕ(x, yz)}) < k}is de�nable. So the �o± theorem yields

R∆(p∗ ∪ {ϕ(x, b∗c∗)}) < k = R∆(p∗).



Deompositions of saturated models 107Finally, sine tp(ci/N) does not fork over Mi for eah i, tp(c∗/N∗) does notfork over M by Lemma 2.14. So N∗ witnesses p 6⊥∆ M and we �nish.3. Loal minimality: Proofs of 1.3�1.5. In this setion we work overa spei� independent tree and investigate the onsequenes of the a-primemodel over it being a-minimal. In partiular, we prove Theorem 1.3 and twoorollaries that follow from it.Lemma 3.1. Let {Mη : η ∈ I} be any independent tree of a-models,let J ⊆ I be any subtree, and let a = 〈aα : α < β〉 be any a-onstrutionsequene over MJ . Then a is an a-onstrution sequene over MI and
tp(a/MI) does not fork over MJ . In partiular , if M∗

J is a-prime over MJ ,then M∗
J is the universe of an a-onstrution sequene over MI and

tp(M∗
J/MI) does not fork over MJ .Proof. Let K be a maximal subtree suh that J ⊆ K and stp(a/MJ) ⊢

stp(a/MK). It follows that a is an a-onstrution sequene over MK . Byway of ontradition assume that K 6= I. Choose ν ∈ K and an immediatesuessor η ∈ I \K. Now MK ⌣
Mν

Mη and Mν is an a-model, so, using eitherV 3.2 of [7℄ or I 4.3.4 of [6℄, an easy indution on β shows that K ∪ {η}ontradits the maximality of K. The �nal sentene follows immediately.Proof of Theorem 1.3. The equivalenes (i)⇔(ii) and (iii)⇔(iv) havenothing to do with trees. (i)⇔(ii) is the ontent of IV 4.21 of [7℄, (iv)⇒(iii)is trivial, and (iii)⇒(iv) follows immediately from Proposition 2.11 (takethe sets Xi to be the submodels Mη of M). The other two impliations aregeneralizations of arguments that appear in the proof of X 2.2 of [7℄.(ii)⇒(iii). Let r ∈ S(M∗
I ) be nonalgebrai and assume that r ⊥ Mηfor all η ∈ I. Choose A ⊆ M∗

I of size less than κ over whih r is basedand stationary. Fix a subtree J ⊆ I of size < κ and an a-prime submodel
M∗

J ⊆M∗
I that ontains A. Call a subset B ⊆M∗

J suitable if A ⊆ B, |B| < κ,and B is self-based on {Mη : η ∈ J}. It follows from Proposition 2.5 thatfor every set C ⊆M∗
J of size < κ, there is a suitable B ontaining C. Thus,by iterating the Claim below ω times we an onstrut an in�nite Morleysequene J in r over A insideM∗

I , suh that tp(J/AMI) does not fork over A.In partiular, suh a J is indisernible over MI . So, it su�es to prove thefollowing:
Claim. If B is suitable and c realizes r|B, then tp(c/B) ⊢ tp(c/BMI).Proof. Fix a suitable B and let c denote any realization of r|B. We write

Bη for B ∩Mη and BJ ′ = B ∩MJ ′ for subtrees J ′ of J .We �rst argue that tp(c/B) ⊢ tp(c/BM〈〉). Choose any �nite tuple afromM〈〉. Sine B is suitable, tp(a/B) does not fork over B〈〉. But tp(a/B〈〉)is parallel to a type over M〈〉, hene r is orthogonal to tp(a/B). This implies
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B
c. Sine c was an arbitrary realization of r|B, this implies tp(c/B) ⊢

tp(c/Ba), hene tp(c/B) ⊢ tp(c/BM〈〉).Now let J ′ be a maximal subtree of J suh that tp(c/B) ⊢ tp(c/BMJ ′).We demonstrate that J ′ = J . From the previous paragraph J ′ is nonempty. If
J ′ 6= J then there is ν ∈ J \J ′ suh that its immediate predeessor, denotedby η, is in J ′. As above, hoose a ∈ Mν . Sine we know that tp(c/B) ⊢
tp(c/BMJ ′), it su�es to show that tp(c/BMJ ′) ⊢ tp(c/BMJ ′a).
Subclaim. a ⌣

MηBν

MJ ′B.Proof. Sine the original tree is independent, Mν ⌣
Mη

MJ ′ . Sine aBν ⊆

Mν this implies(4) a ⌣
MηBν

MJ ′Bν .However, sine B is suitable, tp(B/MJ ′Mν) does not fork over BJ ′Bν . Thus,
B ⌣

MJ′Bν

Mν . Sine a ∈ Mν , symmetry provides a ⌣
MJ′Bν

B, so the Sublaimfollows from (4) and transitivity.Now let p = tp(a/MJ ′B). The type p does not fork over MηBν ⊆Mν , so
p ⊥ r. Thus, tp(c/BMJ ′) ⊢ tp(c/BMJ ′a). Hene J ′ = J .We have now established that tp(c/B) ⊢ tp(c/BMJ). We argue thatin fat tp(c/B) ⊢ tp(c/BMI). To see this, let I ′ be a maximal subtree thatontainsMJ suh that tp(c/B) ⊢ tp(c/BMI′). As above, if I ′ 6= I, then therewould be ν ∈ I \ I ′ whose immediate predeessor η is in I ′. Sine the treeis independent, Mν ⌣

Mη

MI′ . Sine B ⊆ M∗
J and J ⊆ I ′, Lemma 3.1 impliesthat B is a-onstrutible, hene a-atomi over MI′ . Sine Mη is a-saturated,

BMI′ is dominated by MI′ over Mη. Thus, Mν ⌣
Mη

MI′B. Also, for any �nitetuple a from Mν , tp(a/Mη) ⊥ r. Thus, a ⌣
MI′B

c for any suh a. It followsthat tp(c/B) ⊢ tp(c/BMI′Mν), ontraditing the maximality of I ′. Hene
I ′ = I and the proof of (ii)⇒(iii) is omplete.(iv)⇒(ii). Let J ⊆ M∗

I be a ountably in�nite, indisernible sequeneover MI . By stability, J is an indisernible set over MI . Partition J into twoin�nite sets J0 and J1. Then, by taking B =
⋃

J0 when κ ≥ ω1 or to bea su�iently large �nite subset of J0 when κ = ω, |B| < κ and J1 is anin�nite, independent sequene over B suh that J1⌣
B
MI . Let a ∈ J1 andlet p = tp(a/B). Without loss, we may assume that p is stationary.

Claim. p ⊥Mη for all η ∈ I.Proof. By way of ontradition, hoose η suh that p 6⊥ r for some r ∈
S(Mη). Sine p(n) is not almost orthogonal to r(n) over BMI , we an inrease
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B by �nitely many elements of J1 and replae r by r(n) and thereby assumethat

p ⊥/a

BMI

r.Choose A ⊆ Mη of size less than κ suh that r is based and stationaryover A. Sine M∗
I is a-prime over MI , we an hoose C ⊆ MI , also of sizeless than κ, suh that A ⊆ C and stp(aB/C) ⊢ stp(aB/MI). Note that thisondition implies that(5) a∗B⌣

C
MIfor any a∗ suh that tp(a∗/BC) = tp(a/BC). Sine forking is witnessed bya single formula, there is D with C ⊆ D ⊆ MI suh that D \ C is �niteand tp(a/B) ⊥/a

BD
r. Sine Mη is a-saturated and r is based and stationaryon A, there is e ∈Mη suh that tp(e/A) is parallel to r and tp(e/BD) doesnot fork over A. So, by the non-almost orthogonality ondition, there is a∗realizing tp(a/B) suh that a∗⌣

B
D and a∗ ⌣/

BD
e.But, sine tp(a/MI) does not fork and is stationary over B, this impliesthat a and a∗ have the same type over BD, hene over BC. So (5) impliesthat tp(a∗B/MI) does not fork over C. Sine De ⊆ MI this would implythat tp(a∗/BDe) does not fork over BD, whih is a ontradition.Proof of Corollary 1.4. This is straightforward. Fix an independent tree

{Mη : η ∈ I} of a-models suh that the a-prime model M∗
I is a-minimaland �x a subtree J ⊆ I. To show that M∗

J is a-minimal over MJ it su�esto show that every nonalgebrai type p ∈ S(M∗
J ) is nonorthogonal to some

Mη with η ∈ J . So �x suh a type p. Sine p has a nonforking extension to
S(M∗

I ) and sine M∗
I is a-minimal, p 6⊥ Mη for some η ∈ I. Choose suhan η of least length and assume by way of ontradition that η 6∈ J . Then

lg(η) 6= 0 and there is ν E η of maximal length suh that ν ∈ J . Sinethe tree is independent, tp(Mη/MJ) does not fork over Mν . Sine Mν is ana-model, this implies that tp(Mη/M
∗
J ) does not fork overMν . But then, sine

p ⊥ Mν , forking symmetry and X 1.1 of [7℄ imply that p ⊥ Mη, whih is aontradition.Proof of Corollary 1.5. If λ = κ there is nothing to prove sine a-modelsare κ-saturated. So �x λ > κ and an independent tree {Mη : η ∈ I} of
λ-saturated a-models. Suppose that the a-prime model M∗

I over MI is a-minimal over MI . Choose A ⊆ M with |A| < λ and hoose a nonalgebrai
q ∈ S(A). Beause of Lemma 2.1 it su�es to show that q has a forkingextension in S(M∗

I ). Choose a subset A0 ⊆ A of size less than κ over whih
q is based and let q0 denote the restrition of q to A0. By appending aountable Morley sequene in q0 to A0, we may additionally assume that
q0 is stationary. Sine M∗

I is a-minimal over MI , q0 6⊥ Mη for some η ∈ I.



110 M. C. Laskowski and S. ShelahChoose p ∈ S(Mη) suh that p 6⊥ q0 and hoose B ⊆ Mη of size less than κover whih p is based and stationary. Let p0 denote the restrition of p to B.Sine p0 6⊥ q0, there is an n ∈ ω suh that p(n+1)
0 is not almost orthogonalto q(n+1)

0 over BA0. Sine M∗
I is an a-model, there are �nite sequenes Cand D in M∗

I realizing p(n)
0 and q(n)

0 respetively. Thus,
p0 ⊥/a

A0BCD
q0.Sine Mη is λ-saturated there is a Morley sequene 〈ei : i ∈ λ〉 in M∗

I of(independent) realizations of p0 over B of length λ. Sine |ABCD| < λ thisimplies that tp(ei/ABCD) does not fork over B for some i. But then q hasa forking extension to S(ABCDei) and we �nish.4. Global minimality: Proofs of 1.8�1.10. We begin with a de�ni-tion and a series of lemmas.Definition 4.1. A partial deomposition {Mη : η ∈ J} is λ-full if forevery η ∈ J and every nonalgebrai p ∈ S(Mη) satisfying p ⊥ Mη− (when
η 6= 〈〉) there is a set Hη ⊆ J of λ immediate suessors of η suh that Mνrealizes p for every ν ∈ Hη.The proof of the following lemma is a routine exerise in bookkeeping.(Note that if {Mη : η ∈ J} is a partial deomposition of C, then for eah η,
|Mη| ≤ 2|T |, so |S(Mη)| ≤ 2|T |.)Lemma 4.2. If {Mη : η ∈ J} is a partial deomposition of C and λ ≥
2|T | + |J |, then there is a tree I of size λ and a λ-full partial deomposition
{Mη : η ∈ I} of C extending it.Lemma 4.3. If |I| = λ > 2|T |, {Mη : η ∈ I} is a λ-full partial deomposi-tion of C, and M∗

I is a-minimal over MI , then M∗
I is λ-saturated. Moreover ,if λ<κ = λ, then M∗

I is saturated of power λ.Proof. Fix A ⊆ M∗
I of size < λ and a nonalgebrai, stationary type

p ∈ S(A). We argue that p has a forking extension in S(M∗
I ).Let µ = |A| + 2|T |. Choose a subtree J ⊆ I with |J | ≤ µ and an a-primesubmodel M∗

J � M∗
I suh that A ⊆ M∗

J . Sine M∗
I is a-minimal, M∗

J isa-minimal by Corollary 1.4. Thus by Theorem 1.3(iv) we an hoose η ∈ Jof minimal length suh that p 6⊥Mη. By Proposition 2.11, there is q ∈ S(Mη)suh that p 6⊥ q and q ⊥Mη− when η 6= 〈〉.Let p′, q′ denote the respetive nonforking extensions of p, q to S(M∗
I ).Sine M∗

I is an a-model, p′ ⊥/a

M∗
I

q′. Choose a subset D suh that AMη ⊆

D ⊆M∗
I suh that |D| ≤ µ and p′′ ⊥/a

D
q′′, where p′′, q′′ denote the respetiverestritions of p, q to D. Sine {Mη : η ∈ I} is λ-full and |D| < λ, there is
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b ∈ M∗

I realizing q′′. Thus, p has a forking extension to M∗
I , whih impliesthat M∗

I is λ-saturated by Lemma 2.1.Finally, sine {Mη : η ∈ I} is λ-full, |MI | = λ. Sine λ ≥ 2|T |, the size ofan a-prime model over a set of size λ has size at most λ<κ. So, if λ<κ = λ,then |M∗
I | = λ, hene is saturated.Lemma 4.4. Fix an independent tree {Mη : η ∈ I} of a-models. Supposethat 〈Jα : α ≤ δ〉 is a ontinuous, inreasing sequene of subtrees of I and

〈Eα : α < δ〉 is a sequene of sequenes suh that Eα is an a-onstrutionsequene over MJα and Eα is an initial segment of Eβ whenever α < β < δ.Then any a-prime model over ⋃
E∗ is a-prime over MJδ

, where E∗ is theshortest sequene suh that eah Eα is an initial segment.Proof. It follows from Lemma 3.1 that eah Eα is a-onstrutible over
MJδ

, so E∗ is a-onstrutible over MJδ
as well. Thus, if N is a-prime(hene a-onstrutible) over ⋃

E∗, then N is a-onstrutible (hene a-prime)over MJδ
.Proof of Theorem 1.8. The impliations (i)⇒(iii)⇒(iv) as well as(v)⇒(iv) are trivial.We begin by showing (iii)⇒(i). Suppose (iii) holds and �x an independenttree of a-models {Mη : η ∈ I}. Let M∗

I be any a-prime model over MI . Forman inreasing sequene 〈Nn : n ∈ ω〉 of a-submodels of M∗
I as follows: Foreah n ∈ ω, let In = {η ∈ I : lg(η) ≤ n}. Let N0 = M〈〉. We indutivelyde�ne Nn+1 as any a-prime submodel of M∗

I over Nn ∪MIn+1
. Let N∗ beany a-prime submodel ofM∗

I over ⋃
{Nn : n ∈ ω}. By Lemma 3.1, N∗ is alsoa-prime over MI , hene N∗ and M∗

I are isomorphi over MI . So it su�es toshow that N∗ is a-minimal over MI . By Theorem 1.3(iii) it su�es to showthat every nonalgebrai p ∈ S(N∗) is nonorthogonal to someMη. So �x suha nonalgebrai type p. By NDIDIP and Theorem 1.3(iii) there is a smallest
n ∈ ω suh that p 6⊥ Nn. If n = 0 then we �nish sine N0 = M〈〉. So assume
n > 0. Let Jn = {η ∈ I : lg(η) = n}. By Lemma 3.1, {Mη : η ∈ Jn} areindependent over Nn−1. Thus, we an �nd a set {M ′

η : η ∈ Jn} of submodelsof Nn suh that eah M ′
η is a-prime over Mη ∪Nn−1 and Nn is a-prime over⋃

{M ′
η : η ∈ Jn}. Sine κ-NDOP implies µ-NDOP for any ardinal µ andsine p 6⊥ Nn, it follows from Theorem 1.3(iv) that p 6⊥M ′

η for some η ∈ Jn.But now, sine Mη and Nn−1 are independent over Mη− , it follows fromanother instane of NDOP that p 6⊥Mη.The veri�ation of (iv)⇒(v) is idential one one heks that if the orig-inal tree MI was normal, then the sequene 〈Nn : n ∈ ω〉 de�ned above isnormal as well.(v)⇒(ii). Fix a ardinal λ > 2|T |, a saturated model N of size λ, and asmall partial deomposition {Mη : η ∈ J} of N . The existene of a saturatedmodel of size λ ≥ 2|T | implies that λ<κ = λ (see VIII 4.7 of [7℄). Now
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{Mη : η ∈ J} is also a partial deomposition of C, so by Lemma 4.2 thereis a tree I of size λ and a λ-full partial deomposition {Mη : η ∈ I} of Cextending it. By (v),M∗

I is a-minimal overMI , so Lemma 4.3 asserts thatM∗
Iis saturated of power λ. Thus, there is an isomorphism h : M∗

I → N overMJ .Then {h(Mη) : η ∈ I} is a deomposition of N extending {Mη : η ∈ J}.(ii)⇒(iii). Assume that (ii) holds. The heart of the argument is ontainedin the proof of the following laim.
Claim. If {Mη : η ∈ H} is any partial deomposition of C, then anya-prime model M∗

H over MH is a-minimal over MH .Proof. Fix µ > |M∗
H | + 2|T | suh that µ<κ = µ and hoose a saturatedmodel N of size µ ontaining M∗

H . By (ii) there is a deomposition {Mη :
η ∈ H ′} of N extending {Mη : η ∈ H}. Sine N is a-minimal over MH′ , M∗

His a-minimal over MH by Corollary 1.4.We �rst verify that NDIDIP holds. Choose an inreasing sequene 〈Mn :
n ∈ ω〉 of a-models. Let Mω =

⋃
{Mn : n ∈ ω} and let M∗

ω be a-primeover Mω =
⋃
{Mn : n ∈ ω}. We will show that every nonalgebrai type over

M∗
ω is nonorthogonal to some Mn. Fix a regular ardinal λ > |M∗

ω| + 2|T |satisfying λ<κ = λ. Note that (λ+n)<κ = λ+n for eah n ∈ ω. Indutivelyonstrut an inreasing sequene 〈Nn : n ∈ ω〉 of models suh that eah Nnis saturated of size λ+n, ontainsMn, tp(N0/M
∗
ω) does not fork overM0, and

tp(Nn+1/M
∗
ωNn) does not fork over Mn+1Nn for eah n ∈ ω. It is an easyexerise in nonforking (using X 1.1 of [7℄) to see that if a nonalgebrai typein S(M∗

ω) were nonorthogonal to some Nn, then it would be nonorthogonalto Mn. So let Nω =
⋃
{Nn : n ∈ ω}, let N∗

ω be a-prime over Nω and let
p ∈ S(N∗

ω) be nonalgebrai. It su�es to show that p 6⊥ Nn for some n ∈ ω.Let M〈〉 ⊆ N0 be any a-prime submodel over ∅. Sine {M〈〉} is a small,partial deomposition of N0, (ii) implies there is an extension {Mη : η ∈ J0}that is a deomposition of N0. Continuing indutively, sine a deomposition
{Mη : η ∈ Jn} of Nn is a small, partial deomposition of the saturatedmodel Nn+1, (ii) implies that there is an extension {Mη : η ∈ Jn+1} that isa deomposition of Nn+1.Let Jω =

⋃
{Jn : n ∈ ω}. Let E0 be an a-onstrution sequene for N0overMJ0

. By Lemma 3.1, E0 is an a-onstrution sequene overMJ1
, so asN1is both a-prime and a-minimal overMJ1

, there is an a-onstrution sequene
E1 end extending E0 for N1 over MJ1

. Continuing indutively, we onstruta sequene 〈En : n ∈ ω〉 of sequenes suh that En is an a-onstrutionsequene over MJn and En is an initial segment of En+1 for all n ∈ ω. ByLemma 4.4, N∗
ω, whih was hosen to be a-prime over Nω =

⋃
E∗, is alsoa-prime over MJω . The Claim above implies that N∗

ω is a-minimal over MJω ,so p 6⊥Mη for some η ∈ Jω. Thus p 6⊥ Nn for some n ∈ ω.



Deompositions of saturated models 113Next we argue that T has κ-NDOP. Fix any a-model M and any set
{Mi : i < α < κ} of a-models that eah ontain M and olletively areindependent over M . Let M∗ be a-prime over ⋃

{Mi : i < α} and hoose
λ > |M∗|+2|T | suh that λ<κ = λ. Arguing as above, �rst hoose a saturatedmodel N ontaining M of size λ suh that tp(N/M∗) does not fork over M(so {Mi : i < α} are independent over N) and then indutively hoose a set
{Ni : i < α} of saturated models, eah of size λ+ suh that eah Ni ontains
Mi ∪N and tp(Ni/M

∗ ∪N ∪ {Nj : j < i}) does not fork over Mi ∪N . Thus
{Ni : i < α} are independent over N . As in the ase above, if a type in
S(M∗) is nonorthogonal to some Ni, then it is nonorthogonal to Mi. So let
N∗ be a-prime over ⋃

{Ni : i < α} and �x a nonalgebrai type p ∈ S(N∗).It is ertainly su�ient to show that p 6⊥ Ni for some i < α.As before, use (ii) to hoose a deomposition {Mη : η ∈ H} ofN . Then foreah i < α use (ii) to get an extension {Mη : η ∈ Ji} that is a deompositionof Ni. Without loss assume that Ji∩Jj = H for all i 6= j. Let Ii = H∪
⋃
{Jj :

j < i} for eah i < α and let I =
⋃
{Ii : i < α}. Sine {Ni : i < α} areindependent over N , {Mη : η ∈ I} is a partial deomposition of C. As in theNDIDIP ase above, Lemmas 3.1 and 4.4 imply thatN∗ is a-prime overMI =⋃

{Mη : η ∈ I}. By the Claim, N∗ is a-minimal over MI . Thus p 6⊥ Mη forsome η ∈ I by Theorem 1.3(iii), whih implies that p 6⊥ Ni for some i < α.Proof of Proposition 1.9. Fix a theory T with κ-NDOP. We reall theusual de�nition of the depth dpI of a node η of a well-founded tree I, namely
dpI(η) = sup{dpI(ν) + 1 : ν an immediate suessor of η},and we de�ne the depth of I to be dpI(〈〉). We prove Proposition 1.9 byindution on the depth of I. Fix an ordinal α and assume that every a-primemodel over a well-founded, independent tree of a-models of depth less than

α is a-minimal over the tree of a-models.Suppose that I is well-founded of depth α and that {Mη : η ∈ I} is anindependent tree of a-models indexed by I. Let M∗
I be any a-prime modelover MI and hoose any type p 6⊥ M∗

I . We will show that p 6⊥ Mη forsome η ∈ I, whene M∗
I is a-minimal over MI by Theorem 1.3. If I = {〈〉}then there is nothing to prove. Otherwise, let A = {β : 〈β〉 ∈ I}. For eah

β ∈ A, let I(β) = {ν : 〈β〉ˆν ∈ I} and let Mβ
ν = M〈β〉ˆν for eah ν ∈ I(β).Choose {Nβ : β ∈ A} suh that eah Nβ is an a-prime submodel of M∗

I over⋃
{Mβ

ν : ν ∈ I(β)} andM∗
I is a-prime over ⋃

{Nβ : β ∈ A}. Sine the originaltree of a-models was independent, {Nβ : β ∈ A} is independent overM〈〉. So,sine κ-NDOP implies µ-NDOP for any ardinal µ, we an hoose β∗ ∈ A sothat p 6⊥ Nβ∗ . By our de�nition of depth, dp(I(β∗)) < dp(I) = α, so Nβ isa-minimal over ⋃
{Mβ∗

ν : ν ∈ I(β∗)}. So, by Theorem 1.3, p 6⊥ Mη for some
η ∈ I.



114 M. C. Laskowski and S. ShelahProof of Corollary 1.10. Suppose that T has κ-NDOP and is shallow. Fixany saturated model N with |N | > 2|T | and any small partial deomposition
{Mη : η ∈ J} of N . We will show that this partial deomposition an beextended to a deomposition of N , whih su�es by Theorem 1.8. Let λ =
|N |. By VIII 4.7 of [7℄ the existene of a saturated model of size λ > 2|T |implies that λ<κ = λ. Let {Mη : η ∈ I} be a λ-full partial deomposition of Cextending {Mη : η ∈ J}, whih exists by Lemma 4.2. Sine T is shallow, theindex tree I is well-founded. Sine T has κ-NDOP as well, Proposition 1.9implies that M∗

I is a-minimal over MI , hene M∗
I is saturated of power λby Lemma 4.3. So M∗

I and N are both saturated of size λ and ontain MJ .Choose an isomorphism h : M∗
I → N over MJ . Then {h(Mη) : η ∈ I} is ourdesired deomposition of N .5. Countable theories and the proof of Theorem 1.11. Until now,the ardinality of the language was irrelevant. In this setion we restritourselves to ountable languages and prove Theorem 1.11. The assumptionof ountability allows us to bring in some results from lassial desriptiveset theory. In partiular, the proof given here relies on the fat that analytisubsets of Polish spaes have the property of Baire, i.e., for every analyti Athere is an open U suh that A△ U is meagre (see, e.g., [3℄). At its heart,the proof presented here is similar to the argument that every Σ

1
1-de�nableultra�lter on ω is prinipal. The similarity between these two arguments isexpounded upon in [4℄.Theorem 5.1. If T is ountable and has NDOP , then T has µ-NDOPfor all in�nite ardinals µ.Proof. As noted in the remarks following De�nition 1.6, the theoremfollows immediately if T is superstable. Consequently, we assume for thewhole of this setion that

T is ountable, stable, but not superstable, with NDOP.In partiular, κ(T ) = ℵ1 and the lass of a-models of T is preisely the lassof ℵ1-saturated models of T . The �rst three subsetions provide the requisitebakground and Theorem 5.1 is proved in Subsetion 5.4.5.1. On stable systems. In this subsetion we set notation and prove anextension theorem for stable systems and an embedding theorem for pairs ofstable systems.Definition 5.2. A good index set I is a nonempty, ountable set of �nitesets that is losed under subsets, i.e., u ∈ I and v ⊆ u implies v ∈ I. An
I-system X = {Xu : u ∈ I} is a family of sets indexed by I suh that
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Xu ⊆ Xv whenever u ⊆ v. For any I-system X and any u ∈ I, set

X(u =
⋃

{Xv : v ( u} and X 6⊇u =
⋃

{Xv : v 6⊇ u}Throughout this setion J denotes the set of �nite subsets of ω and K =
{u ∈ J : |u| ≤ 1}.The following notion is the major theme of Setion XII.2 of [7℄.Definition 5.3. A stable system M of models indexed by I is an I-system M = {Mu : u ∈ I} of models suh that Mu ⌣

M(u

M6⊇u for all u ∈ I.As a simple speial ase, note that {Mu : u ∈ K} is a stable system ofmodels if and only if M∅ ⊆ M{i} for eah i ∈ ω and {M{i} : i ∈ ω} areindependent over M∅.The following lemma is our primary tool for onstruting stable systems.Lemma 5.4. Suppose that I is a good index set , u �nite, u 6∈ I, but everyproper subset of u is an element of I. If {Mv : v ∈ I} is a stable system ofa-saturated models and Mu is a-prime over M(u, then {Mv : v ∈ I ∪ {u}}is a stable system of a-saturated models. Moreover , if Mu is the union ofan a-onstrution sequene a = 〈aα : α < β〉 over M(u, then a is also ana-onstrution sequene over ⋃
{Mv : v ∈ I}.Proof. Let Iu = {v ∈ I : v ⊆ u}. Then Iu is a �nite, good index set,so by XII, Conlusion 2.11 of [7℄, Mu is ℓ-isolated over M(u. Also, by XII,Lemma 2.3(2) of [7℄, the pair (M(u,

⋃
{Mv : v ∈ I}) satis�es the Tarski�Vaught property, hene tp(Mu/M(u) has a unique (nonforking) extensionto a type in S(

⋃
{Mv : v ∈ I}) (see, e.g., XII, Lemma 1.12(2) of [7℄). Inpartiular, Mu ⌣

M(u

M6⊇u and the �moreover� lause follows immediately. Inorder to omplete the proof that {Mv : v ∈ I ∪ {u}} is a stable system itsu�es to show that
Mv ⌣

M(v

M6⊇vMu,where M6⊇v =
⋃
{Mr : r ∈ I, v 6⊆ r} for every v ∈ I satisfying v 6⊆ u (for

v ⊆ u the appropriate requirement is satis�ed sine {Mv : v ∈ I} is a stablesystem). So �x v 6⊆ u, hene M(u ⊆M6⊇v. From above,
Mu ⌣

M(u

MvM(vM6⊇vso Mv ⌣
M(uM(vM 6⊇v

Mu. Thus Mv ⌣
M(vM 6⊇v

Mu and the result follows by thetransitivity of nonforking.Proposition 5.5. Suppose MK = {Mu : u ∈ K} is a stable system ofa-saturated models indexed by K and M is a-prime over ⋃
MK . Then thereis a stable system MJ = {Mu : u ∈ J} indexed by J suh that :



116 M. C. Laskowski and S. Shelah(i) Eah Mu ⊆M and the uth entry of MJ = the uth entry of MK foreah u ∈ K;(ii) M is a-prime over ⋃
MJ ;(iii) For eah u ∈ J \K, Mu is a-prime over ⋃

{Mv : v ( u};(iv) For all pairs of good index sets I ⊆ I∗ ⊆ J , ⋃
{Mu : u ∈ I∗} is theunion of an a-onstrution sequene over ⋃

{Mu : u ∈ I}.Proof. Let 〈uj : j ∈ ω〉 be an enumeration of J \K suh that for every
j ∈ ω, if v ⊆ uj , then v ∈ K ∪ {uℓ : ℓ < j}. De�ne Jj = K ∪ {uℓ : ℓ < j} foreah j ∈ ω. Note that eah Jj is a good index set. We onstrut NJ = {Nu :
u ∈ J} as follows. First, let Nu = Mu for eah u ∈ K. Then for eah j ∈ ωindutively hoose Nuj

to be any a-prime model over ⋃
{Nv : v ( u}. Let

N∗ be any a-prime model over ⋃
NJ . By suessively applying Lemma 5.4 toeah of the good index sets Jj we �nd that {Nu : u ∈ Jj} is a stable systemindexed by Jj suh that Nuj

is a-onstrutible over ⋃
{Nv : v ∈ Jj} for every

j ∈ ω. It follows that ⋃
{Nu : u ∈ J} is a-onstrutible over ⋃

{Nu : u ∈ K}.Sine Nu = Mu for all u ∈ K, this implies that N∗ is a-onstrutible (henea-prime) over ⋃
{Mu : u ∈ K}. By the uniqueness of a-prime models thereis an isomorphism h : N∗ → M �xing ⋃

{Mu : u ∈ K} pointwise. De�ne
Mu = h(Nu) for eah u ∈ J . It is easy to see that MJ = {Mu : u ∈ J}satis�es lauses (i)�(iii).As for (iv), �x good index sets I ⊆ I∗ ⊆ J . Let 〈uj : j < α ≤ ω〉be an enumeration of I∗ \ I suh that for every j < α, if v ⊆ uj , then
v ∈ I ∪ {uℓ : ℓ < j}. Write I∗j = I ∪ {uℓ : ℓ < j} for eah j < α. Eah I∗j isa good index set, so it follows from Lemma 5.4 and indution on j < α that
Nuj

is a-onstrutible over ⋃
{Nv : v ∈ I∗j } for eah j. Clause (iv) followsfrom this by the transitivity of a-onstrutibility.The next de�nition is not given expliitly in [7℄, but the notion is inherentin the proof of Lemma XII 2.3 there.Definition 5.6. Given a good index set I and ∗ 6∈

⋃
I, let I∗ = I ∪

{u ∪ {∗} : u ∈ I}. A linked pair of stable systems (A,B) is a stable system
C indexed by I∗ where for eah v ∈ I∗, Cv = Av when ∗ 6∈ v and Cv = Buwhen v = u ∪ {∗}.By unraveling the de�nitions, if (A,B) is a linked pair of stable sys-tems then both A and B are stable systems indexed by I, Au � Bu and
Au ⌣

A(u

B6⊇u for all u ∈ I. Moreover, within the proof of Lemma 2.3 of Chap-ter XII of [7℄, the seond author shows that these onsequenes haraterizethis notion. More preisely, if A,B are stable systems indexed by I and foreah u ∈ I, Au � Bu and Au ⌣
A(u

B 6⊇u, then (A,B) are a linked pair of stablesystems.



Deompositions of saturated models 117By using this haraterization, the proof of the following lemma is justlike the proof of the downward Löwenheim�Skolem theorem and is left tothe reader.Lemma 5.7. Let M be any stable system of models indexed by I and let
X be any I-system of sets in whih eah Xu is a ountable subset of Mu.Then there is a stable system A suh that for eah u ∈ I, Au is ountable,
Xu ⊆ Au �Mu, and (A,M) is a linked pair of stable systems.More interesting is Proposition 5.9 below. Its proof uses the followingvery general lemma, whih is also left to the reader.Lemma 5.8. Suppose M is a-saturated , A,C are ountable, A ⊆M , and
q is a type in ountably many variables over AC that does not fork over A.Then q is realized in M .Proposition 5.9. Suppose that (A,B) and (A,M) are both linked pairsof stable systems suh that eah Bu is ountable and eah Mu is a-saturated.Then there is an elementary map f :

⋃
B →

⋃
M suh that f |⋃A = id and

f(Bu) �Mu for eah u ∈ I.Proof. Fix an enumeration {uj : j < j∗ ≤ ω} of I suh that ui ⊆ ujimplies i ≤ j. To ease notation, write Bj in plae of Buj
, B(j in plae of

B(uj
and B 6⊇j in plae of B 6⊇uj

. Note that the ondition on our enumerationensures that ⋃
{Bk : k < j} ⊆ B 6⊇j. We onstrut f as the union of a hainof inreasing elementary maps

fj :
⋃
A ∪

⋃
{Bk : k < j} →

⋃
A ∪

⋃
{Mk : k < j}that satisfy fj |

⋃
A = id and fj(Bk) �Mk for all k < j.To begin, let f0 be the identity map on ⋃

A. Now assume that 0< j < j∗and that fj−1 has been de�ned. Sine (A,B) is a linked pair of stable systems,
Bj ⌣

AjB(j

⋃
AB 6⊇j .Also, AjB(j ⊆ dom(fj−1), so fj−1(AjB(j) ⊆ Mj . Sine Mj is a-saturated,Lemma 5.8 ensures the existene of an elementary map fj ⊇ fj−1 with

fj(Bj) �Mj , and our proof is omplete.5.2. Pseudo ℓ-isolation. If the index set I is �nite andM = {Mu : u ∈ I}is a stable system of a-saturated models, then a type p ∈ S(
⋃
{Mu : u ∈ I})is a-isolated if and only if it is ℓ-isolated (see XII 2.11 of [7℄). When one isanalyzing a type over the union of a stable system of models of a superstabletheory, the restrition that I be �nite is inonsequential sine the type isbased on the union of a �nite subsystem. However, here our theory is stritlystable, so we need an analogue of this result that holds for stable systemsover in�nite index sets as well. The notion of pseudo ℓ-isolation satis�es ourneeds.



118 M. C. Laskowski and S. ShelahDefinition 5.10. A formula ψ(x) (possibly with hidden parameters)deides the formula ϕ(x, e) if either ψ(x) ⊢ ϕ(x, e) or ψ(x) ⊢ ¬ϕ(x, e). Forany model M , ψ(x) deides ϕ(x,M) if ψ(x) deides ϕ(x, e) for all e ∈M .Lemma 5.11. SupposeM ⊆ A,M is an a-saturated model , and p ∈ S(A)is an a-isolated type. Then for any L-formula ϕ(x, y) there is ψ(x) ∈ p thatdeides ϕ(x,M).Proof. Fix an L-formula ϕ(x, y). Sine p is a-isolated, we an hoose
q = {ψn(x) : n < n∗ ≤ ω} ⊆ p suh that q ⊢ p and ψn ⊢ ψn−1 for all
0 < n < n∗. For eah n < n∗ let

Zn = {e ∈M : ψn deides ϕ(x, e)}.Sine T is stable, eah Zn is M -de�nable. Furthermore, sine q ⊢ p and
p ∈ S(A) is a omplete type, ⋃

n∈ω Zn = M . Sine M is a-saturated, thisimplies M = Zm for some m < n∗. That is, ψm deides ϕ(x,M).Definition 5.12. Suppose that M is an I-system of models. A type
p ∈ S(

⋃
M) is pseudo ℓ-isolated over M (not over ⋃

M !) if for every u ∈ Iand every L-formula ϕ(x, y), there is ψ(x) ∈ p deiding ϕ(x,Mu).A set D is pseudo ℓ-atomi over M if tp(d/
⋃
M) is pseudo ℓ-isolatedover M for all �nite tuples d from D.The following lemma onnets these notions with a-atomiity.Lemma 5.13. Let M be an I-system of a-saturated models. For any set

D, D is a-atomi over ⋃
M if and only if D is pseudo ℓ-atomi over M .Proof. Left to right is immediate by Lemma 5.11. For the onverse let

p ∈ S(
⋃
M) be pseudo ℓ-isolated over M . For eah L-formula ϕ(x, y) andeah u ∈ I, hoose ψϕ,u(x) ∈ p that deides ϕ(x,Mu). Then q = {ψϕ,u(x) :

ϕ, u} witnesses that p is a-atomi over ⋃
M .Lemma 5.14. Suppose that I is a good index set that is losed underunions, i.e., u, v ∈ I implies u ∪ v ∈ I. Let M and M ′ be I-systems suhthat Mu ⊆ M ′

u and tp(M ′
u/

⋃
M) is �nitely satis�able in Mu for all u ∈ I.If p ∈ S(

⋃
M) is pseudo ℓ-isolated over M then p has a unique extension to

p′ ∈ S(
⋃
M ′) (whih is pseudo ℓ-isolated over M ′).Proof. For eah ϕ(x, y) and u ∈ I hoose ψ(x) ∈ p that deides ϕ(x,Mu).We argue that ψ(x) deides ϕ(x,M ′

u) as well. To see this, hoose v ∈ I suhthat ψ(x) is over Mv. By our onstraint on I we may assume that u ⊆ v.If ψ(x, av) did not deide ϕ(x,M ′
u) then for some b ∈ M ′

u, θ(av, b) wouldhold, where θ(y, z) is ∃x1∃x2[ψ(x1, y) ∧ ψ(x2, y) ∧ (ϕ(x1, z) 6↔ ϕ(x2, z))].But then �nite satis�ability would imply that θ(av, au) would hold for some
au ∈Mu, whih would ontradit the fat that ψ(x) deides ϕ(x,Mu). Thus
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{ψϕ,u(x) : ϕ, u} has a unique extension to p′ ∈ S(

⋃
M ′) and the sameformulas witness the pseudo ℓ-isolation of p′.If M = {Mu : u ∈ J} is a stable system of models indexed by J and

X ⊆ ω, let MX be the stable system (also indexed by J) {Mu∩X : u ∈ J},while MX denotes the model with universe ⋃
{Mu : u ∈ J ∩ P(X)}. Thefat that MX is a model follows from the fat that the index set J is losedunder �nite unions. It is readily heked that MX =

⋃
MX . In partiular,

Mω =
⋃
M . The following lemma is a stable system analogue of Lemma 3.1.Lemma 5.15. Let M be any stable system of a-saturated models indexedby J , let X ⊆ ω and let Y = ω \X.(i) If D is pseudo ℓ-atomi over MX then tp(D/MX) has a uniqueextension to a type over Mω, and D is also pseudo ℓ-atomi over M .(ii) Every a-onstrution sequene a = 〈aα : α < β〉 over MX is an a-onstrution sequene overMω and tp(a/Mω) does not fork overMX.(iii) If NX , NY are a-prime over MX ,MY respetively , then(a) tp(NX/MX) ⊢ tp(NX/MωNY ),(b) tp(Mω/MXMY ) ⊢ tp(Mω/NXNY ).Proof. (i) Sine M is a stable system, tp(Mu/MX) is �nitely satis�ableover Mu∩X , so we an apply Lemma 5.14 to the stable systems MX and M .Using (i) and Lemma 5.13, (ii) follows by indution on β.For both parts of (iii) hoose ϕ(x, y, z) and tuples c1 fromNX , c2 fromNY ,and d from Mω suh that ϕ(c1, c2, d) holds.We �rst show that there is ψ(x, e) ∈ tp(c1/MX) suh that ψ(x, e) ⊢

ϕ(x, c2, d). Choose a �nite u suh that d is from Mu. Sine MX is a stablesystem and NX/MX is a-atomi, tp(c1/MX) is pseudo ℓ-isolated over MX .So there is ψ(x, e) ∈ tp(c1/MX) suh that ψ(x, e) ⊢ tpϕ(c1/Mu∩X). Weargue that this ψ(x, e) ⊢ ϕ(x, c2, d).Let Z = Y ∪ u. Sine X ∩ Z = u ∩ X and sine M is a stable system,
tp(MZ/MX) does not fork over Mu∩X . As well, tp(c2/MY ) is a-isolated,hene tp(c2/MZ) is a-isolated as in (ii). Sine Mu∩X is an a-model, c2MZis dominated by MZ over Mu∩X , hene MX ⌣

Mu∩X

MZc2 follows by symme-try. Sine Mu∩X is a model, the pair (Mu∩X ,MZc2) has the Tarski�Vaughtproperty, hene tpϕ(c1/Mu∩X) has a unique extension qϕ ∈ Sϕ(MZc2) and
ψ(x, e) ⊢ qϕ. In partiular, ψ(x, e) deides ϕ(x, c2, d). But sine ϕ(c1, c2, d)holds, it deides it positively, i.e., ψ(x, e) ⊢ ϕ(x, c2, d). Thus, (iii)(a) holds.To establish (iii)(b) hoose d′ suh that tp(d′/MXMY ) = tp(d/MXMY ).It su�es to show that ϕ(c1, c2, d) holds. So hoose ψ(x, e) as above and let

θ(y, d, e) := ∀x[ψ(x, e) → ϕ(x, y, d)]



120 M. C. Laskowski and S. ShelahBy our hoie of ψ(x, e), θ(y, d, e) ∈ tp(c2/Mω). By (i), tp(c2/MY ) ⊢
tp(c2/Mω), so there is δ(y, e′) ∈ tp(c2/MY ) suh that δ(y, e′) ⊢ θ(y, d, e).Sine e, e′ ∈MX ∪MY , it follows that δ(y, e′) ⊢ θ(y, d′, e), hene θ(c2, d′, e).Thus, ϕ(c1, c2, d

′) holds as required.5.3. The standard topology on P(ω). The standard topology on P(ω) isobtained by positing that the sets
UF,G = {X ∈ P(ω) : F,G are �nite subsets of ω, F ⊆ X, X ∩G = ∅}form a basis of open sets. Topologized in this way, the natural mapping be-tween subsets of ω and harateristi funtions is a homeomorphism between

P(ω) and the Cantor set ω2.Note that UF,G = ∅ if and only if F ∩ G 6= ∅. Let D = {(F,G) : F,Gare �nite subsets of ω and F ∩ G = ∅}. For (F,G), (F ′, G′) ∈ D we write
(F,G) ≤ (F ′, G′) if and only if F ⊆ F ′ and G ⊆ G′.It is easily heked that a set R ⊆ P(ω) is nowhere dense if and only iffor every (F,G) ∈ D there is (F ′, G′) ∈ D suh that (F ′, G′) ≥ (F,G) and
UF ′,G′ ∩ R = ∅. Reall that a set Z ⊆ P(ω) is meagre if it is a ountableunion of nowhere dense subsets.The following lemma is routine, but is inluded for ompleteness.Lemma 5.16. Let Z be any meagre subset of P(ω). Then:(i) There is X ∈ P(ω) suh that X,ω \X 6∈ Z.(ii) There are {Xi : i ∈ ω} ⊆ P(ω) \Z with Xi ∩Xj = ∅ when i < j < ω.Proof. Suppose that Z =

⋃
n∈ω Rn, where eah Rn is nowhere dense.(i) Using the haraterization of nowhere denseness given above, in-dutively onstrut a sequene 〈(Fn, Gn) : n ∈ ω〉 from D that satis�es

(Fn, Gn) ≤ (Fn+1, Gn+1), UF2n,G2n ∩ Rn = ∅, and UG2n+1,F2n+1
∩ Rn = ∅.Take X =

⋃
n∈ω Fn. Then X ∈ UFn,Gn for all n, so X 6∈ Z. Furthermore,

ω \X ∈ UGn,Fn for all n, so ω \X 6∈ Z as well.(ii) Fix a bijetion Φ : ω → ω×ω. Call an ω-sequene F = 〈Fi : i ∈ ω〉 of(�nite) subsets of ω an approximating sequene if {Fi : i ∈ ω} are pairwisedisjoint and ⋃
{Fi : i ∈ ω} is �nite. We say that an approximating sequene

F = 〈Fi : i ∈ ω〉 satis�es Condition k if, writing Φ(k) = (i, j), we have
UFi,Gi

∩Rj = ∅ where Gi =
⋃

{Fl : l 6= i}.We indutively onstrut approximating sequenes Fn = 〈Fn
i : i ∈ ω〉 foreah n ∈ ω suh that Fn

i ⊆ Fm
i for all i and all n < m < ω and Fn satis�esCondition k for all k < n.To start, de�ne F0 = 〈F 0

i : i ∈ ω〉, where eah F 0
i = ∅. Now assume that

Fn has been de�ned and let Φ(n) = (i∗, j∗). Let G =
⋃
{Fn

l : l 6= i∗}. Sine
Rj∗ is nowhere dense, there is (F ′, G′) ≥ (Fn

i∗ , G) suh that UF ′,G′ ∩Rj∗ = ∅.Let m be any integer 6= i∗ suh that Fn
m = ∅. Let Fn+1

i∗ = F ′, Fn+1
m = G′ \G,
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l = Fn

l for all l 6= i∗,m. Then Fn+1 = 〈Fn+1
i : i ∈ ω〉 satis�esCondition k for all k ≤ n.Finally, for eah i ∈ ω take Xi =

⋃
{Fn

i : n ∈ ω}.5.4. Proof of Theorem 5.1. By the remarks following De�nition 1.6, itsu�es to show that T has ω1-NDOP. Choose a family {Mi : i < ω} ofa-saturated models that ontain and are independent over a ommon a-saturated model M∅, and let M be a-prime over ⋃
{Mi : i < ω}. Fix anonalgebrai type p ∈ S(M). We will eventually show that p is nonorthogonalto some Mi, whih su�es by Theorem 1.3.Let MK denote the stable system indexed by K, where M{i} = Mi foreah i ∈ ω. Choose a stable system MJ = {Mu : u ∈ J} extending MKsatisfying lauses (i)�(iv) of Proposition 5.5.We adopt the notation prior to Lemma 5.15 for the whole of this setion,not only for the stable system M in the laim below, but also for the relatedsystems A and B that follow. For eah X ⊆ ω let

NX = {N �M : N is a-prime over MX and M is a-prime over N ∪Mω}.For eah �nite ∆ ⊆ L, let W∆ = {X ⊆ ω : p 6⊥∆ N for some N ∈ NX} andlet W =
⋃
{W∆ : ∆ ⊆ L �nite}.Claim 5.17. For all X ⊆ ω, at least one of X,ω −X is in W .Proof. Fix X ⊆ ω and let Y = ω \ X. Let NX , NY be a-prime modelsoverMX ,MY respetively. LetM∗ be a-prime over NX ∪NY ∪Mω. We arguethat M∗ is also a-prime over eah of the four sets Mω, NX ∪Mω, NY ∪Mω,and NX ∪NY .To see this, �rst note that by applying Proposition 5.5(iv) with I =

(P(X) ∪ P(Y )) ∩ J and I∗ = J , Mω is a-onstrutible over MX ∪ MY .By Lemma 5.15(iii)(b), Mω is a-onstrutible over NX ∪ NY . Thus, M∗ isa-onstrutible (hene a-prime) over NX ∪NY . As well, by Lemma 5.15(ii),
NX is a-onstrutible overMω. By Lemma 5.15(iii)(a), NY is a-onstrutibleover Mω ∪NX . Hene M∗ is a-prime over Mω as well as over Mω ∪NX . That
M∗ is a-prime over Mω ∪NY is symmetri.But now, reall that M is also a-prime over Mω. So there is an iso-morphism h : M∗ → M �xing Mω pointwise. Sine M is a stable system,
MX ⌣

M∅

MY . Also, h(NX) is a-prime over MX , hene dominated by MX over
M∅ and dually, h(NY ) is dominated byMY overM∅. Thus h(NX)⌣

M∅

h(NY ).But p ∈ S(M) and M is a-prime over h(NX) ∪ h(NY ). By NDOP, either
p 6⊥ h(NX) or p 6⊥ h(NY ). As the ases are symmetri, assume p 6⊥ h(NX),Finally, sine M is a-prime over h(NX) ∪Mω, h(NX) ∈ NX , so X ∈W .Claim 5.18. Eah W∆ is a Σ

1
1-subset of P(ω).



122 M. C. Laskowski and S. ShelahProof. Fix ∆ ⊆ L �nite. Choose C ⊆ M ountable suh that p is basedand stationary over C. Sine M is a-atomi overMω, we an hoose a ount-able set Z ⊆ Mω suh that tp(C/Z) ⊢ tp(C/Mω). Using Lemma 5.7 �nd astable system A indexed by J in whih every Au is ountable, Z ⊆ Aω, and
(A,M) is a linked pair of stable systems. Note that tp(C/Mω) does not forkover Aω by transitivity.Sublaim 5.19. X ∈ W∆ if and only if there exist a ountable B suhthat (A,B) is a linked pair of stable systems and tp(C/Bω) does not fork over
Aω, a ountable model N ′ that is pseudo ℓ-atomi over BX , a ountable set
D ⊇ N ′C, a tuple d from D, a formula ϕ(x, yz) ∈ ∆, and a type q ∈ S(D)that does not fork over N ′ suh that R∆((p|D) ∪ {ϕ(x, db)}) < R∆(p) forsome (every) b realizing q.It is easily veri�ed that

{(N ′, B,X) : N ′ is pseudo ℓ-atomi over BX}is a Borel subset of a produt of Polish spaes projeting onto P(ω) so the
Σ

1
1-ness of W∆ is an immediate onsequene of the sublaim.To establish the sublaim (and hene the laim) �rst suppose that X ∈

W∆. Choose N ∈ NX suh that p 6⊥∆ N . Choose D0, d, ϕ, and q0 ∈ S(D0)from De�nition 2.15 witnessing this. Choose a ountable N ′ � N suh that
q0 is based on N ′. Sine N ′, C and the language L are ountable, we an�nd a ountable subset D ⊆ D0 ontaining N ′Cd and q ∈ S(D) parallel to
q0 suh that R∆((p|D)∪ {ϕ(x, db)}) < R∆(p) for any b realizing q. Sine N ′is a-atomi over MX , it is also pseudo ℓ-atomi over MX by Lemma 5.13.Choose E ⊆MX ountable so that for all �nite tuples e from N ′, all ϕ(x, y)and all u ∈ J∩P(X) there is an L(E)-formula ψ(x) ∈ tp(e/MX) that deides
ϕ(x,Mu).Now arguing as in Lemma 5.7 there is a stable system B indexed by Jsuh that eah Bu is ountable, E ⊆ BX , Au � Bu � Mu, and (A,B) is alinked pair of stable systems. Sine C ⌣

Aω

Mω, we have C ⌣
Aω

Bω. By our hoieof E, N ′ is pseudo ℓ-atomi over BX .Conversely, �x X ∈ P(ω) and assume B, N ′, D, d, ϕ, and q are as inthe sublaim. It follows immediately from De�nition 2.15 that p 6⊥∆ N ′. ByProposition 5.9 there is an elementary map f : B →M suh that f |Aω = idand f(Bu) ⊆ Mu for eah u ∈ J . Sine tp(C/Mω) does not fork over Aωand sine Aω is a model, tp(Bω/CAω) = tp(f(Bω)/CAω). Let σ be anautomorphism of C extending f that �xes CAω pointwise. Sine p is basedand stationary over C, its parallelism lass is invariant under the ation of σ.Thus, by replaing the given B by f(B), p by σ(p), and N ′ by σ(N ′), wemay assume that Bu ⊆Mu for all u ∈ J while preserving p 6⊥∆ N ′.



Deompositions of saturated models 123Now �x an enumeration 〈a′n : n ∈ ω〉 of N ′. Sine both N ′ and BXare ountable and sine M realizes every a-isolated type over MX , the ex-istene theorem for a-isolated types allows us to �nd N ′′ = 〈a′′n : n ∈ ω〉from M suh that 〈a′′n : n ∈ ω〉 is an a-onstrution sequene over MXwith tp(N ′/BX) = tp(N ′′/BX). Sine both N ′ and N ′′ are pseudo ℓ-atomiover BX , Lemma 5.15(i) implies that tp(N ′/Bω) = tp(N ′′/Bω). Sine M is
ℵ1-homogeneous, there is C ′′ ⊆M suh that tp(N ′C/Bω) = tp(N ′′C ′′/Bω).Thus p′′ 6⊥∆ N ′′, where p′′ ∈ S(C ′′) is onjugate to p over Bω. Note that
tp(C ′′/Mω) = tp(C/Mω) sine tp(C/Bω) ⊢ tp(C/Mω). Sine M is ℵ1-homogeneous over Mω, there is N0 = 〈an : n ∈ ω〉 from M suh that

C ′′〈a′′n : n ∈ ω〉 ≡Mω C〈an : n ∈ ω〉Summarizing all of this, N0 is a ountable subset of M , p 6⊥∆ N0, and N0 isa-onstrutible over MX .Next, let N̂ = 〈an : n < β〉 be an a-onstrutible model over MX , whoseonstrution sequene end extends N0 = 〈an : n ∈ ω〉. By Lemma 5.15(ii), N̂is an a-onstrution sequene over Mω. Let M̂ be a-prime over N̂Mω. Notethat M̂ is also a-prime over N0Mω. But reall that M is a-prime over Mωand N0 is a ountable subset of M . Thus M is also a-prime over N0Mω. So,by the uniqueness of a-prime models, there is an isomorphism h : M̂ → Mover N0Mω. Finally, take N = h(N̂). Sine N0 ⊆ N , p 6⊥∆ N and M isa-prime over NMω. Thus, N witnesses that X ∈ W∆, whih ompletes theproof of Claim 5.18.Claim 5.20. p 6⊥MF for some �nite F ⊆ ω.Proof. We �rst argue that W is not meagre. If it were, then by Lem-ma 5.16(i) there would be X ⊆ ω suh that X and ω \X 6∈W , whih wouldontradit Claim 5.17.Sine W is not meagre, some W∆ is not meagre. Fix suh a ∆. Sine
Σ

1
1-subsets of a Polish spae have the property of Baire (see, e.g., Theorem 7of XII.8 of [3℄), it follows from Claim 5.18 that there is a nonempty opensubset UF,G of P(ω) suh that UF,G \W∆ is meagre. But UF,G is naturallyhomeomorphi to P(ω), so the translation of Lemma 5.16(ii) is that thereare sets {Xi : i ∈ ω} ⊆ W∆ suh that Xi ∩ Xj = F for all i < j < ω. Foreah i ∈ ω hoose Ni ∈ NXi

suh that p 6⊥∆ Ni. Sine M is a stable system,
{MXi

: i ∈ ω} is independent over MF . Sine eah Ni is a-prime over MXiand sine MF is a-saturated, it follows that {Ni : i ∈ ω} is independent over
MF . Sine p 6⊥∆ Ni for eah i, Proposition 2.16 entails that p 6⊥MF .To omplete the proof of the theorem, �x a �nite F ⊆ ω suh that
p 6⊥ MF . Taking I = {∅} ∪ {{i} : i ∈ F} and I∗ = P(F ) in lause (iv) ofProposition 5.5, we see that MF is a-prime over ⋃

{Mi : i ∈ F}. As F is�nite, it follows from NDOP that p 6⊥Mi for some i ∈ F and we �nish.
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